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Abstract In quantitative risk management, it is important and challenging to find
sharp bounds for the distribution of the sum of dependent risks with given marginal
distributions, but an unspecified dependence structure. These bounds are directly re-
lated to the problem of obtaining the worst Value-at-Risk of the total risk. Using the
idea of the complete mixability, we provide a new lower bound for any given marginal
distributions and give a necessary and sufficient condition for the sharpness of this
new bound. For the sum of dependent risks with an identical distribution, which has
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1 Introduction

Let X = (X1, · · · , Xn) be a risk vector with known marginal distributions F1, · · · , Fn,
denoted as Xi ∼ Fi, i = 1, · · · , n and let S = X1 + · · ·+Xn be the total risk. For the pur-
pose of risk management, it is of importance to find the best-possible bounds for the
distribution of the total risk S when the dependence structure is unspecified, namely

m+(s) = inf{P(S < s) : Xi ∼ Fi, i = 1, · · · , n}, (1.1)
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and
M+(s) = sup{P(S < s) : Xi ∼ Fi, i = 1, · · · , n}. (1.2)

See Embrechts and Puccetti [6] for discussions on such problems in risk management.
Since techniques for handling M+(s) are very similar to those for m+(s), we shall
focus on m+(s) in this paper.

First let us review some known results on m+(s). Rüschendorf [11] found m+(s)
when all marginal distributions have the same uniform or binomial distribution; De-
nuit et al. [1] and Embrechts et al. [2] used copulas to yield the so-called standard
bounds, which are no longer sharp for n ≥ 3, and discussed some applications; Em-
brechts and Puccetti [4] provided a better lower bound when all marginal distributions
are the same and continuous, and some results when partial information on the depen-
dence structure is available; Embrechts and Höing [3] provided a geometric interpre-
tation to highlight the shape of the dependence structures with the worst VaR scenar-
ios; Embrechts and Puccetti [5] extended this problem to multivariate marginal dis-
tributions and provided results similar to the univariate case. In summary, for n ≥ 3,
exact bounds were only found for the homogenous case (F1 = · · · = Fn = F) in
Rüschendorf [11] where F is uniform or binomial and in Wang and Wang [14] where
F has a monotone density on its support and satisfies a mean condition. Besides the
above results on m+(s), Rüschendorf [11] associated an equivalent dual optimization
problem with the bounds for a general function of X1, · · · , Xn instead of the total risk
S .

The bounds m+(s) and M+(s) directly lead to the sharp bounds on quantile-based
risk measures of S . A widely used measure is the so-called Value-at-Risk (VaR) at
level α, defined as

VaRα(S ) = inf{s ∈ R : P(S ≤ s) ≥ α}.

The bound on the above VaR is called the worst Value-at-Risk scenario. Deriving
sharp bounds for the worst VaR is of great interest in the recent research of quanti-
tative risk management; see Embrechts and Puccetti [6] and Kaas et al. [8] for more
details.

In this paper, we first provide a new lower bound on m+(s), which is easy to
calculate. Using the idea of the jointly mixable distributions, we give a necessary
and sufficient condition for this bound to be the true value of m+(s). See Section
2 for details. In Section 3 we employ a special class of copulas to find m+(s) and
the worst Value-at-Risk when all the marginal distributions are identical and have a
monotone or tail-monotone density. The methods are illustrated by some examples.
Some conclusions are drawn in Section 4. Some proofs are put in the appendix.

2 Bounds for the sum with general marginal distributions

Throughout, we identify probability measures with the corresponding distribution
functions. Let X = (X1, · · · , Xn) and S = X1 + · · · + Xn. For any distribution F, we
use F−1(t) = inf{s ∈ R : F(s) ≥ t} to denote the (generalized) inverse function
and denote by F̃a the conditional distribution of F on [F−1(a),∞) for a ∈ [0, 1), i.e.,
F̃a(x) = max

{
F(x)−a

1−a , 0
}

for x ∈ R. It is straightforward to check that for u ∈ [0, 1],
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F̃−1
a (u) = F−1((1−a)u+a). In addition, we define F̃1(x) = lima→1− F̃a(x). In this paper,

no specific probability space is assumed and discussions are focused on distributions,
since m+(s) only depends on s and the distributions F1, · · · , Fn.

2.1 General bounds

In this section, we will give a general lower bound on m+(s). Before showing this
bound, we need some definitions and lemmas.

Definition 2.1 The random vector X = (X1, · · · , Xn) with marginal distributions
F1, · · · , Fn is called an optimal coupling for m+(s) if

P(X1 + · · · + Xn < s) = m+(s).

It is known that the optimal coupling for m+(s) always exists (see the introduc-
tion in Rüschendorf [12] for instance). The following lemma is Proposition 3(c) of
Rüschendorf [11], which will be used later.

Lemma 2.2 Suppose F1, · · · , Fn are continuous. Then there exists an optimal cou-
pling X = (X1, · · · , Xn) for m+(s) such that {S ≥ s} = {Xi ≥ F−1

i (m+(s))} for each
i = 1, · · · , n.

Next we introduce the concept of completely mixable and jointly mixable distri-
butions.

Definition 2.3 (completely mixable and jointly mixable distributions)

1. A univariate distribution function F is n-completely mixable (n-CM) if there
exist n identically distributed random variables X1, · · · , Xn with the same distri-
bution F such that

P(X1 + · · · + Xn = C) = 1 (2.1)

for some C ∈ R.
2. The univariate distribution functions F1, · · · , Fn are jointly mixable (JM) if there

exist n random variables X1, · · · , Xn with distribution functions F1, · · · , Fn re-
spectively, such that (2.1) holds for some C ∈ R.

The definition of the CM distributions is formally given in Wang and Wang [14]
although the concept has been used in variance reduction problems earlier (see Gaffke
and Rüschendorf [7], Knott and Smith [9], Rüschendorf and Uckelmann [13]). Some
examples of n-CM distributions include the distribution of a constant (for n ≥ 1),
uniform distributions (for n ≥ 2), Normal distributions (for n ≥ 2), Cauchy distribu-
tions (for n ≥ 2), binomial distributions B(n, p/q) with p, q ∈ N (for n = q), bounded
monotone distributions on [0, 1] with 1/m ≤ E(X) ≤ 1 − 1/m (for n ≥ m). See Wang
and Wang [14] for more details of the CM distributions.

The concept of JM distributions is first introduced in this paper as a generalization
of the CM distributions. Obviously, F1, · · · , Fn are JM distributions when F1 = · · · =

Fn = F and F is n-CM. The following proposition gives a necessary condition for
JM distributions and the condition is sufficient for n normal distributions. The proof
is given in the appendix.
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Proposition 2.4

1. Suppose F1, · · · , Fn are JM with finite variance σ2
1, · · · , σ

2
n. Then

max
1≤i≤n

σi ≤
1
2

n∑
i=1

σi. (2.2)

2. Suppose Fi is N(µi, σ
2
i ) for i = 1, · · · , n. Then F1, · · · , Fn are JM if and only if

(2.2) holds.

Remark 2.5 Due to the complexity of multivariate distributional problems, it remains
unknown and extremely difficult to find general sufficient conditions for the JM dis-
tributions.

Before presenting the main results on the relationship between the bounds on
m+(s) and the jointly mixable distributions, we define the conditional moment func-
tion Φ(t) which turns out to play an important role in the problem of finding m+(s).
Suppose Xi ∼ Fi for i = 1, · · · , n. Define

Φ(t) =

n∑
i=1

E(Xi|Xi ≥ F−1
i (t))

for t ∈ (0, 1), and
Φ(1) = lim

t→1−
Φ(t), Φ(0) = lim

t→0+
Φ(t).

Obviously Φ(t) is increasing and continuous when Fi, i = 1, · · · , n are continuous.
Define

Φ−1(x) = inf{t ∈ [0, 1] : Φ(t) ≥ x}

for x ≤ Φ(1) and Φ−1(x) = 1 for x > Φ(1).

Theorem 2.6 Suppose the distributions F1, · · · , Fn are continuous.

(1) We have
m+(s) ≥ Φ−1(s); (2.3)

(2) For each fixed s ≥ Φ(0), the equality

m+(s) = Φ−1(s) (2.4)

holds if and only if the conditional distributions F̃1,a, · · · , F̃n,a are jointly mixable,
where a = Φ−1(s).

Proof

(1) It is trivial to prove the result whenΦ(0) = ∞. So we assumeΦ(0) < ∞. Note that
from Lemma 2.2 we know that there exists an optimal coupling X = (X1, . . . , Xn)
for m+(s) such that {S ≥ s} = {Xi ≥ F−1

i (m+(s))} for each i = 1, · · · , n. Hence

s ≤ E[S |S ≥ s] =

n∑
i=1

E[Xi|Xi ≥ F−1
i (m+(s))] = Φ(m+(s)),

which implies (2.3).
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(2) Suppose X = (X1, · · · , Xn) is an optimal coupling for m+(s) such that {S ≥ s} =

{Xi ≥ F−1
i (m+(s))} for each i = 1, · · · , n. When m+(s) = Φ−1(s), it follows from

the proof of part (1) that E(S |S ≥ s) = s, which implies that the conditional distri-
butions of X1, · · · , Xn on the set {S ≥ s} are JM, i.e., the conditional distributions
F̃1,a, · · · , F̃n,a are JM.
Conversely, assume that F̃1,a, · · · , F̃n,a are JM. Then there exist Y1 ∼ F̃1,a, · · · ,Yn ∼

F̃n,a such that

Y1 + · · · + Yn = E(Y1 + · · · + Yn) = Φ(a) ≥ s.

Let
Xi = F−1

i (U)1{U≤a} + Yi1{U>a}, (2.5)

where U ∼ U[0, 1] and is independent of (Y1, · · · ,Yn). Then it is easy to verify
that Xi has the distribution function Fi for i = 1, · · · , n and

m+(s) ≤ P(S < s) ≤ a = Φ−1(s).

The other inequality m+(s) ≥ Φ−1(s) is shown in part (1).

Remark 2.7

1. It is seen from the proof that the continuity of Fi can be removed. In a recent
preprint, Puccetti and Rüschendorff [10] established Theorem 2.6 independently,
where the equivalent form sup{P(S > s), X1 ∼ F1, · · · , Xn ∼ Fn} ≤ 1 − Φ−1(s) is
proved without assuming the continuity of Fi.

2. The optimal coupling is given in (2.5). Although the existence of such Y1, · · · ,Yn

is guaranteed by the mixable condition, finding Y1, · · · ,Yn remains quite chal-
lenging. For example, when the marginal distributions Fi are identical and com-
pletely mixable, the dependence structure of random variables Y1, · · · ,Yn may not
be unique and is hard to be specified in general as discussed in Wang and Wang
[14].

2.2 Bounds for the sum with identical marginal distributions

Here we consider m+(s) in the homogeneous case, i.e. F1 = · · · = Fn ≡ F. For
X ∼ F, define

ψ(t) = E(X|X ≥ F−1(t))

for t ∈ (0, 1),
ψ(1) = lim

t→1−
ψ(t), ψ(0) = lim

t→0+
ψ(t),

ψ−1(x) = inf{t ∈ [0, 1] : ψ(t) ≥ x}

for x ≤ ψ(1) and ψ−1(x) = 1 for x > ψ(1). The following result follows from Theo-
rem 2.6 immediately.

Corollary 2.8 Suppose F1 = · · · = Fn ≡ F and F is continuous.

(1) We have
m+(s) ≥ ψ−1(s/n). (2.6)
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(2) For each fixed s ≥ nψ(0), the equality

m+(s) = ψ−1(s/n) (2.7)

holds if and only if the conditional distribution function F̃a is n-completely mix-
able, where a = ψ−1(s/n).

Next we compare the bound in (2.6) with the bound obtained in Embrechts and
Puccetti [4], which is

m+(s) ≥ 1 − n inf
r∈[0,s/n)

∫ s−(n−1)r
r (1 − F(t))dt

s − nr
for s > 0. (2.8)

Proposition 2.9 The bound (2.8) is greater than or equal to the bound (2.6). More-
over, both are equal if and only if F−1(1) < ∞ and a solution to the infimum

inf
r∈[0,s/n)

∫ s−(n−1)r
r (1 − F(t))dt

s − nr
(2.9)

lies in [0, s−F−1(1)
n−1 ].

The proof of the above Proposition is given in the appendix.
Different from the bound in Embrechts and Puccetti [4], Theorem 2.6 deals with

a more general case, where the random variables X1, · · · , Xn do not need to be iden-
tically distributed and positive. Moreover, the bound in Theorem 2.6 is easier to
calculate. Obviously, the bounds in Corollary 2.8 and in Embrechts and Puccetti [4]
are the same and both are sharp when the conditional distribution F̃a is completely
mixable. A comparison of the two bounds is given in Figure 3.2 in Section 3 when the
marginal distributions have infinite support (see also Remark 3.5). Note that infinite
support generally implies that the mixable condition in Theorem 2.6 and Corollary
2.8 does not hold.

3 Bounds for identically distributed risks with monotone densities

In this section, we investigate the homogeneous case when F1 = · · · = Fn = F
and F has either a monotone density or a tail-monotone density on its support. Since
the case of n = 1 is trivial, we assume n ≥ 2. When the distribution F with support
on [0, 1] has a decreasing density and satisfies the regular condition ψ(t) ≥ t + 1−t

n ,
Wang and Wang [14] showed that m+(s) = ψ−1(s/n), which now becomes a corollary
of Theorem 2.6.

When the support of the distribution F is unbounded, the mixable condition in
Theorem 2.6 and Corollary 2.8 is not satisfied (see Proposition 2.1(7) in Wang and
Wang [14]), i.e., the bound ψ−1(s/n) is not sharp. In this section, we find a formula
for calculating the bound m+(s) for any distribution with a monotone density or a tail-
monotone density, and obtain the corresponding correlation structure. This partially
answers the question of optimal coupling for m+(s), which has remained open for
decades. As a direct application, the bounds on VaRα(S ) are obtained as well.
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3.1 Preliminaries

To calculate m+(s) for F having a monotone marginal density, we first review the
construction of copula QF

n (n ≥ 2) in Wang and Wang [14], where F is a distribution
function with an increasing (non-decreasing) density. More specifically, for some
0 ≤ c ≤ 1/n and random vector (U1, · · · ,Un) with uniform marginal distributions
on [0,1], we say (U1, · · · ,Un) ∼ QF

n (c) if

(a) for each i = 1, · · · , n, given Ui ∈ [0, c], we have U j = 1 − (n − 1)Ui, ∀ j , i;
(b) F−1(U1)+ · · ·+ F−1(Un) is a constant when any one of U′i s lies in (c, 1− (n−1)c).

Denote QF
n = QF

n (cn) where cn is the smallest possible c such that QF
n (c) exists. Note

that cn = 0 if and only if F is n-CM. Define

H(x) = F−1(x)+ (n−1)F−1(1− (n−1)x) for F with a non-decreasing density. (3.1)

Then the smallest possible c for F with an increasing density is

cn = min{c ∈ [0,
1
n

] :
∫ 1

n

c
H(t)dt ≤ (

1
n
− c)H(c)} (3.2)

and for any convex function f ,

min
X1,··· ,Xn∼F

E f (X1 + · · · + Xn) = EQF
n f

(
F−1(U1) + · · · + F−1(Un)

)
. (3.3)

Note that QF
n may not be unique. The existence of QF

n and details of the above results
can be found in Section 3 of Wang and Wang [14].

For F with a decreasing density (n ≥ 2), we define QF
n (c) similarly as follows.

For some 0 ≤ c ≤ 1/n, we say (U1, · · · ,Un) ∼ QF
n (c) if

(a’) for each i = 1, · · · , n, given Ui ∈ [1−c, 1], we have U j = (n−1)(1−Ui), ∀ j , i;
(b’) F−1(U1) + · · ·+ F−1(Un) is a constant when any one of Ui lies in ((n−1)c, 1− c).

Define

H(x) = (n − 1)F−1((n − 1)x) + F−1(1 − x) for F with a decreasing density. (3.4)

As for the distribution of Z with a decreasing density, the distribution of −Z has an
increasing density, thus the above properties hold for F with a decreasing density.
That is, the smallest possible c for F with a decreasing density is

cn = min{c ∈ [0,
1
n

] :
∫ 1

n

c
H(t)dt ≥ (

1
n
− c)H(c)}. (3.5)

And for a distribution F with a decreasing density and any convex function f the
equation (3.3) holds.

Although
m+(s) = min

X1,··· ,Xn∼F
E(1{S<s}),

the above results can not be applied directly to solve m+(s) since the indicator func-
tion 1(−∞,s)(·) is not a concave function. Here we propose to find m+(s) for F with a
monotone marginal density based on the following properties of QF

n .
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Proposition 3.1 Suppose F admits a monotone density on its support.

1. If (U1, · · · ,Un) ∼ QF
n (c) and F has an increasing density, then 1{Ui∈(c,1−(n−1)c)} =

1{U1∈(c,1−(n−1)c)} a.s. for i = 1, · · · , n.
2. If X1, · · · , Xn ∼ F with copula QF

n , then

S = X1 + · · · + Xn =

{
H(U/n)1{U≤ncn} + H(cn)1{U>ncn}, cn > 0;

nE(X1), cn = 0 (3.6)

for some U ∼ U[0, 1].

The proof of Proposition 3.1 is given in the appendix. For more details of the copula
QF

n , see Wang and Wang [14].

3.2 Monotone marginal densities

Now we are ready to give a computable formula for m+(s). In the following we
define a function φ(x) which works similarly as Φ(x) in the mixable case.

For F with a decreasing density and a ∈ [0, 1], define

Ha(x) = (n − 1)F−1(a + (n − 1)x) + F−1(1 − x) (3.7)

for x ∈ [0, 1−a
n ] and

cn(a) = min{c ∈ [0,
1
n

(1 − a)] :
∫ 1

n (1−a)

c
Ha(t)dt ≥ (

1
n

(1 − a) − c)Ha(c)}. (3.8)

Write

φ(a) =

{
Ha(cn(a)) if cn(a) > 0,

nψ(a) if cn(a) = 0. (3.9)

On the other hand, for F with an increasing density and a ∈ [0, 1], define

Ha(x) = F−1(a + x) + (n − 1)F−1(1 − (n − 1)x), (3.10)

cn(a) = min{c ∈ [0,
1
n

(1 − a)] :
∫ 1

n (1−a)

c
Ha(t)dt ≤ (

1
n

(1 − a) − c)Ha(c)} (3.11)

and

φ(a) =

{
Ha(0) if cn(a) > 0,
nψ(a) if cn(a) = 0. (3.12)

Some probabilistic interpretation of the functions Ha(x) and φ(a) is given in the
following remark. Technical details are put in Lemma 3.3 later.
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Remark 3.2 Suppose Y1, · · · ,Yn ∼ F̃a with copula QF̃a
n . By (3.6) we have

Y1 + · · · + Yn =

{
H̃(U/n)1{U≤nc̃n} + H̃(c̃n)1{U>nc̃n}, c̃n > 0,

nE(Y1), c̃n = 0

for some U ∼ U[0, 1], where H̃(x) and c̃n are H(x) and cn defined in (3.1), (3.2),
(3.4) and (3.5) by replacing F with F̃a. It is easy to check that H̃(x) = Ha((1 − a)x),
c̃n = cn(a)/(1−a) and H̃(c̃n) = Ha(cn(a)). For cn(a) > 0, later we will show that Ha(x),
x ∈ [0, cn(a)] attains its minimum value at Ha(cn(a)) for F̃a with a decreasing density
and at Ha(0) for F̃a with an increasing density. Therefore, the minimum possible
value of Y1 + · · · + Yn is

min
x∈[0,cn(a)]

Ha(x)1{cn(a)>0} + nE(Y1)1{cn(a)=0} = φ(a).

Thus, P(Y1 + · · · + Yn ≥ φ(a)) = 1, which leads to P(S < φ(a)) ≤ a by setting
Xi = F−1(V)1{V≤a} + Yi1{V>a} where V ∼ U[0, 1] is independent of Y1, · · · ,Yn. This
suggests m+(s) ≤ φ−1(a), i.e., φ−1(a) is potentially an optimal bound. In order to prove
the optimality of φ−1(a), more details of the functions Ha(x) and φ(a) are given in the
following lemma, whose proof is put in the appendix.

Lemma 3.3 Suppose F admits a monotone density.

(i) If F has a decreasing density, then given a ∈ [0, 1), Ha(x) is decreasing and
differentiable for x ∈ [0, cn(a)].

(ii) If F has an increasing density, then given a ∈ [0, 1), Ha(x) is increasing and
differentiable for x ∈ [0, cn(a)].

(iii) If F has a decreasing density, then φ(a) = nE[F−1(Va)] where Va ∼ U[a + (n −
1)cn(a), 1 − cn(a)].

(iv) For any random variables U1, · · · ,Un ∼ U[a, 1] and 0 ≤ a < b ≤ 1, we have
E(F−1(Ui)|A) < E[F−1(Vb)] for i = 1, · · · , n, where Vb is defined in (iii) and
A =

⋂n
i=1{Ui ∈ [a, 1 − cn(b)]}.

(v) Suppose Y1, · · · ,Yn ∼ F̃a with copula QF̃a
n , then P(Y1 + · · · + Yn ≥ φ(a)) = 1.

(vi) φ(a) is continuous and strictly increasing for a ∈ [0, 1).

Since φ(a) is continuous and strictly increasing, its inverse function φ−1(a) exists.
Put φ−1(t) = 0 if t < φ(0) and φ−1(t) = 1 if t > φ(1).

Theorem 3.4 Suppose the distribution F(x) has a decreasing density on its support
and φ(a) is defined in (3.9), or the distribution F(x) has an increasing density on its
support and φ(a) is defined in (3.12). Then we have m+(s) = φ−1(s).

Proof.

(a) We first prove m+(s) ≤ φ−1(s). Write a = φ−1(s). For i = 1, · · · , n, let Y1, · · · ,Yn ∼

F̃a with copula QF̃a
n and Xi = F−1(V)1{V≤a} + Yi1{V>a} where V ∼ U[0, 1] is inde-

pendent of Y1, · · · ,Yn. It is easy to check that Xi ∼ F and by Lemma 3.3(v),

m+(s) ≤ P(S < φ(a)) = 1−P(S ≥ φ(a)) ≤ 1−P(Y1+· · ·+Yn ≥ φ(a))P(V > a) = a.

Thus m+(s) ≤ φ−1(s).
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(b) Next we prove m+(s) ≥ φ−1(s) when F(x) has a decreasing density.
Suppose a = m+(s) < φ−1(s) = b and X = (X1, · · · , Xn) is an optimal coupling
for m+(s) such that {S ≥ s} = {Xi ≥ F−1(a)} for each i = 1, · · · , n. Hence there
exist Ua,1, · · · ,Ua,n ∼ U[a, 1] such that F−1(Ua,1) + · · · + F−1(Ua,n) ≥ s with
probability 1. By Lemma 3.3(iii) and (iv), we have

s ≤ E[
n∑

i=1

F−1(Ua,i)|A] < nE(F−1(Vb)) = φ(b) = s.

This leads to a contradiction. Thus m+(s) = φ−1(s).
(c) Finally we prove m+(s) ≥ φ−1(s) when F(x) has an increasing density. In this

case F−1(1) < ∞.
Write a = m+(s) and let X = (X1, · · · , Xn) be an optimal coupling for m+(s) such
that {S ≥ s} = {Xi ≥ F−1(a)} for each i = 1, · · · , n. It is clear that

P(S < F−1(a) + (n − 1)F−1(1) + ε|S ≥ s)
≥ P(Xi < F−1(a) + ε|Xi ≥ F−1(a)) > 0

for any ε > 0. Note that P(S < s|S ≥ s) = 0 and thus

s ≤ F−1(a) + (n − 1)F−1(1) = Ha(0).

This shows s ≤ Ha(0). The inequality s ≤ nψ(a) is given by Theorem 2.6. Hence
s ≤ φ(a) and a ≥ φ−1(s). ut

The proof of the above theorem suggests constructing the optimal correlation
structure as follows. In both cases, for a = φ−1(s) let Ua,1, · · · ,Ua,n ∼ U[a, 1] with
copula QF̃a

n and U ∼U[0,1] is independent of (Ua,1, · · · ,Ua,n). Define

Ui = Ua,i1{U≥a} + U1{U<a} (3.13)

for i = 1, · · · , n. Then

P(F−1(U1) + · · · + F−1(Un) < s) = φ−1(s).

Remark 3.5

1. The copula QF
n plays an important role in deriving bounds for the convex mini-

mization problem (3.3) and the m+(s) problem with monotone marginal densities.
Note that QF

n may not be unique, hence the structure (3.13) may not be unique.
Also, on the set {S < s}, the dependence structure of X1, · · · , Xn can be arbitrary.

2. The value φ−1(s) is accurate even when E(max{X1, 0}) = ∞. When the distribution
F̃a is n-CM, Theorem 3.4 gives the sharp bound Φ−1(s) in Theorem 2.6.

3. When a random variable X has a monotone density, −X has a monotone density
too. Hence the above theorem also solves the similar problem

M+(s) = sup
Xi∼P
P(S < s) = 1 − inf

Xi∼P
P(−S ≤ s) = 1 − inf

Xi∼P
P(−S < s),

where P has a monotone density.
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4. Figure 3.1 shows the sketch of an optimal coupling for F with a decreasing den-
sity, some a > 0 and cn(a) > 0. Here U1, · · · ,Un ∼ U[0, 1] and P(F−1(U1) + · · ·+

F−1(Un) < s) = φ−1(s).
(i) When Ui ∈ [0, a], Ui is arbitrarily coupled to all other U j in Part A.

(ii) When Ui ∈ [a, a + (n − 1)cn(a)], Ui is coupled to other U j, j , i in Part B
and Part D. For j , i, either Ui − a = (n − 1)(1 − U j) or U j = Ui.

(iii) When Ui ∈ [a + (n − 1)cn(a), 1 − cn(a)], Ui is coupled to all other U j, j , i
in Part C, and F−1(U1) + · · · + F−1(Un) = φ(a). It is the completely mixable
part.

(iv) When Ui ∈ [1 − cn(a), 1], Ui is coupled to other U j, j , i in Part B. For
j , i, U j − a = (n − 1)(1 − Ui).

5. Figure 3.2 shows the real values of m+(s) in Theorem 3.4 and the lower bound
ψ−1(s/n) in Theorem 2.6 for the Pareto(2,1) distribution. We also calculate the
bound (2.8) in Embrechts and Puccetti [4] (see Section 2.2). It turns out that in
this case the real values are equal to the bound (2.8), which suggests that the
bound (2.8) in [4] may be sharp for Pareto distributions.

0

0

1

B

a+ (

A

a = m+(s) = φ−1(s)

In this part Ui ∈ [0, a] and Ui is
arbitrarily coupled to all other Uj

in A.

In this part Ui ∈ [a, a+ (n− 1)cn(a)],
Ui is coupled to other Uj , j 6= i in B an
For j 6= i, either Ui − a = (n− 1)(1 − U

0

Fig. 3.1 Sketch of the optimal coupling

3.3 Tail-monotone marginal densities

For the distribution F with density p(x), we say p(x) is tail-monotone, if for some
b ∈ R, p(x) is decreasing for x > b or p(x) is increasing for x < b. We are particularly
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m+(s) for Pareto distributions, n = 3, α = 2, θ = 1
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real value φ(−1)(s)

lower bound ψ(−1)(s/n)

Fig. 3.2 m+(s) and ψ−1(s/n) for a Pareto distribution

interested in the case when p(x) is tail-decreasing (p(x) is decreasing for x > b)
since the risks are usually positive random variables. For most risk distributions the
tail-decreasing property is satisfied. For example, the Gamma distribution with shape
parameter α for α > 1 and the F-distribution with d1, d2 degrees of freedom with
d1 > 2 have a tail-decreasing density, but do not have a monotone density.

In the VaR problems, one is concerned with the tail behavior of the distribution.
From the proof of Theorem 3.4, information on the left tail of F does not play any
role in the calculation of m+(s). Based on this observation, we have the following
theorem, which solves m+(s) for F with tail-decreasing density and some large s.

Theorem 3.6 Suppose the density function of F is decreasing on [b,∞), and φ(a) is
defined in (3.9). Then for s ≥ φ(F(b)), m+(s) = φ−1(s).

Proof Since the density function of F is decreasing on [b,∞), the conditional distri-
bution F̃F(b) has a decreasing density. Note that Ha(x), cn(a) and φ(a) only depend on
the conditional distribution F̃a, hence they are well defined for F(b) ≤ a ≤ 1.

Since s ≥ φ(F(b)), φ−1(s) ≥ F(b) and the conditional distribution F̃φ−1(s) has a
decreasing density. Theorem 3.6 follows from the same arguments as in the proof of
Theorem 3.4, where no condition on the distribution of Xi on {Xi < F−1(φ−1(s))} is
used.

3.4 The worst Value-at-Risk scenarios

The Value-at-Risk (VaR) is an important risk measure in risk management; see
Embrechts and Puccetti [6] and references therein. Recall that VaR is the α-quantile
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of the distribution, i.e.,

VaRα(S ) = F−1
S (α) = inf{s ∈ R : FS (s) ≥ α}, (3.14)

where FS is the distribution of S . Typical values of the level α are 0.95, 0.99 or even
0.999. As mentioned in Embrechts and Puccetti [6], banks are concerned with an up-
per bound on VaR(

∑d
i=1 Xi) when the correlation structure between X = (X1, · · · , Xd)

is unspecified.
Finding the bounds on the VaR is equivalent to finding the inverse function of

m+(s) (note that m+(s) is non-decreasing). Using Theorem 3.4 and Theorem 3.6, we
are able to obtain the explicit value of the upper bound on the VaR, namely, the worst
Value-at-Risk. The proof follows directly from the fact that supXi∼F,1≤i≤n VaRα(S ) =

m−1
+ (α) when m+(s) is continuous and strictly increasing.

Corollary 3.7 Suppose that the density function of the marginal distribution F is
decreasing on [b,∞) and φ(a) is defined in (3.9). Then for α ≥ F(b), the worst VaR
of S = X1 + · · · + Xn is

sup
Xi∼F,1≤i≤n

VaRα(S ) = m−1
+ (α) = φ(α). (3.15)

In particular, (3.15) holds for all α if the marginal distribution F has decreasing
density on its support and an optimal correlation structure is given by (3.13).

For arbitrary marginal distributions F1, · · · , Fn, Theorem 2.6 gives an upper
bound for the worst-VaR problem as follows.

Corollary 3.8 For arbitrary marginal distributions,

sup
Xi∼Fi,i=1,··· ,n

VaRα(S ) ≤ m−1
+ (α) ≤ Φ(α), (3.16)

where Φ(α) is defined in Section 2.

Figure 3.3 shows the explicit worst-VaR in (3.15) and the upper bound in (3.16)
for the distribution Pareto(4,1) and 0.9 ≤ α ≤ 0.995.

3.5 Examples

Here we give some examples to show how to compute m+(s).

Example 3.9 Assume that X ∼ U[0, 1], the uniform distribution on [0,1]. Then

p(x) = 1, F(x) = x, x ∈ [0, 1], F−1(t) = t, t ∈ [0, 1].

Further we have cn(a) = 0 for all 0 ≤ a ≤ 1 and φ(t) = nψ(t) = nE(X|X > t) =
n(1+t)

2
for t ∈ [0, 1]. Thus

m+(s) = φ−1(s) = 1 ∧
(

2s
n
− 1

)
+

.

This result indeed is the same as that in Rüschendorf [11]. One optimal correlation
structure is also given in Rüschendorf and Uckelmann [13].
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Fig. 3.3 Worst-VaR for a Pareto distribution

Example 3.10 Assume that X ∼ Pareto(α, θ), α > 1, θ > 0 with density function

p(x) = αθαx−α−1, x ≥ θ.

Then
F(x) = 1 −

( x
θ

)−α
, x ≥ θ, F−1(t) = θ(1 − t)−1/α, t ∈ [0, 1].

Further we have that cn(a) is the smallest c ∈ [0, 1
n (1 − a)] such that

α

α − 1
((1−a−(n−1)c)1−1/α−c1−1/α) ≥ (

1
n

(1−a)−c)((n−1)(1−a−(n−1)c)−1/α+c−1/α).

The numerical values of m+(s) for two Pareto distributions and n = 3 are plotted in
Figure 3.4. A possible correlation structure is given in (3.13).

Example 3.11 Assume that X ∼ Gamma(α, λ), α ≤ 1, λ > 0 with density function

p(x) =
λα

Γ(α)
xα−1e−λx.

Then
F(x) = γ(α, λx), x > 0,

where γ(α, t) =
∫ t

0
1

Γ(α) xα−1e−λxdx is the lower incomplete Gamma function. Further
cn(a) is the smallest c ∈ [0, 1

n (1 − a)] such that

α

λ
(γ(α + 1, λF−1(1 − c)) − γ(α + 1, λF−1(a + (n − 1)c))) ≥ (

1
n

(1 − a) − c)Ha(c),
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Fig. 3.4 m+(s) for Pareto distributions

which can be calculated numerically. The numerical values of m+(s) for two Gamma
distributions and n = 3 are plotted in Figure 3.5. A possible correlation structure is
given in (3.13).

4 Conclusions

In this paper, we provide a new lower bound for m+(s) with any given marginal
distributions, and give a necessary and sufficient condition for its sharpness in terms
of the joint mixability. When the marginal distributions have a common monotone
density, the explicit value of m+(s) and the worst Value-at-Risk are obtained. We also
extend these results to distributions with a common tail-monotone density.

Appendix

Proof of Proposition 2.4.

1. The case n = 1 is trivial. For n ≥ 2, by the definition of JM distributions, there
exist X1 ∼ F1, · · · , Xn ∼ Fn such that Var(X1 + · · · + Xn) = 0. Since√

Var(X1 + X2 + · · · + Xn) ≥
√

Var(X1) −
√

Var(X2 + · · · + Xn)

≥ σ1 −

n∑
i=2

σi,
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Fig. 3.5 m+(s) for Gamma distributions

we have 2σ1 −
∑n

i=1 σi ≤ 0. Similarly, we can show that 2σk −
∑n

i=1 σi ≤ 0 for
any k = 1, · · · , n, i.e., (2.2) holds.

2. We only need to prove the “⇐” part for n ≥ 2. Without loss of generality, we
assume σ1 ≥ σ2 ≥ · · · ≥ σn. Let X = (X1, · · · , Xn) be a multivariate Gaussian
random vector with known marginal distributions F1, · · · , Fn and an unspecific
correlation matrix Γ. We want to show there exists a correlation matrix Γ such
that Var(X1 + · · · + Xn) = 0.
Let T be the correlation matrix of (X2, · · · , Xn) and Y = X2 + · · · + Xn. Define
f (T ) =

√
Var(X1) −

√
Var(Y). Obviously f (T ) is a continuous function of T with

canonical distance measure. It is easy to check that f (T ) = σ1−
∑n

i=2 σi ≤ 0 when
X2 = σ2Z + µ2, · · · , Xn = σnZ + µn for some Z ∼ N(0, 1). Since σ1 ≥ σ2 ≥ · · · ≥

σn, we also have f (T ) = σ1 − |
∑n

i=2(−1)iσi| ≥ 0 when Xi = (−1)iσiZ + µi for
i = 2, · · · , n. Hence there exists a correlation matrix T0 such that f (T0) = 0. With
the correlation matrix of (X2, · · · , Xn) being T0, we define X1 = −Y + E(Y) + µ1.
Hence X1 ∼ N(µ1, σ

2
1) and Var(X1 + · · · + Xn) = 0, which imply that F1, · · · , Fn

are JM.

Proof of Proposition 2.9.

When s ≥ nF−1(1), we have m+(s) = 1 = ψ−1(s/n). Suppose s < nF−1(1).
Obviously

1 − n inf
r∈[0,s/n)

∫ s−(n−1)r
r (1 − F(t))dt

s − nr
≥ 1 − n inf

r∈[0,s/n)

∫ ∞
r (1 − F(t))dt

s − nr
. (4.1)
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For r ∈ [0, s
n ), from

( ∫ ∞
r (1−F(t))dt

s−nr

)′
= 0, we have

g(r) := −(1 − F(r))(s − nr) + n
∫ ∞

r
(1 − F(t))dt = 0. (4.2)

Suppose r = r? satisfies (4.2). Then

1 − F(r?) =
n
∫ ∞

r? {1 − F(t)}dt

s − nr?
. (4.3)

Note that r? always exists since g is continuous, g(0) = −s + nµ < 0, F(s/n) < 1 and

g(s/n) = n
∫ ∞

s/n
{1 − F(t)}dt > 0.

Integration by parts leads to

−{1 − F(r?)}(s − nr?) + n
∫ ∞

r?
{1 − F(t)}dt = −s{1 − F(r?)} + n

∫ ∞

r?
tdF(t) = 0,

and hence
s(1 − F(r?)) = nE(X1|X1 > r?)(1 − F(r?)),

i.e.,
F(r?) = ψ−1(s/n). (4.4)

Therefore, the bound in (2.8) is greater than or equal to the bound in (2.6) by (4.1),
(4.3) and (4.4). Note that the bound (2.8) is strictly greater if F−1(1) = ∞.

For proving the second part of Proposition 2.9, we only need to consider the case
of s < nF−1(1) < ∞ since m+(s) = 1 = ψ−1(s/n) when nF−1(1) ≤ s < ∞.

Consider the problem (2.9) and

inf
r∈[0,s/n)

∫ F−1(1)
r (1 − F(t))dt

s − nr
. (4.5)

From the above proof, we can see that r? is the unique solution to (4.5). Therefore,
the bounds (2.6) and (2.8) are equal if and only if (2.9) and (4.5) are equal. Since

g

(
s − F−1(1)

n − 1

)
= −

(
1 − F

(
s − F−1(1)

n − 1

))
nF−1(1) − s

n − 1
+ n

∫ 1

s−F−1(1)
n−1

(1 − F(t))dt ≥ 0,

we have r? ∈ [0, s−F−1(1)
n−1 ]. Thus

inf
r∈[0,s/n)

∫ F−1(1)
r (1 − F(t))dt

s − nr
= inf

r∈[0, s−F−1(1)
n−1 ]

∫ F−1(1)
r (1 − F(t))dt

s − nr

= inf
r∈[0, s−F−1(1)

n−1 ]

∫ s−(n−1)r
r (1 − F(t))dt

s − nr
.

Therefore, the bounds (2.6) and (2.8) are equal if and only if a solution to (2.9) lies
in [0, s−F−1(1)

n−1 ]. ut
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Proof of Proposition 3.1.

1. By (a) in Section 3.1, for any i , j, Ui ∈ [0, c]⇒ U j ∈ [1 − (n − 1)c, 1]. Hence

Ai := {Ui ∈ [0, c]} ⊆ {U j ∈ [1 − (n − 1)c, 1]} =: B j

and P(Ai ∩ A j) = 0. As a consequence,
⋃

i, j Ai ⊆ B j. Note that P(
⋃

i, j Ai) =

(n − 1)c = P(B j). Thus 1⋃
i, j Ai = 1B j a.s. and

1⋃n
i=1 Ai = 1A j∪B j = 1{U j∈[0,c]∪[1−(n−1)c,1]} a.s.

which imply that 1{U j∈(c,1−(n−1)c)} = 1(
⋃n

i=1 Ai)c a.s. for j = 1, · · · , n.
2. We only prove the case when F has an increasing density. When cn = 0, (3.6)

follows from the definition of QF
n . Next we assume cn > 0. Write D j = A j ∪ B j

and X j = F−1(U j), U j ∼ U[0,1] for j = 1, · · · , n. First note that by condition (b)
in Section 3.1, for any j = 1, · · · , n, F−1(U1) + · · · + F−1(Un) is a constant on the
set Dc

j. This constant equals its expectation, which is

E(F−1(U1) + · · · + F−1(Un)|Dc
j)

= nE(F−1(U1)|Dc
1)

=
n

1 − ncn

∫ 1−(n−1)cn

cn

F−1(x)dx

=
n

1 − ncn

∫ 1
n

cn

F−1(x)dx +
n

1 − ncn

∫ 1−(n−1)cn

1
n

F−1(x)dx

=
n

1 − ncn

∫ 1
n

cn

F−1(x)dx +
n

1 − ncn

∫ 1
n

cn

F−1(1 − (n − 1)t)d(n − 1)t

=
n

1 − ncn

∫ 1
n

cn

H(x)dx

= H(cn).

The last equality holds because (3.2) and

∫ 1
n

cn

H(x)dx = (
1
n
− cn)H(cn) for cn > 0.
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Therefore, almost surely

S = F−1(U1) + · · · + F−1(Un)

=

n∑
i=1

F−1(Ui)1D1 +

n∑
i=1

F−1(Ui)1Dc
1

=

n∑
i=1

F−1(Ui)1⋃n
j=1 A j + H(cn)1Dc

1

=

n∑
i=1

F−1(Ui)(
n∑

j=1

1A j ) + H(cn)1Dc
1

=

n∑
j=1

[F−1(U j) + (n − 1)F−1(1 − (n − 1)U j)]1A j + H(cn)1Dc
1

=

n∑
j=1

H(U j)1A j + H(cn)1Dc
1
.

Since cn ≤ 1/n and the sets A1, · · · , An and Dc
1 are disjoint, we have

P(
n∑

j=1

H(U j)1A j + H(cn)1Dc
1
< t)

= nP(H(U1)1{U1≤cn} < t) + P(H(cn)1Dc
1
< t)

= P(H(U1/n)1{U1≤ncn} < t) + P(H(cn)1{U1>ncn} < t)
= P(H(U1/n)1{U1≤ncn} + H(cn)1{U1>ncn} < t).

Hence there exists a U ∼U[0,1] such that
n∑

j=1

H(U j)1A j + H(cn)1Dc
j
= H(U/n)1{U≤ncn} + H(cn)1{U>ncn}.

ut

Proof of Lemma 3.3

(i) Under the assumption of F, F−1(x) is convex and differentiable. Thus Ha(x)
is convex and differentiable. The definition of cn(a) shows that the average of
Ha(x) on [cn(a), 1

n (1 − a)] is Ha(cn(a)) if 0 < cn(a) < 1−a
n , namely

1
(1 − a) − cn(a)

∫ 1
n (1−a)

cn(a)
Ha(t)dt = Ha(cn(a)).

With Ha(x) being convex, we have H′a(cn(a)) ≤ 0 and so H′a(x) ≤ 0 on [0, cn(a)].
Here H′a(x) denotes ∂Ha(x)/∂x. Note that for n > 2, H′a( 1−a

n ) = ((n − 1)2 −

1)(F−1)′( 1−a
n ) > 0 implies∫ 1

n (1−a)

c
Ha(t)dt ≥ (

1
n

(1 − a) − c)Ha(c)
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for some c < 1−a
n , thus cn(a) < 1−a

n always holds. For n = 2, H′a(x) ≤ 0 on
[0, 1−a

n ] since H′a( 1−a
n ) = 0 and H is convex.

(ii) It follows from similar arguments as in (i).
(iii) Suppose cn(a) > 0. By the continuity of Ha(x) w.r.t. x and (3.8), we know that

cn(a) satisfies ∫ 1
n (1−a)

cn(a)
Ha(t)dt = (

1
n

(1 − a) − cn(a))Ha(cn(a)).

Note that for any c ∈ [0, 1
n (1 − a)],∫ 1

n (1−a)

c
Ha(t)dt =

∫ 1
n (1−a)

c
(n − 1)F−1(a + (n − 1)t)dt +

∫ 1
n (1−a)

c
F−1(1 − t)dt

=

∫ a+ n−1
n (1−a)

a+(n−1)c
F−1(t)dt +

∫ 1−c

1− 1
n (1−a)

F−1(t)dt

=

∫ 1−c

a+(n−1)c
F−1(t)dt.

Thus it follows from the definition of cn(a) that Ha(cn(a)) = nE[F−1(Va)]. For
the case cn(a) = 0, it is obvious that ψ(a) = nφ(a) = nE[F−1(Va)].

(iv) Note that in a given probability space, for any measurable set B with P(B) > 0
and continuous random variable Z with cdf G, we have

E(Z|B) ≤ E[Z|Z ≥ G−1(1 − P(B))].

To see this, denote the conditional distribution of Z on B by G1 and the condi-
tional distribution on {Z ≥ G−1(1 − P(B))} by G2. Then we have

G2(x) =
P(Z ≤ x,G(Z) ≥ 1 − P(B))

P(B)

=
max{G(x) − 1 + P(B), 0}

P(B)

≤
P(Z ≤ x, B)
P(B)

= G1(x), x ∈ R, (4.6)

which implies that for U ∼U[0,1],

E(Z|B) = E[G−1
1 (U)] ≤ E[G−1

2 (U)] = E[Z|Z ≥ G−1(1 − P(B))]. (4.7)

Since A =
⋂n

i=1{Ui ∈ [a, 1 − cn(b)]}, we have P(A) ≥ 1 − ncn(b)
1−a > 0 and

Ui ≤ 1 − cn(b) on A. By defining Z = F−1(Ui)1{Ui≤1−cn(b)} + F−1(a)1{Ui>1−cn(b)},
it follows from (4.7) that

E[F−1(Ui)|A] = E[Z|A]
≤ E[Z|Z ≥ F−1(1 − cn(b) − (1 − a)P(A))]
≤ E[F−1(Ui)|Ui ∈ [1 − cn(b) − (1 − a)P(A), 1 − cn(b)]]
≤ E[F−1(Ui)|Ui ∈ [a + (n − 1)cn(b), 1 − cn(b)]]
< E[F−1(Ui)|Ui ∈ [b + (n − 1)cn(b), 1 − cn(b)]]
= E(F−1(Vb)). (4.8)
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(v) It follows from (i), (ii) and the arguments in Remark 3.2.
(vi) We first prove the case when F has a decreasing density. Since Ha(x) is convex

w.r.t. x and differentiable w.r.t. a, the definition of cn(a) implies that cn(a) is
continuous. Hence φ(a) = nE[F−1(Va)] is continuous.
Suppose Ua,1, · · · ,Ua,n ∼ U[a, 1] with copula QF̃a

n . Then F−1(Ua,1), · · · , F−1(Ua,n) ∼
F̃a and have copula QF̃a

n too. By (v), we have

F−1(Ua,1) + · · · + F−1(Ua,n) ≥ φ(a). (4.9)

Thus from (4.8) and (4.9) we have

φ(a) ≤ E[
n∑

i=1

F−1(Ua,i)|A] < nE(F−1(Vb)) = φ(b).

Next we prove the case when F has an increasing density. The continuity of
cn(a) comes from the same arguments as above. By definition, Ha(0) and ψ(a)
are continuous and increasing functions of a. So we only need to show that when
cn(a) approaches 0, Ha(0) − ψ(a) approaches 0 too. Suppose that as a ↗ a0,
cn(a)→ 0 and cn(a) , 0 for a0 − ε < a < a0 and ε > 0. Then∫ 1

n (1−a)

0
Ha(t)dt →

1
n

(1 − a0)Ha0 (0),

which implies that

ψ(a) =

∫ 1

a

1
1 − a

F−1(a + t)dt =
n

1 − a

∫ 1
n (1−a)

0
Ha(t)dt → Ha0 (0)

as a↗ a0. Together with the continuity of Ha(0)−ψ(a) we know Ha(0)−ψ(a)→
0 as a→ a0. ut
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