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Abstract

Quantification and management of credit risk is always crucial for tfanial
industry. Computing credit risk is generally a challenging task while caeelde-
faults exist. Traditional approaches such as exponential twisting arelsyekific
and often involve dficult analysis, therefore computational methods are sought to
estimate the credit risk when analysis is unavailable. The accurate regasurof
credit risk is often a rare-event simulation problem, i.e., calculatingaividities
(which are usually small) of extreme losses. It is well-known that the MGatéo
(MC) method may become slow and expensive for such problemsortemze
sampling (IS), a variance-reduction technique, can then be utilizecferavent
simulation for credit risk management. In this work, we propose the imgheaa
tion of a special IS procedure, the cross-entropy (CE) method, tdatencredit
risk models. More specifically, we obtain iteratively biasing probability dgns
functions (PDF’s) for credit portfolio losses by the CE method, and ten-
bine the results from each stage by the technique of multiple importancdisgmp
(MIS) to obtain a complete PDF. The main advantage of this method is that it ca
avoid the nontrivial analysis required by a general IS method, andftirersimpli-
fies the estimation of loss distributions. Moreover, this approach is gearatican
be applied to a wide variety of models with little modifications. In particular, we
apply this approach to a normal copula model atdt@pula model to estimate the
probabilities of extreme portfolio losses under the models. Numericahebes
are provided to demonstrate the performance of our method.

Keywords: Credit risk; Monte Carlo method; Importance sampling; $&3rentropy
method; Normal copula; Studetatopula.

1 Introduction

Credit risk, the risk of failure of an obligor to make contizad payments, is one
of the major risks that financial institutions may encourttering business activities
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[9]. The study of credit risk modeling has always been an adtipéc; a main focus

of relevant studies is the computation of the loss distidut In modern credit risk

management where a portfolio view is taken, the models gueat®d to capture the
effects of dependence across sources of credit risk to whicluadial institution is ex-

posed. Hence, the complexity of both the models used andthewatational methods
required to calculate outputs of a model is largely incrdase

For the commonly applied models that take the dependenceadatount, such as
the normal copula (NC) model}, 27] or dependent risk factors for the CreditRisk
model [33], it is difficult or impossible to calculate loss distributions anabfly. Ap-
proximation via Monte Carlo (MC) simulation is widely uset3[ 14] to obtain loss
distributions numerically. In practice, since default lpabilities are usually low for
highly rated obligors and risk management is particuladyazrned with rare but sig-
nificant losses, the accurate measurement of the loss beanaee-event simulation
where the standard MC method loses ifiscgncy. This issue potentially makes im-
portance sampling (IS) attractive, [5, 15, 16, 29].

The key of IS is to design a good biasing PDF. We propose a nevencal method
in this paper to calculate the portfolio loss distributiasbd on the cross-entropy (CE)
[3, 18, 26, 27]. The CE method is a special IS procedure proposed by Rinsto],
and has been used in many applications in the field of rareteimnulation such as
optical communications’[3] and queuing networksl]. Basically, the CE method finds
a good biasing PDF by iteratively minimizing the Kullbackibler (K-L) distance 1]
between the IS PDF and the zero-varianpgimal distribution The most interesting
idea of this method is that the minimization procedure regguonly little knowledge
of the optimal distribution, apart from a crucial normatina constant.

While traditional approaches to compute credit risk underatated defaults are
generally model specific, our method is generic which carpipdied to a wide variety
of related models with little modifications. In this work wseua normal copula model
and at-copula model as test models to apply our method. The noromlla model,
once popular, has been criticized for not being able to cepil dependence, and
it is known to be blamed by some people for the financial ciisi2008 (e.g. 10]).
However, it is still a good start point for illustrative andmparison purposes due to
the viable factor decomposition of normal random variablEset-copula model has
also been increasingly popular to model vectors of riskofattig returns, due to its
ability to model the extremal dependent of the risk factowd @lso the ease with which
the parameters of thtecopula can be estimated from data. Both copulas belongeto th
family of elliptical copulas (see e.g1]]) and their decomposition properties will be
used in our method.

The rest of this paper is organized as follows. In section dntreduce the new
technique of the IS-CE method. In section 3 we introduce taméwork of portfolio
credit risk followed by the normal ang-copula models. In section 4 we describe
the procedure of applying the proposed IS-CE method to @artEredit risk models.
Numerical examples are provided in section 5 and closin@rksmare given in section
6.
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2 Importance sampling and the cross-entropy method

Before proceeding to discuss the importance sampling agsentropy method
applied to calculating portfolio credit losses, we firstramtuce the general idea of
combination of IS (see general referencesini[3, 30]) and the CE method for rare
probability estimation. Suppose théis ann-dimensional random variable with prob-
ability density function (PDFp(x), and we are interested in the probabil@ythat a
measurable functioh(X) falls in a specific regiol. This probability can be expressed
as

Q = Pr(f(X) € D) =f

f(x)e

p() dx = [l o(f(X)] = f b(FG)Pdx (1)
D

where b(f) is the indicator function defined ag(if) = 1 for f € D and b(f) = 0 oth-
erwise. Throughout this paper, we assume that all integralginite unless explicitly
stated. Using the well-known MC method, one can estimateitbieability by

. 1o
_ (m)
Q=17 > lo(f(X™). 2)
m=1
where X®, ... XM are i.i.d. copies ofX and M is the total number of samples.

However, ifQ < 1, estimation by standard MC simulations becomes impralatice
to the large number of samples needed. Importance samplergdan be used to
resolve this problem. Note that Ed)(can be written as

Q- f Io(F(X)p(¥) dx = f Io(F() - (p()/P' () - p'(x) dix. 3)

wherep*(x) is called a biasing pdf. We then estim&dy

o 1 z m, m
Q= ;m(f(% DRX™). (4)

where samples are drawn accordingpt@x) andR(x) = p(x)/p*(X) is the likelihood
ratio.

The fundamental idea of IS is to design a good biasing styaiteg, to find a biasing
PDF p*(x) that encourages the realizations to visit thest likelyregion of interest as
frequently as possible. It is well known that an optimal iigdPDF

P =1Io(f(x))p(x)/Q (5)

exists in principle. Eq.5) itself is not useful as it requires knowledge of the poste-
rior probability Q. However, one can find a good biasing PDF by requiring it to be
“close” to the optimal biasing PDF, in terms of some meast@icistance. A particular
convenient choice is the KL distancgl]:

distig, h) = E, [In (g(X)/h(X))] = f 9(¥)In g(x) dx— f g()Inhxdx,  (6)
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which is also known as the cross entropy between two prabaliktributionsg(x)
andh(x). Here and in the followingE, means the random variablis chosen from
the density functiom.

Minimizing the cross entropy betweqix) and p*(x),
dist(9, p*) = Ep [In (B(X)/p" (X)) = f P(¥) In p(x) dx— f P Inp () dx,  (7)

is equivalent to maximizingf p(x) In p*(x) dx since the first integral on the right-hand-
side of Eq. (), f p(x) In p(x) dx, is fixed. According to%),

ff)(X)ln pr(x) dx = f'D(f(X)) -In(p*(¥) - p(¥)/Q dx,
and therefore, minimizing the cross entropy betw@éx) and p*(x) is equivalent to
maximizing the expectatioB,[l o(f (X)) In p*(X)].

Suppose that all the potential distributions>ofare selected from a parametrized
family of PDF {p(x;v)}, wherev is the reference parameter, then maximizing
f p(x) In p*(x) dx becomes parametric with respectto

m;stxZ)(v) = m;";le p(x) In p*(x) dx. (8)

Letu be the parameter of unbiased distributipfx; 1), and denote by the param-
eter of the empirical biasing distribution at stepr(x; wi). Applying the importance-
sampled Monte Carlo (ISMC) simulation, one obtains a stetibanaximization pro-
gram

M
maxD() = max— > Io(FM) R, w w)inpx™; 1), (9)
m=1
whereR(X™; u, w) = p(X™:; u)/x(X™;w;) and the samplesX™) are generated

according tar(x; wi). The optimal biasing PDF then can be adaptively traced Iy pe
forming the following steps:

1. Set the initial distribution parameter ofx; w;) to bewg = u.
2. At stepi, generate sampléX(™} according tor(x; w).

3. Solve Eq. 9) for v.
4

. If D(v) < D(w;), proceed to step, otherwise sei,1 = v, i = i + 1, and reiterate
from step2.

5. Perform the ISMC simulation using the biasing PE(X; w;) to calculate the
sought probabilityQ.
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In summary, the above algorithm first searches a good bi&igp*(x) ~ 7(X; w;) by
minimizing the CE distance betwegn(x) and p(x), and then implements IS using the
determined distributiom®(x).

The major dificulty of this algorithm occurs at stef because the techniques for
solving Eq. @) depend on specific problems and is usually complicated. ddevy if
function D is convex and dferentiable with respect to, the solutions of §) can be
obtained by solving a system of equatiofi [

M
S (R 1, )7 In p(x™; 1) =0, (10)
m=1

which can be solvednalyticallyin many typical applications.

Another disadvantage of the above algorithm is that it falien the probability of
interest is very small, as most of the generated sampledallibut of the region of
interest. To resolve this problem, we will introduce a migtiel algorithm. The idea is
to construct a sequence of reference parameters corréagdoc sequence of sets on
the space of, and iterate both of them until the set coincides vidthFor simplicity,
we assume that(x) is a real-valued function and we seek the probability thagt)
is larger than some fixegd. In this problem-setting, the multi-level algorithm can be
outlined as follows J]:

1. Set the initial distribution parameteg = u.

2. At stepi, choose a threshold of tail probabilitye (0,1) and choose a number
v" as large as possible to satisfy RiX) > v’) > p under the densitp(x; w;). If

Y >y lety =y.
3. Find the optimal reference parametdor estimating probability Pf(X) > y’).

4. If v/ = vy, returnv as the optimal reference parameter; otherwiseyilat = v,
i =i+ 1andgo to step 2.

In summary, each iteration of the algorithm consists of tivages: in the first phase
v is updated (step 2), and in the second phaiseupdated (step 3). We will provide
a more detailed algorithm for estimating specific loss itigtions in the following
sections.

3 Modelsof portfolio credit risk

In this section we first provide an introduction to portfati@dit risks and copulas,
then we will specify the normal copula model and theopula model for portfolio
credit risks.
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Consider a portfolio withN obligors. The default indicator fa" obligor is notated
as

(11)

oL if the n" obligor defaults
"7\ 0, otherwise

To describe dependence among obligors we model dependermeydhe default in-
dicatorsly, - - -, Iy, via a multivariate vector(, ..., Xy) of latent variables. LeX, be
a random variable with continuous distribution functiBg(x) = Pr(X, < x) and let
& € R be such that, = 1 if and only ifI,, > &,. Then each default indicator can be
represented as

lh=1{Xa>&}, n=1,---,N,

with &, chosen to match the marginal default probabilgy,(which is assumed to be
known from credit ratings or other recourses) , ikg.= F;1(1 - pn). Itis easy to see
that

Prin=1)=Pr(X, > Fy2(1 - pn)) =1 - Fo(Frt(A = pn)) = pn. Nn=1,---,N.

Denote byc, the loss resulting from the default of th& obligor. The total loss of
the N obligors from defaults is

N
L= Z Caln. (12)
n=1

Here for simplicity, we assume that eaghis non-random (the recovery rate is non-
random) as in classic credit risk models. As was mentiongddf it would sufice to
know the distribution ot, I, instead of assuming, to be constants.

Our goal is to calculate the probability of a large portfdiiss, i.e., to calculate
the probability P > ) at large values of. Note that the correlations among
determine the dependence amdpgand the underlying correlations can be specified
through a particular model of copulas. Next we provide afliriroduction of the
copulas.

Copulas, as one of the most powerful tools of modeling depece, are now re-
garded as a common knowledge in mathematical finance andredtscience. A cop-
ula, or the joint distribution functio@ of m uniform random variables, Uy, - -+ ,Up,
is defined as

C(ug, Uz, -+ ,Um) = PrlUz < u;, Uz < Up, -+ ,Up < Un).

Copula functions can link uni-variate marginals to theil faultivariate distribution
via the relation

C(F1(x1), Fa(x2), -, Fa(Xm)) = F(X1, X2, * , Xm)

for given uni-variate marginal distribution functiofs(xy), F2(X2), - - - , Fn(Xm)- [28]'s
theorem states that any multivariate distribution funtocan be written in the form
of a copula function, and thus copula functions provide alilexway to study multi-
variate distributions. We refer td.§, 25] for more information on copulas in general,
and [L7] for the use of copulas in credit risk modeling.
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3.1 Thenormal copula

An m-variate normal copula function is defined as
Cug, -+, ) = O (@7H(Ur), -+ , D (um))

where®! is the inverse function of the standard normal cumulatigtritiution func-
tion ®, and®y is the joint cumulative distribution function of a multivate normal
distribution with mean vector 0 and covariance matrix edqadhe correlation matrix
% (which is assumed to be known from credit ratings or othepuiezes).

The normal copula model was the first widely used copula modéhe finan-
cial industry; it attempts to capture the dependence ambtigars while maintaining
mathematical tractability by assuming the vector of lat@miables follows a multivari-
ate normal distribution. Although it was criticized for raatpturing the tail dependence
(and thus it underestimates tail risks), we study the nooopula (NC) model as used
in [16, 17, 22] for an illustrative purpose. It was mentioned iV] that the CreditMet-
rics model [L7] used by J.P. Morgan actually used a bi-variate normal @fauiction
with the asset correlation as the correlation parametdrdrcopula function, although
it does not use the concept of copula function explicitly.rspecifically, it is shown
that if the asset correlation is normally distributed withiaomial normal probability
density function then the joint transformation probapilg consistent with the result
from using a normal copula function. Li then proposed to nhtluke credit portfolio of
any size by constructing high dimensional normal copulzfions [27].

In the NC model for portfolio credit risk, the underlying celations are specified
through a factor model of the form

Xo = @y Z + Baln (13)

inwhichZ = (Zy,...,Zx) is the column vector adystematic riskactor, each oZ(k =

1,...,K) having an standard normal distribution,~ N(0, 1) is theidiosyncratic risk
associated with theth obligor,a! = (ani, . . ., ank) is the row vector ofactor loadings
for thenth obligor with ¥ a?, < 1, andg, is a constant determined by V). The

conditional default probability for thath obligor given the factor loading can be
written as

Pn(Z) = Pr(y = 1Z) = Pr(X, > &lZ)
T -1
= PHalZ 4 furn > O N1 - pI2) = cb(“+ﬁ—q’(p)) (14)
n
where® denotes the standard normal distribution function. Thefdoadingsynk (k =
1,---,K) are assumed to be nonnegative, to ensure all default todécto be pos-

itively correlated so that larger values of the fact@slead to a larger number of
defaults.

Note that for eachX, to have a standard normal distribution, it is required that
lef:laﬁ,k +p2 =1foralln = 1,2,---,N to ensure the variance o, is equal to
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1. From the model setup, we can see tKahas a multivariate normal distribution,
with covariance matrixz where the i( j)-element ofX is aja!. Thus, sincd, is a
non-decreasing function of,, theN-normal copuleC with a correlation matrix is a
copula of (1,-- -, In) (although sincelg, - - - , Iy) is discrete, its copula is not unique).
That is why this model is called a normal copula model.

3.2 Thet-copula

One of the potential problems of the normal copula modelasttie event of many
simultaneous defaults may be assigned to a probabilitylwikitoo small. Thé-copula
has been increasingly popular in finance since it captusesathdependence, is not ex-
changeable (as opposed to Archimedean copulas), and ingaewhile is still simple
enough. In view of this, th&-copula model was introduced for credit risk models by
assuming the underlying latent variabk$ollow a multivariatet distribution; see e.g.

[2].

LetY ~ Nm(0,%), S ~ x? (a chi-square distribution with degrees of freedom),
andR = /»/S. WhenY andR are independent, tiR™-valued random vector given
by X = RY has a centereddistribution withy degrees of freedom. Note that for 2,
Cov(X) = -5X. By Sklar's theorem, the copula &f can be written as

Crp(Us, ..., Um) =t (6 (), ..., 7 (Um))

wheret], denotes the multivariatedistribution function with parameters, p), pi; =

i/ 4/ZiXZjj, andt, is the standard univariatedistribution function withv degrees of
freedom.

As in the normal copula model, denote by, ..., ank the factor loadings for
the nth obligor and let each oZx (k = 1,...,K) andr, have standard normal dis-
tribution. A generalK—factor model was considered ifi][where the factors and
idiosyncratic risks are modeled as independergndom variable. This is done by
introducing independent shock variab@$ ~ Gammag/2,v/2), (k = 1,...,K) and
A2 ~ Gammag/2,v/2), (n=1,...,N) for somev > 0. Define the model

Xn = amZi®7 + - + ankZk Ot + BarnARY, n=1,...,N, (15)

then marginallyX = (Xy, ..., Xy) follows a multivariatet distribution with degree of
freedomvy (see e.g.1]).

Similar to the NC model, itis required thgil , o2 +83 = 1foralin=1,2,--- ,N
to ensure the variance of, is equal to 1. The conditional default probability for the
nth obligor given the factor loadings = (Z, ..., Zk) can be calculated to be

pn(Z) = Pr(anlzl(f)zl +eee (YnKZK@El +ﬁnrnAﬁl > t;l(l - pn)|z>

o[ (E an @O + £ (pn)) Ao
P ‘

(16)
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4 Cross-entropy method for the copula models

The main purpose of this study is to calculate the probghilita large portfolio
loss, i.e., to calculate the probability Bré& ), at large values of. The loss distri-
bution of L under most credit risk models is often complicated and cdrbasolved
explicitly. Numerical calculation such as Monte-Carlo slation methods is needed in
general. However, basic Monte-Carlo simulation can be uefficient for such rare
events and alternative algorithms are sought to estimaterttall probability for large
losses. For example, Glassermetn al. provided a two-step IS method for the NC
model of portfolio credit risk, where the biasing PDF is ab¢al via an analysis of the
NC model involving a numerical optimization in each replica [16] and Chan and
Kroese derived algorithms base on conditional Monte Carkstimate the probability
that the portfolio incurs large losses undlecopula model T].

The NC model has been studied itJ] by using MCMC (Markov chain Monte
Carlo) methods, and related work was done by Chan/jn [n this work we pro-
pose a general CE-MIS (cross-entropy-multiple importase@pling) method when
the sought loss probability is relatively small. More sffieaily, we will draw samples
according to multiple biasing PDF's resulted from eachaitien of CE and combine
their results by the technique of MIST, 37]. Note that MIS can be conveniently
combined with the multi-stage CE algorithm. In fact, insted using only the op-
timal distribution found with the final level, we can savetdisutions obtained at all
levels, draw samples according to them and then combinestudts by the end. Thus
the samples are encouraged towarntledent levels of loss and one can calculate the
complete loss distribution.

Letx be the K + N)-dimensional i.i.d. random variable
X = (21,22, s Zk, 11, T2 s TN) = (X1, X2, 7+ 5 XK4N),

each component following a standard normal distribubit§f, 1). The total loss. can
then be regarded as a functionxof and we are seeking the probabily= Pr[L(x) >
v], which can be calculated by a MC estimator:

M
Q= 2, lom (L), a7)

Applying the technique of IS to Eql{) one obtains

M
o = % ;| (%m)(L(x(m)))R(X(m)), (18)

where samples are drawn according to the biasing BDH.

Among various methods to construct the biasing PDE), the mean transla-
tion (MT) method P9 is one of the most direct ones for normal distributions. The
basic idea of MT for this problem is to translate the meax &bm origin to a point
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determinedhprior by the CE method. Specifically, the biasing PDF can be wraten

N+K )2

(% —X)
(X) = —— ex (—— , (19)

P (V2r)N+K [1[ P 2

wherex* = (X, ..., X\,k) = (Z, -+ . Z.r],--+ ,ry) is the mean ok (and hence can be

regarded as the reference parametér the CE framework). To apply the CE method

to calculate the mean of, plug Eq (L9) into Eqg. (L0O) and solve Eq.10) analytically

for the optimal reference parameters:

oo = 2 o (LEPRED)T
T e (LXA)RX™)

, (20)

fori=1,..,N+K.

However, the ffectiveness of this strategy relies on the dimension of tite space,
N + K. WhenN + K is relatively large, the calculation may be beyond the ciyac
of the CE method. In practice, the number of common risk fadusually not very
large, thus the mean af= (z, - - , z«) can still be estimated by EqR(). For a large
N, we apply an exponential twistf]] onr = (ry, -+ ,rn) = (Xk41, -+ > Xkan) DY
introducing a parameté@rand setting

_ e’
1+ pa(efe —1)°

wherep, is the original default probability. The mean of eagttan be calculated by
M= én = Fa (1= pno), (22)

and it follows immediately that

Pno (22)

N N
D= e - Fata- pog). (23)
=1

n=1 n

Note that the left hand side of E®3) can be simulated by

i . i S ey LXDRO)r
LN TN e (LM))R™)

Substituting Eq.%4) into Eq. £3) then yields the optimal value éf and withé known,
the mean of * = (r},--- ,ry) can be obtained from EqRR).

(24)

In general, to construct loss distributions over a broadjeam single choice of
biasing PDF is not enough to capturii@ently every region of sample space that
give rise to the event of interest. With MIS we are able to combmultiple biasing
PDF'’s resulted from each iteration of CE, by assigning edekitg PDF a weight
wj(x) determined by balance heuristit/] 31]:

M;p;j(X)

_ 25
37 M pi (¥ (29

wj(x) =
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The IS estimator becomes

M
A~ 1 ! . ) )
Q=2 1 2 Wi ™ )l (LK)RE™), (26)
j=1 ) m=1
wherepy,---, p; are biasing PDF’SX(l’j), . ,X(Ml*j) is a sample drawn from)j(x),

and the total numbeM; is characterized by its meat]. In summary, the complete
CE-IS algorithm proceeds as follows:

1. Choose a positive numberQp < 1 (e.g.,= 0.02) and a desired level of loss.
2. Sety, = 0, x; = 1 (unbiased) antl= 1 ( iteration level counter).

3. GenerateM samplesxV, ..., xM according to distributiomp(x; ). Lett =
t+ 1.

4. Compute the loss(x™M) for m = 1...M and sort the results ascendingly as
Li,....Lm. Letyr = Lig—pm;-

5. If yt > -1 andy; < y, computex; from Eq. £0), computer; using Eqs. 22—
24), and reiterate from step 3; otherwise proceed to step 6.

6. Generate samples according to distributions paramegjers., x; respectively,
and combine the results using Eg6).

In this section, we represented an CE-MIS method to cakeula probability of
large portfolio losses. This method can avoid the nondtianalysis required by a gen-
eral IS method and outperforms traditional model-specBineators when the para-
metric family in the CE method is chosen to befsuently large p]. In addition, the
method we propose is not model-specific, i.e., it can be egpb a large variety of
models with little modification. Numerical examples will peovided to demonstrate
our method in the next section.

5 Numerical examples

We provide some numerical examples for the CE-MIS methodrie in Sec-
tion 4. In particular we will apply our method to the NC modebd—copula model
described in Section 3. We adopt formulas usedLii} fo generate the default proba-
bilities and loss caoécients:

P = 0.01x (1 ¥ sin(l%m)) , (272)
5n\*
e = (W) , (27b)

for n = 1, ...N. The codicientsay, 8, are randomly generated and then normalized so
that X, follows standard normal distribution for the NC model arahstardt distribu-
tion for thet—copula model.
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5.1 A portfolio of 50 obligorswith 10 common risk factors

We first consider a portfolio with 50 obligors and 10 commak ffiactors. In the
numeric, it took 4 iterations with,D00 replications in each for the CE method to find
2 biasing PDF’s. Figl shows the PDF constructed by using standard MC simulation
with samples generated according to the biasing PDF's, tatlidsitrates the ability to
put samples aroundfiiérent loss levels of the obtained PDF's. We can see that sampl
drawn according to the unbiased PDF are around small logdele the biased pdfs
can push the samples toward larger values of loss.

Probability

e

0 100 200 300 400 500

Figure 1: Loss distributions numerically reconstructemhfrstandard MC simulations
according to the PDF’s of obtained by using the CE method. The solid line represents
the unbiased PDF and red and green dashed lines represssd BBF's obtained from
CE.

We then used the obtained PDF’s to construct the tail prdibaBir[L > 7] for
loss levely € [0,450], where 2000 samples were generated according to each biasing
PDF. In Figs. 2 and 3, we plot the tail probability Pt{ > y) as a function of the
loss levely for both the NC model antl-copula model, respectively. We also put the
results of standard MC simulations with the same number wip$es in Figs. 2 and
3 for comparison purpose. We can see that the CE-MIS methodslls to estimate
probabilities accurately to around ¥0with several thousand samples.

5.2 A portfolio of 10000bligorswith 10 common risk factors

In our second example, we consider a situation of more otdig®@pecifically,
we chooseN = 1000, again in a 10-factor model. The default probabilited the
loss codficients are also determined by Eq&7), and the cofficientsa, S, are ran-
domly generated and renormalized as before. In this exarnipeCE method finds
two biasing PDF’s using,®00 samples, and we draw 1,000 samples according to each
distribution to construct the PDFs of loss in the range frotm 8,000 which are shown
in Figs. 4and 5.
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Figure 2: Tail probability plotted against Figure 3: Tail probability plotted against
the loss level for a 50-obligor-10-risk fac- the loss level for a 50-obligor-10-risk fac-
tor NC model tor t—copula model

2 10

‘ : ‘ CE-MIS
S
— — — Standard MC Standard MC

10
T T
£ RN
£ g D
= ~ 107} )
A "l
0 3 <
8 3 <
g S
=) =
T & s

107 N

4 L L L L L L L
107 ’ ’ y ’ ’ ’ y ’ 0 1000 2000 3000 4000 5000 6000 7000 8000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Loss Loss

Figure 4: Tail probability plotted against Figure 5: Tail probability plotted against
the loss level for a 1000-obligor-10-risk the loss level for a 1000-obligor-10-risk
factor NC model factort—copula model



Han & Wang 14

Though the fectiveness of the CE method has been demonstrated by maliyy app
cations, no theoretical justification of the optimality ofs method is available up to
date. Therefore, monitoring the estimator variance in migakexperiments may be
the only way to verify the #ectiveness of the CE method. A computation of the coef-
ficient of variation (CV) of the MIS estimator for the loss wlibution shows that the
CE method does reduce the estimator variance significavttigh allows it to estimate
very low probabilities with a relatively small number of sgles. With this example,
we show that the CE method remairtieetive for problems involving a large number
of obligors.

5.3 A portfolio of 1000 obligorswith 21 common risk factors

In the third example we consider a portfolio of 1000 obligaith 21 risk factors.
The default probabilities and the loss @iigents are also determined by Eda7), and
the codficientsay, B, are randomly generated and re-normalized as before. In this
example, the CE method finds two biasing PDF’s using0® samples, and we draw
1,000 samples according to each distribution to consthecPDF of loss in the range
from 0 to 9,000 which are shown in Fig&.and 7.
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Figure 6: Tail probability plotted against Figure 7: Tail probability plotted against
the loss level for a 1000-obligor-21-risk the loss level for a 1000-obligor-21-risk
factor NC model factort—copula model

Although there is no clear evidence that our CE-MIS methaoglijerior than the
numerical results inl[6] by using IS, our proposed CE-MIS method can combine re-
sults from each iteration during multiple IS and obtain a ptete and continuous PDF,
than runs on a range larger than what standard MC can produce.

6 Conclusions

In this article we propose a new method to simulate rare ersses in credit
risk management. This method can find the optimal biasing®idFboth the obligors
and the common risk factors simultaneously without requii numerical optimiza-
tion step in every trial as in traditional IS method. Moregvhis method combines a
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multi-level CE algorithm with the MIS technique which makepossible to construct
complete loss distributions over a broad range. Speciittadl CE algorithm is used to
find biasing PDF's and MIS is used to estimate the probalifitpterest. The relative
importance of the biasing of the common risk factors and dfidhe individual risk
factors is automatically adjusted by the CE method.

In particular we first describe a general framework of theMIS-method, followed
by the implementation of the proposed method to portfolemirrisk models. We then
illustrate the &ectiveness of the CE-MIS method by applying it to a normalutap
model and d—copula model.

Remarkably, a two-step IS approach has been proposéd]inghere the biasing
PDF’'s are determined by analyzing the NC model and analydigaroximations are
required at the first stage. Our method provides an altematithout the requirement
of initial analysis to the existing method and demonstrétesconvenience of com-
bining the CE-method with MIS to constructing a completes|BOF. Moreover, our
method is generic and can be applied to a large varietyftgrdnt models with little
modification.
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