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Abstract

Quantification and management of credit risk is always crucial for the financial
industry. Computing credit risk is generally a challenging task while correlated de-
faults exist. Traditional approaches such as exponential twisting are model specific
and often involve difficult analysis, therefore computational methods are sought to
estimate the credit risk when analysis is unavailable. The accurate measurement of
credit risk is often a rare-event simulation problem, i.e., calculating probabilities
(which are usually small) of extreme losses. It is well-known that the MonteCarlo
(MC) method may become slow and expensive for such problems. Importance
sampling (IS), a variance-reduction technique, can then be utilized for rare-event
simulation for credit risk management. In this work, we propose the implementa-
tion of a special IS procedure, the cross-entropy (CE) method, to simulate credit
risk models. More specifically, we obtain iteratively biasing probability density
functions (PDF’s) for credit portfolio losses by the CE method, and thencom-
bine the results from each stage by the technique of multiple importance sampling
(MIS) to obtain a complete PDF. The main advantage of this method is that it can
avoid the nontrivial analysis required by a general IS method, and therefore simpli-
fies the estimation of loss distributions. Moreover, this approach is genericand can
be applied to a wide variety of models with little modifications. In particular, we
apply this approach to a normal copula model and at-copula model to estimate the
probabilities of extreme portfolio losses under the models. Numerical examples
are provided to demonstrate the performance of our method.

Keywords: Credit risk; Monte Carlo method; Importance sampling; Cross-entropy
method; Normal copula; Studentt-copula.

1 Introduction

Credit risk, the risk of failure of an obligor to make contractual payments, is one
of the major risks that financial institutions may encounterduring business activities
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[9]. The study of credit risk modeling has always been an activetopic; a main focus
of relevant studies is the computation of the loss distribution. In modern credit risk
management where a portfolio view is taken, the models are expected to capture the
effects of dependence across sources of credit risk to which a financial institution is ex-
posed. Hence, the complexity of both the models used and the computational methods
required to calculate outputs of a model is largely increased.

For the commonly applied models that take the dependence into account, such as
the normal copula (NC) model [17, 22] or dependent risk factors for the CreditRisk+
model [33], it is difficult or impossible to calculate loss distributions analytically. Ap-
proximation via Monte Carlo (MC) simulation is widely used [13, 14] to obtain loss
distributions numerically. In practice, since default probabilities are usually low for
highly rated obligors and risk management is particularly concerned with rare but sig-
nificant losses, the accurate measurement of the loss becomes a rare-event simulation
where the standard MC method loses its efficiency. This issue potentially makes im-
portance sampling (IS) attractive [1, 5, 15, 16, 29].

The key of IS is to design a good biasing PDF. We propose a new numerical method
in this paper to calculate the portfolio loss distribution based on the cross-entropy (CE)
[3, 18, 26, 27]. The CE method is a special IS procedure proposed by Rubinstein [26],
and has been used in many applications in the field of rare-event simulation such as
optical communications [23] and queuing networks [4]. Basically, the CE method finds
a good biasing PDF by iteratively minimizing the Kullback-Leibler (K-L) distance [21]
between the IS PDF and the zero-varianceoptimal distribution. The most interesting
idea of this method is that the minimization procedure requires only little knowledge
of the optimal distribution, apart from a crucial normalization constant.

While traditional approaches to compute credit risk under correlated defaults are
generally model specific, our method is generic which can be applied to a wide variety
of related models with little modifications. In this work we use a normal copula model
and at-copula model as test models to apply our method. The normal copula model,
once popular, has been criticized for not being able to capture tail dependence, and
it is known to be blamed by some people for the financial crisisin 2008 (e.g. [10]).
However, it is still a good start point for illustrative and comparison purposes due to
the viable factor decomposition of normal random variables. The t-copula model has
also been increasingly popular to model vectors of risk factor log returns, due to its
ability to model the extremal dependent of the risk factors and also the ease with which
the parameters of thet-copula can be estimated from data. Both copulas belong to the
family of elliptical copulas (see e.g. [11]) and their decomposition properties will be
used in our method.

The rest of this paper is organized as follows. In section 2 weintroduce the new
technique of the IS-CE method. In section 3 we introduce the framework of portfolio
credit risk followed by the normal andt−copula models. In section 4 we describe
the procedure of applying the proposed IS-CE method to portfolio credit risk models.
Numerical examples are provided in section 5 and closing remarks are given in section
6.
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2 Importance sampling and the cross-entropy method

Before proceeding to discuss the importance sampling and cross-entropy method
applied to calculating portfolio credit losses, we first introduce the general idea of
combination of IS (see general references in [5, 13, 30]) and the CE method for rare
probability estimation. Suppose thatX is ann-dimensional random variable with prob-
ability density function (PDF)p(x), and we are interested in the probabilityQ that a
measurable functionf (X) falls in a specific regionD. This probability can be expressed
as

Q = Pr(f (X) ∈ D) =
∫

f (x)∈D
p(x) dx= E[I D( f (X))] =

∫

ID( f (x))p(x)dx, (1)

where ID( f ) is the indicator function defined as ID( f ) = 1 for f ∈ D and ID( f ) = 0 oth-
erwise. Throughout this paper, we assume that all integralsare finite unless explicitly
stated. Using the well-known MC method, one can estimate theprobability by

Q̂ =
1
M

M
∑

m=1

ID( f (X(m))) , (2)

where X(1), · · · ,X(M) are i.i.d. copies ofX and M is the total number of samples.
However, ifQ ≪ 1, estimation by standard MC simulations becomes impractical due
to the large number of samples needed. Importance sampling then can be used to
resolve this problem. Note that Eq. (1) can be written as

Q =
∫

ID( f (x))p(x) dx=
∫

ID( f (x)) · (p(x)/p∗(x)) · p∗(x) dx, (3)

wherep∗(x) is called a biasing pdf. We then estimateQ by

Q̂∗ =
1
M

M
∑

m=1

ID( f (X(m)))R(X(m)) , (4)

where samples are drawn according top∗(x) andR(x) = p(x)/p∗(x) is the likelihood
ratio.

The fundamental idea of IS is to design a good biasing strategy, i.e., to find a biasing
PDF p∗(x) that encourages the realizations to visit themost likelyregion of interest as
frequently as possible. It is well known that an optimal biasing PDF

p̃ = ID( f (x))p(x)/Q (5)

exists in principle. Eq. (5) itself is not useful as it requires knowledge of the poste-
rior probability Q. However, one can find a good biasing PDF by requiring it to be
“close” to the optimal biasing PDF, in terms of some measure of distance. A particular
convenient choice is the KL distance [21]:

dist(g,h) = Eg
[

ln (g(X)/h(X))
]

=

∫

g(x) ln g(x) dx−
∫

g(x) ln h(x) dx, (6)
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which is also known as the cross entropy between two probability distributionsg(x)
andh(x). Here and in the following,Eg means the random variableX is chosen from
the density functiong.

Minimizing the cross entropy between ˜p(x) andp∗(x),

dist(p̃, p∗) = Ep
[

ln (p̃(X)/p∗(X))
]

=

∫

p̃(x) ln p̃(x) dx−
∫

p̃(x) ln p∗(x) dx, (7)

is equivalent to maximizing
∫

p̃(x) ln p∗(x) dx since the first integral on the right-hand-
side of Eq. (7),

∫

p̃(x) ln p̃(x) dx, is fixed. According to (5),

∫

p̃(x) ln p∗(x) dx=
∫

ID( f (x)) · ln (p∗(x)) · p(x)/Q dx ,

and therefore, minimizing the cross entropy between ˜p(x) and p∗(x) is equivalent to
maximizing the expectationEp[I D( f (X)) ln p∗(X)].

Suppose that all the potential distributions ofX are selected from a parametrized
family of PDF {p(x; v)}, where v is the reference parameter, then maximizing
∫

p̃(x) ln p∗(x) dx becomes parametric with respect tov:

max
v
D(v) := max

v

∫

p̃(x) ln p∗(x) dx. (8)

Letµ be the parameter of unbiased distribution,p(x; µ), and denote bywi the param-
eter of the empirical biasing distribution at stepi, π(x;wi). Applying the importance-
sampled Monte Carlo (ISMC) simulation, one obtains a stochastic maximization pro-
gram

max
v
D̂(v) = max

v

1
M

M
∑

m=1

ID( f (X(m)
i )) Ri(X

(m); u, w) ln p(X(m); v) , (9)

whereRi(X(m); u, w) = p(X(m); u)/π(X(m);wi) and the samples{X(m)
i } are generated

according toπ(x;wi). The optimal biasing PDF then can be adaptively traced by per-
forming the following steps:

1. Set the initial distribution parameter ofπ(x;wi) to bew0 = µ.

2. At stepi, generate samples{X(m)
i } according toπ(x;wi).

3. Solve Eq. (9) for v.

4. If D̂(v) ≤ D̂(wi), proceed to step5, otherwise setwi+1 = v, i = i +1, and reiterate
from step2.

5. Perform the ISMC simulation using the biasing PDFπ(x;wi) to calculate the
sought probabilityQ.
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In summary, the above algorithm first searches a good biasingPDF p∗(x) ≈ π(x;wi) by
minimizing the CE distance betweenp∗(x) and p̃(x), and then implements IS using the
determined distributionp∗(x).

The major difficulty of this algorithm occurs at step3, because the techniques for
solving Eq. (9) depend on specific problems and is usually complicated. However, if
functionD̂ is convex and differentiable with respect tov, the solutions of (9) can be
obtained by solving a system of equations [3]:

1
M

M
∑

m=1

ID( f (X(m)))Ri(X
(m); u, w)∇ ln p(X(m); v) = 0 , (10)

which can be solvedanalytically in many typical applications.

Another disadvantage of the above algorithm is that it failswhen the probability of
interest is very small, as most of the generated samples willfall out of the region of
interest. To resolve this problem, we will introduce a multi-level algorithm. The idea is
to construct a sequence of reference parameters corresponding to a sequence of sets on
the space off , and iterate both of them until the set coincides withD. For simplicity,
we assume thatf (x) is a real-valued function and we seek the probability thatf (X)
is larger than some fixedγ. In this problem-setting, the multi-level algorithm can be
outlined as follows [3]:

1. Set the initial distribution parameterw0 = µ.

2. At stepi, choose a threshold of tail probabilityρ ∈ (0,1) and choose a number
γ′ as large as possible to satisfy Pr(f (X) > γ′) ≥ ρ under the densityp(x;wi). If
γ′ > γ, let γ′ = γ.

3. Find the optimal reference parameterv for estimating probability Pr(f (X) > γ′).

4. If γ′ = γ, returnv as the optimal reference parameter; otherwise, letwi+1 = v,
i = i + 1 and go to step 2.

In summary, each iteration of the algorithm consists of two phases: in the first phase
γ is updated (step 2), and in the second phasev is updated (step 3). We will provide
a more detailed algorithm for estimating specific loss distributions in the following
sections.

3 Models of portfolio credit risk

In this section we first provide an introduction to portfoliocredit risks and copulas,
then we will specify the normal copula model and thet-copula model for portfolio
credit risks.
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Consider a portfolio withN obligors. The default indicator fornth obligor is notated
as

In =

{

1, if the nth obligor defaults,
0, otherwise.

(11)

To describe dependence among obligors we model dependence among the default in-
dicatorsI1, · · · , IN, via a multivariate vector (X1, . . . ,XN) of latent variables. LetXn be
a random variable with continuous distribution functionFn(x) = Pr(Xn ≤ x) and let
ξn ∈ R be such thatIn = 1 if and only if In > ξn. Then each default indicator can be
represented as

In = I {Xn > ξn} , n = 1, · · · ,N,

with ξn chosen to match the marginal default probability,pn (which is assumed to be
known from credit ratings or other recourses) , i.e.,ξn = F−1

n (1− pn). It is easy to see
that

Pr(In = 1) = Pr(Xn > F−1
n (1− pn)) = 1− Fn(F−1

n (1− pn)) = pn, n = 1, · · · ,N.

Denote bycn the loss resulting from the default of thenth obligor. The total loss of
theN obligors from defaults is

L =
N

∑

n=1

cnIn. (12)

Here for simplicity, we assume that eachcn is non-random (the recovery rate is non-
random) as in classic credit risk models. As was mentioned in[16], it would suffice to
know the distribution ofcnIn instead of assumingcn to be constants.

Our goal is to calculate the probability of a large portfolioloss, i.e., to calculate
the probability Pr(L > γ) at large values ofγ. Note that the correlations amongXn

determine the dependence amongIn, and the underlying correlations can be specified
through a particular model of copulas. Next we provide a brief introduction of the
copulas.

Copulas, as one of the most powerful tools of modeling dependence, are now re-
garded as a common knowledge in mathematical finance and actuarial science. A cop-
ula, or the joint distribution functionC of muniform random variablesU1,U2, · · · ,Um

is defined as

C(u1,u2, · · · ,um) = Pr(U1 ≤ u1,U2 ≤ u2, · · · ,Um ≤ um).

Copula functions can link uni-variate marginals to their full multivariate distribution
via the relation

C(F1(x1), F2(x2), · · · , Fn(xm)) = F(x1, x2, · · · , xm)

for given uni-variate marginal distribution functionsF1(x1), F2(x2), · · · , Fn(xm). [28]’s
theorem states that any multivariate distribution function F can be written in the form
of a copula function, and thus copula functions provide a flexible way to study multi-
variate distributions. We refer to [19, 25] for more information on copulas in general,
and [12] for the use of copulas in credit risk modeling.
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3.1 The normal copula

An m-variate normal copula function is defined as

C(u1, · · · ,um) = ΦΣ
(

Φ
−1(u1), · · · ,Φ−1(um)

)

whereΦ−1 is the inverse function of the standard normal cumulative distribution func-
tion Φ, andΦΣ is the joint cumulative distribution function of a multivariate normal
distribution with mean vector 0 and covariance matrix equalto the correlation matrix
Σ (which is assumed to be known from credit ratings or other recourses).

The normal copula model was the first widely used copula modelin the finan-
cial industry; it attempts to capture the dependence among obligors while maintaining
mathematical tractability by assuming the vector of latentvariables follows a multivari-
ate normal distribution. Although it was criticized for notcapturing the tail dependence
(and thus it underestimates tail risks), we study the normalcopula (NC) model as used
in [16, 17, 22] for an illustrative purpose. It was mentioned in [22] that the CreditMet-
rics model [17] used by J.P. Morgan actually used a bi-variate normal copula function
with the asset correlation as the correlation parameter in the copula function, although
it does not use the concept of copula function explicitly. More specifically, it is shown
that if the asset correlation is normally distributed with abinomial normal probability
density function then the joint transformation probability is consistent with the result
from using a normal copula function. Li then proposed to model the credit portfolio of
any size by constructing high dimensional normal copula functions [22].

In the NC model for portfolio credit risk, the underlying correlations are specified
through a factor model of the form

Xn = α
T
n Z + βnrn (13)

in whichZ = (Z1, . . . ,ZK) is the column vector ofsystematic riskfactor, each ofZk(k =
1, . . . ,K) having an standard normal distribution,rn ∼ N(0,1) is theidiosyncratic risk
associated with thenth obligor,αT

n = (αn1, . . . , αnK) is the row vector offactor loadings
for thenth obligor with

∑K
k=1 α

2
nk ≤ 1, andβn is a constant determined by Var(Xn). The

conditional default probability for thenth obligor given the factor loadingZ can be
written as

pn(Z) = Pr(In = 1|Z) = Pr(Xn > ξn|Z)

= Pr(αT
n Z + βnrn > Φ

−1(1− pn)|Z) = Φ

(

α
T
n Z + Φ−1(pn)
βn

)

, (14)

whereΦ denotes the standard normal distribution function. The factor loadingsαn,k (k =
1, · · · ,K) are assumed to be nonnegative, to ensure all default indicators to be pos-
itively correlated so that larger values of the factorsΘk lead to a larger number of
defaults.

Note that for eachXn to have a standard normal distribution, it is required that
∑K

k=1α
2
n,k + β

2
n = 1 for all n = 1,2, · · · ,N to ensure the variance ofXn is equal to
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1. From the model setup, we can see thatX has a multivariate normal distribution,
with covariance matrixΣ where the (i, j)-element ofΣ is αiα

T
j . Thus, sinceIn is a

non-decreasing function ofXn, theN-normal copulaC with a correlation matrixΣ is a
copula of (I1, · · · , IN) (although since (I1, · · · , IN) is discrete, its copula is not unique).
That is why this model is called a normal copula model.

3.2 The t-copula

One of the potential problems of the normal copula model is that the event of many
simultaneous defaults may be assigned to a probability which is too small. Thet-copula
has been increasingly popular in finance since it captures the tail-dependence, is not ex-
changeable (as opposed to Archimedean copulas), and in the meanwhile is still simple
enough. In view of this, thet-copula model was introduced for credit risk models by
assuming the underlying latent variablesX follow a multivariatet distribution; see e.g.
[2].

Let Y ∼ Nm(0,Σ), S ∼ χ2
ν (a chi-square distribution withν degrees of freedom),

andR =
√
ν/S. WhenY andR are independent, theRm-valued random vector given

by X = RY has a centeredt-distribution withν degrees of freedom. Note that forν > 2,
Cov(X) = ν

ν−2Σ. By Sklar’s theorem, the copula ofX can be written as

Ct
ν,ρ(u1, . . . ,um) = tmν,ρ(t

−1
ν (u1), . . . , t−1

ν (um))

wheretmν,ρ denotes the multivariatet-distribution function with parameters (ν, ρ), ρi j =

Σi j/
√

ΣiiΣ j j , andtν is the standard univariatet-distribution function withν degrees of
freedom.

As in the normal copula model, denote byαn1, . . . , αnK the factor loadings for
the nth obligor and let each ofZk (k = 1, . . . ,K) and rn have standard normal dis-
tribution. A generalK−factor model was considered in [8] where the factors and
idiosyncratic risks are modeled as independentt random variable. This is done by
introducing independent shock variablesΘ2

k ∼ Gamma(ν/2, ν/2), (k = 1, . . . ,K) and
Λ

2
n ∼ Gamma(ν/2, ν/2), (n = 1, . . . ,N) for someν > 0. Define the model

Xn = αn1Z1Θ
−1
1 + · · · + αnKZKΘ

−1
K + βnrnΛ

−1
n , n = 1, . . . ,N, (15)

then marginallyX = (X1, . . . ,XN) follows a multivariatet distribution with degree of
freedomν (see e.g. [7]).

Similar to the NC model, it is required that
∑K

k=1 α
2
n,k+β

2
n = 1 for all n = 1,2, · · · ,N

to ensure the variance ofXn is equal to 1. The conditional default probability for the
nth obligor given the factor loadingsZ = (Z1, . . . ,ZK) can be calculated to be

pn(Z) = Pr
(

αn1Z1Θ
−1
1 + · · · + αnKZKΘ

−1
K + βnrnΛ

−1
n > t−1

ν (1− pn)|Z
)

= Φ

















(

∑K
k=1 αnkZkΘ

−1
k + t−1

ν (pn)
)

Λn

βn

















. (16)
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4 Cross-entropy method for the copula models

The main purpose of this study is to calculate the probability of a large portfolio
loss, i.e., to calculate the probability Pr(L > γ), at large values ofγ. The loss distri-
bution of L under most credit risk models is often complicated and can not be solved
explicitly. Numerical calculation such as Monte-Carlo simulation methods is needed in
general. However, basic Monte-Carlo simulation can be veryinefficient for such rare
events and alternative algorithms are sought to estimate the small probability for large
losses. For example, Glassermanet. al. provided a two-step IS method for the NC
model of portfolio credit risk, where the biasing PDF is obtained via an analysis of the
NC model involving a numerical optimization in each replication [16] and Chan and
Kroese derived algorithms base on conditional Monte Carlo to estimate the probability
that the portfolio incurs large losses undert−copula model [7].

The NC model has been studied in [20] by using MCMC (Markov chain Monte
Carlo) methods, and related work was done by Chan in [7]. In this work we pro-
pose a general CE-MIS (cross-entropy-multiple importancesampling) method when
the sought loss probability is relatively small. More specifically, we will draw samples
according to multiple biasing PDF’s resulted from each iteration of CE and combine
their results by the technique of MIS [31, 32]. Note that MIS can be conveniently
combined with the multi-stage CE algorithm. In fact, instead of using only the op-
timal distribution found with the final level, we can save distributions obtained at all
levels, draw samples according to them and then combine the results by the end. Thus
the samples are encouraged toward different levels of loss and one can calculate the
complete loss distribution.

Let x be the (K + N)-dimensional i.i.d. random variable

x = (z1, z2, ..., zK , r1, r2, ..., rN) = (x1, x2, · · · , xK+N),

each component following a standard normal distributionN(0,1). The total lossL can
then be regarded as a function ofx , and we are seeking the probabilityQ = Pr[L(x) >
γ], which can be calculated by a MC estimator:

Q̂ =
1
M

M
∑

m=1

I(γ,∞)(L(x(m))) , (17)

Applying the technique of IS to Eq. (17) one obtains

Q̂∗ =
1
M

M
∑

m=1

I(γ,∞)(L(x(m)))R(x(m)) , (18)

where samples are drawn according to the biasing PDFp∗(x).

Among various methods to construct the biasing PDFp∗(x), the mean transla-
tion (MT) method [29] is one of the most direct ones for normal distributions. The
basic idea of MT for this problem is to translate the mean ofx from origin to a point
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determinedaprior by the CE method. Specifically, the biasing PDF can be writtenas

p∗(x) =
1

(
√

2π)N+K

N+K
∏

i=1

exp













−
(xi − x∗i )

2

2













, (19)

wherex∗ = (x∗1, ..., x
∗
N+K) = (z∗1, · · · , z

∗
K , r
∗
1, · · · , r

∗
N) is the mean ofx (and hence can be

regarded as the reference parameterv in the CE framework). To apply the CE method
to calculate the mean ofx, plug Eq (19) into Eq. (10) and solve Eq. (10) analytically
for the optimal reference parameters:

x∗i =

∑M
m=1 I(γ,∞)(L(x(m)))R(x(m))x(m)

i
∑M

m=1 I(γ,∞)(L(x(m)))R(x(m))
, (20)

for i = 1, ...,N + K.

However, the effectiveness of this strategy relies on the dimension of the state space,
N + K. WhenN + K is relatively large, the calculation may be beyond the capacity
of the CE method. In practice, the number of common risk factors is usually not very
large, thus the mean ofz = (z1, · · · , zK) can still be estimated by Eq. (20). For a large
N, we apply an exponential twist [[16]] on r = (r1, · · · , rN) = (xK+1, · · · , xK+N) by
introducing a parameterθ and setting

pn,θ =
pneθcn

1+ pn(eθcn − 1)
, (21)

wherepn is the original default probability. The mean of eachrn can be calculated by

r∗n = ξn − F−1
n (1− pn,θ), (22)

and it follows immediately that

N
∑

n=1

r∗n =
N

∑

n=1

[

ξn − F−1
n (1− pn,θ)

]

. (23)

Note that the left hand side of Eq. (23) can be simulated by

N
∑

n=1

r∗n =
N

∑

n=1

∑M
m=1 I(γ,∞)(L(x(m)))R(x(m))r (m)

n
∑M

m=1 I(γ,∞)(L(x(m)))R(x(m))
. (24)

Substituting Eq. (24) into Eq. (23) then yields the optimal value ofθ, and withθ known,
the mean ofr∗ = (r∗1, · · · , r

∗
N) can be obtained from Eq. (22).

In general, to construct loss distributions over a broad range, a single choice of
biasing PDF is not enough to capture efficiently every region of sample space that
give rise to the event of interest. With MIS we are able to combine multiple biasing
PDF’s resulted from each iteration of CE, by assigning each biasing PDF a weight
w j(x) determined by balance heuristic [24, 31]:

w j(x) =
M j p j(x)

∑J
j ′=1 M j ′ p j ′ (x)

. (25)
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The IS estimator becomes

Q̂ =
J

∑

j=1

1
M j

M j
∑

m=1

w j(x(m, j))I(γ,∞)(L(x(m, j)))R(x(m, j)) , (26)

wherep1, · · · , pJ are biasing PDF’s,x(1, j), · · · , x(M j , j) is a sample drawn fromp j(x),
and the total numberM j is characterized by its meanx∗j . In summary, the complete
CE-IS algorithm proceeds as follows:

1. Choose a positive number 0< ρ < 1 (e.g.,= 0.02) and a desired level of lossγ ∗.

2. Setγo = 0, x∗1 = 1 (unbiased) andt = 1 ( iteration level counter).

3. GenerateM samplesx(1), . . . , x(M), according to distributionp(x; x∗t ). Let t =
t + 1.

4. Compute the lossL(x(m)) for m = 1 . . .M and sort the results ascendingly as
L1, . . . , LM. Let γt = L [(1−ρ)M] .

5. If γt > γt−1 andγt < γ, computex∗t from Eq. (20), compute r∗t using Eqs. (22–
24), and reiterate from step 3; otherwise proceed to step 6.

6. Generate samples according to distributions parametersx∗1, . . . , x
∗
t respectively,

and combine the results using Eq. (26).

In this section, we represented an CE-MIS method to calculate the probability of
large portfolio losses. This method can avoid the non-trivial analysis required by a gen-
eral IS method and outperforms traditional model-specific estimators when the para-
metric family in the CE method is chosen to be sufficiently large [6]. In addition, the
method we propose is not model-specific, i.e., it can be applied to a large variety of
models with little modification. Numerical examples will beprovided to demonstrate
our method in the next section.

5 Numerical examples

We provide some numerical examples for the CE-MIS method described in Sec-
tion 4. In particular we will apply our method to the NC model and t−copula model
described in Section 3. We adopt formulas used in [16] to generate the default proba-
bilities and loss coefficients:

pn = 0.01×
(

1+ sin

(

16πn
N

))

, (27a)

cn =

(

5n
N

)2

, (27b)

for n = 1, ...N. The coefficientsαn, βn are randomly generated and then normalized so
thatXn follows standard normal distribution for the NC model and standardt distribu-
tion for thet−copula model.
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5.1 A portfolio of 50 obligors with 10 common risk factors

We first consider a portfolio with 50 obligors and 10 common risk factors. In the
numeric, it took 4 iterations with 1,000 replications in each for the CE method to find
2 biasing PDF’s. Fig.1 shows the PDF constructed by using standard MC simulation
with samples generated according to the biasing PDF’s, and it illustrates the ability to
put samples around different loss levels of the obtained PDF’s. We can see that samples
drawn according to the unbiased PDF are around small losses,while the biased pdfs
can push the samples toward larger values of loss.
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Figure 1: Loss distributions numerically reconstructed from standard MC simulations
according to the PDF’s ofx obtained by using the CE method. The solid line represents
the unbiased PDF and red and green dashed lines represent biased PDF’s obtained from
CE.

We then used the obtained PDF’s to construct the tail probability Pr[L > γ] for
loss levelγ ∈ [0,450], where 2,000 samples were generated according to each biasing
PDF. In Figs. 2 and 3, we plot the tail probability Pr(L > γ) as a function of the
loss levelγ for both the NC model andt−copula model, respectively. We also put the
results of standard MC simulations with the same number of samples in Figs. 2 and
3 for comparison purpose. We can see that the CE-MIS method allows us to estimate
probabilities accurately to around 10−7 with several thousand samples.

5.2 A portfolio of 1000obligors with 10 common risk factors

In our second example, we consider a situation of more obligors. Specifically,
we chooseN = 1000, again in a 10-factor model. The default probabilitiesand the
loss coefficients are also determined by Eqs. (27), and the coefficientsαn, βn are ran-
domly generated and renormalized as before. In this example, the CE method finds
two biasing PDF’s using 3,000 samples, and we draw 1,000 samples according to each
distribution to construct the PDFs of loss in the range from 0to 8,000 which are shown
in Figs. 4 and 5.
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Figure 2: Tail probability plotted against
the loss level for a 50-obligor-10-risk fac-
tor NC model
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Figure 3: Tail probability plotted against
the loss level for a 50-obligor-10-risk fac-
tor t−copula model
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Figure 4: Tail probability plotted against
the loss level for a 1000-obligor-10-risk
factor NC model

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−4

10
−3

10
−2

10
−1

10
0

Loss

P
r[

Lo
ss

 >
 g

am
m

a]

 

 
CE−MIS
Standard MC

Figure 5: Tail probability plotted against
the loss level for a 1000-obligor-10-risk
factort−copula model
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Though the effectiveness of the CE method has been demonstrated by many appli-
cations, no theoretical justification of the optimality of this method is available up to
date. Therefore, monitoring the estimator variance in numerical experiments may be
the only way to verify the effectiveness of the CE method. A computation of the coef-
ficient of variation (CV) of the MIS estimator for the loss distribution shows that the
CE method does reduce the estimator variance significantly,which allows it to estimate
very low probabilities with a relatively small number of samples. With this example,
we show that the CE method remains effective for problems involving a large number
of obligors.

5.3 A portfolio of 1000 obligors with 21 common risk factors

In the third example we consider a portfolio of 1000 obligorswith 21 risk factors.
The default probabilities and the loss coefficients are also determined by Eqs. (27), and
the coefficientsαn, βn are randomly generated and re-normalized as before. In this
example, the CE method finds two biasing PDF’s using 3,000 samples, and we draw
1,000 samples according to each distribution to construct the PDF of loss in the range
from 0 to 9,000 which are shown in Figs.6 and 7.
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Figure 6: Tail probability plotted against
the loss level for a 1000-obligor-21-risk
factor NC model
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Figure 7: Tail probability plotted against
the loss level for a 1000-obligor-21-risk
factort−copula model

Although there is no clear evidence that our CE-MIS method issuperior than the
numerical results in [16] by using IS, our proposed CE-MIS method can combine re-
sults from each iteration during multiple IS and obtain a complete and continuous PDF,
than runs on a range larger than what standard MC can produce.

6 Conclusions

In this article we propose a new method to simulate rare extreme losses in credit
risk management. This method can find the optimal biasing PDF’s for both the obligors
and the common risk factors simultaneously without requiring a numerical optimiza-
tion step in every trial as in traditional IS method. Moreover, this method combines a
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multi-level CE algorithm with the MIS technique which makesit possible to construct
complete loss distributions over a broad range. Specifically the CE algorithm is used to
find biasing PDF’s and MIS is used to estimate the probabilityof interest. The relative
importance of the biasing of the common risk factors and thatof the individual risk
factors is automatically adjusted by the CE method.

In particular we first describe a general framework of the CE-MIS method, followed
by the implementation of the proposed method to portfolio credit risk models. We then
illustrate the effectiveness of the CE-MIS method by applying it to a normal copula
model and at−copula model.

Remarkably, a two-step IS approach has been proposed in [16], where the biasing
PDF’s are determined by analyzing the NC model and analytical approximations are
required at the first stage. Our method provides an alternative without the requirement
of initial analysis to the existing method and demonstratesthe convenience of com-
bining the CE-method with MIS to constructing a complete loss PDF. Moreover, our
method is generic and can be applied to a large variety of different models with little
modification.
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