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Abstract

The CreditRisk + model is widely used in industry for computing the loss of a credit port-

folio. The standard CreditRisk + model assumes independence among a set of common risk

factors, a simplified assumption which leads to computational ease. In this paper, we propose

to model the common risk factors by a class of multivariate extreme copulas as a generalization

of bivariate Fréchet copulas. Further we present a conditional Compound Poisson model to ap-

proximate the credit portfolio, and provide a cost-efficient recursive algorithm to calculate the

loss distribution. The new model is more flexible than the standard model, with computational

advantages compared to other dependence models of risk factors.
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1 Introduction

A key step in modeling credit risks is the interdependency among obligors’ default events. As a

widely employed model in industry, CreditRisk + (CR+) model (Credit Suisse First Boston (1997))

assumes that there exist some systematic risk factors to influence all obligors’ default, where the risk

factors can be industrial fields, geographical countries, etc; for details we refer to Gupton, Finger

and Bhatia (1997). In the standard CR+ model, by assuming independence among the common

risk factors, one is able to compute the loss distribution of the credit portfolio recursively without

using an extensive Monte Carlo simulation. For example, when the risk factors are assumed to

have gamma distributions, Panjer’s recursion (Panjer, 1981) can be employed for the calculation.

Gordy (2002) proposed to use the saddlepoint approximation in CR+ model and Vandendorpea et

al. (2008) discussed the issue of parameterization. We refer to Gundlach and Lehrbass (2003) for

an overview of the importance, applications and research on the CR+ model.

In practice, it is arguably questionable to assume independence among risk factors. Extending

CR+ model to cover dependent risk factors has been a practically important topic for research

in quantitative methods for credit risk. Bürgisser et al. (1999) introduced the correlation among

the risk factors and derived some moments of the credit portfolio. Giese (2004) considered the

link between the CR+ loss distribution and the moment-generating function of the risk factors by

incorporating sector correlations. Reiβ (2004) modeled the risk factors by incorporating market

risk through geometric Brownian motions. Kostadinov (2006) used elliptical copulas to model the

dependence among defaults. Deshpande and Iyer (2009) improved CR+ model by modeling the

sector default rates as linear combinations of a common set of independent variables representing

risk factors. When the risk factors are modeled by a dependence model, calculating the loss

distribution becomes complicated in general, and Monte Carlo methods are often implemented.

In this paper, we propose to model the dependence among the risk factors by a class of extreme

copulas introduced in Yang, Qi and Wang (2009), and provide a simple algorithm to calculate

the distribution of the total loss. The algorithm involves a numerical integration of at most one

dimension and so is almost as simple as the one in the standard CR+ model.

A copula is a multivariate distribution function with uniform marginal distributions. Sklar’s

Theorem states that for an n-dimensional distribution function H with marginal distributions

F1, . . . , Fn, there exists a n-copula C such that

H(x1, x2, . . . , xn) = C
(
F1(x1), F2(x2), . . . , Fn(xn)

)
.

And C is unique when the marginal distributions are continuous. In the two-dimensional case,

three special copulas, the Fréchet upper copula M(u, v) = min{u, v}, the Fréchet lower copula
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W (u, v) = max{u+ v− 1, 0}, and the product copula Π(u, v) = uv, correspond to the three special

dependence structures: comonotonicity, countermonotonicity, and independence, respectively (see

for example, Dhaene et al. (2002a, 2002b)). The bivariate Fréchet (BF) copula is defined as a

convex combination of the above three copulas; that is,

C(u, v) = αM(u, v) + βΠ(u, v) + γW (u, v) (1.1)

where α, β, γ ≥ 0 and α+β+ γ = 1. BF copulas can be used to model the dependence of two risks

with focus on comonotonic, countermonotonic and independent parts respectively; see Yang, Cheng

and Zhang (2006). For high-dimensional settings, Yang, Qi and Wang (2009) presented a class of

multivariate copulas with bivariate Fréchet marginal copulas, called the CA,B copulas, which are

determined uniquely by all their bivariate marginal copulas. Since the copula family of CA,B has a

clear financial background and is easy to compute, we propose to model the common risk factors in

the CR+ model by this class of copulas. For the general applications of copula models in finance,

we refer to Cherubini, Luciano and Vecchiato (2004).

In this paper, we first present the credit portfolio model with the common risk factors modeled

by the CA,B copulas. In order to compute the loss distribution, we propose a conditional compound

Poisson model, where conditional on the risk factors the total loss of the credit portfolio is a com-

pound Poisson distribution. We show that the conditional compound Poisson model is a variable

approximation to the original Credit portfolio, similar to the classic compound Poisson approxima-

tions for aggregate risk models. Moreover, we provide a cost-efficient algorithm for calculating the

loss distribution of the credit portfolio based on the conditional compound Poisson model.

We organize the rest of this paper as follows. Section 2 presents our credit portfolio model

with the correlated risk factors modeled by the proposed copulas. Section 3 provides a conditional

compound Poisson model as a variable approximation to the basic model. Some algorithms are given

for calculating the distribution of the conditional compound Poisson model. Numerical examples

are given in Section 4. Conclusions are summarized in Section 5. Some proofs are put in the

Appendix.

2 Credit Portfolio with correlated risk factors

2.1 Credit model

For a credit portfolio of N obligors, its total loss due to credit risk is modeled as follows. Denote

the obligors in the credit portfolio by F = {A1, A2, . . . , AN}. For each obligor A ∈ F , put IA = 1

if the obligor A defaults and IA = 0 if no default occurs for the obligor. The face amount of the
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obligor A is denoted by LA. For the simplicity of discussion, we assume that the recovery rates

are all equal to zero, and this assumption can be removed without much difficulty. The total loss

amount of the credit portfolio can be expressed as

L =
∑
A∈F

LAIA. (2.1)

Throughout we assume that LA, A ∈ F are integer-valued for computational considerations. Note

that the above setting is exactly the same as the one in CR+. The default probability of the obligor

A is denoted by pA, that is, pA = E(IA). Same as in CR+, we assume that there exist n + 1

risk factors Xk, k = 0, 1, . . . , n to influence the obligors’ default. Here Xk, k = 0, 1, . . . , n may be

economic factors, such as industry indices or economy states in certain geographical regions, hence

they are typically observable. We refer to Credit Suisse First Boston (1997) and Wilson (1998)

for interpretations of the risk factors. Further we assume that the default probabilities satisfy the

following conditions:

(A1) Given the risk factors Xk, k = 0, 1, . . . , n, the default indicators IA, A ∈ F are conditionally

independent. Denote the expectation and standard deviation of Xk by µk and σk respectively,

and let X0 = µ0 be a constant.

(A2) For each A ∈ F , there exist non-negative weights θA,k, k = 0, 1, . . . , n, such that
∑n

k=0 θA,k =

1 and

xA =: E[IA|X1, X2, . . . , Xn] = pA(

n∑
k=0

θA,k
Xk

µk
); (2.2)

(A3) For k ≥ 0, the expectation of the risk factor Xk is chosen as

µk =
∑
A∈F

θA,kpA. (2.3)

The above standard settings (A1),(A2) and (A3) are used in the CR+ model. The risk factor X0

is a constant which shows each obligor’s individual contribution on its default probability. For the

other risk factors Xk, 1 ≤ k ≤ n, we denote the distribution of Xk by Fk and assume that it is

continuous. The inverse function of Fk is denoted by F−1k .

Remark 2.1. Assumption (A2) clearly indicates that there exist n+1 factors to influence the default

probability of the portfolio. For obligor A, θA,k represents the weight of the influence of the risk

factor Xk on its default, and the coefficient θA,0 is the individual contribution of the obligor A on

its default probability. The sum of the total weights equals to one.
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Instead of assuming independent risk factors, we propose to use copula methodology to model

the correlation among the risk factors Xk, 1 ≤ k ≤ n. More specifically, assume that Uk =

Fk(Xk), 1 ≤ k ≤ n satisfy the following conditional independence framework introduced in Yang,

Qi and Wang (2009):

(X1) There exists a uniformly distributed random factor U on [0, 1] such that U1, . . . , Un are con-

ditionally independent given U ;

(X2) For each 1 ≤ i ≤ n, Ci(u, v) = P(Ui ≤ u, U ≤ v) satisfies that

Ci(u, v) = ai,1M(u, v) + ai,2Π(u, v) + ai,3W (u, v), (2.4)

where ai,j ≥ 0, j = 1, 2, 3 such that ai,1 + ai,2 + ai,3 = 1.

The copula of the above (U1, U2, . . . , Un) is denoted as CA,B in Yang, Qi and Wang (2009). In this

paper we will call a copula satisfying (X1) and (X2) a CA,B copula.

Assumptions (X1) and (X2) imply that the risk factors Xk, 1 ≤ k ≤ n are correlated through

the common latent variable U . Assumption (X2) shows the influence of the common factor U on

Ui, where ai,1 is the weight of the positive influence, ai,3 is the weight of the negative influence, and

the obligor Ui is independent of the common factor U with portion ai,2. For more discussion on

the assumptions (X1), (X2) and their practical applications, see Yang, Qi and Wang (2009). Note

that CR+ assumes that the risk factors Xk, 1 ≤ k ≤ n are independent, i.e., ai,2 = 1, i ≤ n. Hence,

the above assumptions are a generalization of the CR+ model.

The following is a probabilistic explanation of assumptions (X1) and (X2). Let A+
i , A

⊥
i , A

−
i , 1 ≤

i ≤ n be random events and Yi, 1 ≤ i ≤ n be i.i.d. U[0,1] random variables with the following

assumptions:

1. For each 1 ≤ i ≤ n, {A+
i , A

⊥
i , A

−
i } is a partition of the probability space and

P (A+
i ) = ai,1, P (A⊥i ) = ai,2, P (A−i ) = ai,3.

The random event-vectors (A+
i , A

⊥
i , A

−
i ), 1 ≤ i ≤ n are independent, and independent of the

common latent variable U in (X1) and (X2) and the random variables Yi, 1 ≤ i ≤ n.

2. The common latent variable U and Yi, 1 ≤ i ≤ n are independent.

Define

Ui = IA+
i
U + IA⊥i

Yi + IA−i
(1− U), 1 ≤ i ≤ n.
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Then it is easy to verify that Ui, 1 ≤ i ≤ n satisfy the assumptions (X1) and (X2). Hence the

common risk factors can be expressed as Xk = F−1k (Uk). The above probabilistic expressions give

the relationship among the risk factors and the common factor U . Conditional on the event A+
i

(A⊥i , or A−i ), Ui and U are comonotonic (independent, or countermonotonic). If the risk factors are

independent, ai,1 = ai,3 = 0, ai,2 = 1, i ≤ n and Ui = Yi, i ≤ n. If the risk factors are comonotonic,

ai,2 = ai,3 = 0, ai,1 = 1, i ≤ n and Ui = U, i ≤ n. The advantage of the proposed model is that the

coefficients of ai,1, ai,2 and ai,3 can be adjusted to reflect the influence of the common factor U on

default probabilities.

Define

X+
i = F−1i (U), X−i = F−1i (1− U), X⊥i = F−1i (Yi).

Then X+
i , X

−
i and X⊥i have the common distribution Fi. Note that X+

i and X−i are countmono-

tonic, and they are independent of X⊥i . The risk factor Xi = F−1i (Ui) can then be expressed

as

Xi = IA+
i
X+
i + IA⊥i

X⊥i + IA−i
X−i .

The above equation decomposes the probabilistic space into three subspaces to show the dependence

structure of Xi and the common latent variable U .

2.2 Notation

In this section we introduce some notations for future use. For the indices (j1, j2, . . . , jn), where

ji ∈ {1, 2, 3}, write

C(j1,j2,...,jn)(u1, u2, . . . , un) = W
(

min
i≤n,ji=1

{ui}, min
i≤n,ji=3

{ui}
) ∏
i≤n,ji=2

ui, ui ∈ [0, 1], i ≤ n,

with the convention that for the empty set the corresponding minimum and product are defined to

be 1. As shown in Yang, Qi and Wang (2009), the distribution of (U1, . . . , Un) can be expressed as

CA,B(u1, u2, . . . , un) =

3∑
j1=1

· · ·
3∑

jn=1

(
n∏
i=1

ai,ji

)
C(j1,j2,...,jn)(u1, u2, . . . , un). (2.5)

For i 6= j and ui, uj ∈ [0, 1], the bivariate marginal copula of (Ui, Uj) can be expressed as

P(Ui ≤ ui, Uj ≤ uj) = αi,jM(ui, uj) + βi,jΠ(ui, uj) + γi,jW (ui, uj) (2.6)

with

αi,j = ai,1aj,1 + ai,3aj,3, γi,j = ai,1aj,3 + ai,3aj,1, βi,j = 1− αi,j − γi,j . (2.7)
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That is, the two-dimensional marginal copulas of CA,B belong to the family of BF copulas. More-

over, CA,B is uniquely determined by all two-dimensional marginal copulas. Under the above copula

structure, the distribution of (X1, X2, . . . , Xn) can be expressed as

P(X1 ≤ x1, . . . , Xn ≤ xn) = CA,B(F1(x1), . . . , Fn(xn)).

For the given weights θA,i, A ∈ F , 0 ≤ i ≤ n in (A2), we define

Dk,i =
1

µi

∑
A:LA=k

θA,ipA, 0 ≤ i ≤ n for each k ≥ 1. (2.8)

Therefore
∞∑
k=1

Dk,i =
1

µi

∑
A∈F

θA,ipA = 1 for each fixed 0 ≤ i ≤ n, (2.9)

which implies that Dk,i for each fixed i is a probability mass function on k ∈ N. Thus we can define

its probability generating function (pgf) as

Pi(z) =

∞∑
k=1

Dk,iz
k, z ∈ [0, 1]. (2.10)

Note that for fixed 0 ≤ i ≤ n, the probability function Dk,i, k = 1, . . . is generated by the risk

factor Xi, and Dk,i can be regarded as the contribution to the risk factors Xi for those obligors

with face amount k. The above notations will be used later.

Remark 2.2. For estimating the parameters of the copula CA,B satisfying (X1) and (X2), the

standard pseudo maximum likelihood estimation procedure is not applicable due to nonexistence of

density. Note that Spearman’s rho (ρSi,j) and Kendall’s tau (τi,j) for a bivariate Fréchet copula are

linear and quadratic functions of its parameters (e.g. Nelsen, 2006), i.e., for i, j = 1, . . . , n, i 6= j:

ρSi,j = αi,j − γi,j ,

τi,j =
1

3
(αi,j − γi,j)(αi,j + βi,j + 2) =

1

3
(αi,j − γi,j)(3− γi,j),

where αi,j and γi,j are given in (2.6). Hence, one can first estimate Spearman’s rho and Kendall’s

tau, and then esimate αi,j and γi,j via the above equations, say α̂i,j and γ̂i,j . Since the multivariate

Fréchet copula CA,B is determined by its bivariate marginal copulas (see Yang, Qi and Wang

(2009)), estimators for the parameters the parameters (ai,1, ai,3, i = 1, . . . , n) in CA,B can be

obtained by using (2.7), α̂i,j and γ̂i,j .
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2.3 Properties of the proposed model

Put

Θ =


θA1,0 θA1,1 . . . θA1,n

θA2,0 θA2,1 . . . θA2,n

. . . . . . . . . . . .

θAN ,0 θAN ,1 . . . θAN ,n

 .

Then (2.2) can be written as 

xA1
pA1
xA2
pA2

. . .
xAN
pAN

 = Θ


1

X1
µ1

. . .

Xn
µn

 , (2.11)

which implies that the covariance matrix of xA, A ∈ F can be expressed as

Cov(



xA1
pA1
xA2
pA2

. . .
xAN
pAN

) = ΘCov(


1

X1
µ1

. . .

Xn
µn

)ΘT .

Proposition 2.1. Under the assumptions (A1)-(A3) and (X1)-(X2), we have

Cov(IA, IB) = Cov(xA, xB), Var(IA) = pA − E(x2A) + Var(xA),

and

Var(
xA
pA

) =
n∑
k=1

θ2A,k
σ2k
µ2k

+ 2
∑
k>j≥1

θA,kθA,j [αk,jCov(
X+
k

µk
,
X+
j

µj
) + γk,jCov(

X+
k

µk
,
X−j
µj

)]. (2.12)

Proof. Under the framework of conditional independence, it is straightforward to verify that

Cov(IA, IB) = E{E(IA|X1, X2, . . . , Xn)E(IB|X1, X2, . . . , Xn)} − pApB
= Cov(xA, xB)

and

Var(IA) = E(Var(IA|X1, X2, . . . , Xn)) + Var(E[IA|X1, X2, . . . , Xn])

= pA − E(x2A) + Var(xA).

It follows from (2.2) that

Var(
xA
pA

) =
n∑
i=1

θ2A,i
σ2i
µ2i

+ 2
∑
i>j≥1

θA,iθA,jCov(
Xi

µi
,
Xj

µj
).
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By (2.6), we can show that

Cov(Xi, Xj) = αi,jCov(X+
i , X

+
j ) + βi,jCov(X⊥i , X

⊥
j ) + γi,jCov(X+

i , X
−
j )

= αi,jCov(X+
i , X

+
j ) + γi,jCov(X+

i , X
−
j ),

which implies (2.12). Hence, the proposition holds.

Note that for A 6= B,

Cov(
xA
pA
,
xB
pB

) = Cov(
IA
pA
,
IB
pB

).

In (2.12), the variance of xA is expressed into two parts. The first part is the contribution of the

variances of individual risk factors, and the second part is the contribution of correlation among the

risk factors. When the risk factors are independent as in CR+ model, i.e., αi,j = 0, γi,j = 0, i 6= j,

we have

Var(xA) = p2A

n∑
k=1

w2
A,kσ

2
k

and

Cov(xA, xB) = pApB

n∑
k=1

wA,kwB,kσ
2
k,

where wA,k = θA,k/µk is the weight function defined in the CR+ model. When Ui = U, 1 ≤ i ≤ n,

that is, the risk factors are comonotonic, we have

Var(
xA
pA

) =
n∑
k=1

w2
A,kσ

2
k + 2

∑
k>j≥1

wA,kwA,jCov(X+
k , X

+
j ).

Note that in the CR+ model, the risk factors Xi, 1 ≤ i ≤ n, are assumed to be independent,

and the following equation is employed:√
Var(Xk) =

∑
i≤N

θAi,k

√
Var(xAi), (2.13)

that is, √
Var(Xk)

µk
=

∑
i≤N θAi,kpAi

√
Var(

xAi
pAi

)∑
i≤N θAi,kpAi

.

The above equation is justified for the case that n = 1 and θAi,1 = 1. However, when n > 1, the

following example shows that (2.13) is not true.

Example 2.1. (Counter-example of (2.13)). Suppose that the risk factors Xi, i ≤ 2 are indepen-

dent, θAi,1 = θAi,2 = 1
2 and pAi = p, i ≤ N , for some p ∈ (0, 1). Then

µ1 = µ2 =
Np

2
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and

Var(
xAi

p
) =

1

4
Var(

X1

µ1
) +

1

4
Var(

X2

µ2
), i ≤ N.

It follows that∑
i≤N θAi,kpAi

√
Var(

xAi
pAi

)∑
i≤N θAi,kpAi

=

√
Var(

xA1

p
) <

1

2

√
Var(

X1

µ1
) +

1

2

√
Var(

X2

µ1
),

which implies that (2.13) does not hold for k = 1 or k = 2.

Assume that the copula of X1, . . . , Xn is C(j1,...,jn). For ji = 1, 2, 3 and B ⊂ F , denote the

probability of default for A ∈ B and no default for A ∈ F \ B by fj1,...,jn(B). Then we can easily

check that

fj1,...,jn(B) = E

(∏
A∈B

( n∑
m=0

θA,m
µm

F−1m (UI{jm=1} + VmI{jm=2} + (1− U)I{jm=3})
)

×
∏

A∈F\B

(
1−

n∑
m=0

θA,m
µm

F−1m (UI{jm=1} + VmI{jm=2} + (1− U)I{jm=3})
)

(see Yang, Qi and Wang (2009) for properties of C(j1,...,jn)). In other words,

fj1,...,jn(B)

=

∫ 1

0
. . .

∫ 1

0

(∏
A∈B

( n∑
m=0

θA,m
µm

F−1m (xI{jm=1} + ymI{jm=2} + (1− x)I{jm=3})
)

×
∏

A∈F\B

(
1−

n∑
m=0

θA,m
µm

F−1m (xI{jm=1} + ymI{jm=2} + (1− x)I{jm=3})
) dxdy1 . . . dyn.

Note that the above function does not depend on the coefficients ai,j , i ≤ n, j ≤ 3.

The following proposition shows the advantage of the proposed model.

Proposition 2.2. For positive function g, we have

E(g(L)) =
3∑

j1=1

· · ·
3∑

jn=1

( n∏
r=1

ar,jr
) ∑
B⊂F

(
g(
∑
A∈B

LA)fj1,...,jn(B)
)
.

The proof can be found in Proposition 5.1 of Yang, Qi and Wang (2009).

Remark 2.3. The above proposition shows that the expectation can be expressed as a linear com-

bination of fj1,...,jn(B) with the coefficients of
∏n
r=1 ar,jr , and fj1,...,jn(B) does not depend on the

coefficients ai,ji . If the values of fj1,...,jn(B), i ≤ N, ji = 1, 2, 3 are obtained, one can compute

E(g(L)) for different coefficients of ai,ji although the calculation of the probability fj1,...,jn(B) may

be complicated.

In the next section, we will propose a compound Poisson model to approximate the credit

portfolio, whose distribution function is much easier to calculate.
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3 Conditional compound Poisson model

In order to calculate the loss distribution of the credit portfolio efficiently, one standard way is to

use a compound Poisson distribution to approximate it. When the risk factors are independent, it

is well known that as N goes to infinity and
∑

A pA stays a constant, the two models become very

close in distribution. See Chapter 2 of Gundlach and Lehrbass (2004) for details.

In this section, we will construct a conditional compound Poisson model based on assumptions

(X1) and (X2) and provide a simple algorithm for calculating the loss distribution.

3.1 Conditional compound Poisson model

To mathematically set up a compound Poisson approximation for the credit model (2.1), we replace

the indicator random variable IA by a random variable NA, which is Poisson distributed with the

same mean as IA conditional on the risk factors Xi, 1 ≤ i ≤ n. Such NA can be chosen as a closest

Poisson random variable approximation of IA; see Section 3.3. We use the following assumptions

for this Poisson approximation:

(N1) Given the risk factors Xk, k = 1, 2, . . . , n, the default indicators NA, A ∈ F are Poisson

distributed and conditionally independent;

(N2) For each A ∈ F , the Poisson parameter

E[NA|X1, X2, . . . , Xn] = xA = pA(

n∑
k=0

θA,k
Xk

µk
). (3.1)

Write L̃ =
∑

A LANA. Then L̃ is an approximation of the credit portfolio loss L. Note that

the two models L̃ and L have the same common risk factors Xi, i ≤ n, and under the common risk

factors the obligors are conditionally independent in each model. Moreover, for each A ∈ F ,

E(IA|X1, . . . , Xn) = E(NA|X1, . . . , Xn) = xA.

The distribution of L̃ is given in the following theorem.

Theorem 3.1. Conditional on Xi, 1 ≤ i ≤ n, the approximation L̃ is compound-Poisson distributed

with Poisson parameter λ̃ =
∑n

k=0Xk and severity probability function
∑n

i=0
Dm,iXi

λ̃
,m = 1, 2, . . . .

Proof. Applying Theorem 6.3.1 in Panjer and Willmot (1992), we know that conditional on the

Xi, 1 ≤ i ≤ n, L̃ is compound-Poisson distributed with Poisson parameter

λ̃ =
∑
A

pA

n∑
k=0

θA,k
µk

Xk =
n∑
k=0

(
∑
A

pA
θA,k
µk

)Xk =
n∑
k=0

Xk (3.2)

11



and severity probability functions

n∑
i=0

∑
A pA

θA,i

µi
I{LA=m}

λ̃
Xi =

n∑
i=0

Dm,iXi

λ̃
,m = 1, 2, . . . .

The theorem is proved.

Theorem 3.1 says that L̃ can be written as

L̃ = S0 + S1 + S2 + · · ·+ Sn,

where conditional on the risk factors Xi, 1 ≤ i ≤ n, the variables Si, 0 ≤ i ≤ n are indepen-

dent compound Poisson random variables with Poisson parameters Xi and severity distributions

Dm,i,m = 1, 2, . . . , respectively.

3.2 Algorithms for computing the distribution function of L̃

The advantage of the proposed model is that the distribution of L̃ can be easily calculated. Here

we propose a method similar to the original CR+ model. The only difference is that a dependent

part of the pgf G
(j1,j2,...,jn)
1 (z) is involved.

Let G(z) = E(zL̃) be the pgf of L̃. Since L̃ is an integer-valued random variable, we have

G(z) =
∑∞

i=0 P(L̃ = i)zi. Therefore the polynomial expansion of G(z) gives the probabilities of L̃.

By the classical results in compound Poisson distribution and Theorem 3.1, we can write G(z)

as

G(z) = E[exp{
n∑
i=0

Xi(Pi(z)− 1)}] = exp{µ0(P0(z)− 1)} × E[exp{
n∑
i=1

Xi(Pi(z)− 1)}], (3.3)

where Pi(z)’s are defined in (2.10). Note that the pgf G0(z) := exp{µ0(P0(z)− 1)} corresponds to

a compound Poisson distribution with Poisson parameter µ0 and a severity with pgf P0(z).

By (3.3), (X1) and (X2), the distribution of L̃ can be obtained when the copula coefficients ai,j ,

the individual pgf Pi and the distribution of risk factors Xi for i = 1, . . . , n are known. Therefore,

we do not need to know any detailed information of each individual obligor A, such as θA,i, PA and

LA.

Since the copula function ofXi, 1 ≤ i ≤ n can be expressed by (2.5), for fixed index (j1, j2, . . . , jn)

with ji = 1, 2, 3 for i ≤ n, we can write

G0(z) =:

∞∑
l=0

gl,0z
l, (3.4)
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G
(j1,j2,...,jn)
1 (z) = E exp

{ ∑
1≤i≤n:ji=1

(Pi(z)− 1)F−1i (U) +
∑

i≤n:ji=3

(Pi(z)− 1)F−1i (1− U)

}
= :

∞∑
l=0

g
(j1,j2,...,jn)
l,1 zl, (3.5)

G
(j1,j2,...,jn)
2 (z) =

∏
1≤i≤n:ji=2

E exp
{

(Pi(z)− 1)F−1i (Vi)
}

=:
∞∑
l=0

g
(j1,j2,...,jn)
l,2 zl (3.6)

and

G(j1,...,jn)(z) = G0(z)×G(j1,...,jn)
1 (z)×G(j1,...,jn)

2 (z).

Actually, G(j1,...,jn)(z) is the probability generating function when the copula of (X1, . . . , Xn) equals

C(j1,...,jn). Note that G
(j1,j2,...,jn)
1 (z) represents the dependent part of the pgf G(j1,...,jn)(z), and

G
(j1,j2,...,jn)
2 (z) represents the independent part of the pgf G(j1,...,jn)(z).

Let L(j1,j2,...,jn) be a random variable satisfying that conditional on U , L(j1,j2,...,jn) has pgf

exp
{ ∑

i≤n:ji=1

(Pi(z)− 1)F−1i (U) +
∑

i≤n:ji=3

(Pi(z)− 1)F−1i (1− U)

}. (3.7)

Put p
(j1,j2,...,jn)
m (U) = P(L(j1,j2,...,jn) = m|U). Then

exp
{ ∑

i≤n:ji=1

(Pi(z)− 1)F−1i (U) +
∑

i≤n:ji=3

(Pi(z)− 1)F−1i (1− U)

} =

∞∑
m=0

p(j1,j2,...,jn)m (U)zm.

Theorem 3.2. The pgf of L̃ is given by

G(z) =

3∑
j1=1

· · ·
3∑

jn=1

( n∏
i=0

ai,ji
)
G(j1,j2,...,jn)(z), (3.8)

and for each m ≥ 0,

P(L̃ = m) =

3∑
j1=1

· · ·
3∑

jn=1

( n∏
i=1

ai,ji
) ∑
k+l+h=m,k,l,h≥0

g
(j1,j2,...,jn)
k,1 g

(j1,j2,...,jn)
l,2 gh,0. (3.9)

Furthermore we have g
(j1,j2,...,jn)
m,1 = E(p

(j1,j2,...,jn)
m (U)), and p

(j1,j2,...,jn)
m (U) satisfies the following

Panjer’s recursion

p(j1,j2,...,jn)m (U) =
∑

1≤i≤n:ji=1

F−1i (U)

m∑
j=1

j

m
Dj,ip

(j1,j2,...,jn)
m−j (U)

+
∑

1≤i≤n:ji=3

F−1i (1− U)

m∑
j=1

j

m
Dj,ip

(j1,j2,...,jn)
m−j (U). (3.10)
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Proof. It follows from the copula of X1, . . . , Xn that

G0(z)× E[exp{
n∑
i=1

Xi(Pi(z)− 1)}]

= G0(z)×
3∑

j1=1

· · ·
3∑

jn=1

( n∏
i=1

ai,ji
)
E

exp
{ ∑

1≤i≤n:ji=1

(Pi(z)− 1)F−1j (U)

+
∑

1≤i≤n:ji=2

(Pi(z)− 1)F−1j (Vj) +
∑

i≤n:ji=3

(Pi(z)− 1)F−1j (1− U)
}

= G0(z)×
3∑

j1=1

· · ·
3∑

jn=1

( n∏
i=1

ai,ji
)
E

exp
{ ∑

1≤i≤n:ji=1

(Pi(z)− 1)F−1j (U)

+
∑

1≤i≤n:ji=3

(Pi(z)− 1)F−1j (1− U)
}× ∏

1≤i≤n,ji=2

E exp
{

(Pi(z)− 1)F−1j (Vj)
}

= G0(z)×
3∑

j1=1

· · ·
3∑

jn=1

( n∏
i=1

ai,ji
)
G

(j1,j2,...,jn)
1 (z)G

(j1,j2,...,jn)
2 (z)

=

3∑
j1=1

· · ·
3∑

jn=1

( n∏
i=1

ai,ji
)
G(j1,j2,...,jn)(z).

Therefore equation (3.8) follows from (3.3).

Note that L(j1,j2,...,jn) has pgf G
(j1,j2,...,jn)
1 (z) and

g
(j1,j2,...,jn)
l,1 = P(L(j1,j2,...,jn) = l).

Thus for p
(j1,j2,...,jn)
m (U) = P(L(j1,j2,...,jn) = m|U), we have g

(j1,j2,...,jn)
m,1 = E(p

(j1,j2,...,jn)
m (U)).

Conditional on U , the pgf

exp
{ ∑

1≤i≤n:ji=1

(Pi(z)− 1)F−1i (U) +
∑

1≤i≤n:ji=3

(Pi(z)− 1)F−1i (1− U)

}
corresponds to the compound Poisson distribution with Poisson parameter

λ(j1,j2,...,jn)(U) =
∑

1≤i≤n:ji=1

F−1i (U) +
∑

1≤i≤n:ji=3

F−1i (1− U)

and severity probability function

∑
1≤i≤n:ji=1

F−1i (U)

λ(j1,j2,...,jn)(U)
Dm,i +

∑
1≤i≤n:ji=3

F−1i (1− U)

λ(j1,j2,...,jn)(U)
Dm,i.
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It follows from Panjer’s recursion (Panjer, 1981) that

P(Y (j1,j2,...,jn) = m|U)

= λ(j1,j2,...,jn)(U)
m∑
j=1

j

m

 ∑
i≤n:ji=1

F−1i (U)

λ(j1,j2,...,jn)(U)
Dj,i +

∑
i≤n:ji=3

F−1i (1− U)

λ(j1,j2,...,jn)(U)
Dj,i

 p
(j1,j2,...,jn)
m−j (U)

=
∑

i≤n:ji=1

F−1i (U)
m∑
j=1

j

m
Dj,ip

(j1,j2,...,jn)
m−j (U) +

∑
i≤n:ji=3

F−1i (1− U)
m∑
j=1

j

m
Dj,ip

(j1,j2,...,jn)
m−j (U).

Hence the theorem follows.

Theorem 3.2 shows that for each (j1, j2, . . . , jn), (3.9) can be used to calculate the probability

function of L̃ once gl,0, g
(j1,j2,...,jn)
l,1 and g

(j1,j2,...,jn)
l,2 , l ≥ 0 are obtained. The advantage of the

algorithm is that gl,0, g
(j1,j2,...,jn)
l,1 , and g

(j1,j2,...,jn)
l,2 , l ≥ 0 do not involve the coefficients ai,ji . Thus

we can use equation (3.9) to get the numerical values by multiplying the coefficients of ai,ji ’s.

The general Panjer’s recursion method to get the probabilities gl,0, g
(j1,j2,...,jn)
l,1 , and g

(j1,j2,...,jn)
l,2 , l ≥

0 is summarized as follows.

• Simply applying the Panjer recursion one can compute the probabilities gk,0, k = 1, 2, . . .

recursively by

gk,0 = µ0

k∑
j=1

j

k
gk−j,0Dj,0 (3.11)

with the initial value g0,0 = e−µ0 .

• The probabilities g
(j1,j2,...,jn)
l,1 can be calculated by using (3.10). Note that for fixed U = u,

we can obtain g
(j1,j2,...,jn)
m,1 (u) = P(L(j1,j2,...,jn) = m|U = u) for arbitrary m. The probability

g
(j1,j2,...,jn)
m,1 can be calculated by

g
(j1,j2,...,jn)
m,1 = E[P(L(j1,j2,...,jn) = m|U)] =

∫ 1

0
P(L(j1,j2,...,jn) = m|U = u)du.

Sometimes the above integral does not have a closed form and has to be done numerically.

• For the term g
(j1,j2,...,jn)
m,2 , we have

G
(j1,j2,...,jn)
2 (z) =

∏
1≤i≤n:ji=2

E exp
{

(Pi(z)− 1)F−1i (Vi)
}
. (3.12)

For fixed i and given Vi, the probability at point m corresponding to the pgf exp{(Pi(z) −
1)F−1i (Vi)} is denoted by p

(i)
m (Vi), m = 0, 1, . . . . Then p

(i)
m (Vi),m = 0, 1, . . . satisfy the

following recursive equation

p(i)m (Vi) = F−1i (Vi)
m∑
j=0

j

m
Dj,ip

(i)
m−j(Vi).
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Like the calculation of G
(j1,j2,...,jn)
1 (z), we compute p

(i)
m (Vi) for given Vi. Denote

p(i)m = E[p(i)m (Vi)] =

∫ 1

0
p(i)m (v)dv. (3.13)

Then by the convolution of p
(i)
m , i ∈ {1 ≤ k ≤ n : jk = 2}, we have g

(j1,j2,...,jn)
l,2 . This method

is the same as in CR+.

Remark 3.1. The above calculation only involves an integration of at most one dimension, and

hence it is very cost-efficient. The traditional methods using copulas, such as the elliptic copulas,

involve an n-dimensional integration, and thus are difficult to apply in practice. Also note that if

we want the first M terms of the above probabilities, we only need to apply the recursions to the

M -th step.

When (3.13) does not have a closed form, some numerical integration is needed. However, when

Xi, 1 ≤ i ≤ n are Gamma-distributed as in CR+, g
(j1,j2,...,jn)
k,2 can be calculated recursively without

using any approximation.

Proposition 3.1. When Fi is gamma-distributed with mean αi
βi

and variance αi

β2
i

, then g
(j1,j2,...,jn)
k,2

satisfies the following recursive equations:

g
(j1,j2,...,jn)
n+1,2 =

1

b0(n+ 1)

min(r,n)∑
i=0

aig
(j1,j2,...,jn)
n−i,2 −

min(s−1,n−1)∑
j=0

(n− j)bj+1g
(j1,j2,...,jn)
n−j,2

 ,

where r, s, ai, bj are numbers such that

a0 + · · ·+ arz
r

b0 + · · ·+ bszs
=

∑
1≤k≤n:jk=2

αkP
′
k(z)

1 + βk − Pk(z)
.

The proof is given in the Appendix.

3.3 Variable approximation of L by L̃

Note that the commonly used approximation of L is in terms of distributions. In the following we

discuss the approximation L̃ in terms of variable approximation.

Given the risk factors X1, . . . , Xn, the conditional distribution function of IA is written as

FA(x|X1, X2, . . . , Xn) and its inverse function is written as F−1A|X1,...,Xn
(·), and let FPoi(xA) be a

Poisson distribution with mean xA.

Conditional on Xi, i ≤ n, we can construct random variables YA, A ∈ F satisfying that the

sequence is i.i.d. U[0,1] random variables and for each A ∈ F the variable YA is independent of
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IB, B 6= A, such that F−1A|X1,...,Xn
(YA) = IA. See Yang, Zhou and Zhang (2005) for details. Then

define NA = F−1Poi(xA)(YA), where F−1Poi(xA) is the inverse function of FPoi(xA). We can verify that

conditional on the risk factors X1, . . . , Xn, NA, A ∈ F is an independent Poisson sequence. Note

that NA and IA are comonotonic when X1, . . . , Xn are known, and they are connected by the

common variable YA.

In order to show the optimality of NA, A ∈ F , we introduce a sequence of random variables

MA, A ∈ F satisfying the following conditions:

(N3) Given the risk factors Xk, k = 1, 2, . . . , n, the variables MA, A ∈ F are Poisson distributed and

conditionally independent, and for each A ∈ F the variable MA is independent of IB, B 6= A;

(N4) For each A ∈ F ,

E[MA|X1, X2, . . . , Xn] = xA. (3.14)

Hence, conditional on Xi, i ≤ n, MA is Poisson-distributed with mean xA, and MA, A ∈ F are

independent. Next theorem shows that L̃ is an approximation of L.

Theorem 3.3. For each MA, A ∈ F satisfying (N3) and (N4), we have

E[(L− L̃)2] ≤ E

(L−∑
A∈F

LAMA

)2
 . (3.15)

If a function f has a continuous derivative bounded by M , we have

E|f(L)− f(L̃)| ≤M
√

E[(L− L̃)2]. (3.16)

Proof. Since

E[(IA −NA)2|X1, X2, . . . , Xn] ≤ E[(IA −MA)2|X1, X2, . . . , Xn],

it follows from the conditional independence that

E[(L− L̃)2|X1, X2, . . . , Xn]

=
∑
A∈F

L2
AE[(IA −NA)2|X1, X2, . . . , Xn] ≤

∑
A∈F

L2
AE[(IA −MA)2|X1, X2, . . . , Xn]

= E[(L−
∑
A∈F

LAMA)2|X1, X2, . . . , Xn].

Taking expectation results in (3.15). Equation (3.16) follows easily.

Theorem 3.3 shows that L̃ is an optimal approximation of L in the family {∑A∈F LAMA :

MA, A ∈ F satisfy (N3) and (N4)}.
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4 Numerical examples

4.1 Model parameters

In the following we apply the proposed algorithm to an example. Let L̃ be the total lose, and the

model for L̃ is described in Section 3.1. Assume that for i = 1, 2, . . . , n the copula of (Ui, U) is a

BF copula with

CUi,U (u, v) = ai,1M(u, v) + ai,2Π(u, v) + ai,3W (u, v), (4.1)

and the pgf Pi(z) in Section 2 is written as

Pi(z) =
∑
k

Dk,iz
k.

The risk factor Xi is exponentially distributed with parameter λi, for i = 1, 2, . . . , n. Assume n = 6

and µ0 = 1.

We take ai,1, ai,2, ai,3 in Table 4.1, λi, i = 1, 2, . . . , 6 in Table 4.2, and the probability functions

Dk,i, k = 0, 1, . . . for 1 ≤ i ≤ 6 in Table 4.3. Note that when the information on individual obligors

A ∈ F , such as θA,i, PA and LA is given, we can get Dk,i, k = 0, 1, . . . for 1 ≤ i ≤ 6 by (2.8).

i 1 2 3 4 5 6

ai,1 1 0 0 0.9 0 0.3

ai,2 0 1 0 0.1 0.7 0.4

ai,3 0 0 1 0 0.3 0.3

Table 4.1: The copula coefficients of Xi

i 1 2 3 4 5 6

λi 0.1 0.2 0.5 1 3 5

Table 4.2: λi: Xi ∼ Expo(λi)

4.1.1 Results and analysis

Here we calculate the distribution of the total loss for different choices of the dependent structure

among risk factors.

• Case 1. X1, . . . , X6 have copula (4.1) with coefficients in Table 4.1.

• Case 2. X1, . . . , X6 are independent as in the CR+ Model. Note that in this case, the pgf of

the total loss is G(2,2,2,2,2,2)(z).
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i\k 1 2 3 5 10 20 50 100

0 0.40 0.20 0.15 0.10 0.08 0.04 0.02 0.01

1 0.60 0.25 0.10 0.05 0 0 0 0

2 0.80 0.10 0.05 0.04 0.01 0 0 0

3 0.50 0.25 0.10 0.10 0.03 0.02 0 0

4 0.20 0.25 0.30 0.10 0.06 0.05 0.03 0.01

5 0 0 0 0.60 0.25 0.10 0.04 0.01

6 0 0 0 0 0.64 0.30 0.04 0.02

Table 4.3: Table of Dk,i, Pi(z) =
∑∞

k=1Dk,iz
k

• Case 3. X1, . . . , X6 are comonotonic. Note that in this case, the pgf of the total loss is

G(1,1,1,1,1,1)(z). This case gives the maximum variance of the total loss over all possible

dependent structure among factors.

Results are given in Figures 4.1 and 4.2. Some more cases of G(j1,...,j6) are provided in Figure

4.3. The variance and skewness for different cases are reported in Table 4.4.

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025
The loss distribution functions on [0,500]

x

P
(L̃

=
x
)

 

 
Case 1. Our model
Case 2. Comonotonic model
Case 3. Independent model

Figure 4.1: The probability functions for three cases on [0,500]

From the figures, we observe that the distribution functions in Case 1 and Case 2 are similar in

shape. This is due to the fact that the pgf G(z) is the weighted average of different G(j1,...,j6)(z)’s
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Case 1. Our model
Case 2. Comonotonic model
Case 3. Independent model

Figure 4.2: The probability functions for three cases on [0,100]
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The loss distribution functions on [0,100]
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Case 4. (j1, · · · , j6)=(1,2,3,1,2,1)
Case 5. (j1, · · · , j6)=(2,1,3,2,2,2)
Case 6. (j1, · · · , j6)=(3,2,1,1,1,2)

Figure 4.3: The probability functions for other pgf G(j1,...,j6)(z)

and the distributions with pgf G(j1,...,j6)(z) have the same mean and support, while in some of those

distributions, risk factors are positively related and in some cases they are negatively related.
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Generating function Mean Variance Skewness

G(z) 47.08 1.1143× 103 1.9866

G(2,2,2,2,2,2)(z) 47.08 2.3925× 103 2.0344

G(1,1,1,1,1,1)(z) 47.08 1.0733× 103 1.6367

G(1,2,3,1,2,1)(z) 47.08 1.2577× 103 2.0727

G(2,1,3,2,2,2)(z) 47.08 1.0266× 103 1.7146

G(3,2,1,1,1,2)(z) 47.08 0.9005× 103 1.9055

Table 4.4: The mean, variance and skewness of different dependence structures

Remark 4.1. Recall that in our algorithm of getting G(z), we only calculate those G(j1,...,j6)(z)’s with

positive weight
∏6
i=1 ai,ji . This significantly reduces the computation when some of the coefficients

ai,ji are zero. In the above example, we do not need to calculate G(1,...,1)(z) or G(2,...,2)(z) since∏6
i=0 ai,1 =

∏6
i=1 ai,2 = 0.

5 Final remarks

In this paper, we generalize CR+ model to the case that the common risk factors are dependent via

a class of extreme copulas presented in Yang, Qi and Wang (2009). Further we propose a condi-

tional compound Poisson model to approximate the original credit portfolio, and set up a variable

connection between the original credit portfolio and the conditional compound Poisson model. A

recursive algorithm for computing the loss distribution based on the conditional Compound Poisson

model is provided too. The computational advantage of this new model is shown by some numerical

examples.

Like all other models, there are some limitations of the CA,B copulas in practical use. The first

limitation is that there are no established goodness-of-fit tests for the CA,B copulas. The CA,B

copulas are shown to be useful for approximating the overall dependence, but may not be accurate

for capturing local dependence properties. Another issue is that the CA,B copula, similar to the

Gaussian copula, only relies on the bivariate structures. This is convenient for estimation and

modeling, but may result in oversimplified models.
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6 Appendix

Proposition 3.1 follows directly from the following lemmas.

Lemma 6.1. (Credit Suisse First Boston (1997)) A power series expansion H(z) =
∑∞

n=0Anz
n

has a recurrence relation

An+1 =
1

b0(n+ 1)

min(r,n)∑
i=0

aiAn−i −
min(s−1,n−1)∑

j=0

(n− j)bj+1An−j


if

d

dz
(logH(z))) =

1

H(z)

dH(z)

dz
=
A(z)

B(z)
,

where

A(z) = a0 + · · ·+ arz
r,

B(z) = b0 + · · ·+ bsz
s.

In other words, the logarithmic derivative of H(z) is a rational function.

Lemma 6.2. The logarithmic derivative of G
(j1,j2,...,jn)
2 (z) is a rational function, and

1

G
(j1,j2,...,jn)
2 (z)

dG
(j1,j2,...,jn)
2 (z)

dz
=
A(z)

B(z)
=

∑
k≤n:jk=2

αkP
′
k(z)

1 + βk − Pk(z)
.

Proof. From the risk theory, the corresponding random variable of G
(j1,j2,...,jn)
2 (z) is an independent

sum of compound negative binomial risks, i.e.

G
(j1,j2,...,jn)
2 (z) =

∏
k≤n:jk=2

(
βk

1 + βk − Pk(z)

)αk

.

Put

Hk(z) =

(
βk

1 + βk − Pk(z)

)αk

.

Then
d(logG

(j1,j2,...,jn)
2 (z))

dz
=

∑
k≤n:jk=2

H ′k(z)

Hk(z)
=

∑
k≤n:jk=2

αkP
′
k(z)

1 + βk − Pk(z)
.

Since Pk(z)’s are polynomials with finite terms, the logarithmic derivative of G
(j1,j2,...,jn)
2 (z) is a

rational function.
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