
Extreme Negative Dependence and Risk Aggregation

Bin Wang∗ and Ruodu Wang†

January 22, 2015

Abstract

We introduce the concept of an extremely negatively dependent (END) sequence of ran-

dom variables with a given common marginal distribution. An END sequence has a partial

sum which, subtracted by its mean, does not diverge as the number of random variables

goes to infinity. We show that an END sequence always exists for any given marginal dis-

tributions with a finite mean and we provide a probabilistic construction. Through such

a construction, the partial sum of identically distributed but dependent random variables

is controlled by a random variable that depends only on the marginal distribution of the

sequence. We provide some properties and examples of our construction. The new con-

cept and derived results are used to obtain asymptotic bounds for risk aggregation with

dependence uncertainty.
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tral limit theorem; risk aggregation.
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1 Introduction

For a given univariate distribution (function) F with finite mean µ, let X1, X2, . . . be any

sequence of random variables from the distribution F and denote the partial sum Sn = X1 +

· · · + Xn for n ∈ N. The distribution of Sn varies under different assumptions of dependency

(joint distribution) among the sequence (Xi, i ∈ N). For example, if we assume that the variance

of F is finite (i.e. (Xi, i ∈ N) is square integrable), then it is well-known that

(a) if X1, X2, . . . are independent, Sn has a variance of order n, and (Sn − nµ)/
√
n converges

weakly to a normal distribution (Central Limit Theorem);
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(b) if X1, X2, . . . are comonotonic (when X1, X2, . . . are identically distributed, this means

X1 = · · · = Xn a.s.), Sn has a variance of order n2 and Sn/n is always distributed as F .

However, the following question remains: among all possible dependencies, is there one depen-

dency which gives the following (c1) or (c2)?

(c1) Sn, n ∈ N have variance bounded by a constant. Equivalently, Sn has a variance of order

O(1) as n→∞;

(c2) (Sn − nµ)/kn converges a.s. for any kn → ∞ as n → ∞. It is easy to see that this limit

has to be zero.

The research on questions of the above type is closely related to the following general

question:

(A) for a fixed n, what are the possible distributions of the random variable Sn without knowing

the dependence structure of (X1, . . . , Xn)?

Theoretically, Sn here can be replaced by any functional of (X1, . . . , Xn). In this paper we

focus on Sn for it is the most typical functional studied in the literature, and it has self-evident

interpretations in applied fields. Question (A) is a typical question concerning uncertain de-

pendence structures of random vectors. It involves optimization over functional spaces with

non-linear constraints. One particular problem related to Question (A) is a special case of

the multi-dimensional Kantorovich problem (see Ambroso and Gigli, 2013): for a cost function

c : Rn → R, minimize ∫
Rn

c(x1, . . . , xn)dH(x1, . . . , xn) (1.1)

over the set of probability measures H on Rn, whose margins are F . Often c is chosen as a

function of x1 + · · · + xn or x1 × · · · × xn; in such cases (1.1) is reduced to a one-dimensional

optimization problem over all possible distributions in Question (A). The question is natural-

ly associated with research on copula theory, optimal mass transportation, Monte-Carlo (MC)

and Quasi-MC (QMC) simulation, and quantitative risk management. The interested reader is

referred to Nelsen (2006) (for copula theory), Villani (2009) (for mass transportation), Glasser-

man (2006) (for (Q)MC simulation) and McNeil et al. (2005) (for quantitative risk management).

Moreover, in Rüschendorf (2013) (Parts I and II), these links as well as recent research develop-

ments are extensively discussed with a perspective of financial risk analysis.

As a special case, when c(x1, . . . , xn) = (x1 + · · · + xn)2, (1.1) is equivalent to the mini-

mization of the variance of Sn:

min{Var(Sn) : Xi ∼ F, i = 1, . . . , n}, (1.2)
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where we see a clear connection to (c1)-(c2). When n = 2, (1.1) for supermodular functions c are

well studied already in Tchen (1980). When n > 3, even for the variance problem (1.2), analytical

solutions are unknown for general marginal distributions. See Rüschendorf and Uckelmann

(2002), Wang and Wang (2011) and Bernard et al. (2014) for recent research on explicit solutions

to (1.2) for n > 3 under particular assumptions, and Embrechts et al. (2013) and the references

therein for numerical calculations. It is obvious that the questions (c1)-(c2), in an asymptotic

manner, are directly linked to (1.2).

Questions (c1)-(c2) are also relevant to the study of risk aggregation with dependence

uncertainty. We refer the interested reader to Embrechts et al. (2014) for a review on recent

developments in this field, with an emphasis on financial risk management. The aggregate

position Sn represents the total risk or loss random variable in a given period, where X1, . . . , Xn

are individual risk random variables. Assume we know the marginal distributions of X1, . . . , Xn

but the joint distribution of (X1, . . . , Xn) is unknown. This assumption is not uncommon in risk

management where interdependency modeling relies very heavily on data and computational

resources. A regulator or manager may for instance be interested in a particular risk measure ρ

of Sn. However, without information on the dependence structure, ρ(Sn) cannot be calculated.

It is then important to identify the extreme cases: the largest and smallest possible values of

ρ(Sn), and this relates to question (A) and, in many cases, to (c1)-(c2) if n is large. To obtain

extreme values of ρ(Sn) for finite n, a strong condition of complete mixability is usually imposed

in the literature, and explicit values are only available for some specific choices of marginal

distributions; see for example Wang and Wang (2011), Wang et al. (2013), and Embrechts et

al. (2013). On the other hand, there is limited research on the asymptotic behavior of ρ(Sn) as

n→∞. In this paper, we use the concept of END to derive asymptotic estimates for the popular

risk measures VaR and ES of Sn as n→∞ for any marginal distribution F . As a consequence,

our results based on END lead to the asymptotic equivalence between worst-case VaR and ES,

shown recently by Puccetti and Rüschendorf (2014) and Puccetti et al. (2013) under different

assumptions on F . As an improvement, our result does not require any non-trivial conditions

on F , and gives the convergence rate of this asymptotic equivalence.

In this paper, we answer questions (c1)-(c2). Contrary to the positive dependence in (b),

we use the term extreme negative dependence (END) for a dependence scenario which gives

(c2). We show that there is always an END that yields (c2) if F has finite mean, and the same

dependency also gives (c1) if we further assume that the third moment of F is finite. Within

our framework (c1) is stronger since it at least requires a finite variance and (c2) always has a

positive answer, although (c1) and (c2) are not comparable for a general sequence. Moreover,

we show that there exists a dependency among random variables X1, X2, . . . such that |Sn−nµ|
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is controlled by a single random variable Z, the distribution of which depends on F but not on

n.

The rest of the paper is organized as follows. In Section 2, we study the sum of END random

variables, and show that the sum is controlled by a random variable with distribution derived

from F . As an application of END results, asymptotic bounds for expected convex functions

and risk measures of the aggregate risk are studied in Section 3. Some final remarks are put in

Section 4. In this paper, we assume that all random variables that we discuss in this paper are

defined on a common general atomless probability space (Ω,A,P). In such a probability space,

we can generate independent random vectors with any distribution.

2 Extreme Negative Dependence

2.1 Main results

Throughout the paper, we denote Sn = X1+· · ·+Xn whereX1, . . . , Xn are random variables

with distribution F , if not specified otherwise, and we assume that the mean µ of F is finite. We

also define the generalized inverse function of any distribution function F by F−1(t) = inf{x :

F (x) > t} for t ∈ (0, 1] and its left endpoint F−1(0) = inf{x : F (x) > 0}. U[0, 1] represents

the standard uniform distribution. For a real number x, we denote by x = x − bxc ∈ [0, 1) the

fractional part of x (and bxc is the integer part of x).

First, we give a formal definition of extreme negative dependence. Recall the two questions

given in the introduction:

(c1) Sn, n ∈ N have variance bounded by a constant;

(c2) (Sn − nµ)/kn → 0 a.s. for any kn →∞ as n→∞.

Definition 2.1. Suppose that (Xi, i ∈ N) is a sequence of random variables with common

distribution F . We say that (Xi, i ∈ N) is extremely negatively dependent (END), if (c2)

holds. Moreover, we say that (Xi, i ∈ N) is strongly extremely negatively dependent (SEND), if

(c1)-(c2) hold and

sup
n∈N

Var(Sn) 6 sup
n∈N

Var(Y1 + · · ·+ Yn)

for any sequence of random variables (Yi, i ∈ N) with common distribution F .

The SEND structure can be treated as the most negative correlation between random

variables in a sequence, and hence serves as a potential candidate in many variance minimization

problems. Also note that any finite number of random variables in a sequence does not affect

the property of END but they do affect the property of SEND.
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Remark 2.1. The criterion of minimizing supn∈N Var(Sn) in the definition of an SEND sequence

can be replaced by another optimization criterion, such as supn∈N E[g(Sn)] or lim supn→∞ E[g(Sn)]

for a convex function g. The reason why we choose the variance as the criterion is that it gives

a comparison with the classic Central Limit Theorem, and also meets the interests of variance

reduction in applied fields.

In this section we will show that an END sequence can always be constructed if F has

finite mean. More specifically, we will show that there exists a sequence of random variables

X1, X2, . . . with common distribution F , such that |Sn − nµ| is controlled by a random variable

Z that does not depend on n. It turns out that such a random variable Z has a distribution F̂

derived directly from F .

The idea behind out construction is that we try to find a sequence of random variables

X1, X2, . . . such that each of the member compensates the sum Sn. For each random variable

Xi, we consider two possibilities: Xi is “large” and Xi is “small”. We design a dependence such

that the number of “large” Xi’s and the number of “small” Xi’s are balanced in a specific way.

Moreover, the “large” part and the “small” part are counter-monotonic so that they compensate

each other. We first introduce some notation.

Let

H(t) =

∫ t

0

(F−1(s)− µ)ds, s ∈ [0, 1],

and denote ν− = F (µ−) and ν+ = F (µ). It is obvious that if F does not have a probability mass

at µ, ν− = ν+. It is easy to see that the function H is bounded, strictly decreasing on [0, ν−],

strictly increasing on [ν+, 1], H(0) = H(1) = 0, and the minimum value of H(t) is attained at

c := H(ν−) = H(ν+) < 0. Moreover, H is a convex function and hence is almost everywhere

(a.e.) differentiable on [0, 1]. For each s ∈ [c, 0], let

A(s) = inf{t ∈ [0, 1] : H(t) = s} and B(s) = sup{t ∈ [0, 1] : H(t) = s}.

It is obvious that A(s) ∈ [0, ν−], B(s) ∈ [ν+, 1], A(c) = ν−, B(c) = ν+ and H(A(s)) =

H(B(s)) = s, i.e. A and B are the inverse functions of H on the two intervals [0, ν−] and [ν+, 1],

respectively. Note that since H has an a.e. non-zero derivative, A and B are a.e. differentiable

on [c, 0]. Let

K(s) =


1 s > 0,

B(s)−A(s) c 6 s 6 0,

0 s < c.

K(s) is right-continuous, increasing, K(c−) = 0, and K(0) = 1, hence it is a distribution function

on [c, 0] with probability mass ν+ − ν− at c and K is continuous on (c, 0]. Note that H, A, B,

and K all depend on F . Later, we will see that B leads to the “large” values of Xi and A leads
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to the “small” values of Xi. Moreover, define

u(s) =
µ− F−1(A(s))

F−1(B(s))− F−1(A(s))
, s ∈ (c, 0);

and in addition we let u(c) = 1. It is easy to see that u(s) ∈ [0, 1] for s ∈ [c, 0).

The way that the “large” values of Xi and the “small” values of Xi are balanced is via the

distribution function K and the weighting function u, as indicated by Lemma 2.1 below.

Lemma 2.1. Suppose F is a distribution with mean µ. Let Y be a random variable with

distribution K and U be a U[0, 1] random variable, independent of Y . Let

X = A(Y )I{U>u(Y )} +B(Y )I{U<u(Y )}.

Then F−1(X) ∼ F.

Proof. Note that A(Y ) < ν− and B(Y ) > ν+ whenever Y 6= c. Hence, the possible values of X

are divided into three subsets: {X ∈ [0, ν−)} = {U > u(Y )} ∩ {Y 6= c}, {X = ν+} = {Y = c}

a.s. and {X ∈ (ν+, 1]} = {U < u(Y )} ∩ {Y 6= c}. For t ∈ [0, ν−),

P(X 6 t) = P(A(Y ) 6 t, U > u(Y ), Y 6= c)

= P(Y > H(t), U > u(Y ))

=

∫ 0

H(t)

(1− u(y))dK(y)

=

∫ 0

H(t)

F−1(B(y))− µ
F−1(B(y))− F−1(A(y))

d(B(y)−A(y)).

Since B and A are the inverse functions of H, we have a.e.

dB(y) =
1

H ′(B(y))
dy =

1

F−1(B(y))− µ
dy,

and

dA(y) =
1

H ′(A(y))
dy =

1

F−1(A(y))− µ
dy.

Thus

P(X 6 t) =

∫ 0

H(t)

F−1(B(y))− µ
F−1(B(y))− F−1(A(y))

F−1(A(y))− F−1((B(y))

(F−1(B(y))− µ)(F−1(A(y))− µ)
dy

=

∫ 0

H(t)

1

µ− F−1(A(y))
dy

=

∫ 0

t

1

µ− F−1(s)
(F−1(s)− µ)ds

= t.

Similarly, we can show that P(X > t) = 1 − t for t ∈ (ν+, 1]. Hence, there exists a random

variable U ∼ U[0, 1] such that X = U when U ∈ [0, ν−) ∪ (ν+, 1]. It is also easy to see that,
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when ν− 6= ν+ and U ∈ [ν−, ν+], we have X = ν+ and F−1(X) = F−1(ν+) = µ = F−1(U) a.s.

In conclusion, F−1(X) = F−1(U) a.s. and thus F−1(X) ∼ F .

Now we are ready to present our main result.

Theorem 2.2. Suppose F is a distribution with mean µ, then there exist Xi ∼ F , i ∈ N and

Z ∼ F̃ , such that for each n ∈ N,

|Sn − nµ| 6 Z, (2.1)

where F̃ is the distribution of F−1(B(Y ))− F−1(A(Y )), Y ∼ K.

Proof. We prove this theorem by construction. Let Y be a random variable with distribution K

and U be a U[0, 1] random variable independent of Y . For k ∈ N, define

Yk = A(Y )I{U+ku(Y )>u(Y )} +B(Y )I{U+ku(Y )<u(Y )}, (2.2)

(recall that x ∈ [0, 1) is the fractional part of a real number x) and

Xk = F−1(Yk). (2.3)

It is easy to see that U + ku(Y ) is U[0, 1] distributed and is independent of Y . Hence, by Lemma

2.1 we know that Xk ∼ F , k ∈ N.

An intuition of this construction is as follows. Denote W1 = F−1(B(Y )) and W2 =

F−1(A(Y )). As we can see, there are two possibilities for the random variable Xk: it is ei-

ther W1 (roughly speaking, representing large values of Xk) or W2 (representing small values of

Xk). Note that u(Y )W1 + (1− u(Y ))W2 = µ. By constructing random variables Xk, k ∈ N in

this specific way, we aim to let W1 and W2 compensate each other, leading to an Sn that is close

to its mean. In the following we complete the proof.

Denote Ck = {U + ku(Y ) < u(Y )} for k ∈ N. It is easy to see that

ICk
= #{N ∈ N : N ∈ (U + (k − 1)u(Y ), U + ku(Y )]}.

Thus, for n ∈ N,

n∑
i=1

ICi = #{N ∈ N : N ∈ (U,U + nu(Y )]} = #(N ∩ (U,U + nu(Y )]).

It follows that

bnu(Y )c 6
n∑
i=1

ICi 6 bnu(Y )c+ 1.
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We have that, when
∑n
i=1 ICi

= bnu(Y )c, or equivalently U < 1− nu(Y ),

Sn = W1

n∑
i=1

ICi
+W2

(
n−

n∑
i=1

ICi

)
= bnu(Y )cW1 + (n− bnu(Y )c)W2

= n (u(Y )W1 + (1− u(Y ))W2)− nu(Y ) (W1 −W2)

= nµ− nu(Y ) (W1 −W2) , (2.4)

and when
∑n
i=1 ICi

= bnu(Y )c+ 1, or equivalently U > 1− nu(Y ), that

Sn = nµ− nu(Y ) (W1 −W2) +W1 −W2

= nµ+ (1− nu(Y )) (W1 −W2) . (2.5)

By (2.4)-(2.5), we have

Sn − nµ = (W1 −W2) (I{U>1−nu(Y )} − nu(Y )). (2.6)

Thus, we obtain |Sn−nµ| 6W1−W2, and by definition W1−W2 = F−1(B(Y ))−F−1(A(Y )) ∼

F̃ .

Remark 2.2. If F does not have a probability mass at µ, X in Lemma 2.1 is U[0, 1] distributed,

and Y is a continuous random variable on [c, 0]. F̂ can be interpreted as the distribution of

the large values of Xi (represented by W1) minus the small values of Xi (represented by W2),

controlling the largest possible departure of Sn from its mean.

Remark 2.3. From the proof of Theorem 2.2, we can see that for n > m, Sn − Sm =
∑n
i=mXi

also satisfies |Sn−Sm−(n−m)µ| 6 Z. In the above proof, the σ-field of (Xi, i ∈ N) is generated

by two independent random variables U and Y .

Using Theorem 2.2, we have the following immediate corollary. It gives general bounds for

the sum Sn and the existence of an END sequence.

Corollary 2.3. Suppose F is a distribution with mean µ.

(a) There exists an END sequence of F -distributed random variables.

(b) If the support of F is contained in [a, b], a, b ∈ R, then there exist Xi ∼ F , i ∈ N such that

for each n ∈ N,

|Sn − nµ| 6 b− a. (2.7)

Remark 2.4. The sequence of probability measures generated by the sequence Sn−nµ, n ∈ N in

Corollary 2.3 is tight (see for example, Bilingsley (1999), Chapter 1).
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One may wonder about the relationship between F and F̃ . The following lemma gives a

link between the moments of both distribution functions.

Lemma 2.4. If F has finite k-th moment, k > 1, then F̃ has finite (k − 1)-st moment.

Proof. Without loss of generality, we assume µ = 0. We use the notation W1 and W2 as in the

proof of Theorem 2.2. Note that by definition, W1 > 0, W2 6 0, and E[min{W1, |W2|} = 0 if

and only if W1 = 0 = W2 (the lemma holds trivially in this case). In the following we assume

E[min{W1, |W2|}] > 0.

By (2.6), setting n = 1, we have

E[|X1 − µ|k]

= E[|S1 − µ|k]

= E[(W1 −W2)k|I{U>1−u(Y )} − u(Y )|k]

= E[(W1 −W2)kE[|I{U>1−u(Y )} − u(Y )|k|Y ]]

= E
[
(W1 −W2)ku(Y )(1− u(Y ))

(
(1− u(Y ))(k−1) + u(Y )(k−1)

)]
= E

[
(W1 −W2)k

−W2

W1 −W2

W1

W1 −W2

((
W1

W1 −W2

)(k−1)

+

(
−W2

W1 −W2

)(k−1)
)

I{W2 6=W1}

]

= E
[
−W2W1

W1 −W2
(W k−1

1 + (−W2)k−1)I{W2 6=W1}

]
> E

[
−W2W1

W1 −W2
(max{W1, |W2|})k−1I{W1>0}

]
> E

[
max{W1, |W2|}min{W1, |W2|}

2 max{W1, |W2|})
(max{W1, |W2|})k−1I{W1>0}

]
= E

[
1

2
min{W1, |W2|}(max{W1, |W2|})k−1I{W1>0}

]
= E

[
1

2
min{W1, |W2|}(max{W1, |W2|})k−1

]
. (2.8)

Since E[|X1 − µ|k] is finite, E
[
min{W1, |W2|}(max{W1, |W2|})k−1

]
is finite. Note that W1 and

|W2| are comonotonic by definition, hence

E
[
min{W1, |W2|}(max{W1, |W2|})k−1

]
> E[min{W1, |W2|}]E[max{W1, |W2|})k−1]. (2.9)

Recall that we assume E[min{W1, |W2|}] > 0, and hence E[(max{W1, |W2|})k−1] < ∞ follows

from (2.8)-(2.9). Finally, by definition, W1 −W2 has distribution F̃ , thus F̃ has finite (k− 1)-st

moment.

Remark 2.5. From (2.8), we can see that if the distribution functions of W1 and |W2| are

asymptotically equivalent (i.e. P(W1 > x)/P(|W2| > x) = O(1) and P(|W2| > x)/P(W1 > x) =

O(1) as x → ∞), then the finiteness of the k-th moment of F actually implies the finiteness of
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the k-th moment of F̃ . When one of W1 and W2 is bounded but the other one is unbounded,

only the finiteness of the (k − 1)-st moment of F̃ is guaranteed. The relation (2.8) is sharp in

the sense that the two inequalities used in (2.8) are sharp inequalities which at most reduce the

quantity by three fourths.

Proposition 2.5. Suppose F is a distribution with mean µ, and F has finite m-th moment,

m > 1. Then there exist Xi ∼ F , i ∈ N such that uniformly in n ∈ N, as k →∞,

P(|Sn − nµ| > k) = o(k−m+1). (2.10)

In particular, as n→∞, for all ε > 0,

P(|Sn − nµ| < nε) = 1− o(n−(m−1)ε). (2.11)

Proof. The finiteness of the (m − 1)-st moment of F̃ guarantees that xm−1(1 − F̃ (x)) → 0 as

x→∞. Hence, by Theorem 2.2, we have that P(|Sn − nµ| > k) 6 1− F̃ (k) = o(k−m+1).

To seek for a possible SEND sequence, we present a link between the variances of F and F̃ .

Proposition 2.6. Suppose F̃ has finite variance. Then there exist Xi ∼ F, i ∈ N and Z ∼ F̃

such that for n ∈ N,

Var(Sn) 6
1

4
E[Z2].

In particular, for such Xi ∼ F, i ∈ N, we have that

(a) Var(Sn) 6 (b− a)2/4 if F is supported on [a, b], a, b ∈ R;

(b) Var(Sn) 6 C for some constant C that does not depend on n if F has finite third moment,

and

(c) the sequence Xi ∼ F, i ∈ N is SEND if Var(X1) = E[Z2]/4.

Proof. We use the notation W1 and W2 as in the proof of Lemma 2.4, and let Z = W1 −W2.

By (2.6),

Var(Sn) = E[(Sn − nµ)2]

= E[(W1 −W2)2(I{U>1−nu(Y )} − nu(Y ))2]

= E[(W1 −W2)2E[(I{U>1−nu(Y )} − nu(Y ))2|Y ]]

= E[(W1 −W2)2nu(Y )(1− nu(Y ))]

6
1

4
E[(W1 −W2)2].

The results follow from this:
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(a) This can be seen from the fact that 0 6 Z = W2 −W1 6 |b− a|.

(b) By Lemma 2.4, when F has finite third moment, Z ∼ F̃ has finite second moment. Thus,

Var(Sn) 6 E[Z2]/4 < C.

(c) For any sequence Yi ∼ F, i ∈ N,

sup
n∈N

Var(Y1 + · · ·+ Yn) > Var(Y1) =
1

4
E[Z2] > sup

n∈N
Var(Sn).

Hence, Xi ∼ F, i ∈ N are SEND.

Yet, when Var(X1) < E[Z2]/4, it remains unclear to find an SEND sequence. From the

examples in the next section, we would say that the bound E[Z2]/4 already gives good estimates

of the smallest variance of Sn in general.

Remark 2.6. Finding sequences of random variables with small total variance (such as the END

sequence) is a classical question in variance reduction and simulation. It is especially important

in Monte-Carlo (MC) and Quasi Monte-Carlo (QMC) simulation (for instance, see Glasserman

(2006) for (Q)MC methods and their applications in finance), where typically a dependence

structure is chosen to generate a random sample such that the error |Sn/n−µ| is approximately

a/
√
n with a small value of a. QMC techniques, such as low-discrepancy methods, aim for an

error of order O(n−(1−ε)) , ε > 0, by choosing (usually deterministic) discretization points. In our

paper, we give a dependence structure which generates a random sample with an asymptotic error

of order O(1/n) which significantly improves the convergence rate. However, any kind of extremal

dependence would inevitably lead to almost deterministic dependence structure (for instance

comonotoninicty and countermonotonicity). This also applies to the constructive END sequence

used in Theorem 2.2. Due to the degeneracy, a direct application of our construction does not

lead to a meaningful simulation; see Remark 2.3 and examples in Section 2.2. Regardless, the

concept of END is useful for variance minimization with given margins, and there might exist

other END sequences suitable for the purpose of QMC simulation. The details of possible new

random sample generation techniques, as well as the setup for high-dimensionality, need further

research.

We conclude this section by a final remark on the variance of Sn under three representative

dependencies. As long as the third moment of F is finite,

• if Xi, i ∈ N are independent, Var(Sn) = O(n), and (Sn − nµ)/
√
n

d→Normal;

• if Xi, i ∈ N are comonotonic, Var(Sn) = O(n2) and Sn/n
a.s.
= X1 ∼ F ;

• if Xi, i ∈ N are END, Var(Sn) = O(1) and (Sn − nµ)/nε
a.s., L2−→ 0 for any ε > 0.
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2.2 Examples

In this section we give some examples of END sequences and the corresponding F̃ . These

examples show that some of the bounds given in Section 2.1 are sharp in the most general sense.

Example 2.1. Suppose F is a Bernoulli distribution on {0, 1} with parameter p ∈ (0, 1):

F (x) = (1− p)I{x>0} + pI{x>1}.

Then

H(s) = −psI{06s61−p} − (1− p)(1− s)I{1−p<s61}, s ∈ [0, 1],

H(s) attains its minimum at H(1− p) = −p(1− p), and

A(t) = − t
p
, B(t) = 1 +

t

1− p
, t ∈ [−p(1− p), 0].

Therefore, F−1(B(t)) = 1, F−1(A(t)) = 0 for all t ∈ (−p(1− p), 0). This leads to F−1(B(Y ))−

F−1(A(Y )) = 1 a.s. Thus, F̃ is a degenerate distribution at 1, and there exists a sequence of

X1, X2, . . . with common distribution F such that for all n ∈ N,

|Sn − np| 6 1. (2.12)

One can calculate that u(t) = p for all t ∈ (−p(1 − p), 0). Therefore, an END sequence can be

constructed via (2.2) and (2.3) as

Xk = I{U+kp<p}, k ∈ N,

for some U ∼ U[0, 1]. Moreover, we can show that the above sequence is SEND. Let mn = bnpc.

By (2.12), Sn takes value in {mn,mn + 1} and E[Sn] = np. Therefore,

Var(Sn) = (mn + 1− np)(np−mn)2 + (np−mn)(mn + 1− np)2 = (mn + 1− np)(np−mn).

Suppose T is a random variable which takes integer values and has mean np. Since (T−mn)(T−

mn − 1) > 0 a.s., we have that

E[T 2] > (2mn + 1)E[T ]−mn(mn + 1) = (2mn + 1)np−mn(mn + 1),

and

Var(T ) > (2mn + 1)np−mn(mn + 1)− (np)2 = (mn + 1− np)(np−mn).

As a consequence, Sn actually has the minimum variance over all possible partial sums of F -

distributed random variables. Thus, (Xk, k ∈ N) is SEND.
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Remark 2.7. The bound (2.12) cannot be improved for an irrational p. Suppose p in the above

example is an irrational number and let X1, X2, . . . be a sequence of random variables from F . It

is obvious that Sn is an integer, and np is an irrational number. Since E[Sn] = np, we must have

P(Sn 6 bnpc) > 0 and P(Sn > bnpc+ 1) > 0. Thus, P(|Sn − np| > np) > 0. Since {np : n ∈ N}

is dense in [0, 1], we have that for any q ∈ [0, 1), there are infinitely many n ∈ N such that

P(|Sn − np| > q) > 0. Hence, |Sn − np| 6 q with q < 1 for all n ∈ N is impossible. This also

confirms that for a distribution on [a, b], the bound (2.7) given in Corollary 2.3 (b) can not be

improved in general.

Example 2.2. Suppose F is a uniform distribution on [0, 1]. Then

H(s) =
1

2
s(s− 1), s ∈ [0, 1],

H(s) attains its minimum at H(1/2) = −1/8, and

A(t) =
1−
√

1− 8t

2
, B(t) =

1 +
√

1− 8t

2
, t ∈

[
−1

8
, 0

]
.

Y is a continuous random variable with distribution function B(t)−A(t) =
√

1− 8t, t ∈
[
− 1

8 , 0
]
.

Therefore, A(Y ) is uniformly distributed on [0, 1/2], B(Y ) is uniformly distributed on [1/2, 1],

and A(Y ) +B(Y ) = 1. It follows that Z := F−1(B(Y ))− F−1(A(Y )) = B(Y )−A(Y ) is U[0, 1]

distributed. Therefore, F̃ is U[0, 1] and and there exists a sequence of X1, X2, . . . with common

distribution F such that for all n ∈ N,

|Sn − n/2| 6 Z.

One can calculate that u(t) = 1/2 for all t ∈ (−1/8, 0). Therefore, an END sequence can be

constructed via (2.2) and (2.3) as

Xk =
V

2
I{U+k/2>1/2} +

(
1− V

2

)
I{U+k/2<1/2}, k ∈ N,

for some independent U[0, 1] random variables U, V . Equivalently, one may write X1 ∼ U[0, 1],

and

Xk =
1

2
− (−1)k

(
X1 −

1

2

)
, k = 2, 3, . . . .

Remark 2.8. In the above example, Var(X1) = 1/12 and E[Z2] = 1/3. By Proposition 2.6

(c), the sequence X1, X2, . . . is SEND. Indeed, the above construction holds for all symmetric

distributions F ; one can always construct an SEND sequence by letting X1 ∼ F and

Xk = E[X1]− (−1)k (X1 − E[X1]) , k = 2, 3, . . . .

Example 2.3. Suppose F is a Pareto distribution with index α = 2:

F (x) = 1− x−2, x > 1.
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Then F−1(t) = (1− t)−1/2, t ∈ (0, 1), and µ = 2.

H(s) = 2(1− s)− 2
√

1− s, s ∈ [0, 1],

H(s) attains its minimum at H(3/4) = −1/2, and

A(t) =
1− t−

√
1 + 2t

2
, B(t) =

1− t+
√

1 + 2t

2
, t ∈

[
−1

2
, 0

]
.

Note that B(t)−A(t) =
√

1 + 2t. Y is a continuous random variable with distribution function

B − A, and hence the inverse distribution function of Y is (s2 − 1)/2, s ∈ (0, 1). Thus we can

write Y = (V 2 − 1)/2 where V is a U[0, 1] random variable. Further,

A(Y ) =
1− Y −

√
1 + 2Y

2
=

3− 2V − V 2

4
,

F−1(A(Y )) =

(
1− 3− 2V − V 2

4

)−1/2
=

2

1 + V
,

B(Y ) =
1− Y +

√
1 + 2Y

2
=

3 + 2V − V 2

4
,

F−1(B(Y )) =

(
1− 3 + 2V − V 2

4

)−1/2
=

2

1− V
,

and

Z := F−1(B(Y ))− F−1(A(Y )) =
2

1− V
− 2

1 + V
=

4V

1− V 2
.

It follows that

F̃ (x) = P(Z 6 x) =

√
1 +

4

x2
− 2

x
, x > 0,

and the tail of F̃ is Pareto-type with index 1. There exists a sequence of X1, X2, . . . with common

distribution F such that for all n ∈ N,

|Sn − 2n| 6 Z.

Since Z 6 2/(1− V ), |Sn−2n| is controlled by another Pareto random variable, 2/(1−V ), with

index 1. Note that

u(Y ) =
2− F−1(A(Y ))

Z
=

1− V
2

.

Therefore, an END sequence can be constructed via (2.2) and (2.3) as

Xk =
2

1 + V
I{U+k 1−V

2 > 1−V
2 }

+
2

1− V
I{U+k 1−V

2 < 1−V
2 }

, k ∈ N,

for some independent U[0, 1] random variables U, V .

Remark 2.9. In the above example, F has finite (2−ε)-th moment for all ε > 0, and F̃ has finite

(1− ε)-th moment for all ε > 0. This confirms the sharpness of the moment relation in Lemma

2.4 for one-side bounded distributions (see Remark 2.5).

14



3 Applications in Risk Aggregation

In quantitative risk management, when the marginal distributions of X1, . . . , Xn are known

but the joint distribution is unknown, regulators and managers are interested in the extreme

values for quantities related to an aggregate position Sn = X1 + · · ·+Xn such as risk measures

of Sn. In this section, we apply our main results to the extreme scenarios in risk management

with dependence uncertainty.

3.1 Risk aggregation with dependence uncertainty

In the framework of risk aggregation with dependence uncertainty, it is considered that

for each i = 1, . . . , n the distribution of Xi is known while the joint distribution of X :=

(X1, X2, . . . , Xn) is unknown. Such setting is practical in quantitative risk management, as

statistical modeling for the dependence structure (copula) is extremely difficult especially when

n is relatively large. The interested reader is referred to Embrechts et al. (2014) and the references

therein for research in this field. When the dependence structure is unknown, an aggregate risk

Sn lives in an admissible risk class as defined below.

Definition 3.1. The admissible risk class is defined by the set of sums of random variables with

given marginal distributions:

Sn(F1, . . . , Fn) = {X1 + · · ·+Xn : Xi ∼ Fi, i = 1, . . . , n} .

For simplicity, throughout this section, we denote by Sn = Sn(F, . . . , F ). It is immediate

that the study of Sn is equivalent to the study of question (A) as mentioned in the introduction.

The following corollary is a straightforward consequence of Theorem 2.2 and Proposition

2.5.

Corollary 3.1. Suppose F is any distribution.

(a) If the support of F is contained in [a, b], a < b, a, b ∈ R, then

max
S∈Sn

P (|S − E[S]| 6 b− a) = 1.

(b) If F has finite m-th moment, m > 1, then uniformly in n ∈ N, as k →∞,

inf
S∈Sn

P (|S − E[S]| > k) = o(k−(m−1)).

In the next two sections, we will look at the extremal questions related to Sn.
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3.2 Bounds on convex functions

Convex order (see for example, Shaked and Shanthikumar (2007), Chapter 1) describes the

preference between risks from the perspective of risk-avoiding investors. As a classic result in

this field, the convex ordering maximum element in Sn is always obtained by the comonotonic

scenario; see Dhaene et al. (2002) and Deelstra et al. (2011) for general discussions on comono-

tonicity and its relevance for finance and insurance. On the other hand, finding the convex

ordering minimum element for admissible risks is known to be challenging and only limited re-

sults are available; see Bernard et al. (2014). For example, the infimum on E[g(S)] over S ∈ Sn

for a convex function g has been obtained in Wang and Wang (2011) for marginal distributions

with a monotone density and Bernard et al. (2014) for distributions satisfying a condition of

complete mixability.

Note that for all S ∈ Sn, E[S] is a constant. It is well-known that E[g(S)] > g(E[S]) by

Jensen’s inequality. It is then expected that the infimum on E[g(S)] over S ∈ Sn is close to the

value g(E[S]). If F is n-completely mixable (Wang and Wang, 2011), the infimum is attained for

the trivial case S = E[S] ∈ Sn. Unfortunately, complete mixability is in general very difficult to

prove, and often it is not possessed by many distributions of practical interest. Hence, we will

look at a possible upper bound for infS∈Sn
E[g(S)] which, along with the natural bound g(E[S]),

gives quite a good estimate of infS∈Sn
E[g(S)].

Theorem 3.2. Suppose F is a distribution on [a, b], a < b, a, b ∈ R, with mean µ, then for any

convex function g : R→ R,

g(nµ) 6 inf
S∈Sn

E[g(S)] 6
1

2
g(nµ+ (b− a)) +

1

2
g(nµ− (b− a)).

Proof. The first half of the inequality is due to Jensen’s inequality. For the second half, by

Corollary 3.1, it suffices to prove that among all distributions on [nµ− (b−a), nµ+ (b+a)] with

mean nµ, the Bernoulli distribution on {nµ− (b− a), nµ+ (b− a)} with equal probability gives

the largest possible value of E[g(S)].

To show this, without loss of generality we assume µ = 0 with b − a = 1. Let X be any

random variable with mean 0 and support [−1, 1], and let Y be a Bernoulli random variable with

P(Y = 1) = P(Y = −1) = 1/2. To show that X is smaller than Y in convex order, it suffices to

show that for each K ∈ [−1, 1], E[(X −K)+] 6 E[(Y −K)+] = (1−K)/2.

When P(X > K) 6 1/2, we have

E[(X −K)+] = E[(X −K)I{X>K}] 6 E[(1−K)I{X>K}] 6
1

2
(1−K).
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When P(X > K) > 1/2, we have

E[(X −K)+] = E[(K −X)+] + E[X −K] 6 E[(K −X)I{X<K}]−K

6 E[(K + 1)I{X<K}]−K

6
1

2
(K + 1)−K

=
1

2
(1−K).

In conclusion, X is smaller than Y in convex order. Thus, E[g(X)] 6 E[g(Y )] for any convex

function g : R→ R.

Remark 3.1. As a special choice of E[g(S)], the variance of a sequence of identically distribut-

ed random variables is of particular importance; see Section 2. The variance bound given in

Proposition 2.6 (a) is stronger than the bound in Theorem 3.2 which naturally gives a bound of

(b− a)2 if g(x) is taken as (x− nµ)2. Other quantities of the type E[g(Sn)], used in finance and

insurance, include stop-loss premiums, European option prices, expected utilities and expected

n-period returns.

3.3 Bounds on the Expected Shortfall and the Value-at-Risk

Another important class of quantities to discuss is the class of risk measures. In order

to deteremine capital requirements for financial regulation, various risk measures are used in

practice. Since the introduction of coherent risk measures by Artzner et al. (1999), there has

been extensive research on coherent as well as non-coherent risk measures; see McNeil et al.

(2005). Two commonly used capital requirement principles are the Value-at-Risk, defined as

VaRp(X) = inf{x : P(X 6 x) > p}, p ∈ (0, 1). (3.1)

and the Expected Shortfall (ES), also known as the Tail Value-at-Risk (TVaR), defined as

ESp(S) =
1

1− p

∫ 1

p

VaRα(S)dα, p ∈ [0, 1). (3.2)

In the case of risk aggregation with dependence uncertainty, finding bounds for VaR and ES

becomes an important task (see for example Embrechts et al. (2013)). We will discuss the VaR

case in the next section, and focus on ES for the moment. By the subadditivity of ES, the upper

sharp bound supS∈Sn
ESp(S) for any p ∈ [0, 1) is obtained with the comonotonic scenario, with

supS∈Sn
ESp(S) = nESp(X) for X ∼ F . On the other hand, finding the explicit minimal ES

for general marginal distributions is an open question. Since the risk measure ES preserves the

convex order, we have the following proposition for the smallest possible ES.
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Proposition 3.3. (a) Suppose F is a distribution on [a, b], a < b, a, b ∈ R with mean µ, then

for p ∈ (0, 1),

nµ 6 inf
S∈Sn

ESp(S) 6 nµ+ (b− a).

(b) Suppose F is a distribution with mean µ and finite second moment, then for p ∈ (0, 1),

nµ 6 inf
S∈Sn

ESp(S) 6 nµ+K,

for some constant K that does not depend on n but possibly depends on p.

Proof. Note that infS∈Sn
ESp(S) > infS∈Sn

E[S] = nµ. The other half of part (a) comes directly

from Corollary 3.1. For part (b), by Theorem 2.2, we have that

inf
S∈Sn

ESp(S) = inf
S∈Sn

ESp(Sn − nµ) + nµ 6 ESp(Z) + nµ,

where Z ∼ F̃ . Since F has finite second moment, Z has finite mean, and therefore ESp(Z) is

finite and does not depend on n. This completes the proof.

Remark 3.2. Proposition 3.3 gives estimates for the smallest possible ESp(S) with dependence

uncertainty. When n is large and µ 6= 0, the estimation errors are small compared to the major

term nµ. Similar arguments will give asymptotic estimates for any convex risk measures.

The popular quantile-based risk measure VaR is not a convex or coherent risk measure,

hence a separate discussion is necessary. Both the maximum and the minimum of VaR with

dependence uncertainty are in general unavailable analytically. For a general discussion on the

bounds on VaR aggregation and numerical approximations, see Embrechts et al. (2014).

Recall that F−1(p) = inf{x : F (x) > p} for p ∈ (0, 1], hence VaRp(X) = F−1(p) for

p ∈ (0, 1) where X ∼ F . For 1 > q > p > 0, let

µp,q =
1

q − p

∫ q

p

F−1(t)dt.

If F is continuous, µp,q is the mean of the conditional distribution of F on [F−1(p), F−1(q)].

Note that µ0,q and µp,1 might be infinite.

Theorem 3.4. We have for p ∈ (0, 1) and any distribution F ,

nµp,q − (F−1(q)− F−1(p)) 6 sup
S∈Sn

VaRp(S) 6 nµp,1, (3.3)

for any q ∈ (p, 1], and

nµ0,p 6 inf
S∈Sn

VaRp(S) 6 nµq,p + (F−1(p)− F−1(q)) (3.4)

for any q ∈ [0, p).
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In particular, if F is a distribution on [a, b], a, b ∈ R, then for p ∈ (0, 1),

nµp,1 − (b− F−1(p)) 6 sup
S∈Sn

VaRp(S) 6 nµp,1,

and

nµ0,p 6 inf
S∈Sn

VaRp(S) 6 nµ0,p + (F−1(p)− a).

Proof. We will use the following equivalence lemma. A proof can be found in the Appendix of

Embrechts et al. (2015), where the alternative definition of VaR will be used:

VaR∗p(X) = inf{x ∈ R : P(X 6 x) > p}.

Lemma 3.5 (Lemma A.4 of Embrechts et al. (2015)). For p ∈ (0, 1) and any F ,

sup
S∈Sn

VaR∗p(S) = sup{essinfS : S ∈ Sn(Fp, . . . , Fp)},

and

inf
S∈Sn

VaRp(S) = inf{esssupS : S ∈ Sn(F p, . . . , F p)},

where Fp is the distribution of F−1(p + (1 − p)U), and F p is the distribution of F−1(pU),

i = 1, · · · , n, for a random variable U uniformly distributed on [0, 1].

Note the asymmetry between the supremum and infimum. We first show that

sup
S∈Sn

VaR∗p(S) = sup{essinfS : S ∈ Sn(Fp, . . . , Fp)} > nµp,q − (F−1(q)− F−1(p)) (3.5)

for 0 < p < q 6 1. The case when F−1(q) =∞ is trivial, hence we only consider the case when

F−1(q) <∞.

Let Fp,q be the distribution of F−1(V ) where V ∼ U[p, q] for 0 < p < q 6 1. By Corollary

2.3, there exist random variables X1, . . . , Xn from Fp,q such that X1 + · · · + Xn > mµp,q −

(F−1(q)− F−1(p)). Let Z be any random variable with distribution Fq and let C be a random

event independent of X1, . . . , Xn, Z, with P(C) = (q− p)/(1− p). Define Yi = XiIC +Z(1− IC)

for i = 1, . . . , n. It is straightforward to check that Yi has distribution Fp, and

Y1 + · · ·+ Yn > X1 + · · ·+Xn > nµp,q − (F−1(q)− F−1(p)).

Thus, essinf(Y1 + · · ·+Yn) > nµp,q− (F−1(q)−F−1(p)), and we obtain (3.5). Since VaRp(X) >

VaR∗r(X) for any r < p and random variable X, we have that

sup
S∈Sn

VaRp(Sn) > lim
r→p−

sup
S∈Sn

VaR∗r(Sn) > lim
r→p−

(nµr,q − (F−1(q)− F−1(r)))

= nµp,q − (F−1(q)− F−1(p)).
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Note that here we use the fact that F−1 is left-continuous. On the other hand,

sup
S∈Sn

VaRp(S) 6 sup
S∈Sn

VaR∗p(S) = sup{essinfS : S ∈ Sn(Fp, . . . , Fp)} 6 nµp,1

always holds trivially. Thus we obtain (3.3). Similarly, we can show (3.4).

Corollary 3.6. Suppose F has finite k-th moment, k > 1. Then

sup
S∈Sn

VaRp(S) = nµp,1 − o(n1/k),

and

inf
S∈Sn

VaRp(S) = nµ0,p + o(n1/k).

Proof. Without loss of generality we assume F−1(p) > 0 (otherwise this assumption can easily

be satisfied with a shift of location). Choose qn = F (an1/k) in (3.3) for any constant a > 0 and

large n such that qn > p. We have that F−1(qn) 6 an1/k, and

sup
S∈Sn

VaRp(S) > nµp,qn − (F−1(qn)− F−1(p)) > nµp,qn − an1/k

= nµp,1 − n(µp,1 − µp,qn)− an1/k. (3.6)

Note that for X ∼ F ,

µp,1−µp,qn =
1

1− p
E[XI{X>F−1(p)}]−

1

qn − p
E[XI{F−1(qn)>X>F−1(p)}] 6

1

1− p
E[XI{X>F−1(qn)}].

Since F has finite k-th moment, we have that

(an1/k)(k−1)E[XI{X>an1/k}] 6 E[|X|kI{X>an1/k}]→ 0,

and hence E[XI{X>an1/k}] = o(n−1+1/k). Thus, 1
1−pE[XI{X>F−1(qn)}] = o(n−1+1/k), which,

together with (3.6), leads to

sup
S∈Sn

VaRp(S) > nµp,1 − o(n1/k)− an1/k.

Since a > 0 is arbitrary, and supS∈Sn
VaRp(S) 6 nµp,1, we have that

sup
S∈Sn

VaRp(S) = nµp,1 − o(n1/k).

The other half of the corollary is obtained similarly.

Remark 3.3. Theorem 3.4 and Corollary 3.6 provide quite good estimates for the worst-case

(best-case) VaR under dependence uncertainty. The estimation becomes accurate when n is

large, as nµp,1 (or nµ0,p) is large compared to the estimation error which is controlled within a

rate of n1/k, except for the trivial case when µp,1 = 0 (or µ0,p = 0).
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The next two corollaries give the asymptotic limit of the superadditive ratio (see Embrechts

et al. (2013)) for VaR and the asymptotic equivalence between worst-case VaR and worst-case

ES (see Puccetti et al. (2013)).

Corollary 3.7. For any distribution F , as n→∞,

supS∈Sn
VaRp(S)

n
→ ESp(X)

where X ∼ F .

Proof. We take qn = F (
√
n) for large n such that qn > p. It follows from (3.3) that

µp,qn − o
(

1√
n

)
6

supS∈Sn
VaRp(S)

n
6 µp,1.

Obviously qn → 1, and hence µp,qn → µp,1. This completes the proof. In fact, if µp,1 <∞, then

F has finite mean and Corollary 3.7 follows directly from Corollary 3.6 by taking k = 1.

Remark 3.4. The fraction supS∈Sn
VaRp(S)/(nVaRp(X)) for VaRp(X) > 0 is called the (worst)

superadditive ratio of VaR (see Embrechts et al. (2013)). It measures the amount of possible extra

capital requirement needed in a diversification strategy, and hence this quantity is of independent

interest in quantitative risk management. Corollary 3.7 gives the limit as ESp(X)/VaRp(X)

without assuming any condition on F . Note that here ESp(X) can be infinite. Hence, whenever

ESp(X) =∞, the superadditive ratio of VaR becomes infinity. This fact clearly shows that the

“diversification benefits” commonly used in practical risk management needs to be taken with

care.

Corollary 3.8. Suppose F has finite k-th moment, k > 1 and non-zero ES at level p ∈ (0, 1),

then as n→∞,
supS∈Sn

VaRp(S)

supS∈Sn
ESp(S)

= 1− o(n−1+1/k). (3.7)

Proof. Note that supS∈Sn
ESp(S) = nESp(X) = nµp,1 6= 0 for X ∼ F . Thus, the proof follows

directly from Corollary 3.6.

Remark 3.5. Corollary 3.8 implies that under the worst-case scenario of dependence, the VaR

and ES risk measures are asymptotically equivalent; that is,

supS∈Sn
VaRp(S)

supS∈Sn
ESp(S)

→ 1 (3.8)

This coincides with the main results in Puccetti and Rüschendorf (2014) and Puccetti et al.

(2013). Puccetti and Rüschendorf (2014) obtained (3.8) under a condition of complete mixability,

which at this moment is only known to be satisfied by tail-monotone densities. Puccetti et al.

(2013) gave (3.8) under a weaker condition that F has a strictly positive density and discussed
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some possible inhomogeneous cases. Both of the above papers assumed the continuity of F . To

ensure (3.8), Corollary 3.8 only assumes that ESp(X1) is finite and non-zero, which is necessary.

Hence, Corollary 3.8 establishes the weakest mathematical assumption for (3.8) to hold. In

addition, Corollary 3.8 also gives the convergence rate of this asymptotic equivalence. We can

see that the convergence in (3.7) is fast for the distribution F being light-tailed, and slow for

F being heavy-tailed. This gives a theoretical justification of the discussion on the numerical

illustrations in Section 5 of Puccetti et al. (2013), where it was observed that heavy-tailed

marginal distributions in general lead to a slower convergence of (3.8), compared to the cases of

light-tailed marginal distributions.

4 Final Remarks

In this paper, we introduce the notions of extreme negative dependence (END) and strong

extreme negative dependence (SEND) scenarios, and showed that for each marginal distribution

F with finite mean, a construction of an END sequence is always possible. With a finite third

moment of F , an SEND sequence may also be obtained by the same construction. The sum

of END random variables is in general concentrated around its expectation, and the difference

|Sn − nµ| is controlled by a random variable that does not depend on n. We also studied

asymptotic bounds for risk aggregation with dependence uncertainty and provided estimates for

the worst-case and best-case risk measures VaR and ES.

There are multiple ways, other than the one in Theorem 2.2, to construct an END sequence.

One possible way is through the concept of complete mixability (Wang and Wang, 2011). How-

ever, such construction only applies to completely mixable distributions which are generally

restrictive; see Puccetti et al. (2013) for existing results on complete mixability.

The concepts of END and SEND can naturally be generalized to the case of an inhomoge-

neous (non-identically distributed) sequence of random variables, leading to a potential direction

of future research. Generalization of END and SEND in a multi-dimensional setting is also a

future research direction with potential relation to QMC simulation.
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