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Abstract

In this paper we study the aggregate risk of inhomogeneous risks with dependence uncertainty,

evaluated by a generic risk measure. We say that a pair of risk measures are asymptotically equiv-

alent if the ratio of the worst-case values of the two risk measures is almost one for the sum of a

large number of risks with unknown dependence structure. The study of asymptotic equivalence

is particularly important for a pair of a non-coherent risk measure and a coherent risk measure,

since the worst-case value of a non-coherent risk measure under dependence uncertainty is typ-

ically very difficult to obtain. The main contribution of this paper is that we establish general

asymptotic equivalence results for the classes of distortion risk measures and convex risk mea-

sures under different mild conditions. The results implicitly suggest that it is only reasonable to

implement a coherent risk measure for the aggregation of a large number of risks with uncertainty

in the dependence structure, a relevant situation for risk management practice.
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1 Introduction

In the past two decades, risk measures have been the standard tool for financial institutions in

both calculating regulatory capital requirement and internal risk management. In particular, the two

most popular risk measures in practice are the Value-at-Risk (VaR) and the Expected Shortfall (ES).

There have been extensive discussions recently around the comparative advantages of VaR and ES in

regulation; the reader is referred to the survey papers Embrechts et al. (2014), Emmer et al. (2015),

and Föllmer and Weber (2015). Related debates in regulatory documents by the Basel Committee

on Banking Supervision and the International Association of Insurance Supervisors can be found in

BCBS (2013) and IAIS (2014).

A risk measure is a mapping from a set of risks to numbers, and it has to be implemented with

certain models, either internal models of a financial institution or external models designed by the

regulator. By specifying a model, uncertainty always arises as an important issue in practice. One

particular type of uncertainty that we focus on in this paper is the dependence uncertainty in risk

aggregation. In the framework of dependence uncertainty, we assume that in a joint model (X1, . . . , Xn),

the marginal distribution of each of X1, . . . , Xn is known, but the joint distribution is unknown. This is

due to statistical and modeling challenges in obtaining precise information on the dependence structure

of a joint model; see Embrechts et al. (2014) for more illustrations. Denote by F the set of univariate

distribution functions. For F1, . . . , Fn ∈ F , let

Sn = Sn(F1, . . . , Fn) = {X1 + · · · + Xn : Xi ∈ L0, Xi ∼ Fi, i = 1, . . . , n}.

That is, Sn is the set of aggregate risks with given marginal distributions, but an arbitrary dependence

structure. Some properties of the set Sn are given in Bernard et al. (2014).

For a given risk measure ρ : X → (−∞,+∞], where the set X is a convex cone of risks, we are

interested in the value of the risk aggregation ρ(X1 + · · · + Xn) for some joint model (X1, . . . , Xn) with

unknown dependence structure. Obviously, ρ(X1 + · · · + Xn) lies in a range, and often the worst-case

value and the best-case value are of particular interest. The value ρ̄(Sn) := supS∈Sn
ρ(S ) represents the

worst-case measurement of the aggregate risk in the presence of dependence uncertainty. If ρ is not

convex, the value of ρ̄(Sn) is in general very difficult to calculate. For the case of VaR, some analytical

results are given in Wang et al. (2013) and Jakobsons et al. (2016). It is common to calculate VaRp(Sn)

by numerical calculation and a popular algorithm is the Rearrangement Algorithm in Embrechts et al.

(2013). If partial dependence information is available, one can study the values of risk measures in
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constrained subsets of Sn; see Bernard et al. (2016), Bernard and Vanduffel (2015), and Bignozzi

et al. (2015) for research along this direction. In this paper, we focus on the full set Sn, that is, no

dependence information.

We are particularly interested in the case when n goes to infinity, that is, a very large number

of risks. On one hand, this setting provides mathematical tractability for the behaviour of risk aggre-

gation; on the other hand, dependence uncertainty among a very large number of risks is a practical

setting due to the statistical challenges arising in high-dimensional models.

Under this setting, a particularly elegant result is that the VaR and the ES at the same confidence

level are asymptotically equivalent. That is, for a given sequence of distributions F1, F2 . . . and p ∈

(0, 1),

(1.1) lim
n→∞

supS∈Sn
VaRp(S )

supS∈Sn
ESp(S )

= 1

holds under some conditions; some references on (1.1) are mentioned below. First let us define the risk

measures VaR and ES as used in this paper. The VaR at confidence level p ∈ (0, 1) is defined as

VaRp(X) = inf{x ∈ R : P(X 6 x) > p}, X ∈ L0,

and the ES at confidence level p ∈ (0, 1) is defined as

ESp(X) =
1

1 − p

∫ 1

p
VaRq(X)dq, X ∈ L0,

where L0 is the set of all random variables in a probability space which we formally introduce in

Section 2. Note that in general ESp can be infinite for non-integrable random variables. For properties

of the two regulatory risk measures, see for instance McNeil et al. (2015).

The equivalence (1.1) is known in a series of papers under some particular conditions. (1.1)

is first shown under a homogeneous setting (that is, F1 = F2 = · · · ) in Puccetti and Rüschendorf

(2014) under an assumption of complete mixability (Wang and Wang (2011)). It is then generalized

by for instance Puccetti et al. (2013) and Wang and Wang (2015) under different conditions. The case

of inhomogeneous setting is finally obtained in Embrechts et al. (2015) under some general moment

conditions on the marginal distributions F1, F2, . . . .

An immediate question is whether the asymptotic equivalence in (1.1) is not only true for the pair

(VaRp, ESp), but it also holds for much larger classes of risk measures. We say that a risk measure

ρ∗ dominates ρ if they are defined on the same set X and ρ 6 ρ∗ on X. It is well known that ESp
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is the smallest law-invariant coherent risk measure (see Section 2 below for a definition) dominating

VaRp; see Kusuoka (2001). For a law-invariant risk measure ρ, denote by ρ∗ the smallest law-invariant

coherent risk measure dominating ρ, if such a risk measure exists. It is natural to ask whether the

following equivalence

(1.2) lim
n→∞

supS∈Sn
ρ(S )

supS∈Sn
ρ∗(S )

= 1,

holds and under what conditions. A result of type (1.2) is called an asymptotic equivalence for risk

measures ρ and ρ∗.

In this paper, we focus on two popular classes of risk measures. The class of distortion risk

measures, including VaR and ES above, is extensively studied as tools for capital calculation (see

e.g. Acerbi (2002) and Cont et al. (2010)), insurance premium calculation (see e.g. Wang et al. (1997)),

and decision making (see e.g. Yaari (1987)). The class of convex risk measures, introduced by Föllmer

and Schied (2002) and Frittelli and Rossaza Gianin (2002) as an extension of coherent risk measures,

is able to reflect non-linearity in the increase of the size of risks, such as risky positions in a financial

market with limited liquidity. See Section 2 below for precise definitions, and for more discussions on

the use of these two classes of risk measures, see Föllmer and Schied (2011, Chapter 4).

The main results in Wang et al. (2015) imply that (1.2) holds in the homogeneous model (F1 =

F2 = · · · ) if ρ is a distortion risk measure or a convex risk measure. The assumption of homogeneity

is nice for mathematical analysis; however, it is not a realistic assumption for practical applications. In

this paper, our aim is to show (1.2) in inhomogeneous models for general risk measures. This requires

some regularity conditions on the marginal distributions, which we will specify later.

The result of asymptotic equivalence in (1.2) has two practical merits. First, it suggests that using

a non-coherent risk measure would lead to roughly the same worst-case value as its coherent partner

if the dependence structure is unknown for a joint model of high dimension; therefore a regulator may

want to directly implement a coherent risk measure instead. This point is very much relevant to the

general question of searching for risk measures in the recent regulatory documents BCBS (2013) and

IAIS (2014). Second, the value ρ̄∗(Sn) can be analytically calculated without specifying a dependence

structure, since the worst-case value for ρ∗ is often simply the sum of the values of ρ∗(X1), . . . , ρ∗(Xn)

with corresponding marginal distributions Xi ∼ Fi, i = 1, . . . , n. As a consequence, (1.2) can be used

to approximate ρ̄(Sn) if needed. These merits provide a powerful tool for evaluating model uncertainty

for risk aggregation with non-coherent risk measures.
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Mathematically, the main result in this paper generalizes not only the results in Embrechts et

al. (2015) for VaR and ES, but also those in Wang et al. (2015) for general risk measures in the

homogeneous setting. More importantly, our methods unify the two streams of research in this field.

A significant mathematical challenge arises as the method in Wang et al. (2015) relies on the study of

the quantity

Γρ(X) = lim
n→∞

1
n

sup{ρ(S ) : S ∈ Sn(F, . . . , F)}, X ∼ F,

which cannot be naturally generalized to an inhomogeneous setting. In this paper, we use an alter-

native method by constructing a specific S n ∈ Sn such that ρ(S n) and ρ∗(S n) are close. It should be

noted that the case for distortion risk measures is technically much more involved than the case for

convex risk measures, since we know the worst-case dependence structure for convex risk measures

is comonotonicity, but not for non-coherent distortion risk measures in general. The main theorem

and its proof thereby reveal the worst-case dependence structure for general distortion risk measures

(Choquet integrals). This dependence structure is valuable to many other fields where probability dis-

tortion is involved, for instance in decision theory (see for instance Yaari (1987) and Quiggin (1993)),

behavioral finance (see for instance He and Zhou (2016)), reinsurance (see for instance Bernard et al.

(2015)) and insurance pricing (see for instance Wang et al. (1997)).

The structure of the paper is as follows. In Section 2, we give some definitions and preliminar-

ies on risk measures, and present two examples showing that without some regularity conditions the

asymptotic equivalence may fail to hold. In Section 3, we study the asymptotic equivalence for distor-

tion risk measures under some regularity conditions. In Section 4, we study the asymptotic equivalence

for convex risk measures under general conditions. Brief conclusions are stated in Section 5. We put a

complete proof of the main theorem of Section 3 in the Appendix.

2 Preliminaries

2.1 Preliminaries on risk measures

We work with an atomless probability space (Ω,A,P). Let Lp be the set of all random variables in

(Ω,A,P) with finite p-th moment, p ∈ [0,∞), L∞ be the set of essentially bounded random variables,

and L+ be the set of non-negative random variables. A positive (negative) value of X ∈ L0 represents a

financial loss (profit) in this paper.

A risk measure is a function ρ : X → (−∞,∞], where the set X is a convex cone such that
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L∞ ⊂ X ⊂ L0 (⊂ is the non-strict set inclusion). Below we list some standard properties studied in the

literature of risk measures. For any X,Y ∈ X:

(a) Monotonicity: if X 6 Y P-a.s, then ρ(X) 6 ρ(Y);

(b) Cash-invariance: for any m ∈ R, ρ(X − m) = ρ(X) − m;

(c) Convexity: for any λ ∈ [0, 1], ρ(λX + (1 − λ)Y) 6 λρ(X) + (1 − λ)ρ(Y);

(d) Subadditivity: ρ(X + Y) 6 ρ(X) + ρ(Y);

(e) Positive homogeneity: for any α > 0, ρ(αX) = αρ(X);

(f) Law-invariance: if X and Y have the same distribution under P, denoted as X d
= Y , then ρ(X) =

ρ(Y).

We refer to Föllmer and Schied (2011, Chapter 4) and Delbaen (2012) for the interpretations of

these standard properties of risk measures.

Definition 2.1. A monetary risk measure is a risk measure satisfying (a) and (b), a convex risk measure

is a risk measure satisfying (a)-(c), and a coherent risk measure is a risk measure satisfying (a)-(e).

For a distribution function F, write

F−1(t) = inf{x ∈ R : F(x) > t}, t ∈ (0, 1], and F−1(0) = sup{x ∈ R : F(x) = 0}.

In the next we introduce the class of distortion risk measures, including VaR and ES defined in Section

1 as special cases. Let H be the set of increasing (in the non-strict sense) function h with h(0) =

h(0+) = 0 and h(1−) = h(1) = 1. A distortion risk measure ρh : X → (−∞,∞] with a distortion

function h ∈ H is defined as

(2.1) ρh(X) =

∫
R

xdh(F(x)), X ∈ X, X ∼ F,

provided that (2.1) is well-posed for all X ∈ X. Note that for a given set X, h may need to satisfy some

conditions to avoid some ill-posed cases. If X is either L∞ or L+, (2.1) is well-posed for all h ∈ H and

X ∈ X.

When h is continuous, through a change of variable, ρh can be written as

(2.2) ρh(X) =

∫ 1

0
F−1(t)dh(t) =

∫ 1

0
VaRt(X)dh(t), X ∈ X.
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Any distortion risk measure ρh is monotone, cash-invariant, positively homogeneous, and law-invariant.

ρh is subadditive if and only if h is convex; this dates back to Yaari (1987, Theorem 2). The key fea-

ture which characterizes ρh is comonotonic additivity. Let us first recall the definition of comonotonic

random variables.

Definition 2.2. Two random variables X and Y are comonotonic if

(X(ω) − X(ω′))(Y(ω) − Y(ω′)) > 0 for (ω,ω′) ∈ Ω ×Ω (P × P)-a.s.

Comonotonicity of X and Y is equivalent to the existence of a random variable Z ∈ L0 and two

non-decreasing functions f and g, such that X = f (Z) and Y = g(Z) almost surely. See Dhaene et al.

(2002) for an overview on comonotonicity.

(g) Comonotonic additivity: ρ(X + Y) = ρ(X) + ρ(Y) if X and Y are comonotonic.

Comonotonic additive law-invariant monetary risk measures are equivalent to distortion risk mea-

sures. This result essentially dates back to the property of Choquet integrals; see Yaari (1987) and

Theorem 4.88 of Föllmer and Schied (2011). For a subadditive risk measure ρ interpreted as a tool for

capital calculation, comonotonic additivity is particularly important: For comonotonic risks X and Y ,

the lack of comonotonic additivity (that is, ρ(X + Y) < ρ(X) + ρ(Y)) means a diversification benefit

(reduction in capital) for non-diversified risks, an undesirable property for risk management.

Finally, we give the Fatou property, an important property related to convex risk measures, which

will be used in the proof of our results in Section 4.

(h) (L1-)Fatou property: lim inf
n→∞

ρ(Xn) > ρ(X) if X, X1, X2, · · · ∈ X = L1 and Xn
L1

−→ X as n→ ∞.

2.2 Vanishing risks and exploding risks

Before we move on to the main result of this paper, we present two counter-examples of asymp-

totic equivalence to help the reader to understand the nature of the problem. Let Γ be the set of all pairs

(ρ1, ρ2) where ρ1 is a non-coherent monetary risk measure on X and ρ2 is a coherent risk measure on

X dominating ρ1. For (ρ, ρ∗) ∈ Γ, in order to have the general asymptotic equivalence

(2.3) lim
n→∞

supS∈Sn
ρ(S )

supS∈Sn
ρ∗(S )

= 1,

some regularity conditions have to be imposed to avoid the following cases of vanishing risks and

exploding risks. Note that both the two cases are typically irrelevant in practice.
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Example 2.1 (Vanishing risks). For a pair (ρ, ρ∗) ∈ Γ, take X ∈ X such that 0 < ρ(X) < ρ∗(X); such

X always exists since ρ is not coherent and hence ρ , ρ∗ for some subset of X. Write a = ρ(X) and

b = ρ∗(X). Let F1 be the distribution of X. For i = 2, 3, . . . , let Fi be a distribution supported in [0, ki],

where {ki, i = 2, 3, . . . } is a sequence of positive numbers such that
∑∞

i=2 ki < (b − a)/2. From the

monotonicity and cash-invariance of ρ and ρ∗, we have

sup
S∈Sn

ρ(S ) 6 ρ(X1) +

n∑
i=2

ki 6 a +
1
2

(b − a) =
1
2

(a + b)

and

sup
S∈Sn

ρ∗(S ) > ρ∗(X1) = b.

Then for n ∈ N,
supS∈Sn

ρ(S )

supS∈Sn
ρ∗(S )

6
a + b

2b
< 1.

That is, (2.3) does not hold. This example suggests that for (2.3) to hold, a regularity condition has to

be imposed to avoid vanishing risks, that is, the scale of individual risks shrinks too fast as n→ ∞.

Example 2.2 (Exploding risks). For the purpose of illustration we take (ρ, ρ∗) ∈ Γ where ρ is posi-

tive homogeneous. This example includes, for instance, a distortion risk measure and its dominating

coherent distortion risk measure; see Section 3 below. Take a random variable X ∈ X supported in a

compact interval [0, 1] such that ρ(X) < ρ∗(X); such X always exists since both ρ and ρ∗ are positive

homogeneous and ρ , ρ∗ for some subset of X. Write a = ρ(X) and b = ρ∗(X). Now, let {ki, i ∈ N} be

a sequence of positive numbers such that k1 = 1 and 2
∑n

i=1 ki < (b − a)kn+1 for all n ∈ N. Let Fi be

the distribution of kiX for i ∈ N.

From the monotonicity and the cash-invariance of ρ and ρ∗, we have

sup
S∈Sn

ρ(S ) 6 knρ(X) +

n−1∑
i=1

ki = kna +

n−1∑
i=1

ki < kna +
1
2

kn(b − a) =
1
2

kn(a + b)

and

sup
S∈Sn

ρ∗(S ) > ρ∗(Xn) = knρ
∗(X) = knb.

Therefore,
supS∈Sn

ρ(S )

supS∈Sn
ρ∗(S )

6
kn(a + b)

2knb
=

a + b
2b

< 1.

That is, (2.3) does not hold. This example suggests that for (2.3) to hold, a regularity condition has to

be imposed to avoid exploding risks, that is, the scale of individual risks grows too fast as n→ ∞.
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3 Asymptotic equivalence for distortion risk measures

Throughout this section, we take X = L+. Since monetary risk measures are cash-invariant,

this assumption is technically equivalent to assuming that each risk is uniformly bounded from below

(bounded gain). Gains are typically not relevant when regulatory risk measures such as VaR and ES

are applied, and hence this is a common assumption in risk management.

3.1 Some lemmas

Before approaching the main result of this section, we first provide some necessary lemmas on

distortion risk measures and on the set Sn. A key object for our analysis is the largest convex distortion

function dominated by h, defined as

(3.1) h∗(t) = sup
{
g(t) : g : [0, 1]→ [0, 1], g 6 h, g is increasing and convex on [0, 1]

}
, t ∈ [0, 1].

We will use the notation h∗ throughout Section 3.

The first lemma formulates an order in two distortion risk measures from the order in their re-

spective distortion functions.

Lemma 3.1. For two distortion functions h1, h2 ∈ H , if h1(t) 6 h2(t) for all t ∈ [0, 1], then

ρh1(X) > ρh2(X), X ∈ X.

Proof. Let F be the distribution of X ∈ X. For x ∈ R and i = 1, 2, let gi(x) = (hi ◦ F)(x+) =

limy→x+ hi(F(y)), that is, gi is the right-continuous correction of hi ◦ F. Since h1 6 h2 on [0, 1], we

have g1 6 g2 on R. Let Yi be a random variable with distribution function gi, i = 1, 2. Then we have

E[Y1] > E[Y2] from g1 6 g2. Finally, we obtain

ρh1(X) =

∫
R

xd(h1 ◦ F)(x) =

∫
R

xd(h1 ◦ F)(x+) =

∫
R

xdg1(x) = E[Y1] > E[Y2] = ρh2(X),

as desired, where the second equality is due to the facts that the integrand x → x ∈ R is continuous,

X ∈ L+, and h1 ◦ F is increasing. �

The next lemma gives ρh∗ as the smallest coherent distortion risk measure dominating ρh. It was

given in Wang et al. (2015) for right-continuous h ∈ H ; however from there it is a simple exercise

to see that the lemma holds for all h ∈ H . In the latter paper it is also shown that ρh∗ is the smallest

law-invariant coherent risk measure dominating ρh.

9



Lemma 3.2 (Lemma 3.1 of Wang et al. (2015)). For any h ∈ H , h∗ as in (3.1) is a continuous

distortion function. Moreover, the smallest coherent distortion risk measure dominating ρh exists and

has distortion function h∗, that is,

(3.2) ρh∗(X) =

∫ 1

0
VaRt(X)dh∗(t), X ∈ X.

The following lemma provides a building block for the dependence structure that we need for the

asymptotic equivalence.

Lemma 3.3 (Corollary A.3 of Embrechts et al. (2015)). Suppose that {Fi, i ∈ N} is a sequence of

distributions with bounded support, then there exist random variables Xi ∼ Fi, i ∈ N such that for

each n ∈ N,

(3.3) |S n − E[S n]| 6 Ln,

where S n = X1 + · · · + Xn and Ln is the largest length of the support of Fi, i = 1, . . . , n.

Finally, the following lemma from convex analysis provides an important geometric property of

the pair (h, h∗).

Lemma 3.4 (Lemma 5.1 of Brighi and Chipot (1994)). Suppose h ∈ H is continuous and h∗ is defined

in (3.1). The set {t ∈ [0, 1] : h(t) , h∗(t)} is the union of some disjoint open intervals, and h∗ is linear

on each of the intervals.

3.2 Asymptotic equivalence for distortion risk measures

For a given h ∈ H and h∗ defined in (3.1), we list the two conditions for a sequence of distribution

functions {Fi, i ∈ N} that we work with. In the following, Xi ∼ Fi, i ∈ N.

Condition A1. lim inf
n→∞

1
n
∑n

i=1 ρh∗(Xi) > 0.

Condition A2. limq→1 supi∈N

∫ 1
q F−1

i (t)dh∗(t) = 0.

Condition A1 requires that ρh∗ of the marginal risks does not vanish, and thereby it eliminates the

case of vanishing risks as in Example 2.1. Condition A2 requires that the marginal risks are uniformly

integrable with respect to h∗, and thereby it eliminates the case of exploding risks as in Example

2.2. A1 automatically holds for marginal risks uniformly bounded below away from zero and A2

automatically holds for marginal risks uniformly bounded above. The following theorem contains the

main result of this paper.
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Theorem 3.5. For h ∈ H and a sequence of distribution functions {Fi, i ∈ N} supported in R+ and

satisfying Conditions A1-A2, we have

(3.4) lim
n→∞

sup {ρh(S ) : S ∈ Sn}

sup {ρh∗(S ) : S ∈ Sn}
= 1,

where h∗ is defined in (3.1).

Proof. The proof of this theorem is very technical and depends on the geometrical relationship between

h and h∗. Here we give the proof for the following nice case, from which the reader should be able to

grasp the main ideas. A full proof is put in the Appendix.

Case 1. Assume that h is continuous and there exists p ∈ (0, 1) such that h(t) = h∗(t) for all t ∈ [p, 1].

Proof of the Theorem for Case 1. Since h is continuous, we directly work with (2.2). From Lemma

3.4, there exist disjoint open intervals (ak, bk), k ∈ K ⊂ N on which h , h∗, and furthermore, p can

be taken as p = supk∈K bk < 1. Note that h(t) = h∗(t) for t ∈ [p, 1] and h∗ is linear on each of [ak, bk],

k ∈ K. Define Ik = (ak, bk), k ∈ K. For some U ∼ U[0, 1], let

S c
n = F−1

1 (U) + · · · + F−1
n (U),(3.5)

and

Rn =

 F−1
1 (U) + · · · + F−1

n (U), if U < ∪k∈KIk,

E
[
F−1

1 (U) + · · · + F−1
n (U) | U ∈ Ik

]
, if U ∈ Ik, k ∈ K.

(3.6)

Clearly, F−1
i (U) ∼ Fi, i = 1, . . . , n, and hence S c

n ∈ Sn. Since

E
[
F−1

i (U) | U ∈ Ik
]

=

∫
(ak ,bk) F−1

i (t)dt

bk − ak
and F−1

S c
n
(t) =

n∑
i=1

F−1
i (t) for t ∈ (0, 1),

we have ∫
(ak ,bk)

F−1
S c

n
(t)dh∗(t) −

∫
(ak ,bk)

F−1
Rn

(t)dh∗(t)

=
h∗(bk) − h∗(ak)

bk − ak

n∑
i=1

∫
(ak ,bk)

F−1
i (t)dt −

n∑
i=1

∫
(ak ,bk) F−1

i (t)dt

bk − ak

∫
(ak ,bk)

dh∗(t) = 0.

It follows that

ρh∗(S c
n) − ρh∗(Rn) =

∫ p

0
F−1

S c
n
(t)dh∗(t) −

∫ p

0
F−1

Rn
(t)dh∗(t)

=
∑
k∈K

[∫ bk

ak

F−1
S c

n
(t)dh∗(t) −

∫ bk

ak

F−1
Rn

(t)dh∗(t)
]

= 0,(3.7)

11



that is, ρh∗(S c
n) = ρh∗(Rn). As F−1

i (U) is bounded for U ∈ Ik, k ∈ K, by Lemma 3.3, for each k, we

can find random variables Y1k, . . . ,Ynk, independent of U, such that Yik is identically distributed as

F−1
i (U)|U ∈ Ik, i = 1, . . . , n, and∣∣∣∣Y1k + · · · + Ynk − E

[
F−1

1 (U) + · · · + F−1
n (U) | U ∈ Ik

]∣∣∣∣ 6 max
i=1,...,n

{F−1
i (bk) − F−1

i (ak)}.(3.8)

Let X∗i = F−1
i (U)I{U<∪k∈K Ik} +

∑
k∈K YikI{U∈Ik}, i = 1, . . . , n. It is easy to check that X∗i ∼ Fi, i = 1, . . . , n.

Denote by

S ∗n = X∗1 + · · · + X∗n.(3.9)

Clearly, S ∗n ∈ Sn and

(3.10)
∣∣∣Rn − S ∗n

∣∣∣ 6 max
i=1,...,n

{F−1
i (bk) − F−1

i (ak)} 6 max
i=1,...,n

{
F−1

i (p)
}
.

Since h∗ 6 h and ρh∗ is coherent and hence subadditive, by Lemma 3.1, we have ρh(S ∗n) 6 ρh∗(S ∗n) 6

ρh∗(S c
n). Integration by parts yields∫ p

0
F−1

Rn
(t)dh∗(t) −

∫ p

0
F−1

Rn
(t)dh(t) =

∫ p

0

(
h(t) − h∗(t)

)
dF−1

Rn
(t)

=
∑
k∈K

∫
(ak ,bk)

(
h(t) − h∗(t)

)
dF−1

Rn
(t) = 0(3.11)

where the last equality follows since F−1
Rn

(t) is a constant for t in each (ak, bk).

ρh∗(S c
n) − ρh(S ∗n) =

∫ p

0
F−1

S c
n
(t)dh∗(t) −

∫ p

0
F−1

S ∗n
(t)dh(t) since h(t) = h∗(t) on [p, 1]

=

(∫ p

0
F−1

S c
n
(t)dh∗(t) −

∫ p

0
F−1

Rn
(t)dh∗(t)

)
+

(∫ p

0
F−1

Rn
(t)dh∗(t) −

∫ p

0
F−1

Rn
(t)dh(t)

)
+

(∫ p

0
F−1

Rn
(t)dh(t) −

∫ p

0
F−1

S ∗n
(t)dh(t)

)
6 max

i=1,...,n

{
F−1

i (p)
}
,(3.12)

where the last inequality follows from (3.7), (3.10), and (3.11). Condition A2 implies that for any

ε > 0, there exists q > p such that

sup
i∈N

∫ 1

q
F−1

i (t)dh∗(t) < ε.

Hence, by noting that h∗(q) < 1,

max
i=1,...,n

{
F−1

i (p)
}
6 max

i=1,...,n

{
F−1

i (q)
}
<

ε

1 − h∗(q)
.(3.13)
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By Condition A1, limn→∞
∑n

i=1 ρh∗(Xi) = ∞. Therefore, as n→ ∞,∣∣∣∣∣∣ sup {ρh(S ) : S ∈ Sn}

sup {ρh∗(S ) : S ∈ Sn}
− 1

∣∣∣∣∣∣ 6 maxi=1,...,n{F−1
i (p)}∑n

i=1 ρh∗(Xi)
→ 0.(3.14)

The desired result follows. �

From the above proof, we can see that for this nice case, Condition A1 can be weakened to

limn→∞
∑n

i=1 ρh∗(Xi) = ∞ and Condition A2 can be weakened to maxi=1,...,n
{
F−1

i (p)
}
< ∞. Conditions

A1 and A2 in full power will be used in the proof for other cases discussed in Appendix. For Case 1,

indeed we can give a more intuitive condition which is also easy to verify.

Condition A3. For a pre-assigned p ∈ (0, 1),

lim
n→∞

maxi=1,...,n
{
VaRp(Xi)

}∑n
i=1 VaRp(Xi)

= 0.(3.15)

Condition A3 simply says that there is no single risk which dominates the sum of all other risks in terms

of VaRp, a reasonable assumption for a joint model of high dimension. A3 is not strictly comparable

to A1 and A2, but it has an important merit: it does not depend on h or h∗ except for a point p ∈ (0, 1)

given beforehand, which may be based on h and h∗. For a practical choice of {Fi, i ∈ N}, it is often

that (3.15) holds for all p ∈ (0, 1).

Theorem 3.6. Suppose that h ∈ H is continuous and there exists p ∈ (0, 1) such that h(t) = h∗(t) for

all t ∈ [p, 1]. For a sequence of distribution functions {Fi, i ∈ N} supported in R+ satisfying Condition

A3, we have

(3.16) lim
n→∞

sup {ρh(S ) : S ∈ Sn}

sup {ρh∗(S ) : S ∈ Sn}
= 1,

where h∗ is defined in (3.1).

Proof. Following the same proof in Case 1 of the above theorem, we obtain

0 6 ρh∗(S c
n) − ρh(S ∗n) 6 max

i=1,...,n

{
VaRp(Xi)

}
.

Since

ρh∗(Xi) =

∫ 1

0
VaRt(Xi)dh∗(t) >

∫ 1

p
VaRt(Xi)dh∗(t) > VaRp(Xi)(1 − h∗(p)),

we have∣∣∣∣∣∣ sup {ρh(S ) : S ∈ Sn}

sup {ρh∗(S ) : S ∈ Sn}
− 1

∣∣∣∣∣∣ 6 maxi=1,...,n{VaRp(Xi)}∑n
i=1 ρh∗(Xi)

6
maxi=1,...,n{VaRp(Xi)}

(1 − h∗(p))
∑n

i=1 VaRp(Xi)
→ 0 as n→ ∞

by (3.15). �
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Remark 3.1. The worst-case dependence structure for general distortion risk measures is revealed

via the construction of S ∗n. For n → ∞, to obtain a sum of S ∗n one needs comonotonicity on the set(⋃
k∈K Ik

)c and an extreme negative dependence conditional on each of the intervals Ik, k ∈ K. For

a fixed n, the worst-case dependence structure for a general distortion risk measure is still not clear,

since an extreme negative dependence may not be properly defined for fixed n unless the marginal

distributions satisfies a notion of joint mixability; see Puccetti and Wang (2015) for related discussions

on the above two notions of negative dependence.

3.3 Remarks on the conditions

In addition to Examples 2.1 and 2.2, we give a more subtle example to show that the uniform

integrability condition A2 is essential. We compare our conditions with the ones in Embrechts et al.

(2015) for VaR and ES. Theorem 3.3 of Embrechts et al. (2015) shows that

lim
n→∞

sup
{
VaRp(S ) : S ∈ Sn

}
sup

{
ESp(S ) : S ∈ Sn

} = 1,(3.17)

if for Xi ∼ Fi, i ∈ N, the following two conditions are satisfied:

(a*) supi∈N E[|Xi|
k] < ∞ for some k > 1,

(b*) lim infn→∞
1
n
∑n

i=1 ESp(Xi) > 0.

A natural question is whether k in (a*) can be taken as 1, that is,

(a’) supi∈N E[|Xi|] < ∞.

In comparison with the conditions in Embrechts et al. (2015), another question is whether A2 in this

paper can be weakened to

(A2’) supi∈N ρh∗(Xi) < ∞.

For the pair (ρh, ρh∗) = (VaRp,ESp), (b*) is equivalent to our condition A1, and (a’) is equivalent to

A2’ if we only consider X = L+.

The answer to both questions turns out to be negative. In the following example, Conditions

A1and A2’ are satisfied; in other words, conditions (a’) and (b*) are satisfied. We will see that (3.17)

fails to hold for all p ∈ (0, 1).
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Example 3.1. Suppose that the probability space is the Lebesgue unit interval ([0, 1],B([0, 1]),P),

where P is the Lebesgue measure. For i ∈ N, let

Fi(x) =


0 if x < 0,

1 − 1
i2 if 0 6 x < i2,

1 if i2 6 x.

Clearly the support of Fi is nonnegative, i ∈ N. One can calculate

VaRα(Xi) = i2I{α∈(1−1/i2,1)}, i ∈ N.

For Xi ∼ Fi, i ∈ N, supi∈N E[Xi] = 1 < ∞. One can also check that for i > 1/
√

1 − p, ESp(Xi) = 1
1−p .

As a consequence,

lim
n→∞

sup
{
ESp (S/n) : S ∈ Sn

}
= lim

n→∞

∑n
i=1 ESp(Xi)

n
=

1
1 − p

.

Thus, (a’), (b*), A1 and A2’ are all satisfied.

Next we will show that

lim
n→∞

sup
{
VaRp(S/n) : S ∈ Sn

}
= 0.

Note that
∑∞

i=1
1
i2 < ∞. For any ε > 0, which we choose as ε = 1 − p, there exists an N such that for

n > N, we have

(3.18)
∞∑

i=n

1
i2
< ε.

Take a fixed number k > N such that
∑N

i=1 i2 < k2, we have for any n > N,

P(S n > k2) = P(X1 + · · · + XN + XN+1 + · · · + Xn > k2)

6 P(at least one Xi > 0, i = N + 1, . . . , n)

6
n∑

i=N+1

P(Xi > 0) =

n∑
i=N+1

1
i2
< ε.

Thus, VaR1−ε(S n) 6 k2. Therefore,

0 6 lim
n→∞

sup
{
VaRp(S/n) : S ∈ Sn

}
= lim

n→∞

sup
{
VaRp(S ) : S ∈ Sn

}
n

6 lim
n→∞

k2

n
= 0.

In summary,

lim
n→∞

sup
{
VaRp(S ) : S ∈ Sn

}
sup

{
ESp(S ) : S ∈ Sn

} = 0.

15



4 Asymptotic equivalence for convex risk measures

In this section we study asymptotic equivalence for convex risk measures. Compared to the previ-

ous section, the result in this section is much less technically involved since the worst-case dependence

structure for convex risk measures is explicitly known as comonotonicity. We assume X = L1, since

the canonical space for law-invariant convex risk measures is L1; see Filipović and Svindland (2012).

4.1 Some lemmas

First, we recall the Kusuoka representation of law-invariant convex risk measures as established

in Frittelli and Rosazza Gianin (2005) for X = L∞. The extension of the representation to Lp, p ∈

[1,∞) is established in Svindland (2009). The Fatou property (FP) has to be assumed throughout for

the representation to hold.

Lemma 4.1 (Lemma 2.14 of Svindland (2009)). A law-invariant convex risk measure ρ mapping L1

to R with the Fatou property has a representation

(4.1) ρ(X) = sup
µ∈P

{∫ 1

0
ESp(X)dµ(p) − v(µ)

}
, X ∈ L1,

where P is the set of all probability measures on [0, 1] and v is a function from P to R ∪ {+∞}, called

a penalty function of ρ.

From now on, we denote by ρv a convex risk measure with penalty function v which maps L1 to

R. For a law-invariant convex risk measure, without loss of generality we can assume ρv(0) = 0, or

equivalently, in (4.1), inf{v(µ) : µ ∈ P} = 0. If one is interested in a law-invariant convex risk measure

ρ with ρ(0) = c , 0, one can define ρ̃(·) = ρ(·) − c so that ρ̃ is a law-invariant convex risk measure and

ρ̃(0) = 0. A result on ρ̃ would simply lead to a result on ρ.

Similarly to the case of distortion risk measures, a convex risk measure is dominated by a coherent

risk measure. The following simple lemma is a combination of Theorem 4.1 and Corollary 4.2 of Wang

et al. (2015).

Lemma 4.2 (Wang et al. (2015)). The smallest law-invariant coherent risk measure dominating ρv

exists, and it is given by

(4.2) ρv∗(X) = sup
µ∈Pv

{∫ 1

0
ESp(X)dµ(p)

}
, X ∈ L1,

where Pv = {µ ∈ P : v(µ) < +∞}.
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Remark 4.1. A popular subclass of law-invariant convex risk measures is the class of convex shortfall

risk measures in Föllmer and Schied (2011). It is shown that for all convex shortfall risk measures ρv,

the smallest dominating coherent risk measure ρv∗ is always a coherent expectile; see Proposition 4.3

of Wang et al. (2015).

Unlike the case of general distortion risk measures, the dependence structure of (X1, . . . , Xn)

which gives the maximum value of ρv(X1 + · · ·+Xn) for given marginal distributions is always comono-

tonicity. Hence, an explicit expression of sup {ρv(S n) : S n ∈ Sn} can be obtained. This creates a huge

technical convenience to study asymptotic equivalence for convex risk measures.

Lemma 4.3. For a sequence of distribution functions {Fi, i ∈ N},

(4.3) sup
{
ρv(S ) : S ∈ Sn

}
= sup

µ∈P

 n∑
i=1

∫ 1

0
ESp(Xi)dµ(p) − v(µ)

 ,
where Xi ∼ Fi, i = 1, . . . , n.

Proof. Let Y1, . . . ,Yn ∈ L1 be comonotonic random variables such that Yi ∼ Fi, i = 1, . . . , n. We have

ρv(X1 + · · · + Xn) 6 ρv(Y1 + · · · + Yn); see Lemma 5.2 of Bäuerle and Müller (2006). It follows from

Lemma 4.1 that

sup
{
ρv(S ) : S ∈ Sn

}
= ρv(Y1 + · · · + Yn)

= sup
µ∈P


∫ 1

0
ESp

 n∑
i=1

Yi

 dµ(p) − v(µ)


= sup

µ∈P

 n∑
i=1

∫ 1

0
ESp (Yi) dµ(p) − v(µ)

 .
We obtain (4.3) since ESp(Xi) = ESp(Yi), p ∈ (0, 1), i = 1, . . . , n. �

Lemma 4.4. For given ε > 0, n ∈ N, and a sequence of distribution functions {Fi, i ∈ N} such that

sup{ρv∗(S ) : S ∈ Sn} < ∞, there exists µn ∈ Pv such that

(4.4) sup
{
ρv∗(S ) : S ∈ Sn

}
−

n∑
i=1

∫ 1

0
ESp(Xi)dµn(p) < ε,

where Xi ∼ Fi, i ∈ N.

Proof. By applying Lemma 4.3 to the coherent risk measure ρv∗, we obtain

sup
{
ρv∗(S ) : S ∈ Sn

}
= sup

µ∈Pv

 n∑
i=1

∫ 1

0
ESp(Xi)dµ(p)

 .
By definition, there exists µn ∈ Pv such that (4.4) holds. �
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4.2 Asymptotic equivalence for convex risk measures

Similarly to Section 3, we need to assume some conditions on a sequence of distribution functions

{Fi, i ∈ N} for the result of asymptotic equivalence to hold. In the following, Xi ∼ Fi, i ∈ N.

Condition B1.
∑n

i=1 E[Xi]→ ∞ as n→ ∞.

Condition B2. ρv∗(
∑n

i=1 F−1
i (U)) < ∞ for some U ∼ U[0, 1] and all n ∈ N.

Condition B3. There exist ε > 0 and a sequence µn ∈ Pv, n ∈ N satisfying (4.4), such that

lim
n→∞

v(µn)∑n
i=1

∫ 1
0 ESp(Xi)dµn(p)

= 0.

Condition B1 is assumed to avoid the vanishing risks in Example 2.1. Condition B2 is trivial since

we need the denominator in the asymptotic equivalence (1.2) to be finite for any given n. Condition

B3 is somewhat an artificial technical condition to guarantee the convergence in our proof. Note that

if v(µ) is bounded for µ ∈ Pv, then B3 is automatically satisfied whenever B1 holds.

Theorem 4.5. Given a sequence of distribution functions {Fi, i ∈ N} satisfying Conditions B1-B3, we

have

(4.5) lim
n→∞

sup {ρv(S ) : S ∈ Sn}

sup {ρv∗(S ) : S ∈ Sn}
= 1.

Proof. First note that for any S n ∈ Sn, due to Lemma 4.1 and B2, we have

∞ > ρv∗(S n) > ρv(S n) >
n∑

i=1

E[Xi],

and hence both sup {ρv(S ) : S ∈ Sn} and sup {ρv∗(S ) : S ∈ Sn} are positive for large n, and

(4.6) lim
n→∞

sup {ρv(S ) : S ∈ Sn}

sup {ρv∗(S ) : S ∈ Sn}
6 1.

Write λn =
∑n

i=1

∫ 1
0 ESp(Xi)dµn(p) >

∑n
i=1 E[Xi]. We have λn → ∞ as n → ∞ from Condition B1.

From Lemmas 4.3 and 4.4, we have

(4.7) lim
n→∞

sup {ρv(S ) : S ∈ Sn}

sup {ρv∗(S ) : S ∈ Sn}
> lim

n→∞

λn − v(µn)
λn + ε

= lim
n→∞

λn

λn + ε
= 1.

Combining (4.6) and (4.7) we obtain (4.5). �
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5 Conclusion

In this paper, we show that the asymptotic equivalence of VaR and ES in Embrechts et al. (2015)

and preceding papers can be generalized to general risk measures for inhomogeneous models under

some regularity conditions. The risk measures that we study include the class of distortion risk mea-

sures and the class of convex risk measures. The main result in this paper is that under dependence

uncertainty in the aggregation of a large number of risks, the worst-case value of a non-coherent risk

measure is asymptotically equivalent to that of a corresponding coherent risk measure. This result

helps to analyze risk aggregation under dependence uncertainty in financial regulation and internal

risk management.

A Full proof of Theorem 3.5

Proof. We show the theorem in two steps. First we assume that h is continuous, and then we approxi-

mate the general case by the result for continuous h.

For some intervals {Ik, k ∈ K} which will be specified later, let S c
n, Rn, and S ∗n be as defined in

(3.5), (3.6) and (3.9).

The proof in the case of continuous h ∈ H .

Depending on the set {t ∈ [0, 1] : h(t) , h∗(t)}, we have the following three cases:

Case 1: For some p ∈ (0, 1), h(t) = h∗(t) for all t ∈ [p, 1]. This case is dealt with in Section 3.

Case 2: h , h∗ in the intervals (ak, bk), k ∈ K ⊂ N, where supk∈K bk = 1. Moerover, for all p ∈ (0, 1),

there exist t0, t1 ∈ (p, 1) such that h∗(t0) = h(t0) and h∗(t1) , h(t1).

Condition A2 and the above property of h and h∗ impliy that for any ε > 0, there exists q such

that

sup
i∈N

∫ 1

q
F−1

i (t)dh∗(t) < ε and h(q) = h∗(q).(A.1)

Let Ik in (3.6) be (ak, bk) ∩ [0, q], k ∈ K. Then ρh∗(S c
n) = ρh∗(Rn) and∣∣∣S ∗n − Rn

∣∣∣ 6 max
i=1,...,n

{F−1
i (q)},

which implies ∣∣∣∣∣∫ q

0
F−1

S ∗n
(t)dh(t) −

∫ q

0
F−1

Rn
(t)dh(t)

∣∣∣∣∣ 6 max
i=1,...,n

{F−1
i (q)}.
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∣∣∣∣∣∫ q

0
F−1

Rn
(t)dh(t) −

∫ q

0
F−1

Rn
(t)dh∗(t)

∣∣∣∣∣ =

∣∣∣∣∣F−1
Rn

(t)[h(t) − h∗(t)]
∣∣∣ q

0 −

∫ q

0
[h(t) − h∗(t)]dF−1

Rn
(t)

∣∣∣∣∣
=

∣∣∣∣∣∣∣F−1
Rn

(q)[h(q) − h∗(q)] −
∑
k∈K

∫
Ik

[h(t) − h∗(t)]dF−1
Rn

(t)

∣∣∣∣∣∣∣ = 0.

By (3.7),∣∣∣∣∣∫ q

0
F−1

Rn
(t)dh∗(t) −

∫ q

0
F−1

S c
n
(t)dh∗(t)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∑k∈K

[∫
Ik

F−1
Rn

(t)dh∗(t) −
∫

Ik

F−1
S c

n
(t)dh∗(t)

]∣∣∣∣∣∣∣ = 0.

Thus, ∣∣∣∣∣∫ q

0
F−1

S ∗n
(t)dh(t) −

∫ q

0
F−1

S c
n
(t)dh∗(t)

∣∣∣∣∣
6

∣∣∣∣∣∫ q

0
F−1

S ∗n
(t)dh(t) −

∫ q

0
F−1

Rn
(t)dh(t)

∣∣∣∣∣ +

∣∣∣∣∣∫ q

0
F−1

Rn
(t)dh(t) −

∫ q

0
F−1

Rn
(t)dh∗(t)

∣∣∣∣∣
+

∣∣∣∣∣∫ q

0
F−1

Rn
(t)dh∗(t) −

∫ q

0
F−1

S c
n
(t)dh∗(t)

∣∣∣∣∣
6 max

i=1,...,n
{F−1

i (q)}.(A.2)

On the other hand,∣∣∣∣∣∣
∫ 1

q
F−1

S ∗n
(t)dh(t) −

∫ 1

q
F−1

S c
n
(t)dh∗(t)

∣∣∣∣∣∣ 6
∫ 1

q
F−1

S c
n
(t)dh∗(t) =

n∑
i=1

∫ 1

q
F−1

i (t)dh∗(t).(A.3)

By Condition A1, s := lim inf
n→∞

1
n
∑n

i=1 ρh∗(Xi) > 0. Then for the above ε > 0, there exists N > 0

such that for n > N, ∑n
i=1 ρh∗(Xi)

n
> s − ε.(A.4)

Hence, for any ε > 0 and n > max{N, 1/(1 − h∗(q)), from (A.1)–(A.4), we have∣∣∣∣∣∣ sup {ρh(S ) : S ∈ Sn}

sup {ρh∗(S ) : S ∈ Sn}
− 1

∣∣∣∣∣∣ 6
∣∣∣ρh(S ∗n) − ρh∗(S c

n)
∣∣∣∑n

i=1 ρh∗(Xi)

6
maxi=1,...,n{F−1

i (q)}∑n
i=1 ρh∗(Xi)

+

∑n
i=1

∫ 1
q F−1

i (t)dh∗(t)∑n
i=1 ρh∗(Xi)

6
ε

n(1 − h∗(q))(s − ε)
+

ε

(s − ε)

6
2ε

(s − ε)
.

Since ε is arbitrary, (3.4) follows.
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Case 3: h , h∗ in the intervals (ak, bk), k ∈ K ⊂ N, where supk∈K bk = 1. Moreover, there exists a

p ∈ (0, 1) such that h(t) , h∗(t) for all t ∈ [p, 1) and h∗ is linear on [p, 1] with slope c > 0.

Recall that h(1−) = h(1) = 1 and h∗(1−) = h∗(1) = 1. For any ε > 0, take q ∈ [p, 1] such that

|h(q) − 1| <
ε

2
,

∣∣∣h∗(q) − 1
∣∣∣ < ε

2
,(A.5)

(A.6) sup
i∈N

∫ 1

q
F−1

i (t)dh∗(t) < cε.

(A.6) implies that

(1 − q) sup
i∈N

F−1
i (q) < ε.

Let Ik in (3.6) be (ak, bk) ∩ [0, q]. Then ρh∗(S c
n) = ρh∗(Rn). Similarly to Case 2, we have∣∣∣∣∣∫ q

0
F−1

S ∗n
(t)dh(t) −

∫ q

0
F−1

Rn
(t)dh(t)

∣∣∣∣∣ 6 max
i=1,...,n

{F−1
i (q)},∣∣∣∣∣∫ q

0
F−1

Rn
(t)dh∗(t) −

∫ q

0
F−1

S c
n
(t)dh∗(t)

∣∣∣∣∣ = 0,∣∣∣∣∣∣
∫ 1

q
F−1

S ∗n
(t)dh(t) −

∫ 1

q
F−1

S c
n
(t)dh∗(t)

∣∣∣∣∣∣ 6 n∑
i=1

∫ 1

q
F−1

i (t)dh∗(t).

Moreover, ∣∣∣∣∣∫ q

0
F−1

Rn
(t)dh(t) −

∫ q

0
F−1

Rn
(t)dh∗(t)

∣∣∣∣∣ = F−1
Rn

(q)
∣∣∣h(q) − h∗(q)

∣∣∣
6 F−1

Rn
(q)ε = ε

n∑
i=1

∫ 1
p F−1

i (t)dt

1 − p
,

where the last inequality follows by (A.5). Thus, for any ε > 0, n > max{N, 1/(1 − q)},∣∣∣∣∣∣ sup {ρh(S ) : S ∈ Sn}

sup {ρh∗(S ) : S ∈ Sn}
− 1

∣∣∣∣∣∣
6

maxi=1,...,n{F−1
i (q)}∑n

i=1 ρh∗(Xi)
+

∑n
i=1

∫ 1
p F−1

i (t)dt

1−p ε∑n
i=1 ρh∗(Xi)

+

∑n
i=1

∫ 1
q F−1

i (t)dh∗(t)∑n
i=1 ρh∗(Xi)

6
ε

n(s − ε)(1 − q)
+

ε
1−p

∑n
i=1

∫ q
p F−1

i (t)dt + ( ε
1−p + c)

∑n
i=1

∫ 1
q F−1

i (t)dt

n(s − ε)

6
ε

n(s − ε)(1 − q)
+

εn(q−p)
1−p supi∈N F−1

i (q) + ( ε
1−p + c)nε

n(s − ε)

6
ε

s − ε
+
ε2 q−p

(1−p)(1−q) + ( ε
1−p + c)ε

s − ε
.

Since ε > 0 is arbitrary, the result follows.
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The proof in the case of general h ∈ H .

Denote ρ̄h(n) = sup {ρh(S ) : S ∈ Sn} for any h ∈ H . S c
n is defined as in (3.5). Clearly ρh∗(S c

n) =

ρ̄h∗(n). For any h ∈ H , let hδ ∈ H be continuous such that hδ > h on [0, 1] and hδ → h weakly as

δ→ 0+. The existence of such hδ is an exercise for mathematical analysis.

By Lemma A.5 of Wang et al. (2015), for any ε > 0, there exists δ > 0 such that

sup
t∈[0,1]

∣∣∣h∗δ(t) − h∗(t)
∣∣∣ 6 ε.(A.7)

Condition A2 implies that for any ε > 0, there exists q ∈ (0, 1) such that

sup
i∈N

∫ 1

q
F−1

i (t)dh∗(t) < ε.

Note that supi∈N F−1
i (q) < ε

1−h∗(q) < ∞. Take M = supi∈N F−1
i (q). Then

ρh∗(S c
nI{S c

n>Mn}) =

∫
{S c

n>Mn}
F−1

S c
n
(t)dh∗(t) 6

∫ 1

q
F−1

S c
n
(t)dh∗(t) =

n∑
i=1

∫ 1

q
F−1

i (t)dh∗(t) 6 nε.

Condition A1 implies that for ε > 0, there exists N1 ∈ N and s > 0 such that for n > N1, ρh∗(S c
n) > ns.

By comonotonic additivity and monotonicity of distortion risk measures,

ρh∗(S c
n) = ρh∗(S c

n ∧ (Mn)) + ρh∗((S c
n − Mn)I{S c

n>Mn}) 6 ρh∗(S c
n ∧ (Mn)) + nε.

Thus,

ρh∗(S c
n ∧ (Mn))
ρh∗(S c

n)
> 1 −

ε

s
, for all n > N1.(A.8)

Let Y = S c
n ∧ (Mn).

ρh∗(S c
n ∧ (Mn)) − ρh∗δ(S

c
n ∧ (Mn)) =

∫ 1

0
F−1

Y (t)dh∗(t) −
∫ 1

0
F−1

Y (t)dh∗δ(t)

=

∫ 1

0
F−1

Y (t)d(−(1 − h∗(t))) −
∫ 1

0
F−1

Y (t)d(−(1 − h∗δ(t)))

=

∫ 1

0
[h∗δ(t) − h∗(t)]dF−1

Y (t) 6 εMn,

where the last inequality follows from (A.7). Thus,

ρh∗(S c
n ∧ (Mn)) − ρh∗δ(S

c
n ∧ (Mn))

ρh∗(S c
n ∧ (Mn))

6
εMn

(1 − ε/s)ns
=

εM
s − ε

,

which implies

ρh∗δ(S
c
n ∧ (Mn))

ρh∗(S c
n ∧ (Mn))

> 1 −
εM
s − ε

for all n > N1.
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Since ρh∗δ(S
c
n ∧ (Mn)) 6 ρh∗δ(S

c
n) and by the above inequality, we have

ρh∗δ(S
c
n)

ρh∗(S c
n ∧ (Mn))

> 1 −
εM
s − ε

for all n > N1.(A.9)

From the first half of the proof, for any ε > 0, there exists N2 ∈ N such that for n > N2,

ρ̄hδ(n)
ρ̄h∗δ(n)

> 1 − ε.(A.10)

Thus for any ε > 0, there exist δ > 0 and N = N1 ∨ N2 such that for n > N,

ρ̄hδ(n)
ρh∗(S c

n)
=
ρ̄hδ(n)
ρ̄h∗δ(n)

×
ρ̄h∗δ(n)

ρh∗(S c
n ∧ (Mn))

×
ρh∗(S c

n ∧ (Mn))
ρh∗(S c

n)

=
ρ̄hδ(n)
ρ̄h∗δ(n)

×
ρh∗δ(S

c
n)

ρh∗(S c
n ∧ (Mn))

×
ρh∗(S c

n ∧ (Mn))
ρh∗(S c

n)

> (1 − ε)
(
1 −

εM
s − ε

) (
1 −

ε

s

)
> 1 −

(
1 +

M
s − ε

+
1
s

)
ε,

where the inequality follows from (A.8-A.10). Note that ρ̄h(n) > ρ̄hδ(n). For any ε > 0, there exists

N ∈ N such that for n > N,

ρ̄h(n)
ρ̄h∗(n)

> 1 −
(
1 +

M
s − ε

+
1
s

)
ε,

that is,

lim
n→∞

sup {ρh(S ) : S ∈ Sn}

sup {ρh∗(S ) : S ∈ Sn}
= 1.

�
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