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Abstract

Using a general notion of convex order, we derive general lower bounds for risk mea-

sures of aggregated positions under dependence uncertainty, and this in arbitrary dimen-

sions and for heterogeneous models. We also prove sharpness of the bounds obtained

when each marginal distribution has a decreasing density. The main result answers a long-

standing open question and yields an insight in optimal dependence structures. A numerical

algorithm provides bounds for quantities of interest in risk management. Furthermore, our

numerical results suggest that the bounds obtained in this paper are generally sharp for a

broader class of models.
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1 Introduction

In quantitative risk management, under the term risk aggregation one discusses the statisti-

cal behavior of an aggregate position S (X) associated with a risk vector X = (X1, . . . , Xn), where

X1, . . . , Xn are random variables representing one-period individual risks. The most commonly

studied aggregate risk position is the sum S = X1 + · · · + Xn; it plays an important role in both

insurance and finance.

In the quantification of risk aggregation, model uncertainty has received much attention

recently, especially after the financial crisis of 2008; see discussions in BCBS (2013b). An

insufficient understanding of model uncertainty (or manipulation) and its quantitative conse-

quences may lead to wrong conclusions, undermining the efficiency of risk management (for a

case study, see US Senate, 2013, Chapter V).

One of the more challenging types of uncertainty in modern risk management relates to

dependence uncertainty. In practice, marginal distributions are easier to analyze with statistical

tools, while multivariate dependence is much more difficult to quantify. We refer to Embrechts

et al. (2014) for a comprehensive review on the growing literature on this topic and its impact on

the recent framework for banking regulation, as for instance discussed in the Basel documents

(BCBS, 2012, 2013a). In insurance regulation, discussions on uncertainty in risk management

also take place in Solvency 2 and the Swiss Solvency Test; see for instance Sandström (2010)

and SCOR (2008).

To address questions of risk aggregation with dependence uncertainty, Bernard et al. (2014a)

introduced the admissible risk class as the collection of all possible aggregate risks with fixed,

known marginal distributions. A practical illustration of this setup is for instance to be found

in the Loss Distribution Approach to Operational Risk; see Embrechts et al. (2013). Though,

of course, in this case, there is considerable uncertainty at the level of the estimation of the

marginal distributions. If one has additional information on the underlying dependence struc-

ture, subsets of the admissible risk class can be used to describe the possible aggregate risks;

for the case of information on variance, see Cheung and Vanduffel (2013) and Bernard et al.

(2014b).

A main tool in our analysis is convex ordering, which in our context is equivalent with

second order stochastic dominance or stop-loss ordering. These concepts from the realm of
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decision making under uncertainty are consistent with risk-averse risk measurement, especially

in the by now classical context of coherent risk measures and its utility-based formulation; see

for instance Artzner et al. (1999) and Delbaen (2012). In the context of finding upper and lower

bounds for quantities related to risk aggregation, convexity arguments play an important role.

In the sequel of this paper convex bounds will refer to any bound obtained using arguments

based on the concept of convex ordering. It is well-known that the sharp upper convex bound

on any admissible risk class is obtained under the comonotonic dependence structure, whereas

for the lower convex bound for n > 3 no general solution is known in the literature; see for

instance Tchen (1980) and Dhaene et al. (2002). Rüschendorf and Uckelmann (2002) and Sec-

tion 8.3.1 of Müller and Stoyan (2002) studied special cases of lower convex bounds on risk

aggregation for uniform, symmetric and some discrete marginal distributions, and Wang and

Wang (2011) studied the case when marginal distributions are identical and have a monotone

density. A numerical algorithm (the Rearrangement Algorithm (RA)) for the approximation of

the dependence structure leading to a lower convex bound is given in Embrechts et al. (2013).

The latter paper contains a general lower convex bound in the homogeneous case, i.e. when all

marginal distributions are identical. Furthermore, under some extra conditions, sharpness of this

bound is proved; see also Bernard et al. (2014a).

In this paper, we generalize the results of Bernard et al. (2014a) and study a lower convex

bound for non-identical marginal distributions. This generalization is particularly important in

the practice of financial and insurance risk management, where identical marginal distributions

are clearly unrealistic; see Embrechts et al. (2013). It turns out that the problem of finding con-

vex bounds with heterogeneous marginal distributions is considerably more challenging. The

new lower convex bound obtained in this paper is based on a new technique of dynamically

weighting marginal distributions by finding solutions to related functional equations. The de-

pendence structure that leads to the lower convex bound can be interpreted as a combination of

joint mixability, introduced in Wang et al. (2013), and mutual exclusivity, introduced in Dhaene

and Denuit (1999) (earlier mathematical results can be found in Dall’Aglio (1972)). We show

that this new bound is sharp if each of the marginal distributions has a decreasing density on its

support. Numerical results show that the new bounds outperform almost all other results in the

literature, and this in great generality.

We remark that although our results work for a broad class of models, including all models
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with decreasing densities, a universal solution for a lower convex bound is still out of reach at

this moment, even for homogeneous models. A full characterization of this lower convex bound

for arbitrary distributions would require further research on joint mixability and other nega-

tive dependence concepts, a rapidly expanding field of research. A recent review on extremal

dependence concepts can be found in Puccetti and Wang (2014).

The rest of the paper is organized as follows. In Section 2 we summarize some prelimi-

naries on admissible risks, complete and joint mixability, and convex order. Section 3 provides

a new lower convex bound on risk aggregation for heterogeneous marginal distributions. This

bound is shown to be sharp under a monotonicity condition and a condition of joint mixability;

in particular, these conditions are satisfied if the marginal distributions have decreasing densi-

ties. Insurance and financial applications are then discussed in Section 4. Numerical illustrations

and an algorithm are given in Section 5, highlighting the advantages of our results compared to

other numerical methods available in the literature. We conclude in Section 6.

2 Preliminaries

2.1 Admissible risk

In this paper, we assume that all random variables are defined on an atomless probability

space (Ω,A,P). Similar to Bernard et al. (2014a), we call an aggregate risk the sum S =

X1 + · · · + Xn where Xi are non-negative random variables and n is a positive integer. Note that

the non-negativity is assumed just for notational convenience, and for our results is equivalent

to the assumption that X1, . . . , Xn are bounded below (since convex order is invariant under

translation Xi 7→ ai + Xi, ai ∈ R).

In this paper we consider the case where for each i = 1, . . . , n the distribution of Xi is

known, while the joint distribution of X := (X1, X2, . . . , Xn) is unknown. We use the notation

X ∼ F to indicate that X ∈ L0(Ω,A,P) has distribution function (df) F.

Definition 2.1 (Admissible risk). An aggregate risk S is called an admissible risk of marginal

distributions F1, . . . , Fn if it can be written as S = X1 + · · · + Xn where Xi ∼ Fi for i = 1, . . . , n.

The admissible risk class is defined by the set of admissible risks of given marginal distributions:

Sn(F1, . . . , Fn) = {X1 + · · · + Xn : Xi ∼ Fi, i = 1, . . . , n} .
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The definition of admissible risks only concerns the distributions of random variables, thus

there is a one-to-one relationship between Sn(F1, . . . , Fn) and the admissible distribution class

defined as

Dn(F1, . . . , Fn) = {distribution of S : S ∈ Sn(F1, . . . , Fn)} .

Properties of the admissible risk classSn(F1, . . . , Fn) were given in Bernard et al. (2014a).

A full characterization of Sn(F1, . . . , Fn) is challenging and seems far beyond the reach of cur-

rent methodology. The admissible risk class identifies what risks are possible when the marginal

distributions are known. When all risks have the same distribution, i.e. F1 = · · · = Fn, we say

that the risks are homogeneous. When the distributions Fi are allowed to be different, we say

that the risks are heterogeneous. For simplicity, we denote F = (F1, . . . , Fn).

As mentioned in the introduction, the study of the admissible risk class Sn(F) is of great

interest in risk management and this topic has a long history. One of the most important issues is

to quantify aggregate risks under extreme dependence structures. Note that all admissible risks

of given marginal distributions (F1, . . . , Fn) have the same mean if it exists for each Fi. It is thus

natural to consider variability in the class. In this paper, we measure variability using convex

order and focus on extreme aggregate risks in Sn(F) in the sense of convex order.

2.2 Complete and joint mixability

Distributions F1, . . . , Fn are jointly mixable (JM) (Wang et al., 2013) if there exist Xi ∼ Fi,

i = 1, . . . , n such that X1 + · · · + Xn is (almost surely) a constant; such (X1, . . . , Xn) is called a

joint mix. Here, we give an equivalent definition using admissible risks.

Definition 2.2 (Joint Mixability and Complete Mixability).

(i) Univariate distributions F1, . . . , Fn are jointly mixable (JM) if the admissible risk class

Sn(F1, . . . , Fn) contains a constant.

(ii) A univariate distribution F is n−completely mixable (n-CM) if the admissible risk class

Sn(F, . . . , F) contains a constant.

We also that say F is n-CM on an interval I if the conditional distribution of F on I is n-

CM, and F1, . . . , Fn are JM on a hypercube
∏n

i=1 Ii, if the conditional distributions of F1, . . . , Fn

on intervals I1, . . . , In, respectively, are JM.

5



Some examples and recent theoretical results of CM distributions and JM distributions can

be found in Wang and Wang (2011, 2014) and Puccetti et al. (2012, 2013). Complete mixability

turns out to be crucial for finding lower convex bounds for homogeneous risks; for a detailed

discussion, see Bernard et al. (2014a). In this paper, joint mixability will be used to obtain sharp

lower bounds for heterogeneous risks.

2.3 Convex order and existing results

Convex order describes a preference between two random variables, agreed upon by all

risk-avoiding investors. Let us recall the definition.

Definition 2.3 (Convex order). Let X and Y be two random variables with finite means. Then X

is smaller than Y in convex order, denoted by X ≺cx Y , if for all convex functions f ,

E[ f (X)] 6 E[ f (Y)],

provided that the two expectations exist.

It is immediate that X ≺cx Y implies E[X] = E[Y]. In the following, we assume that

F1, . . . , Fn have finite means. Convex order is well-adapted to Sn(F) as all variables in Sn(F)

have the same mean. Note that convex order is an order determined by distributions only, hence

we do not really need to specify random variables in our discussion. Convex order on aggregate

risks has been extensively studied in actuarial science since it is equivalent to stop-loss order

(given that the means of two risks are the same), an important concept in insurance premium

calculations. More discussions on stochastic orders on aggregate risks can be found in Müller

(1997a,b). We say that T is an upper (resp. lower) convex bound of Sn(F1, . . . , Fn) if T �cx S

(resp. T ≺cx S ) for all S ∈ Sn(F1, . . . , Fn). From now on, our objective is to find convex bounds

of the set Sn(F1, . . . , Fn).

We denote by G−1(t) = inf{x : G(x) > t} for t ∈ (0, 1] the generalized inverse function for

any monotone function G : R+ → [0, 1], and in addition let G−1(0) = inf{x : G(x) > 0} through-

out the paper. A well-known result is that the sharp upper convex bound in Sn(F1, . . . , Fn)

is F−1
1 (U) + · · · + F−1

n (U) where U is uniformly distributed on the interval (0, 1), denoted as

U ∼ U(0, 1). The dependence structure of X = (F−1
1 (U), . . . , F−1

n (U)) is called the comonotonic

scenario. In particular, one has

S n ≺cx F−1
1 (U) + · · · + F−1

n (U) for any S n ∈ Sn(F). (2.1)
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Note that sharpness immediately follows, since for i = 1, . . . , n, F−1
i (U) d

= Xi and hence the

above upper bound belongs to Sn(F). We refer to Dhaene et al. (2002) for more details on

comonotonicity and Deelstra et al. (2011) for a recent review on the applications of comono-

tonicity in finance and insurance.

The rest of the paper focuses on the much more complex issue of determining the lower

convex bound of Sn(F). When there are only two variables, n = 2, the minimum is obtained by

the counter-monotonic scenario:

F−1
1 (U) + F−1

2 (1 − U) ≺cx S 2 for any S 2 ∈ S2(F1, F2),

where U ∼ U(0, 1); and this bound is again sharp. The above two convex order results, in the

larger class of supermodular functions, date back to W. Hoeffding in the 40s; see Tchen (1980).

However, the sharp lower convex bound for n > 3 is missing in the literature due to the fact that

counter-monotonicity cannot be generalized to n > 3 without losing its minimality with respect

to convex order. In the case when marginal distributions are identical with a monotone density

function, the sharp lower bound for general n is obtained in Wang and Wang (2011), together

with results on complete mixability. In another special case, when F1, . . . , Fn are on R+ with∑n
i=1 Fi(0) > n − 1, the convex minimum is obtained by the the mutually exclusive scenario:

Y1 + · · · + Yn ≺cx S n for any S n ∈ Sn(F),

where Yi ∼ Fi and P(Yi > 0,Y j > 0) = 0, i, j = 1, . . . , n, i , j, i.e. only one random variable can

be positive at the same time; see Dhaene and Denuit (1999). However, this assumption means

that the distributions F1, . . . , Fn have atoms at zero with a very large total mass, and hence it is

rather restrictive. Another observation, also restrictive, is that if F1, . . . , Fn are JM, then a sharp

convex lower bound is based on joint mixability: if X1 + · · · + Xn is a constant, where Xi ∼ Fi,

i = 1, . . . , n, then for S n ∈ Sn(F),

X1 + · · · + Xn = E[S n] ≺cx S n for any S n ∈ Sn(F).

However, joint mixability is theoretically difficult to prove, and many distributions are shown

to be not JM. Limited results on JM are summarized in Wang et al. (2013) and the more recent

Wang and Wang (2014).

One step further, Bernard et al. (2014a) studied more general lower convex bounds over

the admissible risk class. Roughly speaking, their idea is to combine complete mixability and
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mutual exclusivity. We summarize their results below. Let n be a positive integer (although only

n > 3 is of interest). Let F be the average of the marginal distributions, i.e.

F =
1
n

n∑
i=1

Fi.

The following functions H(x), D(a) for a, x ∈ [0, 1
n ] and the number cn are defined in Bernard et

al. (2014a):

H(x) = (n − 1)F−1((n − 1)x) + F−1(1 − x),

D(a) =
n

1 − na

∫ 1−a

(n−1)a
F−1(y)dy,

cn = min
{
c ∈

[
0, 1

n

]
: H(c) 6 D(c)

}
,

Ta = H(U/n)I{U∈[0,na]} + D(a)I{U∈(na,1]}.

Roughly speaking, H represents the sum in a nearly mutual exclusive scenario, where one large

risk is coupled with n− 1 small risks. D represents the sum in a scenario of joint mix, where the

sum is exactly equal to its mean. The structure of Ta can be interpreted as a combination of H

and D, and cn is a threshold distinguishing the two scenarios.

For some a ∈ [0, 1
n ], Bernard et al. (2014a) used the following assumptions (A), (A’) and

(B):

(A) H(x) is non-increasing on [0, a] and limx→a− H(x) > D(a).

(A’) H(x) is non-increasing on the interval [0, cn].

(B) The distribution F is n-CM on the interval I = [F−1((n − 1)cn), F−1(1 − cn)].

The assumption (A) is used to obtain a convex lower bound for Sn(F1, . . . , Fn), and the as-

sumptions (A’) and (B) are used to obtain sharpness for the homogeneous model Sn(F, . . . , F).

Note that (A) always holds trivially for a = 0, and (A’) is stronger than (A). The main results in

Bernard et al. (2014a) are summarized in the following theorem.

Theorem 2.1 (Bernard et al. (2014a)).

(i) Suppose (A) holds for some a ∈ [0, 1
n ], then Ta ≺cx S for all S ∈ Sn(F1, . . . , Fn).

(ii) In the homogeneous case F1 = · · · = Fn = F, Tcn ∈ Sn(F1, . . . , Fn) if (A’) and (B) holds.
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Theoretically, one only obtains the sharpness of the above bounds for homogeneous risks.

As pointed out and illustrated numerically in Bernard et al. (2014a), the sharpness of the bound

obtained in Theorem 2.1 generally fails to hold for heterogeneous risks, in particular when the

marginal distributions are significantly different. A sharp convex lower bound for heterogeneous

risks seems out of reach by their methodology.

In this paper, we give a new lower convex bound for heterogeneous risks which is sharp

under a monotonicity condition and a JM condition. Our result is based on a new technique

involving a dynamical weighting of the marginal distributions.

3 Convex Bounds on Risk Aggregation

Throughout we suppose F1, . . . , Fn are continuous distributions on R+ with finite means,

and n > 3 is a positive integer. Without loss of generality, we can assume all distributions have

left end-point at 0. Since convex order is invariant under shifting by constants, this is equivalent

to assuming all of their supports are bounded from below. We denote by F̄i the survival function

of Fi, i.e. F̄i = 1−Fi. In all our discussions, the terms decreasing and increasing are understood

in the strict sense.

Our idea to construct an optimal structure is inspired by the arguments of Bernard et al.

(2014a). In order to have a convexly small element, intuitively one wants the sum S = X1 +

· · · + Xn to be concentrated around its mean, e.g. a smaller variance is preferred by taking a

quadratic f in Definition 2.3. Typically, for financial risks P(Xi > E[S ]) > 0 for some i (large

losses are possible). When Xi > E[S ], S must be greater than its mean, so we would like all

the other Xi to be as small as possible, so that the sum S is minimized in convex order. This

motivates constructing a dependence structure where, when one of the Xi is large, the others

are set to be small (“nearly mutually exclusive”); and when one of Xi is of medium size, all

the others are also of medium size and the sum is concentrated around a constant (“nearly

jointly mixable”). This idea is very similar to the construction in Bernard et al. (2014a) which

originates from that in Wang and Wang (2011) and indeed forms the basis for the Rearrangement

Algorithm in Embrechts et al. (2013). However, although the idea of complete mixability in

Bernard et al. (2014a) can be naturally generalized to joint mixability for heterogeneous risks,

the construction of the “nearly mutually exclusive scenario” for heterogeneous risks is unclear

9



and cannot be easily generalized. It turns out that to construct such a dependence structure one

needs to dynamically assign weights to each margin, while keeping the sum small in convex

order. Below we provide a rigorous mathematical formulation for the above idea. At first this

weighting may seem rather non-intuitive; further in the paper its importance will hopefully

become clear.

3.1 Main results

First, we introduce the following functional equations (E1)-(E2): for y, y1, . . . , yn: (0, 1)→

R+, such that for x ∈ (0, 1),

(E1)
∑n

i=1 F̄i(yi(x)) = x,

(E2) Fi(yi(x) − y(x)) + F̄i(yi(x)) = x for each i = 1, . . . , n.

Equations (E1)-(E2) will be key to the rest of the paper. In the following, we shall continue our

discussion assuming that (E1)-(E2) have at least one solution. A condition which guarantees the

existence and uniqueness of such a solution is:

(F) Each Fi, i = 1, . . . , n, has a decreasing density on its support [0,∞).

Condition (F) includes, for instance, Pareto and Exponential distributions. The main re-

sults in this paper do not require (F), but do require (E1)-(E2) to have a solution; the reader is

suggested to keep (F) in mind for a primary example. Our numerical results show that (E1)-(E2)

have a solution for a wider class of distributions relevant in practice.

Lemma 3.1. The system of functional equations (E1)-(E2) has a unique solution if (F) holds.

We put the rather tedious proofs of Lemma 3.1 and Lemma 3.2 below at the end of this

section.

In the following, we assume (y, y1, . . . , yn) is a solution to (E1)-(E2), and define three

functions which play a key role in this paper. For Xi ∼ Fi, i = 1, . . . , n,

h(x) =

n∑
i=1

yi(x) − (n − 1)y(x) for x ∈ (0, 1),

d(a) =
1

1 − a

n∑
i=1

E
[
XiI{yi(a)−y(a)6Xi6yi(a)}

]
for a ∈ (0, 1), d(0) =

n∑
i=1

E[Xi],

sn = inf
{
s ∈ (0, 1) : h(s) 6 d(s)

}
.
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The lemma below lists some useful properties of the solution (y, y1, . . . , yn).

Lemma 3.2. Suppose (y, y1, . . . , yn) is a solution to (E1)-(E2), and (F) holds. Then on the

interval (0, sn) for each i = 1, . . . , n,

(i) 0 < y < yi,

(ii) y and yi are decreasing,

(iii) yi − y is increasing,

(iv) h is decreasing.

Remark 3.1. A numerical procedure (provided in Section 5.2) can be applied to find a solution

to (E1)-(E2), when F1, . . . , Fn have densities. Moreover, we shall also see that the monotonicity

condition (F) is not a necessary one and it is possible to obtain solutions to (E1)-(E2) in more

general cases. For instance, in the homogeneous model F1 = · · · = Fn =: F, one can easily

check that y1(x) = · · · = yn(x) = F−1(x/n) , and y(x) = F−1(x/n)−F−1((n−1)x/n) for x ∈ (0, 1)

give a solution to (E1)-(E2) which satisfies (i)-(iii) in Lemma 3.2 on (0,1). This does not require

the assumption (F). Property (iv) is not guaranteed in general, but it is satisfied by a large class

of distributions.

In all the following discussions and results, we throughout assume

(C) F1, . . . , Fn are continuous distributions on R+ and (E1)-(E2) have a solution (y, y1, . . . , yn)

which satisfies properties (i)-(iv) in Lemma 3.2.

From Lemmas 3.1 and 3.2 we have seen that (F) is sufficient for (C). Condition (C) can be easily

verified numerically for given marginal distributions F1, . . . , Fn. Indeed, (C) is not restrictive;

numerical illustrations suggest that it is satisfied by almost all distributions used in quantitative

risk management. See Section 5 for a discussion. However, it is theoretically difficult to show

that (C) is satisfied by general choices of distributions; even in the homogeneous case only

numerical verification is available, as discussed in Bernard et al. (2014a). Note that we do

not assume that the distributions F1, . . . , Fn have unbounded support, nor do we assume the

uniqueness of (y, y1, . . . , yn); we will simply need one solution to (E1)-(E2). Although the

uniqueness of (y, y1, . . . , yn) is not guaranteed, we will see that h is unique on (0, sn) under some

extra conditions to be formulated later.
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Note that if (C) holds, then F̄i(yi(·)) is continuous, almost everywhere differentiable on

(0, 1), and 0 < dF̄i(yi(x))/dx < 1 for each i = 1, . . . , n; this can be seen from (E1) and the fact

that yi is decreasing. We will use this fact frequently in the subsequent proofs. We first provide

some properties of the function h(x).

Lemma 3.3. For a ∈ (0, 1), we have∫ a

0
h(u) du =

n∑
i=1

E
[
Xi

(
I{Xi>yi(a)} + I{Xi<yi(a)−y(a)}

)]
. (3.1)

Proof. We have that

E
[
Xi

(
I{Xi>yi(a)} + I{Xi<yi(a)−y(a)}

)]
=

∫ ∞

yi(a)
xdFi(x) +

∫ yi(a)−y(a)

0
xdFi(x)

=

∫ 0

a
yi(t)dFi(yi(t)) +

∫ a

0
(yi(t) − y(t)) dFi(yi(t) − y(t)). (3.2)

By (E2), it follows that∫ a

0
(yi(t) − y(t)) dFi(yi(t) − y(t)) =

∫ a

0
(yi(t) − y(t)) d(t − 1 + Fi(yi(t)))

=

∫ a

0
(yi(t) − y(t)) dt +

∫ a

0
yi(t)dFi(yi(t)) −

∫ a

0
y(t)dFi(yi(t)).

(3.3)

From (3.2)-(3.3) and (E1), we have that

n∑
i=1

E
[
Xi

(
I{Xi>yi(a)} + I{Xi<yi(a)−y(a)}

)]
=

n∑
i=1

∫ a

0
(yi(t) − y(t)) dt −

n∑
i=1

∫ a

0
y(t)dFi(yi(t))

=

∫ a

0

 n∑
i=1

yi(t) − ny(t)

 dt +

∫ a

0
y(t)dt

=

∫ a

0
h(t)dt.

�

The function h(x) plays a key role in the construction of a sharp lower convex bound

in Sn(F1, . . . , Fn). In order to see this, we first define a candidate for the lower bound. For

a ∈ [0, sn], let

Ra = h(U)I{U∈(0,a)} + d(a)I{U∈[a,1)}, (3.4)

where U ∼ U(0, 1). Since convex order depends only on distributions, we are only interested in

the distribution of Ra and do not specify the random variable U. Note that Ra is a generalization
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of the random variable Ta defined in Section 2. When U < a, Ra is the random variable h(U);

when U > a, Ra is a constant d(a). The relationship between Ra and Sn(F1, . . . , Fn) will be

discussed later. Intuitively, 1 − a is the mass of the atom of Ra at d(a), so the smaller a is, the

smaller Ra is in convex order, since it has more mass at a constant.

In the rest of the paper, we will use the following condition (D). It is parallel to (B) in

Section 2.

(D) F1, . . . , Fn are JM on the hypercube
∏n

i=1
[
yi(sn) − y(sn), yi(sn)

]
=:

∏n
i=1 Ii.

The study of joint mixability is a separate research field in probability theory; see Wang

et al. (2013) and Wang and Wang (2014). The assumption (F) is sufficient for (D), as was

recently shown in Wang and Wang (2014, Theorem 3.2). A numerical procedure to test for joint

mixability is provided in Puccetti and Wang (2015).

We give some properties of the random variable Ra in the following lemma.

Lemma 3.4. Suppose (C) holds, then

(a) E[Ra] = E[S ] for any S ∈ Sn(F1, . . . , Fn),

(b) Ru ≺cx Rv for 0 6 u < v 6 1,

(c) Rsn ∈ Sn(F1, . . . , Fn) if (D) holds.

Proof. (a) This follows from the definition of d(a) and (3.1).

(b) We have Ru ≺cx Rv since Ru is a fusion of Rv (see Theorem 2.8 of Bäuerle and Müller (2006)

and Theorem 3.1 of Bernard et al. (2014a)).

(c) If (D) holds, there exist random variables Y1, . . . ,Yn s.t. Yi has the conditional distribution

of Fi on Ii and Y1 + · · · + Yn is a constant. Moreover,

Y1 + · · · + Yn =

n∑
i=1

E[Xi I{Xi∈[yi(sn)−y(sn),yi(sn)]}]/(1 − sn) = d(sn),

by the definition of d. We now construct S ∈ Sn(F1, . . . , Fn) with the same distribution

as Rsn by imposing a particular dependence structure. Let U ∼ U(0, 1) be independent of

Y1, . . . ,Yn. We briefly explain the main idea behind the construction before moving forward

to the rigorous setting:
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• On the set {U > sn}, of probability 1 − sn, we let Xi = Yi ∈ Ii for each i. We call this

the body part of the dependence structure.

• On the set {U < sn}, of probability sn, which we call the tail part of the dependence

structure, we let exactly one Xi be in the right tail region, i.e. Xi > yi(sn), and all the

others be in the left tail region, i.e. X j < y j(sn)−y(sn), j , i, being counter-monotonic

to Xi.

To construct the random variables rigorously, let K be a discrete random variable such that

P(K = i|U) = dF̄i(yi(u))/du|u=U , i = 1, . . . , n. K is properly defined due to the diffentiability

of Fi(yi(u)) and (E1). We construct for i = 1, . . . , n:

Xi = I{U<sn}

(
yi(U) − y(U)I{K,i}

)
+ I{U>sn}Yi,

and check that Xi ∼ Fi. For q < yi(sn) − y(sn):

P(Xi 6 q) = P
(
Fi(yi(U) − y(U)) 6 Fi(q), K , i

)
=

∫ sn

0
I{u−F̄i(yi(u))6Fi(q)}

(
1 −

dF̄i(yi(u))
du

)
du

=

∫ Fi(yi(sn)−y(sn))

0
I{w6Fi(q)}dw = Fi(q),

using (E2) twice and substitution w = u − F̄i(yi(u)). Similarly, for q > yi(sn):

P(Xi > q) = P
(
Fi(yi(U)) > Fi(q), K = i

)
=

∫ sn

0
I{Fi(yi(u))>Fi(q)}

dF̄i(yi(u))
du

du

=

∫ F̄i(yi(sn))

0
I{w<1−Fi(q)}dw = 1 − Fi(q),

using substitution w = F̄i(yi(u)). Thus Xi has the required distribution on R+ \ Ii, and by

construction also on the interval Ii.

We also check that S = X1 + · · · + Xn has the required distribution:

S = I{U<sn}

 n∑
i=1

yi(U) −
n∑

i=1

y(U)I{K,i}

 + I{U>sn}d(sn) = I{U<sn}h(U) + I{U>sn}d(sn) d
= Rsn .

This completes the proof. �

The following theorem is the main result of this paper. We will show that Ra is a lower con-

vex bound on the set Sn(F1, . . . , Fn) and this bound is sharp for a = sn under the JM condition

(D).
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Theorem 3.1 (Convex ordering lower bound and sharpness). Suppose (C) holds, then

(i) Ra ≺cx S for all S ∈ Sn(F1, . . . , Fn) and all a ∈ [0, sn], and

(ii) Rsn is the sharp lower convex bound in Sn(F1, . . . , Fn) if and only if (D) holds.

Proof. Recall that we only consider n > 3. The idea of our proof in part (i) is similar to the

proof of Theorem 3.1 in Bernard et al. (2014a).

(i) Let S = X1 + · · · + Xn with Xi ∼ Fi be any random variable in Sn(F1, . . . , Fn) and Ra be

defined in (3.4). By Lemma 3.4(a), we have E[Ra] = E[S ]. Let FS and FRa be the df of S

and Ra respectively. Our goal is to show that∫ 1

c
F−1

Ra
(t) dt 6

∫ 1

c
F−1

S (t) dt, ∀c ∈ (0, 1). (3.5)

It is well-known that property (3.5) together with E[Ra] = E[S ] is equivalent to Ra ≺cx S

(see for instance Bäuerle and Müller, 2006, Theorem 2.5).

To prove (3.5), define AS (u) =
⋃

i{Xi > yi(u)} and let W(u) = P(AS (u)). By (E1) and since

P is subadditive, W(u) 6 u holds; moreover, 0 6 W(u + ε) −W(u) 6 ε, so W is continuous

and non-decreasing. For c ∈ (0, a], let u∗ = W−1(c) (the generalized inverse), so W(u∗) = c

and thus u∗ > c. Hence {Xi > yi(c)} ⊂ {Xi > yi(u∗)} ⊂ AS (u∗). Therefore

P
(
AS (u∗) \ {Xi > yi(c)}

)
= c − F̄i(yi(c))

(E2)
= Fi(yi(c) − y(c)) = P (Xi < yi(c) − y(c)) .

Since the above two sets have the same measure, we have

E[I{Xi<yi(c)−y(c)}Xi] 6 E[IAS (u∗)\{Xi>yi(c)}Xi]. (3.6)

It follows by Lemma 3.3 that, for c ∈ (0, a],

E[I{U<c}Ra] = E[I{U<c}h(U)]

=

n∑
i=1

E
[(

I{Xi<yi(c)−y(c)} + I{Xi>yi(c)}
)
Xi

]
6

n∑
i=1

E
[(

IAS (u∗)\{Xi>yi(c)} + I{Xi>yi(c)}
)
Xi

]
= E

[
IAS (u∗)S

]
,

where the inequality follows from (3.6). Thus we have

E[I{U<c}Ra] 6 E[IAS (u∗)S ]. (3.7)
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Note that h(x) is non-increasing on (0, a) and limx→a− h(x) > d(a). Thus for c ∈ (0, a],

E[I{U<c}Ra] = E[I{U<c}h(U)] =

∫ 1

1−c
F−1

Ra
(t) dt. (3.8)

Also note that, since P(AS (u∗)) = c,

E[IAS (u∗)S ] 6
∫ 1

1−c
F−1

S (t) dt. (3.9)

It follows from (3.7), (3.8) and (3.9) that for any c ∈ (0, a],∫ 1

1−c
F−1

Ra
(t) dt 6

∫ 1

1−c
F−1

S (t) dt. (3.10)

For x ∈ [0, 1−a], let G(x) =
∫ 1

x F−1
S (t) dt−

∫ 1
x F−1

Ra
(t) dt. Note that F−1

S (t) is non-decreasing,

and F−1
Ra

(t) = d(a) is constant on t ∈ [0, 1 − a], hence G(x) is concave on [0, 1 − a]. Hence,

with G(0) = E[S ] − E[Ra] = 0 and G(1 − a) > 0 by (3.10), we have that G(x) > 0 on

[0, 1 − a]. Thus ∫ 1

c
F−1

Ra
(t) dt 6

∫ 1

c
F−1

S (t) dt (3.11)

for any c ∈ (0, 1), and hence Ra ≺cx S .

(ii) ⇐: This is a direct result of (i) and Lemma 3.4(c).

⇒: Suppose Rsn

d
= S ∈ Sn(F1, . . . , Fn), so S = X1 + · · ·+Xn for some Xi ∼ Fi, i = 1, . . . , n.

Thus (3.6) is an equality for each i and c ∈ (0, sn]. This implies that AS (u∗) \ {Xi > yi(c)} =

{Xi < yi(c)−y(c)}, hence AS (u∗) = {Xi < yi(c)−y(c)}∪{Xi > yi(c)} for each i and c ∈ (0, sn],

up to a difference of a P-null set. As a consequence, S has the same construction as in the

proof of Lemma 3.4 (c) on the set A := {Xi < yi(sn) − y(sn)} ∪ {Xi > yi(sn)}. Therefore,

S IA
d
= h(U)IA for some U ∼ U(0, sn) independent of X1, . . . , Xn. Since S d

= Rsn , we have

that S IAc = d(sn)IAc , that is,
n∑

i=1

XiIAc
a.s.
= d(sn)IAc ,

where Ac = ∩n
i=1{yi(sn) − y(sn) 6 Xi 6 yi(sn)}, and thus (D) holds. �

Note that when (C) and (D) hold, sn and d(sn) is uniquely determined. Moreover, since the

smallest element in Sn(F1, . . . , Fn) with respect to convex order is unique in law, h is unique

on (0, sn). Even if (D) is not satisfied, Theorem 3.1 (i) always provides a lower convex bound,

which in case of sn = 0, reduces to a constant.
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Together with the classical result on comonotonicity (2.1), this yields the convex bounds

for S ∈ Sn(F1, . . . , Fn) under (C):

Rsn ≺cx S ≺cx F−1
1 (U) + · · · + F−1

n (U),

where U ∼ U(0, 1). When (D) holds, the upper and lower bounds are both sharp. Note that (F)

implies (C) and (D), hence in the case of decreasing densities the problem is fully solved.

Remark 3.2. If F1 = · · · = Fn = F, one solution to (E1)-(E2) is given by yi(x) = F−1
i (x/n) (see

Remark 3.1). In that case, we have that hi(x) = H(x/n), d(a) = D(a/n), sn = ncn, Ra = Tna with

H, D, cn and T defined in Section 2. Thus, Theorem 3.1 implies Theorem 2.1 which is the main

result in Bernard et al. (2014a).

Remark 3.3. In this section we only discussed the case for n > 3. As explained in Section 2.3,

the case for n = 2 is well-known. Note, however, that our result is also valid for n = 2, and it

reduces to the counter-monotonic scenario when conditions (C) and (D) hold. This can be seen

by the construction using counter-monotonicity in the proof of Lemma 3.4 (c), and the fact that

joint mixability implies counter-monotonicity in the case of n = 2.

Similar to the homogeneous risks in Bernard et al. (2014a), the optimal dependence struc-

ture for heterogeneous risks can be described as follows. The probability space is divided into

two subsets:

• For each i, if Xi is large, then each X j, j , i is small and (Xi, X j) are counter-monotonic.

This part has probability sn. Since only one of Xi can be large in any outcome, this part

represents mutual exclusivity.

• For each i, if Xi is of medium size, then each X j, j , i is also of medium size, and the sum

X1 + · · ·+ Xn is a constant. This part has probability 1− sn and represents joint mixability.

• The optimal dependence structure is a joint mix if sn = 0, and it is a “nearly mutually

exclusive structure” if sn = 1.

Different from the optimal structure in Bernard et al. (2014a), the optimal structure in our

paper involves functions y1, . . . , yn. Essentially, the function F̄i(yi(x)) represents the weight

assigned to each individual risk Xi due to inhomogeneity. In the homogeneous case, it is x/n,

which means that each individual risk is assigned an equal weight.
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3.2 Discussion on assumptions

In this section, we briefly discuss some issues related to the assumptions imposed for the

main results. With some more complicated technical details, some of the assumptions can be

relaxed slightly.

3.2.1 Continuity of the marginal distributions

The continuity assumed in this section is for ease of notation in (E1)-(E2). In the case

when F1, . . . , Fn are possibly discontinuous, (E1)-(E2) needs to be replaced by the following

two equations. For t1, . . . , tn : (0, 1)→ (0, 1), and y : (0, 1)→ R+,

(G1)
∑n

i=1 ti(x) = x, and

(G2) F−1
i (1 − ti(x)) − F−1

i (x − ti(x)) = y(x) for each i = 1, . . . , n.

That is, ti(x) = F̄i(yi(x)) in the continuous case. Then a solution to (G1)-(G2) may exist which

satisfies the properties in Lemma 3.2 (substituting yi(x) = F−1
i (1− ti(x))). In this case, Theorem

3.1 is still valid.

For instance, one can add some probability mass to the marginal distributions at zero. A

particular example concerns mutual exclusivity. Suppose that F1, . . . , Fn are compatible with

mutual exclusivity, i.e.
∑n

i=1 Fi(0) > n − 1, and each Fi is continuous on [0,∞). Let y(x) =

sup{t :
∑n

i=1 F̄i(t) > x} and ti(x) = F̄i(y(x)). We can easily check that y, t1, . . . , tn is a solution

to (G1)-(G2) which satisfies (i)-(iv) in Lemma 3.2 with strict inequalities replaced by non-strict

inequalities. Theorem 3.1 holds for this case, and the optimal structure is given by mutual

exclusivity. This is consistent with the construction explained after Theorem 3.1, which contains

a “nearly mutually exclusive” component.

3.2.2 Monotonicity of h

One key property to show that Rsn ≺cx S for all S ∈ Sn(F1, . . . , Fn) is that h has to be

non-increasing on (0, sn). Similar to the homogeneous models in Bernard et al. (2014a) (see

conditions (A) and (A’) in Section 2), if we assume that all properties in Lemma 3.2 hold on

(0, a) for some a < sn (in particular, h is decreasing on (0, a)), we still have the results in

Theorem 3.1 (i): Ra ≺cx S for all S ∈ Sn(F1, . . . , Fn). This can be used to obtain convex bounds

when (C) does not hold, i.e. in case of less regularity of F1, . . . , Fn.
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However, one only obtains a sharp bound if a = sn, since Ra < Sn(F1, . . . , Fn) for a < sn.

This is implied by a necessary condition for joint mixability (Wang and Wang, 2014, Theorem

2.1). We skip a detailed discussion on cases when (C) does not hold.

3.3 Proofs of Lemma 3.1 and 3.2

In this section we give proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. Fix any x ∈ (0, 1) and inductively define the following functions for z ∈

(0, x]:

ϕi(z) = F−1
i (1 − zi) − F−1

i (x − zi), i = 1, . . . , n, (3.12)

where z1(z) = z, and for i = 2, . . . , n, zi(z) denotes the unique solution to

ϕi−1(z − zi) = F−1
i (1 − zi) − F−1

i (x − zi). (3.13)

Below we will show that zi(z), i = 1, . . . , n are well-defined. The interpretation is that the

function ϕk(z) returns the value y(x) for the system where (E1) is replaced by
∑k

i=1 F̄i(yi(x)) = z,

and (E2) is relaxed to hold only for i = 1, . . . , k. Similarly, zk(z) returns the probability mass in

the right tail of margin k in this modified system.

Since each Fi is strictly concave, F−1
i is strictly convex, so F−1

i (1 − ·) − F−1
i (x − ·) is a

continuous and decreasing function, with right limit ∞ at 0+. Clearly, ϕ1(·) is such a function.

For induction, assume ϕi−1 also is and let

δi(z, zi) = ϕi−1(z − zi) − F−1
i (1 − zi) − F−1

i (x − zi).

Then δi(z, zi) is continuous in each argument, decreasing in z and increasing in zi. Moreover,

δi(z, 0+) = −∞ and δi(z, z−) = ∞, so for each z ∈ (0, x] there is a unique solution zi(z) ∈ (0, z)

of (3.13) i.e. of δi(z, zi) = 0, and zi(z) is continuous and increasing. Hence, by (3.12) also ϕi is a

continuous and decreasing function, with right limit ∞ at 0+, completing the induction. Hence

zi(z) and ϕi(z), i = 1, . . . , n are well-defined functions on z ∈ (0, x].

Finally, let z∗n = zn(x) and z∗i = zi(x−
∑n

j=i+1 z∗j) for i = n−1, n−2, . . . , 1. Setting y = ϕn(x)

and yi = F−1
i (1 − z∗i ), i = 1, . . . , n yields the values of functions y, y1, . . . , yn at the point x. �

In the following we will use Lemma 5.6 of Wang and Wang (2014), which we state below.
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Lemma 3.5 (Wang and Wang (2014)). If a distribution F has a decreasing density f on the

support [0, L], L ∈ R+, then writing A = L f (0) and B = L f (L), the mean µ of F satisfies

µ > L
AB + 1 − 2B

2(A − B)
.

The above lemma is obtained using a piecewise linear upper bound on F.

Proof of Lemma 3.2. (i) Suppose yi(x) 6 0 for some x ∈ (0, 1). Then F̄i(yi(x)) = 1 > x which

violates (E1). Suppose yi(x) − y(x) 6 0 for some x ∈ (0, 1). Then Fi(yi(x) − y(x)) = 0, so

F̄i(yi(x)) = x by (E2), and F̄ j(y j(x)) = 0 for j , i by (E1). This contradicts the assumption

that densities are decreasing (hence positive) on [0,∞).

(ii) Define a function f : Rn+1 → Rn+1 by

f (y1, . . . , yn, y) =

F1(y1 − y) + 1 − F1(y1), . . . , Fn(yn − y) + 1 − Fn(yn), n −
n∑

i=1

Fi(yi)

> .
Since f (y1(x), . . . , yn(x), y(x)) = (x, . . . , x)> for x ∈ (0, 1), the total derivative wrt. x is

∂ f (y1, . . . , yn, y)
∂(y1, . . . , yn, y)>

·
d(y1, . . . , yn, y)>

dx
= (1, . . . , 1)>.

Writing ai = fi(yi − y) and bi = fi(yi), the Jacobian matrix ∂ f (x,y1,...,yn,y)
∂(y1,...,yn,y)> takes the form

J(y1, . . . , yn, y) =



a1 − b1 0 . . . 0 −a1

0 a2 − b2 0 . . . −a2
... 0 a3 − b3 . . .

...

0
...

...
. . . −an

−b1 −b2 . . . −bn 0


.

Let c =
∑n

i=1
aibi

ai−bi
and δi j be the Kronecker delta: δi j = I{i= j}. The inverse J−1 is then given

by

J−1
i j = −

1
c

ai

ai − bi

b j

a j − b j
+

δi j

ai − bi
, J−1

i,n+1 = −
1
c

ai

ai − bi
,

J−1
n+1, j = −

1
c

b j

a j − b j
, J−1

n+1,n+1 = −
1
c
,

for i, j = 1, . . . , n. Hence from d(y1, . . . , yn, y)>/dx = J−1 · (1, . . . , 1)>, we obtain

y′ = −
1
c

 n∑
j=1

b j

a j − b j
+ 1

 < 0 and y′i =
1 + aiy

′

ai − bi
.
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To show y′i < 0, or equivalently aiy
′ < −1, it remains to prove the inequality

ai

 n∑
j=1

b j

a j − b j
+ 1

 > c, i = 1, . . . , n.

We apply Lemma 3.5 to the conditional distributions of Fi on intervals [yi − y, yi], with

supports shifted to the origin, i.e. we use F̂i(z) = Fi(z + (yi − y))/(1 − x) for z ∈ [0, y]. For

each i, denote by µi the mean of F̂i and note that the three quantities y, aiy/(1 − x) and

biy/(1 − x) correspond to L, A and B in Lemma 3.5 applied to F̂i. Lemma 3.5 yields

µ j > y
a jb jy/(1 − x) + (1 − x)/y − 2b j

2(a j − b j)
, j = 1, . . . , n. (3.14)

Define

c0 =

n∑
j=1

1
a j − b j

and c1 =

n∑
j=1

b j

a j − b j
,

then (3.14) sums up to
n∑

j=1

µ j > y

(
cy/(1 − x) + c0(1 − x)/y

2
− c1

)
.

Since x ∈ (0, sn), we have that h(x) =
∑n

i=1 yi − (n − 1)y > d(x) =
∑n

i=1(µi + yi − y) so∑n
i=1 µi < y. Hence, using the AM-GM (Arithmetic Mean-Geometric Mean) inequality we

obtain 1 >
∑n

i=1 µi/y >
√

cc0 − c1. Rearranging 1 >
√

cc0 − c1, we have

(c1 + 1)2

c0
> c. (3.15)

Finally, by ai > 1/y > b j, ∀ j , i, it follows that

c1 + 1 =
∑
j,i

b j

a j − b j
+

bi

ai − bi
+ 1 <

∑
j,i

ai

a j − b j
+

ai

ai − bi
= aic0.

As a consequence, we obtain ai(c1 + 1) > c from (3.15), and thus y′i < 0, i = 1, . . . , n.

(iii) Since (yi − y)′ = (1 + biy
′)/(ai − bi), it suffices to show that biy

′ > −1, i.e. bi(c1 + 1) < c.

This can be seen from

bi(c1 + 1) = bi

∑
j,i

b j

a j − b j
+

bi

ai − bi
+ 1

 =
∑
j,i

bib j

a j − b j
+

aibi

ai − bi
<

n∑
j=1

a jb j

a j − b j
= c.

(iv) A straightforward calculation yields

h′ =

n∑
i=1

y′i − (n − 1)y′ = c0 + y′
 n∑

i=1

ai

ai − bi
− n + 1

 = c0 + y′(c1 + 1) = c0 −
(c1 + 1)2

c
,

so h′ < 0 by inequality (3.15). �
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4 Applications to Quantitative Risk Management

4.1 Bounds on convex and coherent risk measures

Convex and coherent risk measures (Artzner et al. (1999), Föllmer and Schied (2002)) are

powerful mathematical tools used to calculate capital requirement for a financial institution. The

consistency between convex order and convex risk measures can be found in Bäuerle and Müller

(2006). As a consequence of Theorem 3.1, we find the lower bound for convex and coherent

risk measures over the admissible risk class. For general definitions of coherent and convex risk

measures, we refer to Föllmer and Schied (2011, Chapter 4). Recall the definition of Rsn in (3.4)

on page 12.

Corollary 4.1 (Bounds on convex risk measures). For any law-invariant and convex risk mea-

sure ρ, if (C) holds, then

inf
S∈Sn(F1,...,Fn)

ρ(S ) > ρ(Rsn), (4.1)

and the above inequality is an equality if (D) holds.

One of the most commonly used coherent risk measures is the Expected Shortfall (ES),

also known as Tail Value-at-Risk (TVaR) or Conditional VaR (CVaR) in the actuarial literature.

The ES of S at level p is defined as

ESp(S ) =
1

1 − p

∫ 1

p
VaRα(S ) dα, p ∈ [0, 1),

where VaRp is another popular risk measure, the Value-at-Risk (VaR) at level p:

VaRp(X) = inf{x : P(X 6 x) > p}, p ∈ (0, 1). (4.2)

Here we give a lower bound on ES over the admissible risk class. For the notation, see page 10.

Corollary 4.2 (Bounds on ES). For p ∈ [0, 1), if (C) holds, then

inf
S∈Sn(F1,...,Fn)

ESp(S ) >


1

1−p
(
E[S ] − pd(sn)

)
, p 6 1 − sn,

1
1−p

∫ 1−p
0 h(x) dx, p > 1 − sn,

(4.3)

and the above inequality is an equality if (D) holds.
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4.2 Bounds on expectations of convex functions

A convex (concave) expectation of a random variable X is defined as E[ f (X)] where

f : R → R is a convex (concave) function. By the definition of convex order, we have a

straightforward corollary about the lower bound on a convex expectation (or upper bound on a

concave expectation) over the admissible risk class Sn(F1, . . . , Fn),

E[ f (S )] = E[ f (X1 + X2 + · · · + Xn)]. (4.4)

Recall that when f is convex, the upper bound can be computed explicitly with the comonotonic

dependence structure.

Corollary 4.3 (Bounds on convex expectations). For a convex function f , if (C) holds, then

inf
S∈Sn(F1,...,Fn)

E[ f (S )] >
∫ sn

0
f (h(x)) dx + (1 − sn) f (d(sn)), (4.5)

and the above inequality is an equality if (D) holds.

Note that when sn = 0, (4.5) degenerates to Jensen’s inequality. However, Lemma 3.4 (b)

implies R0 ≺cx Rsn , so (4.5) always gives a better bound than Jensen’s inequality when sn > 0.

Another inequality about the lower bound on convex expectation is given in Cheung and

Lo (2013), summarized as follows:

Proposition 4.1 (Cheung and Lo (2013)). Let X1, . . . , Xn be non-negative random variables,

S = X1 + · · · + Xn, and f be a convex function such that E[ f (S )] exists.

(i) We have

E[ f (S )] > L1 :=
n∑

i=1

E[ f (Xi)] − (n − 1) f (0). (4.6)

(ii) If f is strictly convex, then equality holds in (4.6) if and only if X1, . . . , Xn are mutually

exclusive random variables.

Inequality (4.6) provides an easily calculated lower bound on E[ f (S )], S ∈ Sn(F1, . . . , Fn).

The bound (4.6) is sharp only if F1, . . . , Fn are compatible with mutual exclusivity. When mu-

tual exclusivity is not compatible, it is not clear which bound in (4.5)-(4.6) dominates the other.

For instance, for bounded distributions with h(0) 6 d(0), (4.5) becomes Jensen’s inequality

which is not strictly comparable to (4.6). In the numerical illustration in Section 5, we will

compare the two bounds.

23



Remark 4.1. Cheung and Lo (2013) provide two proofs of (4.6) based on the Breeden-Litzenberger

formula and mutual exclusivity. We remark that it can also be obtained from Karamata’s inequal-

ity (Karamata, 1932) that

f (S ) + (n − 1) f (0) >
n∑

i=1

f (Xi),

which is a stronger statement than (4.6).

4.3 Bounds on Value-at-Risk

The search for bounds on Value-at-Risk under dependence uncertainty is a topic of con-

siderable interest in theory as well as practice; see Embrechts et al. (2014) for a review. Due the

fact that VaR does not respect convex order, optimization problems with respect to VaR have

always been challenging. A connection between the bounds on VaR and the lower convex bound

over an admissible risk class has been given in Bernard et al. (2014a,b).

We suppose that F1, . . . , Fn are continuous dfs with positive density. For each i = 1, . . . , n,

we let Fi,p for p ∈ (0, 1) be the conditional distribution of Fi on [F−1
i (p),∞), and let F p

i for

p ∈ (0, 1) be the conditional distribution of Fi on [0, F−1
i (p)). Theorem 4.6 of Bernard et al.

(2014a) gives that

sup
S∈Sn(F1,...,Fn)

VaRp(S ) = sup{ess-inf(S ) : S ∈ Sn(F1,p, . . . , Fn,p)},

and

inf
S∈Sn(F1,...,Fn)

VaRp(S ) = inf{ess-sup(S ) : S ∈ Sn(F p
1 , . . . , F

p
n )},

where ess-inf(X) and ess-sup(X) are the essential infimum and the essential supremum of the

support of a random variable X. With this connection, the proofs of the following two corollaries

are trivial, hence we omit them here.

In the following corollary, we use (C)p (resp. (D)p) if F1,p, . . . , Fn,p satisfy (C) (resp. (D)).

The function hp and the quantity sn,p are the corresponding h and sn defined for the distributions

F1,p, . . . , Fn,p.

Corollary 4.4 (Upper bound on VaR). For p ∈ (0, 1), if (C)p holds, then

sup
S∈Sn(F1,...,Fn)

VaRp(S ) 6 hp(sn,p), (4.7)

and the above inequality is an equality if (D)p holds.
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Note that (F) implies (C) and (D). For (C)p and (D)p to hold, it suffices to require that

each F1, . . . , Fn has a decreasing density beyond its p-quantile. As p is typically close to 1, this

assumption is satisfied by all practical examples. Because of its practical relevance, we state it

as a separate corollary; the homogeneous version of this result is given in Wang et al. (2013).

Corollary 4.5 (Upper bound on VaR for tail-decreasing densities). For p ∈ (0, 1), suppose that

each F1, . . . , Fn has a decreasing density beyond its p-quantile, then

sup
S∈Sn(F1,...,Fn)

VaRp(S ) = hp(sn,p). (4.8)

Similar result holds for the lower bound on VaR. In the following corollary, we use (C)p

(resp. (D)p) if F p
1 , . . . , F

p
n satisfy (C) (resp. (D)). Let µp

i be the mean of F p
i , i = 1, . . . , n.

Corollary 4.6 (Lower bound on VaR). For p ∈ (0, 1), if (C)p holds, then

inf
S∈Sn(F1,...,Fn)

VaRp(S ) > max

 max
i=1,...,n

F−1
i (p) +

∑
j,i

F−1
j (0)

 ,
n∑

i=1

µ
p
i

 , (4.9)

and the above inequality is an equality if (D)p holds.

The inequality (4.9) is straightforward, whereas the sharpness under (C)p and (D)p is not.

5 Numerical Illustration

5.1 Results and comparison

In this section we explain how to calculate the bounds obtained in the previous sections,

and present the results from a numerical case study considering 10 different sets of marginal dis-

tributions. We compare the results from the method based on Corollaries 4.2 and 4.3 with their

alternatives: the Rearrangement Algorithm (RA) (Puccetti and Rüschendorf (2012), Embrechts

et al. (2013)), the bound given in Bernard et al. (2014a) based on an approximation with homo-

geneous risks, and the bound (4.6) given in Cheung and Lo (2013). Note that the sharpness of

the latter two bounds is either not justified or fails to hold for most of the heterogeneous models

of relevance. The RA values can be used as a good approximation to the exact values of the

bounds considered.

In Table 1 the bounds for the sets of margins considered in Bernard et al. (2014a) are listed,

and in Table 2 five further cases are presented. Three quantities are calculated: the variance
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E[ f (S )] = E[(S −K)2] where K =
∑n

i=1 E[Xi]; the European call option price (or excess of loss)

E[ f (S )] = E[(S − K)+], and ES of S at level 95%. It was mentioned in Cheung and Lo (2013)

that their bound on ES involves a complicated optimization procedure for heterogeneous models

which is unavailable in their paper, hence for ES we only compare Corollary 4.2 with the RA

and the approximation in Bernard et al. (2014a).

We observe in Tables 1 and 2 that the variance bounds from Cheung and Lo (2013) are quite

poor (in case a negative bound was obtained, it was replaced by the trivial bound Var(S ) > 0).

The bounds on option price are closer, but still far from sharp. In contrast, the bounds from

Corollaries 4.2 and 4.3 and the RA are in close agreement, which suggests that the JM condi-

tion (D) holds for the considered cases, and the bounds we obtain are sharp. In Table 2 more

dissimilar distributions (e.g. from different families) are considered, for which the homoge-

neous approximation bounds in Bernard et al. (2014a) are significantly worse than the ones

obtained by the method presented in this paper. The greatest deviation can be observed in the

case Pareto-LogN-Gamma (the last column of Table 2). For this case, in the left panel of Figure

1 the plots for the functions h(x), d(x) (used for sharp bounds in Theorem 3.1) are given, along

with H(x/n) and D(x/n) in Bernard et al. (2014a), which are used for the homogeneous approx-

imation bounds. Notice that the distributions of the constructed lower convex bounds using the

two methods differ significantly, and this leads to the discrepancies in Table 2. In the right panel

the weights F̄i(yi(x)) from the solution to the functional equations (E1)-(E2) are plotted. For

comparison, the implied values from the homogeneous approximation are shown in gray.

In the following section we provide details of the implementation.

5.2 Solving the functional equations

In order to solve the functional equations (E1)-(E2), we first obtain a system of ordinary

differential equations (ODEs) and an initial condition (as in the Implicit Function Theorem).

Differentiating (E1)-(E2) wrt. x yields a system of ODEs

(E1’) −
∑n

i=1 fi
(
yi(x)

)
y′i(x) = 1,

(E2’)
(

fi
(
yi(x) − y(x)

)
− fi(yi(x)

))
y′i(x) − fi

(
yi(x) − y(x)

)
y′(x) = 1 for each i = 1, . . . , n,

where fi is the density corresponding to Fi. For given yi(x) and y(x), this is a system of n + 1

linear equations of the form A ·
(
y′1, . . . , y

′
n, y
′
)>

= b (easy to solve, see the proof of Lemma 3.2).
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Figure 1: Left panel: plots of functions h(x), d(x) (used for sharp bounds) and functions H(x/n), D(x/n)

from Bernard et al. (2014a). Right panel: F̄i(yi(x)) from the solution to the functional equations (E1)-

(E2), in gray - implied values from the homogeneous approximation.

Thus, if an initial condition is available, we can solve the ODEs (E1’)-(E2’) using an Euler-type

scheme.

We find an initial condition yi(ε), y(ε) at x = ε > 0 (small), using an approximate method:

1. Solve
∑n

i=1 F̄i(y(M)) = ε for y(M) ∈ R,

2. Let y(m)
i = F−1

i
(
ε − F̄i(y(M))

)
(so that Fi(y

(m)
i ) + F̄i(y(M)) = ε),

3. Let y(ε) = y(M) −min16i6n y
(m)
i and yi(ε) = y(m)

i + y(ε).

Note that we effectively start by satisfying (E1) with identical yi ≡ y(M) and then shifting the

yi to the right, in order to satisfy (E2). Since the density in the right tail is typically smaller

than in the left tail, this shift does not significantly reduce the remaining mass in the right tail.

Moreover, for margins with the largest F̄i(y(M)), the yi are likely to be shifted the least. This

method provides very accurate initial conditions in the considered cases (error in (E1) less than

ε · 10−4 for ε = ∆x/2 = 10−6/2).

Using the initial condition at x = ε obtained in this manner, we solve the ODEs for

x ∈ [ε, 1]. This yields the solution yi(x), y(x) on a non-uniform grid of x values (we use the

function ode113 in Matlab, which is a variable step-size algorithm). Finally, we use linear inter-

polation to compute yi(x) and y(x) for the desired grid-points x ∈
{(

k − 1
2
)
∆x : k = 1, . . . , 1/∆x

}
.

We chose the step size ∆x = 10−6, as is typical in the literature. In all considered cases the
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interpolated results satisfy the equations (E1) and (E2) with an absolute error of order 10−8 or

less (for x ∈ (0, sn)).

In Figure 2 the solutions (quantiles) yi(x) − y(x) and yi(x) for x up to sn = 0.61 are plotted

over the densities of three different Log-Normal margins (the second case in Table 2). We notice

that more probability in the right tail of LogN(1, 1) is combined with the left tails of the other

two margins, i.e. F̄2(y2(x)) is the largest term on the left-hand side of (E1). The remaining

support intervals (shown in white) are of length y(sn), and h(sn) = d(sn) holds.
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LogN(1,1)

LogN(−1,1.5)

Figure 2: Quantiles yi(x) − y(x) and yi(x) for x = 1%, 2.5%, 5%, 10%, 25%, 61%.

Finally, to check that the discretization is fine enough, we compared the numerical means

of the constructed convexly minimal elements Rsn with the theoretical means. In all cases the

relative error wrt. the theoretical means was of the order 10−6.

5.3 Computation times

The computations were performed on a Lenovo X1 laptop with Intel Core i7 2GHz × 4 pro-

cessor and 8GB RAM. Computation times are summarized in Table 3. The range of computation

times between the ten considered cases are as follows. RA: 28− 81s, homogeneous approxima-

tion bounds from Bernard et al. (2014a): 373−667s, sharp bounds from Corollaries 4.3 and 4.2:

5−10s. The considerably longer computation times for the homogeneous approximation bounds

are due to the fact that we need to compute the inverse of F = 1
n
∑

Fi, which is computation-

ally expensive, and efficient algorithms are available only for special cases, see e.g. Castellacci

(2012). To test the scalability of the algorithms, we also computed the bounds for higher values
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of n for margins (n/2 different Pareto and n/2 different LogN). For n = 20 the computation

time for RA was 1 hour (note that the time is random due to a random initial rearrangement),

for homogeneous approximation 13 minutes and for the sharp bounds 13s. Furthermore, it was

possible to compute the sharp bounds for up to n = 100 different margins in less than 1 minute.

At this high number of margins, sn is very small and the optimal sum Rsn is almost identical to

its mean R0.

Table 1: RA results vs theoretical bounds

Pareto(1, αi), n = 3 Xi ∼ Log-Normal( i
10 , 1)

(α1, α2, α3) n

(3, 4, 5) (3.5, 4, 4.5) 3 5 10

Variance

RA 0.6057 0.3352 9.0990 10.3695 15.4077

Bernard et al. (2014a) 0.6063 0.3360 9.1075 10.3803 15.3885

Cheung and Lo (2013) 0.3114 0.0537 0 0 0

Corollary 4.3 0.6063 0.3359 9.1085 10.3938 15.5071

Option price with strike K =
∑n

i=1 E[Xi]

RA 0.1727 0.1413 0.7701 0.6419 0.4668

Bernard et al. (2014a) 0.1726 0.1413 0.7700 0.6405 0.4604

Cheung and Lo (2013) 0.1653 0.1340 0.6726 0.5450 0.4047

Corollary 4.3 0.1727 0.1413 0.7701 0.6420 0.4670

ES at level 0.95

RA 6.4259 5.8758 16.0777 21.7849 39.0253

Bernard et al. (2014a) 6.4257 5.8760 16.0778 21.7765 38.8893

Corollary 4.2 6.4261 5.8760 16.0782 21.7860 39.0288
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Table 2: RA results vs theoretical bounds

Xi ∼ Pareto(1, αi) X1 ∼ LogN(0, 1
2 ) X1 ∼ LogN(0, 1) X1 ∼ Gamma(2, 1

2 ) X1 ∼ Pareto(1, 3)

n = 10 X2 ∼ LogN(1, 1) X2 ∼ LogN(1, 1) X2 ∼ Gamma(3, 1
3 ) X2 ∼ LogN(1, 1

2 )

α = 3, . . . , 12 X3 ∼ LogN(−1, 3
2 ) X3 ∼ Pareto(1, 3) X3 ∼ Gamma(4, 1

4 ) X3 ∼ Gamma(3,1)

Variance

RA 0.3680 33.9531 27.8480 0.0258 0.7915

Bernard et al. (2014a) 0.3688 32.5465 27.3492 0.0199 0.4876

Cheung and Lo (2013) 0 22.6945 18.9757 0 0

Corollary 4.3 0.3686 33.9848 27.8620 0.0258 0.7916

Option price with strike K =
∑n

i=1 E[Xi]

RA 0.0729 1.5156 1.3957 0.0305 0.2474

Bernard et al. (2014a) 0.0728 1.4305 1.3613 0.0235 0.1283

Cheung and Lo (2013) 0.0710 1.3745 1.3206 0.0132 0.1230

Corollary 4.3 0.0729 1.5156 1.3957 0.0305 0.2474

ES at level 0.95

RA 13.4667 25.4528 24.9180 3.5553 10.5449

Bernard et al. (2014a) 13.4650 25.1146 24.8130 3.4551 9.8726

Corollary 4.2 13.4669 25.4534 24.9187 3.5554 10.5449
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Table 3: Computation times, in seconds

Case RA Bernard et al. (2014a) Corollaries 4.2 and 4.3

Table 1, case 1 28 438 5

Table 1, case 2 29 434 5

Table 1, case 3 30 375 5

Table 1, case 4 38 399 6

Table 1, case 5 81 456 8

Table 2, case 1 79 667 8

Table 2, case 2 32 373 6

Table 2, case 3 28 393 6

Table 2, case 4 39 572 10

Table 2, case 5 38 459 7

6 Conclusion

We give a general lower bound on the aggregate risk with respect to convex order for

heterogeneous marginal distributions. The bound is shown to be sharp when the marginal dis-

tributions all have decreasing densities. The new result partially answers an open question that

has existed in the theory of dependence modeling for a long time. Although the proposed lower

convex bound is generally implicit and involves solving a non-trivial functional equation, it

helps to understand the safest dependence structure with respect to convex order. As opposed to

comonotonicity, which is often treated as the most dangerous dependence structure, the safest

dependence structure can be interpreted as a combination of joint mixability and mutual exclu-

sivity. This is indeed not surprising if one realizes that joint mixability and mutual exclusivity

both give the safest dependence structure when they are compatible with the marginal distri-

butions. Our results directly lead to bounds on quantities including convex and coherent risk

measures, the expectation of convex functions and the Value-at-Risk of the aggregate risk. A

numerical procedure is provided to identify the distribution representing the lower convex bound

and to compute corresponding quantities of interest.
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We remark that there are still quite a few open questions on this new method, concerning

conditions (C) and (D). Numerical evidence seems to suggest that the main theorem holds for

much more general classes of distributions than those with decreasing densities. A theoretical

proof of such statements is still beyond our knowledge, and is expected to be very challenging.

The new results obtained in this paper are closely associated with the development of theory of

joint mixability, on which many open questions are left unanswered at this moment.
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Puccetti, G. and Rüschendorf L. (2012). Computation of sharp bounds on the distribution of

a function of dependent risks. Journal of Computational and Applied Mathematics, 236 (7),

1833-1840.

Puccetti, G., Wang, B. and Wang, R. (2012). Advances in complete mixability. Journal of

Applied Probability, 49(2), 430–440.

Puccetti, G., Wang, B. andWang, R. (2013). Complete mixability and asymptotic equivalence

of worst-possible VaR and ES estimates. Insurance: Mathematics and Economics, 53(3),

821–828.

Puccetti, G. andWang, R. (2014). General extremal dependence concepts. Preprint, University

of Firenze.

Puccetti, G. andWang, R. (2015). Detecting complete and joint mixability. Journal of Compu-

tational and Applied Mathematics, 280, 174–187.
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