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Abstract Recent literature has investigated the risk aggregation of a portfo-
lio X = (X;)1<i<n under the sole assumption that the marginal distributions
of the risks X; are specified but not their dependence structure. There exists a
range of possible values for any risk measure of S = """ | X; and the depen-
dence uncertainty spread, as measured by the difference between the upper
bound and the lower bound on these values, is typically very wide. Obtain-
ing bounds that are more practically useful requires additional information on
dependence.

Here, we study a partially specified factor model in which each risk X; has
a known joint distribution with the common risk factor Z, but we dispense
with the conditional independence assumption that is typically made in fully
specified factor models. We derive easy-to-compute bounds on risk measures
such as Value-at-Risk (VaR) and law-invariant convex risk measures (e.g., Tail
Value-at-Risk (TVaR)) and demonstrate their asymptotic sharpness. We show
that the dependence uncertainty spread is typically reduced substantially and
that, contrary to the case in which only marginal information is used, it is not
necessarily larger for VaR than for TVaR.

Keywords factor models - risk aggregation - dependence uncertainty -
Value-at-Risk

Mathematics Subject Classification (2010) MSC 97K50 - MSC 60E05 -
MSC 60E15 - JEL C02 - JEL G11

1 Introduction

The primary objective of this paper is to study the range of possible values
of a risk measure of an aggregate risk S = >_"" , X; under model uncertainty,
i.e., in a context in which the joint distribution of the vector X = (X;)1<i<n
is not perfectly known. Throughout, we refer to the bounds on such ranges
of values as risk bounds. The difference between the upper bound and the
lower bound is known as the dependence uncertainty spread and serves
as a measure of model risk.

In a number of recent papers, risk bounds for S have been derived under
the assumption that only marginal information is available, i.e., the distri-

butions F;, ¢ = 1,...,n of the X;, ¢« = 1,...,n are known, but not their
dependence. Due to the missing information regarding the dependence among
the X1,..., X, there is a wide range of possible values for a risk measure of S.

Typically, one observes a huge dependence uncertainty spread, showing that
models that are based on dependence assumptions that cannot be justified
(by data) are not reliable for portfolio risk assessment. For a recent discussion
and numerical illustrations of these risk bounds and their consequences in risk
management, we refer to Embrechts et al. (2014) and the references therein. In
this regard, we point out that the study of risk bounds relates to the important
question of choice of a risk measure, which involves issues such as impact on
risk taking, robustness and backtesting properties. For a select sampling of the
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relevant literature we point to the work of Follmer and Schied (2011), Cont
et al. (2010), Danielsson et al. (2005), Emmer et al. (2014), Gneiting (2011),
Jorion (2006), Kratschmer et al. (2012, 2014) and Embrechts et al. (2015).

Recent work on risk bounds concentrates on taking into account additional
information on the dependence among the risks Xy, ..., X,,. Perspectives that
researchers have introduced in this regard include the consideration of higher
dimensional marginals (see e.g., Puccetti and Riischendorf (2012)), the inclu-
sion of positive or negative dependence information (Bignozzi et al. (2015)),
the influence of the correlations among the X; (Bernard et al. (2015)), the
knowledge of the moments of the sum (Bernard et al. (2016)) and the influ-
ence of precise information about the joint distribution in some part of the
space (Bernard and Vanduffel (2015)). These studies provide evidence that
adding dependence information makes it possible to reduce the dependence
uncertainty spread significantly. In this paper, we consider dependence infor-
mation through the structural assumption of a factor model and study risk
bounds in this context.

Factor models appear to offer a useful device for modeling multivariate
distributions in various disciplines, including statistics, econometrics and fi-
nance. In particular, they play a central role in asset pricing (Fama and French
(1993), Engle et al. (1990)) and are used in monitoring mutual fund perfor-
mance (Carhart (1997)) and in portfolio optimization (Santos et al. (2013)).
In risk management, where they also drive regulatory capital requirements
(Gordy (2003)), they constitute the industry standard for the evaluation of
credit risk (Gordy (2000)). Specifically, the multivariate normal mean-variance
mixture model can be seen as a factor model and generates many of the s-
tandard and well-established distributions in quantitative finance, such as the
Variance Gamma, Hyperbolic and Normal Inverse Gaussian distributions. Im-
portantly, economic theories such as as the Arbitrage Pricing Theory (APT)
(Ross (1976)), the CAPM (Sharpe (1964)) and the rank theory of consumer
demands (Lewbel (1991)) are based explicitly on factor models.

In a factor model, the risks X; are expressed in a functional form as

Xi=fi(Z&), 1<i<n, (1.1)

where g; are idiosyncratic risk components and Z is a common risk factor
taking value in a set D C RZ The typical assumptions for factor models, as
in (1.1), are that the factor Z has known distribution and that, conditionally
on Z = z € D, the risks X; are independent (i.e., the ¢; are independent)
with known (conditional) distribution Fj|,. However, the assumption that the
risks are conditionally independent given the factor is challenging and often
appears to be made in an ad-hoc fashion and not grounded in data or statistics
(Connor and Korajczyk (1993)). The results of our paper make it possible to
assess the sensitivity of any factor model with respect to this assumption. In
the context of asset pricing, Chamberlain and Rothschild (1982) and Ingersol-
1 (1984) relax the conditional independence assumption slightly and develop
so-called approximate factor models. In this paper we dispense with the con-
ditional independence assumption and investigate the consequences of doing
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so on risk bounds, leaving other possible applications for future work. Clearly,
there might be further possible model risk due to misspecification of the law of
the factor or of the conditional laws of the risks given the factors or as a result
of further assumptions such as the number of factors. In this paper, however,
we concentrate on the risk contribution arising from possible departures from
the conditional independence assumption.

When we dispense with the assumption of conditional independence among
the individual risks X;, ¢ = 1,...,n, their joint distribution is no longer speci-
fied. However, the joint distributions H; of (X;, Z), and thus also the marginal
distribution F; of X;,4 =1,...,n, are known. We label this setting a partial-
ly specified factor model. As compared to considering only the information
on the marginal distributions of X, ..., X,,, using the additional information
on the common risk factor Z leads to improved risk bounds (smaller depen-
dence uncertainty spread) when assessing the risk of the aggregated portfolio
S = Z?:l Xi.

In Section 2, following this introduction, we formally introduce the partially
specified factor model. By representing X as a mixture, we obtain sharp upper
and lower bounds for the tail probabilities and thus, by inversion, for the
VaR as well. Unfortunately, the evaluation of these bounds typically poses a
considerable challenge. Hence, we derive a more explicit mixture representation
for the sharp VaR bound that will be the basis for obtaining VaR bounds in
Section 4 that are asymptotically sharp and that can be practically evaluated.

First, however, in Section 3, we study sharp upper and lower bounds for
law-invariant convex risk measures (including the Tail-Value-at-Risk (TVaR)
as a special case). These bounds follow from the availability of the largest and
smallest elements with respect to convex order for the distribution of S. The
largest elements are attained by a dependence structure of comonotonicity
conditionally on Z (see Dhaene et al. (2006) for an overview on comonotonic-
ity) and, when the distributions satisfy suitable assumptions, the smallest
elements are attained by a dependence structure of joint mixes (Wang and
Wang (2016)) conditionally on Z. We obtain explicit convex lower bounds for
S in the context of a mean-variance mixture model.

In Section 4, based on the mixing type formula for the sharp VaR bounds,
we obtain approximations of the VaR bounds by means of TVaR-based esti-
mates. This procedure leads to greatly simplified formulas that are well suited
to numerical evaluation. We demonstrate that the TVaR-based approxima-
tions are asymptotically sharp. These results extend those of Puccetti and
Riischendorf (2014) and Embrechts et al. (2015), where only the marginal in-
formation was used. Furthermore, Embrechts et al. (2015) show that in this
setting the VaR of large portfolios (asymptotically) exhibits a larger depen-
dence uncertainty spread than the TVaR. These authors use this feature as an
argument in support of the use of TVaR in risk management. By contrast, it
cannot be expected that such a result will hold for a partially specified factor
model, and we provide an example to illustrate this point. By supplementing
the partially specified factor model with (conditional) variance information, we
derive further improved bounds, and we discuss their asymptotic sharpness.
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Finally, in Section 5 we assess the model uncertainty of a credit risk port-
folio that is modeled using a Bernoulli mixture model (KMV model). This
application and other examples that we provide in the text illustrate the re-
sults and establish a clear impression of the range of reduction of dependence
uncertainty that one can obtain by using factor information.

2 Risk factor models and VaR bounds
2.1 Partially specified risk factor models

Let (£2, A, P) be an atomless probability space and X be a set of real-valued
random variables (rvs) on (£2, A4, P). We take X = L°, the set of all rvs in
this section and X = L' in the sections that follow. A risk measure g is a
mapping from X to (—oo,00]. In this paper we consider only law-invariant
risk measures. Let Z € X% be a random vector with essential support D C R?.
We refer to Z as a risk factor. We use Pz to denote the distribution measure
of Z on D.

Let H = (H;)1<i<n be a vector of (1 + d)-variate distributions and define
the partially specified factor model

AH)={X € X" : (Xi,Z) ~ H;, 1 <i<n) (2.1)

as the set of random vectors X = (X;)1<;<n such that for each i = 1,...,n,
(Xi, Z) has joint distribution (function) H;. Z has distribution G and for each
t = 1,...,n X; has distribution F; and conditional distribution Fj, given
Z = z, z € D. However, the distribution of X is not completely specified. In
this paper, we aim at determining (sharp) upper and lower bounds on o(S)
where o is some risk measure, S = Y. | X; and X € A(H). Specifically, we
consider the problems

o’ =sup{o(S) : X € A(H)} and of = inf{o(S) : X € A(H)}. (2.2)

In the remainder of the paper we often refer to the partially specified risk
factor model as the constrained setting.

Write F' = (F;)1<i<n. In comparison to the partially specified factor model,
the model with marginal information (only) is defined as

and in this setting one considers the problems
o =sup{o(S) : X € A;(F)} and o = inf{o(S) : X € A1(F)}. (2.4)

We refer to this setting as the unconstrained setting. This setting has been
studied extensively in recent literature; we refer to Embrechts et al. (2014) for
a fairly up-to-date account.

By definition, the admissible class A(H) of risk vectors X with information
on the risk factor Z is contained in A, (F'), i.e., A(H) C Ai(F). Hence, o <
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o! and o' < 7. Note that when the risk factor Z is independent of X1, ..., X,
ie., F;, = F;, 1 <i < n, only the information on the marginal distributions
is useful and the study of the constrained bounds g/ and of reduces to the
well-studied cases of the unconstrained bounds g and o.

Following Embrechts et al. (2015), in the unconstrained setting we define
the dependence uncertainty spread of a risk measure ¢ as the difference o
— p and, in the constrained setting, we define it as o/ — of. To measure
the improvement we obtain through the factor information, we propose the
measure of improvement A,, defined as

@f*Qf

A, =1— —
e 2—0

: (2.5)

in which we assume by convention that A, = 1 when p = p. Specifically, we
study the problem (2.2) using as risk measure g the tail probability. That is,
we consider

M(t) :=P(S>t) for teR,

but we also use risk measures such as VaR and TVaR. Here, the VaR at a-
confidence level, 0 < a < 1, is defined by
VaRy (V) =inf{zr € R : Fy(z) > a}, Y € X, (2.6)

where Fy () is the distribution function of Y. The VaR is thus defined as the
(left) generalized inverse of the distribution function, i.e., VaR,, (Y) = Fy- ().
The TVaR at confidence level « € (0, 1) is defined as

1
TVaRa(Y) = 5

—

1
/ VaR,(Y)du, Y € X. (2.7)

When the risk measure g is the tail probability, the VaR or the TVaR we
denote in the partially specified risk factor model the upper bounds g/ in (2.2)
by M/ (t) (t € R), VaRf, or TVaR/, a € (0, 1), respectively. The corresponding
risk infima are denoted by M7 (t), VaR/ and TVaR/ , respectively. In the model
with marginal information only, g is specifically denoted as M (t) (¢ € R), VaR,,
and TVaR,, « € (0,1), and similarly for other quantities.

It turns out to be useful to describe the risk vector X = (X;)1<i<n € A(H)

through a mixture representation: X 4 Xz with X, = (X, .)1<i<n €
Ai(F.), ze€ D. Here, F. = (Fj.)1<i<n is the vector of conditional distribu-
tions of X; given Z = z, i = 1,...,n. By conditioning, the distribution Fg of
S satisfies

FS :/Fsz dG(Z), (28)

where (and throughout) S, = Y7, X; . is the sum of the conditional variables
(Xi,2)1<i<n, and the above integral, without further specification, is taken over
its natural region D. The random variables X; ,, 4 =1,2,...,n, z € D can be
constructed as

X,.=FNU.), 1<i<n, (2.9)

i|z
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where U, = (Ui,...,U, ) is some random vector with U(0,1) marginal
distributions, and (U,).ecp is independent of Z. Of course, in a similar way
as for Ay(F) and A(H), risk bounds can also be defined for the admissible
class A;(F,). In this paper, the notation M (t) is used to denote the sharp
tail probability bound for the class A;(F}).

2.2 VaR bounds

The mixture representation in (2.8) implies the following sharp tail probability
bounds. The proof is provided in the appendix. In this section we do not impose
any assumptions on G and F,, z € D.

Proposition 2.1 (Sharp tail probability bounds) The sharp upper and
lower tail probability bounds for the partially specified risk factor model are
given by

(1) = / (1) dG(2), and MY (t) = / M.(#)dG(z), teR.  (2.10)

As a corollary to Proposition 2.1, we obtain the following sharp VaR bounds.

Corollary 2.2 (Sharp VaR bounds) The sharp upper and lower VaR, bound-
s in the partially specified risk factor model are given by

VaR/ = (M/)"'(1 — @), and VaR!, = (M) (1 — @), a € (0,1), (2.11)
where, for a € (0,1), respectively,

(M) '1—a)=sup{teR : M/ (t) >1—a}, (2.12)

(MH)™'1—a)=sup{teR: MI(t) >1—a}. (2.13)

The representation result in (2.10) shows that when the risk measure at
hand is the tail probability or the VaR, the problem of determining sharp
bounds in the constrained setting essentially reduces to the aggregation of
bounds that are derived using information on conditional distributions (F5.)
only. Hence, we can build on the results that have been derived in this uncon-
strained setting; see Embrechts et al. (2014) and the references therein for a
summary of existing results. We apply some of these results to the following
two-dimensional example with normally distributed risks and compare the de-
pendence uncertainty spread in the unconstrained setting with the one in the
constrained setting.

Ezample 2.3 (VaR bounds for normally distributed risks) Assume that X; and
X have N (0, 1) distributed marginals with distribution denoted by @ and that
Z is a risk factor such that (X;, Z) has a bivariate normal distribution with
correlation parameter r; € (—1,1), ¢ = 1,2. A stochastic representation is

given by X; = r,Z + /1 —r2e;, i = 1,2, where €; and €2 have N(0,1)
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distributed marginals and are independent of Z (but have an unknown joint
dependence).

As for the unconstrained bounds (with information on marginal distribu-
tions only), we obtain from results known in the literature (see Riischendorf
(1982) and Bernard et al. (2015))

1+«

VaR,, = VaRo(¢ H(U)+® ' (14+a-U)) = 2! ( 5

), a e (0,1), (2.14)
and
VaR, = VaRa ($~1(V) + & Yo — V)) = 20 (%) L ae(0,1), (2.15)

where U ~ Ula, 1] and V ~ U(0, ).

As for the constrained bounds, we first consider rqy = ry. Observe that X,
has N(r;z,1 — r?) distributed marginals, i = 1,2. Hence, from (2.14)—(2.15)
we obtain sharp upper bounds and lower bounds on M (t) and M.(t), t € R.
Using formula (2.10), we find, after a numerical inversion, the values of VaR/,
and VaR/. Here, the values inside the integrals in (2.10) are known explicitly
and the integral is evaluated numerically. Next, we consider r; = —ry. We
obtain that VaR/ = /1 — r? VaR,, and VaR/= /1 — r? VaR,.

Table 2.1 displays the bounds for different values of r; and « as well as the
measure of improvement Ay,g obtained by using factor information. In Panel
A, where 1 = ro, we observe that the upper bounds do not improve, whereas
the lower bounds show essential improvements. In Panel B, where ry = —ro,
we find the opposite picture: the upper bounds improve significantly whereas
the lower bounds remain essentially the same.

2.3 A mixture representation of VaR bounds

In general, there are two main challenges when evaluating the bounds VaR/,
and VaR/ . First, the representation result (2.11) requires, for a given probabil-
ity level a € (0,1), to establish the function ¢t — M7 (t), t € R, in which each
M (t) requires aggregation of the (marginal) tail probability bounds M, (t),
z € D; see also Example 2.3. Second, even in the unconstrained setting, ob-
taining sharp VaR bounds is an open problem in general, and analytical results
are available only for small portfolios (n = 2), some classes of homogeneous
portfolios and asymptotically large portfolios (n — o0) (see Embrechts et al.
(2014)). Puccetti and Riischendorf (2012) and Embrechts et al. (2013) propose
the Rearrangement Algorithm (RA) as a practical approach to approximating
the unconstrained bounds. In response to these issues, we proceed, by express-
ing in the remainder of this section, the VaR bounds VaR/ and VaR/ directly
in terms of (marginal) VaR bounds. These expressions, combined with the use
of some results and ideas that are valid in the unconstrained setting, provide
the basis for obtaining, in Section 4, bounds that can be practically evaluated
and that are asymptotically sharp.
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Panel A 71 || VaRa || (VaRa,VaRa) | (VaR{, VaRY) || Avar
0 2326 [ (—0.125,3.920) || (—0.125,3.920) 0%
a =0.95 0.5 2.849 (—0.125,3.920) (0.822,3.920) 23.44%
0.8 || 3.121 || (-0.125,3.920) (1.894,3.880) || 50.92%
1 3.290 (—0.125, 3.920) (3.290, 3.290) 100%
0 || 3643 [[ (—0.0125,5.614) || (—0.013,5.614) 0%
a = 0.995 0.5 4.461 (—0.0125,5.614) (1.893,5.614) 33.87%
0.8 4.887 (—0.0125,5.614) (3.464, 5.606) 61.93%
1| 5152 | (—0.0125,5.614) || (5.152,5.152) 100%
Panel B r1 || VaRa || (VaRa, VaRa) (VaR%, VaRY) Avar
o[l 2326 || (—0.125,3.920) [ (—0.125,3.920) 0%
a=095 05 || 2.849 || (—=0.125,3.920) | (—0.109,3.395) || 13.4%
0.8 || 3.121 || (-0.125,3.920) || (-0.075,2.352) 40%
1 || 3290 || (—0.125,3.920) (0.000, 0.000) 100%
0 || 3.643 || (=0.0125,5.614) || (—0.0125,5.614) 0%
@=0995 05 | 4.461 || (—0.0125,5.614) || (—0.011,4.862) || 13.4%
0.8 4.887 (—0.0125,5.614) (—0.007,3.368) 40%
1 5.152 (—0.0125,5.614) (0.000, 0.000) 100%
Table 2.1 VaR bounds in the normal case. Panel A: 71 = r2. Panel B: r; = —ra. VaRg

corresponds to the case in which (X1, X?2) is bivariate normally distributed with correlation

2
T1-

To evaluate

VaR/ = sup{VaR,(Sz) : Xz € A(H)},

(2.16)

we first provide two explicit representations of VaR(Sz). Hence, for v € R
and z € D, define

pl = Fs_ () and b7 = esssup,.p VaR,»(S>),

(2.17)

where esssup,p in (2.17) is taken with respect to Pz. Note that for distribu-
tions with positive densities on its support, b is equal to 7.

Proposition 2.4 (VaR representation of mixtures) For a € (0,1), the
VaR at level a of the mizture Sz has the following representations:

a)

b)

VaRa(Sz) = inf {7 €R : /p; dG(z) > a}.

(2.18)

(2.19)

VaR, (Sz) = inf {b'y v eR, /p'z’ dG(z) > a}.
Proof a) For a € (0,1), we have, by definition,
VaRq(Sz) = inf{y € R : Fg,(y) > a} = inf {’y eER: /Fsz (v)dG(z) > a}

(2.20)

:inf{veR : /pgda(z) Za}.
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b) For all z, VaR,1(S.) = Fs_zl (pY) < . Hence,

b7 = esssup_.p VaR,7(5.) <, (2.21)

and, therefore, VaR,(Sz) > inf {b‘Y sy eR, [pldG(z) > a}.

Conversely, for any v € R with [p) dG(z) > « it holds that Fs_(b7) >
Fs. o Fg'(pY) > p?. This implies that [ Fs_(b7)dG(z) > [pl dG(z) > o, ie.,
b7 is also an admissible constant in (2.20) and, therefore, VaR,(Sz) < inf{d” :
v eR, [p?dG(z) > a} =b*(«) and we obtain equality.

The second representation for VaR,(Sz) in Proposition 2.4 is of some
independent interest and may provide the intuition to develop a convenient
expression for VaR{ in terms of (marginal) VaR bounds. In the formal deriva-
tion of this expression, however, we solely build on the first (basic) repre-
sentation for VaR(Sz). Using the shorthand notation g,(8) for VaRgz(S,)
z € D, B € (0,1) with left-continuous generalized inverse

' (v) =sup{z €10,1] : g:(z) <7} (2.22)

it holds that
Fs.(v) = a; ' (7). (2.23)

Hence, we obtain from Proposition 2.4 a) that VaR,(Sz) can also be rep-
resented as the mixture

b*(a) := inf {7 eR: /qz_l(v) dG(z) > a}. (2.24)

In order to obtain a corresponding representation of the sharp VaR bound
VaR/,, we define the worst (conditional) VaRs for the conditional sum S, by

7.(B) := VaRg(S.) = sup{VaR(5:) : X: € Ai(F2)}, z€ D, Be(0,1),
(2.25)
with the (right) generalized inverse denoted by (7,)~!(7) and, finally,

%

b (a) :=inf {’y eR: /(qz)_l(v)dG(z) > a}. (2.26)
The next proposition shows that b () is the sharp upper bound of the VaR

in the presence of information on a risk factor.

Proposition 2.5 (Mixture representation for the sharp VaR upper
bound) For « € (0,1), the sharp upper bound of VaR, in the partially specified
risk factor model is given by

VaR! =b"(a) = VaRa(Gz(V)), (2.27)

where V' is a U(0, 1) distributed random variable independent of Z.
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Proof We have by definition VaR?, = sup{VaR.(Sz), Xz € A(H)}. Since
1 (v) > ;' () for z € D, (2.24) implies that

ViRl = sup inf{v €R: / ¢ (1)dG(z) > a}
Xz€A(H)

< inf {7 ek [a )60 = a} (2.28)
=b (a).

On the other hand, for z € D, let X, ~ F, be a solution to g, '(a) =
VaR,(S.), where S, = >.°' | X; .. Then VaR,(Sz) = b (), and thus e-
quality in (2.28) holds.

The equality b (o) = VaRa(q4(V)) follows from the representation in
Proposition 2.4 since

VaRa(7z(V)) = inf{y € R: P(@z(V) <v) = a}
= inf {’y eR: /6;1(7)(16?(,2) > a} =b*(a).

While formula (2.26) for the VaR bound b (+) is explicit, in general it is still
not straightforward to evaluate it. Indeed, we need to obtain the (conditional)
VaR bounds g, (v) for z € D, v € (0,1). Few explicit results exist, and a
practical evaluation of B*() thus appears to require a repeated use of the RA
(for approximating all g, (v)). In Section 4, however, we show that the sharp
upper bound B*(a) can be approximated (from above) by easy-to-compute
upper bounds that are defined in terms of the TVaR. Furthermore, these
approximations are asymptotically sharp.

Remark 2.6 A mixture representation of VaR/ can be obtained in a similar
way by replacing the upper bound quantities g, (a) = VaRq (S,) with the cor-
responding lower bound quantities qz(a) = VaR,(S.), in which VaR,(S,) =
inf{VaRs(S,) : X, € A1(F.)}, z€ D, B€(0,1). O

3 Bounds for convex risk measures

We first recall the definition of convex order.

Definition 3.1 (Convex order) Let X and Y be two random variables with
finite means. X is smaller than Y in convex order, denoted by X <. Y, if for
all convex functions f,

E[f(X)] < E[f(Y)], (3.1)

whenever both sides of (3.1) are well defined.
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It is well-known that a law-invariant convex risk measure o (e.g., TVaR) is
consistent w.r.t. convex order on proper probability spaces such as L! (inte-
grable rvs) and L> (bounded rvs); see Chapter 4 of Foéllmer and Schied (2004),
Jouini et al. (2006), Bauerle and Miiller (2006) and Burgert and Riischendorf
(2006). From this section on, we let X = L', and all marginal distributions of
F and F,, z € D are assumed to have finite first moment.

In this instance, the study of @/ (resp. ¢f) is closely connected to finding
X € A(H) such that S = X; + --- + X,, becomes the largest (resp. smallest)
element w.r.t. convex order. We define the admissible class of sums in the
partially specified risk factor model

S(H)={X,+---+X, : X € A(H)} (3.2)

and note that the upper and lower bounds g/ and gf can be equivalently
defined in terms of S(H) rather than A(H), i.e.,

o =sup{o(S) : S € S(H)} =sup{o(S) : X € A(H)} (3.3)

and
of =inf{o(S) : S € S(H)} =inf{o(S) : X € A(H)}. (3.4)

3.1 Upper bound

We first focus on @/ and thus aim at finding an element in S(H) that is largest
w.r.t. convex order. To this end, we recall that a classical result of Meilijson and
Nadas (1979) established that the comonotonic sum S¢=Y""" | F;'(U), U ~
U(0,1) is larger in the sense of convex order than any other sum X; +---+ X,
X € A;(F). This result suggests that on S(H) the conditionally comonotone

sum
n

S5 =) F;(U). (3.5)
i=1

is a largest element w.r.t. convex order and thus leads to sharp upper bounds

for TVaR and for other law-invariant convex risk measures. In the following,

U ~ U(0,1) and is independent of Z. The notation for (conditionally) comono-

tonic sums, S¢ =" | FZ.|_21(U), Se =30, Fz|_Z1(U) and S¢=>""_ F71(U),

will be used repeatedly.

Proposition 3.2 (Sharp upper bounds for convex risk measures) The
following statements hold.

a) For all S € S(H) it holds that S <., S5 € S(H).
b) For a law-invariant convex risk measure o, we have o/ = 0(S%).
c) S5 <o SC.

The proof of this proposition is given in the appendix.
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Remark 8.8 The statement S <., S% can (essentially) also be found in Kaas
et al. (2000), who showed that for any X; ~ F; and for any random variable
Z that is a function of the X;, i =1,2,...n,

S=Y Xi<w y Fi;(U). (3.6)
=1

%

Formula (3.6) has been applied in several examples to obtain improved upper
risk bounds for basket options and Asian options - mainly, however, in a log-
normal context with conditional distributions that are easy to evaluate (see
e.g., Vanmaele et al. (2006), Deelstra et al. (2008), Vanduffel et al. (2008)).
O

3.2 Lower bound

As for the study of of, we notice that obtaining a lower bound w.r.t. convex
order in S(H) is a more difficult task than obtaining an upper bound. In fact,
even lower bounds w.r.t. convex order for sums S = Y. | X;, X € A;(F)
are generally not available; some analytical cases, however, can be found in
Wang and Wang (2011) and in Bernard et al. (2014). In this regard, Wang
et al. (2013) introduce the notion of joint mizability and show its relevance for
obtaining such lower bounds. We will see that joint mixability is also relevant
to finding lower bounds w.r.t. convex order in S(H).

Definition 3.4 (Joint mixability) Suppose n is a positive integer. An n-
tuple (F1, ..., F,) of probability distributions on R is jointly mizable (JM) if
there exist n random variables X; ~ Fy,..., X, ~ F, such that X; +---+ X,
is a constant.

For any X = Xz € A(H) and z € D, let p, = E[S,], which is the sum
of the means of Fj., i = 1,...,n and hence it is independent of the choice of
Xz € A(H). It is easy to observe that E(Sz|Z) = pz. We show that pz serves
as a natural candidate for the smallest element in S(H) w.r.t. convex order.
Recall that F, = (Fj.)i<i<n, 2 € D and consider U as a U(0, 1) distributed
random variable that is independent of Z.

Proposition 3.5 (Lower bounds for convex risk measures) The follow-
ing statements hold.

a) For all S € S(H) it holds that puz <. S .

b) For a law-invariant convex risk measure o, we have o(uz) < of.

¢) pz € S(H) if and only if F, is jointly mizable for Pz-almost surely z € D.

d) Forn =2 and a law-invariant convez risk measure o, we have of = 0(S%)
where S¢ = F71(U) —l—F;‘Zl(l -U),z€D.

1|z

Proof
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a) For any S € S(H), write S = Sz, and conditional Jensen’s inequality
implies that E(Sz|Z) = pz <cz Sz.

b) From a), o(uz) < o(S) for all S € S(H), which implies the result.

c¢) Suppose that F, is jointly mixable for z € Dy. By the definition of joint

mixability and (2.9), there exist U, = (Ui z,...,Un,z), 2 € Do such that
X, = Fil—;(Ui,Z), 1<i<n,and S, =31 | X;. =, for 2 € Dy. This
shows pz = Sz, almost surely, and hence uz € S(H).
For the other direction, take X € A(H) such that Sz = uz almost surely.
Then, since Y., X; 7z = pz almost surely, there exists Dy, P(Z € Dy) =1
such that Y. | X; . = S, = p. for each z € Dy. That is, F* is jointly
mixable for each z € Dy.

d) Note that for any U(0, 1) random variables U; and Us, we have Fl_lzl(U )+
F2_|z1(1 —U) < F1_|Z1(U1) + F2_|Z1(U2) since counter-monotonicity yields a
sum that is minimum w.r.t. convex order. Thus, for any Sz € S(H), we
have §¢ <., S.. By definition of convex order, for any convex function f,

such that E[f(Sz)] and E[f(S%)] are well defined, we have

E[f(S%)]:/ E[f(S?)]dG(Z)S/ E[f(S5:)ldG(2) = E[f(Sz)]

D D
and hence S% <., Sz, implying 0(S%) < o(Sz). O

As a consequence of Propositions 3.2 and 3.5, we obtain that, for any law-
invariant convex risk measure ¢ and any S € S(H),

o(n) < o(pz) < o(S) < 0(S%) < (59, (3.7)

where p = Eluz]. In particular, Proposition 3.5 suggests that w.r.t. convex
order the best-case risk S € S(H) is the one whose randomness derives entirely
from the factor Z. However, to prove that pz € S(H) one needs to establish
joint mixability, which is difficult and not valid in general. Some analytical
results for joint mixability are given in Wang and Wang (2016). An example
of the sharp lower bound puz € S(H) in a location-scale family is provided
next.

Ezample 3.6 (Convex order bounds in location-scale families) Let Z = (Z1, Z2)
have an arbitrary distribution on D = R2. For some real numbers a;,b; € R,
i = 1,...,n, and positive numbers o1, ...,0, satisfying 2 max;—;
Yoo, let

,,,,,

X; =a; + Z1b; + Zg(O’iéi), 1=1,...,n,
where the €1, ...,¢, are identically distributed and are independent of Z but
the joint distribution of (e1,...,&,) is not known. That is, Z; is a common
location factor and Z; is a common scale factor for the n risks Xi,..., X,.
Assume that the distribution Fy of the ¢; has a unimodal and symmetric
density; this includes the normal and t-distribution. Let € be an Fy-distributed
random variable independent of Z and write

n n n
a = E a;, b= E bi, g = E ;.
i=1 i=1 i=1
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From Proposition 3.2, a largest element in S(H) w.r.t. convex order is given
by
S =a+bZy + oeZs.
From Corollary 3.6 of Wang and Wang (2016), we know that, for z € R2
the tuple of distributions of X .,..., X, , is jointly mixable. This allows us
to apply Proposition 3.5 to obtain a smallest element in S(H) w.r.t. convex
order, which is given by
pz =a+bZy,

where we used the fact that F[¢] = 0. Thus, we have sharp bounds on a convex
risk measure g, i.e., for S € S(H),

a+0bZ; < o(S) <a+0((bZ1+0eZ), ac(0,1),

In the following example we illustrate the TVaR bounds for normally dis-
tributed risks.

Ezample 8.7 (TVaR bounds for normally distributed risks) The set up is as in
Example 2.3. Recall that, for a standard normally distributed risk X,

¢(P~(a))

11—«

TVaR,(X) = , a€(0,1), (3.8)

where ¢ is the standard normal density. As for the unconstrained bounds, S¢
has a N(0,4) distribution and E(S) = 0. We obtain that

PP~ ()
1

—

TVaR, =2 and TVaR, =0, «a € (0,1). (3.9)

As for the constrained bounds, S% has a N(0,07) distribution with o = 2(1 +
rire ++/(1 —r?)(1 — r3)) and S% has a N(0,03) distribution with 03 = 2(1 +
rire — /(1 —7%)(1 — r3)). Hence,

PP ()

l—«

PP~ ()

TVaR., = oy -
—

and TVaR, = o3 , a€(0,1). (3.10)
Table 3.1, Panel A, shows these TVaR bounds for different values of 1 = 7o
and a. We observe that there is no difference between the unconstrained upper
bound and the constrained one, whereas there is an improvement of the lower
bound. In Table 3.1, Panel B we show the TVaR bounds for different values
of r1 = —ry and « (note that in this case, S¢ = puz = 0). In this case, we find
the opposite picture; the upper bounds may improve significantly, whereas the
lower bounds remain unchanged.

To assess the impact of heterogeneity, we fix r; = —0.5 where ry varies
between —1 and 1. We represent the bounds and the improvements Ary,ag in
Figure ??. When |ri| # |ra|, both the upper and the lower bounds improve.
O

From the following example we obtain further insight into the influence of
dependence information of a factor model on risk bounds.
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Panel A 71 || TVaRa || (TVaRa,TVaRa) || (TVaRZL, TVaRL) || Arvar
ol 2917 (0.000, 4.125) (0.000, 4.125) 0%

a=095 05| 3573 (0.000, 4.125) (2.063,4.125) 50%
0.8 || 3.914 (0.000, 4.125) (3.300, 4.125) 80%

1| 4125 (0.000, 4.125) (4.125,4.125) 100%

0] 4.000 (0.000, 5.784) (0.000, 5.784) 0%

a=0995 05 | 5.009 (0.000, 5.784) (2.892, 5.784) 50%
0.8 || 5.487 (0.000, 5.784) (4.627,5.784) 80%

1| 5784 (0.000, 5.784) (5.784, 5.784) 100%
Panel B r; || TVaRa || (TVaRa, TVaRa) || (TVaR%, TVaRL) || Arvar
ol 2917 (0.000, 4.125) (0.000, 4.125) 0%

a=095 05| 3573 (0.000, 4.125) (0.000, 3.573) 13.4%
0.8 || 3.914 (0.000, 4.125) (0.000, 2.475) 40%

1| 4125 (0.000, 4.125) (0.000, 0.000) 100%

0| 4.000 (0.000, 5.784) (0.000, 5.784) 0%

a=0995 05 | 5.009 (0.000, 5.784) (0.000, 5.009) 13.4%
0.8 || 5.487 (0.000, 5.784) (0.000, 3.470) 40%

1| 5784 (0.000, 5.784) (0.000, 0.000) 100%

Table 3.1 TVaR bounds for the normal case. Panel A: r;1 = ry. Panel B: 71 = —ry. The

column TVaR, provides the TVaR in the case in which (X1, X2) is bivariate normally

distributed with correlation r%.

Ezample 3.8 (Pareto risks) We consider a risk factor model for the case n = 2
given by

Xi=(1-2)Y3—1+4¢,

Xo=p(1—2)" Y3 - 1)+ (1 —p)(Z7/3 —1) + ey, (3.11)

where Z ~ U(0,1), e; and ey are Pareto(4) distributed and independent of
Z,and p € (0,1). We allow any dependence between the variables ¢; and
g9. In this example the common component (1 — Z)~'/3 — 1 is Pareto(3)-
distributed and thus dominates the idiosyncratic risk components ¢;. Based
on the risk bounds established in Section 3 (Propositions 3.2 and 3.5), we
obtain, for TVaR at level @« = 0.95, the dependence uncertainty spread as
in Figure ??. For p =~ 0 the common risk factor Z creates strong negative
dependence between X; and X5 and, as a consequence, we obtain a strong
reduction in the upper risk bounds. For p = 1 the risk factor Z induces strong
positive dependence between X; and X5 and we obtain, as a consequence, a
strong improvement in the lower bounds (but not in the upper bounds). For
all intermediate p we have a total reduction of a similar order.

O
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4 The relation between VaR and TVaR bounds
4.1 Dependence uncertainty spread

In Example 3.7, we observed that adding factor information does not always
yield improved bounds. In particular, the upper bound on TVaR does not
improve when Iy, = Fy,, z € D (i.e., when r; = r2), and the lower bound
remains unchanged when p, = p for z € D. The following proposition general-
izes these observations and provides conditions under which upper and lower
bounds on a law-invariant convex risk measure do not improve when using
factor information.

Proposition 4.1 (No improvement for convex risk measures) Let ¢ be
a law-invariant convexr risk measure.

a) If Fy, =---=F,; for all z € D, then o/ =0 =10(5°.

b) If p. = p and F, is jointly mizable for all z € D, then gf =0=o(p).
¢) If the conditions of both a) and b) hold, then A, = 0.

Proof a) Note that o(S%) = o/ < 2 = 0(S°). Tt suffices to show o(S%)
0(S°). Note that F; = --- = F,, and we have S¢ 4 nFl_‘zl(U) and S°¢
nF; Y (U) for some U ~ U(0,1), z € D. We can check for 2 € R, that

4

P(Sy <o) = [ P! (U) £ 246G

- /FMZ (%) dG(z)
5 ()

Thus, ¢ < 5¢ and o/ = p(S%) = 0o(S°) = 2.

b) Note that 3/ > 5 > o(u). From Proposition 3.5, we have uz € S(H), and
thus p € S(H) since pyz = p. Therefore, o7 > 5 > o(n) > o’; that is,
of = 0= o(p).

c¢) This is a direct consequence of a) and b).

The above statements are applicable to TVaR and do not hold when VaR
is used as a risk measure. Counterexamples can be easily constructed (see
also Example 4.2 hereafter). In particular, there are situations in which using
factor information yields improved bounds on VaR but not on TVaR. This
observation raises the issue of whether the result of Embrechts et al. (2015)
that, in the unconstrained setting, (asymptotically) large portfolios exhibit
a larger dependence uncertainty spread for VaR than for TVaR carries over
to the constrained setting. The answer to this question is negative, as the
following example shows.
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Ezxample 4.2 (Dependence uncertainty spread of VaR. is not necessarily larger
than that of TVaR) Assume that the factor Z takes two values: Z = 0 with
probability 0.95 and Z = 1 with probability 0.05. When Z = 0, we assume
that all X; (i = 1,...,n) are degenerated and take value 0.5. When Z = 0,
X; (i =1,...,n) are Bernoulli distributed with parameter 0.5. Let n be even
and take o = 0.9. As for the unconstrained bounds, observe that S¢ satisfies
Pr(S¢ = 0) = 0.025, Pr(S¢ = 0.5n) = 0.95 and Pr(S¢ = n) = 0.025. From
results regarding VaR bounds (see e.g. Bernard et al. (2014)) it is easy to see
that VaRo = TVaRq = % 4 22952 = 0.625n and that VaR, < TVaR, = 0.5n.
Hence, the dependence uncertainty spread of VaR is larger than that of TVaR.
In the constrained setting, since for any Sz € S(H), Pr(Sz = 0.5n) > 0.95
and VaRg 9(Sz) = 0.5n, there is no longer dependence uncertainty spread on
the computation of VaRg (Sz). However, the dependence uncertainty spread
for TVaR remains unchanged. In particular, it is higher than in the case in
which the VaR is used and this holds also as n — co. ]

Embrechts et al. (2015) show that in the unconstrained case the VaR of
large portfolios is more sensitive to misspecification of the model (i.e., has a
higher dependence uncertainty spread) than TVaR. Example 4.2 shows that,
whether TVaR can be seen as less sensitive in this regard (i.e., has less depen-
dence uncertainty spread), depends merely on the available set of information.
In particular, when structural factor information is available as a source of
dependence information, TVaR has, in general, no such advantage over VaR.

4.2 Approximation of VaR bounds based on TVaR bounds

Recall that the formula (2.26) for VaR remains difficult to evaluate practi-
cally. However, the TVaR bounds that we developed in the previous section
can be used to determine an easy-to-evaluate upper bound for VaR/.

Indeed, note that under the condition Z = z € D the (conditional) VaR is
bounded above by the conditional comonotonic TVaR, i.e., for all conditional
sums S, and all 8 € (0,1), it holds that

¢=(8) = VaRp(S:) < TVaRs(S5:) < 12(8) := TVaRg(57).

The above inequality implies that (g,)~*(y) > t;(v), v € R and, there-
fore,

ViR{ = 5(@) = i {y€ R [@)7(0)i6() 2 o}

IN

inf{’y €R: /t;l(fy)dG(z) > a}

05 (). (4.1)

So, for each set {Z = z}, we replace the VaR upper bound with the TVaR
upper bound.
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Proposition 4.3 (TVaR-based bounds for VaR/)
For o € (0,1) the sharp upper bound VaR{ in the partially specified risk
factor model is bounded above by the TVaR-based bound b; () in (4.3), i.e

VaR? < bi(a). (4.2)

Note that, conditional on Z = z, one has a simple expression for ¢,(5), i.e.,

t.(8) = TVaRs(S ZTVaRg Xif2)s (4.3)

=1

and thus ¢,(5) is easy to calculate. As a result, the calculation of the upper
TVaR-based bound b} (a) of VaR/ is much simpler than the calculation of
VaR{. In particular, we avoid the iterated application of the RA algorithm.

There is also an alternative way to establish the simplified VaR bounds
n (4.2). This method leads to a stochastic representation that is useful in
evaluating the bounds by simulation. Define, for any z € D, a random variable
TS as

T = TVaRy (S9), (4.4)

where V' ~ U(0,1) is a random variable that is uniformly distributed on (0, 1)
and independent of Z and of (S¢ )ze p- It is easy to simulate V and Z, and
hence also the random variable TZ7 as well as to approximate its VaR. The
following proposition therefore yields an interesting connection between T;
and the upper bound b} («) in Proposition 4.3.

Proposition 4.4 (Representation of TVaR-based bounds) Fora € (0,1),
we have

VaR] < VaRo(T}) = b} (a). (4.5)

Proof We only need to show that VaR,(7;) = b;(a). Using comonotone ad-
ditivity of TVaR, we obtain
T = TVaRy (S¢) ZTVaRV iIz) Z e

i=1

Note that VaR, (T, ‘z) = TVaRq4(Xj).). From the mixture representation for
VaR in Proposition 2.4 we obtain VaR, (T ) = b} («). O

Remark 4.5 In a similar way, we also obtain approximations of the lower sharp
VaR-bound VaR/. Define T := LTVaRy (S¢); then

VaR,(T,) < VaR/, (4.6)

i.e., VaRq (T ) is alower bound for VaR/. Here, LTVaR(5¢) = L [ VaR, (5¢)du
is the left TVaR O
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4.3 Asymptotic sharpness

In the unconstrained setting, Puccetti and Riischendorf (2014) showed that
TVaR,(S°) is an asymptotically sharp bound on VaR,(5), i.e.,

VaR,,
TVaR,,

—1,asn— o0 (4.7

holds under some moment conditions; weaker conditions that also ensure
asymptotic equivalence can be found in Puccetti and Riischendorf (2014),
Puccetti et al. (2013), Wang and Wang (2015) and Embrechts et al. (2015).
In this section, we extend these results to the constrained setting by showing
that the TVaR-based bounds VaRg(T}) and VaRg(T, ) that we developed
in Section 4.2 are asymptotically sharp bounds for VaR, which includes the
equivalence (4.7) as a special case (in which Z is independent of X).

In the constrained setting, it is clear that TVaR,(S%) is a bound on
VaR,(Sz) but an asymptotic equivalence for the ratio VaR//TVaR], fails
to hold in general. A simple counterexample would be to choose Fj., z € D,
i =1,2,..., to be all degenerate distributions. In this case, dependence un-
certainty is no longer relevant and all elements in S(H) are distributed as uz
(which depends on n). There is no hope that VaR,(uz)/ TVaRq(pz) — 1
would hold generally. In fact, in order to ensure asymptotic equivalence for
the ratio VaR//TVaR/, one would need asymptotic mixability, which can
intuitively be seen as a (strengthened) version of the law of large numbers;
see the related discussions in Bernard et al. (2015), Wang (2014) and Em-
brechts et al. (2014). Although an asymptotic equivalence fails to hold for
VaRa(Sz)/TVaR4(Sz), we have the following asymptotic equivalence theo-
rem for risk aggregation with a risk factor.

Proposition 4.6 (Asymptotic sharpness of TVaR-based bounds) Sup-
pose that for any z € D and some k > 1,

a) E|X;,—EX;,|F <M< oo fori=1,...,n;

b) liminf, 0o n V¥ 30 | B(X; ) = .

Then, for a € (0,1), as n — oo,

Proof From conditions a), b) for the sequence {F; .; ¢ € N} it follows that the
conditions from Theorem 3.3 of Embrechts et al. (2015) are satisfied for all
B € (0,1) and z € D. Therefore, we have

VaRg(S:) _ 7.(8)
TVaRs(S.)  t.(pB)

—1

as n — oo for each 8 € (0,1) and z € D. Thus, we have, for a U(0,1)-
distributed random variable V independent of Z, G, (V) /tz(V) — 1 asn — oo,
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and this convergence holds for all w € 2. Then, from (2.26), we can conclude

that
VaR.,  VaRa(q,(V))

VaR,, (T5)  VaRa(tz(V))

The case for lower bounds is similar.

— 1.

In the following example we consider a low-dimensional portfolio (n = 2)
and compare the sharp VaR bounds with the ones that are asymptotically
sharp.

Ezample 4.7 (Approzimate sharpness of TVaR-based bounds) We consider
the setting as in Example 2.3. In Table 4.1 we compare sharp VaR bounds
with the TVaR-based bounds for VaR (Proposition 4.4) for various parameter
values of the correlations r1 and 7ro.

The values of VaR,, VaR}, and VaR/ are taken from Example 2.3. To
compute VaR, (T5) and VaR, (T ) we simulate z from A(0,1) and v from
U(0,1). Next, we compute, for ry = ro, T,F = 2r12 + 24/1 — T%W@l%sv)) and,
for 1y = —ro, T)F = 2¢/1 — r%qb(gpl%lv(”)) By generating many values for v and

z, we can accurately approximate VaRgso; of T; . We proceed similarly for 77, .

a=0.95 | VaR, || VaR{ VaR. (T7) || VaR{ VaR. (Ty)
ri=ry=0 2.33 || 3.92 4.12 —0.12  —0.21
ri=ry=05 2.60 | 3.92 411 0.82 0.68
rp=ry =08 298 | 3.88 4.01 1.89 1.78
ri=ry=1 329 | 3.28 3.28 3.28 3.28
ry=-ry=0 2.33 | 3.92 413 —-0.12  —0.21
ri=-ry=—05| 2.01 || 3.39 3.57 —0.11  —0.18
rp=-rp=-08| 140 | 235 2.47 -0.07  —0.13
rp=-ry=—1 0.00 | 0.00 0.00 0.00 0.00

Table 4.1 Comparison between sharp VaR bounds and their TVaR-based approximations.

For this small portfolio (n = 2) the asymptotic sharp bounds perform
reasonably well. This is rather expected since for normal risks VaR and TVaR
are not very different. O

Ezample 4.8 (Approzimation via TVaR-based bounds for Pareto distributions)
We consider a Pareto risk model in whichn =2, P(Z =1) = P(Z =2) =1/2,
and X1, X, are Pareto(f, Z) distributed conditional on Z = 1,2. That is,
P(X1.>2) = 2%7% 2 > 2, where § > 1. A smaller value of 6 indicates a
heavier-tailed distribution of X7, Xs.

For this simple setting, using a result in Riischendorf (1982) we can an-
alytically obtain the values M. (t), 2 = 1,2, t € R, and consequently obtain
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M (t), t € R by Proposition 2.1. Taking an inverse of M/ we can calculate
VaR/. Omitting all intermediate steps (which are simple exercises), we have

VaR!{ = (20 + 491 — )74 a € (0,1).

On the other hand, one can easily calculate T = TVaRy (S¢), z = 1,2, and
consequently we obtain the distribution of T’ 2‘ . Omitting all intermediate steps,
we have

0
VaR (T = 2*1/9ﬁ(2" +49Y0(1 — )70 e (0,1).

Therefore, for this model in which n = 2, we have

VaRo(Tf) 10 0
ez gl
VaRY, 6—1

It is clear that the above ratio is a decreasing function of # and is independent
of a. We report some numbers for different choices of («, 8) in Table 4.2.

(a,0) | VaR/ | VaRa (T}) | VaRa(T})/VaR{
(0.95,2) 20.000 28.284 1.414
(0.95,5) 7.327 7.973 1.088
(0.95,10) 5.398 5.596 1.037
(0.95,20) 4.646 4.724 1.017
(0.99,2) 44.721 63.246 1.414
(0.99,5) 10.110 11.001 1.088
(0.99,10) 6.340 6.573 1.037
(0.95,20) 5.036 5.120 1.017

Table 4.2 Comparison between sharp VaR bounds and their TVaR-based approximations.

From Table 4.2, it is clear and not surprising that for lighter-tailed Pare-
to distributions, the TVaR-based approximation works better. Note that the
portfolio consists only n = 2 risks and hence the asymptotics in Proposition
4.6 have not kicked in. Here we only report numbers for n = 2 due to the fact
that a reliable calculation of VaR/, is not available in general; see discussions
in Section 4.5. a

4.4 Adding variance information

In this section, we show that the bounds can be further sharpened if (condi-
tional) variance information is also available. The idea of using the variance
to sharpen the unconstrained bounds can be found in Bernard et al. (2015),
where it is shown that doing so can have a significant impact on the uncon-
strained VaR bounds. Here, we consider conditional variance information in
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addition to factor information and discuss how this can be useful in improving
the bounds on VaR and TVaR.

Consider v := (v;),ep, v, > 0. We define the partially specified factor
model with variance information as

A(H,v) ={X € A(H) : var(S|Z = z) < v?

z9

€ D}, (4.8)

where we assume that it contains at least one element. Hence, v2 provides a
bound on the conditional variance of S,, z € D. We study bounds on VaR
and TVaR, i.e., we consider the problems

VaR!" = sup{VaRa(S) : X € A(H,v)} (4.9)

and
TVaR." = sup{TVaRa(S) : X € A(H,v)}. (4.10)

We can consider the lower bound problems in a similar way. We denote the
corresponding infima by VaR/? and TVaR/".

Proposition 4.9 (VaR bounds in the factor model with variance in-
formation)
For o € (0,1), we have

o U
VaR[" < VaR, <min <TV&RU(S%)5 bz + vz ))

and

VaR/>’ > VaR, <max <LTVaRU(Sg), fz — vz )) ,

where U ~ U(0,1) is independent of Z and (SS).ep-
The proof of Proposition 4.9 is provided in the appendix.

Proposition 4.10 (TVaR bounds in the factor model with variance
information) For o € (0,1), we have

_ U
TVaR/"’ < TVaR, <min <VaRU(S;), iz + vy w)) ,
where U ~ U(0,1) independent of Z and (S¢).ep.
The proof of Proposition 4.10 is given in the appendix.

Remark 4.11 Bernard et al. (2015) study VaR bounds when, in addition to
the marginal information, information on the (unconditional) variance of the
sum is also provided; they consider the problem

VaR,, = sup{VaR,(S) : X € A;(F), var(S) <v?} (4.11)
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where v > 0 is an admissible variance constraint. In a similar way, they consider
VaR? and obtain that

VaRy < min (u + 4/ %, TVaRa(SC)> (4.12)
v -« c
VaR? > max (u — 4/ — LTVaR, (S )) (4.13)

.and

4.5 Practical methods for calculating VaR bounds

Evaluating the sharp bounds mﬁ and VaR/ is not straightforward. However,
the theoretical results developed in Sections 1-4 make it possible to propose
practical methods by which to approximate the risk bounds. We explain these
approximations for the case of the upper bounds.

Asymptotic bounds: We approximate ﬁi from above by VaRa(T; ); see
Proposition 4.4. Observe that T;F = TVaRy (S%) = Y1 TVaRy (X;).) where
V is a standard uniformly distributed random variable that is taken inde-
pendent of Z. Hence, the computation of VaR,, (Tg ) can be performed in a
straightforward way using Monte Carlo simulations.

Repeated RA: In the following, we use a discrete approximation for G. We
consider the following steps:
j—1/2

a) Define f; := =+ € [0,1], j = 1,2,...,m, where m is a large integer.

b) Use the RA to determine, for z; € D and §; € [0,1], the (approximations
fOI') q,zl (ﬂj) = VaRﬁj (Szl)

c) From the g, (3) one obtains an approximation for VaR4(qz(V)) = VaR/
(Proposition 2.5) where V is a standard uniformly distributed random vari-
able that is taken independent of Z.

Analytical method: For some special cases of distributions, M7 may be avail-
able analytically (for instance, in Example 4.8). In that case, analytically cal-
culating M/ may be possible via Proposition 2.1. Then, by taking an inverse
of M7 we can calculate VaR,.
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Discussion: The first method thus computes the asymptotically TVaR-based
upper bound. It is fast and does not suffer from the curse of dimensionality.
While this method overestimates the true sharp bound, the degree of overes-
timation is typically small, in particular for large portfolios (Proposition 4.6);
see also the numerical evidence provided in Embrechts et al. (2014) and in
Bernard et al. (2015). Hence, we recommend it as a standard method. The
second method is essentially based on an application of the RA to condition-
al distributions. It is well-known that the RA is a very suitable method for
approximating numerically sharp bounds, and one can expect this method to
provide excellent approximations for sharp bounds. However, a drawback of
this method is that a repeated application of the RA is needed, which can
make its application time consuming, especially when Z can take many val-
ues. The third method heavily relies on the distributions in the model. In case
n =2, M{ can be calculated which involves an inverse of the VaR bounds (as
in Riischendorf (1982); see Example 4.8) for each z € D. For n > 3, analytical
formulas are very limited; some results can be found in Wang et al. (2013).

5 Application to Credit Risk Portfolios

Recent financial crises have shown that credit portfolios require careful moni-
toring. In this regard, many financial institutions and regulatory frameworks,
such as Basel IIT and Solvency II, rely on a Bernoulli mixture model to measure
the risk. In the industry, this model is also known as the KMV model (Gordy
(2003)), and we refer to this terminology without further ado. Specifically, the
risks X; (i =1,...,n) are modeled as

X 0, if \/7"724-\/1—7"1'61' >@71(qi),
i 15;71:27 otherwise,

in which ¢; € (0,1) and Z, ¢; are standard normally distributed and independent.
Note that corr(X;, X;) = r;r;. Under the KMV specifications, it is further as-
sumed that the idiosyncratic risks g; are mutually independent. Under these
assumptions, risk measures of S = Y ' | X, such as VaR can be comput-
ed using Monte Carlo simulations. We challenge the dependence assumptions
among the X; and compute the bounds on VaR correspondingly.

Assuming that only the marginal distributions are known, we assess the
bounds VaR,, and VaR,, using their asymptotic versions VaR,, (LT VaR (5¢))
and VaR,(TVaRy(S°)). Next, we add dependence information in various
ways. First, using the structural factor information, we assess the bound-

S ﬁﬁ and M(’i using their asymptotic versions discussed in Section 4.3;
see the expressions (4.5) and (4.6). Second, we add variance information and
approximate VaR/? and VaR/:” using the bounds established in Proposition
4.9. Finally, we approximate the variance bounds VaR? and VaR? using the
expressions (4.12) and (4.13) (assuming that the variance constraint writes as

Uy = Bﬂz)'
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We study four homogeneous cases (1)-(4) and two heterogeneous cases (5)
and (6) and display the results in Table 5.1. Our findings can be summarized as
follows. In the unconstrained case, the dependence uncertainty spread is very
wide. In particular, the VaR numbers that one obtains by applying the stan-
dard KMV model (labeled as VaRf M V) lie far away from the unconstrained
upper bounds. Adding factor information improves the lower bound signifi-
cantly but not the upper bounds. This feature is to be expected, as the factor
information induces positive dependence among the risks in that the risks are
perfectly dependent, conditionally on the ;. By contrast, adding variance in-
formation improves the upper but not the lower bound. This feature is also
to be expected, as the variance of a credit portfolio loss is driven mainly by
high outcomes and putting a constraint on variance thus implies that upper
VaRs become reduced. All in all, using the factor information supplement-
ed with conditional variance information reduces the unconstrained bounds
tremendously.

o || VaREMYV | (vaR,.VaRa) | (VaRZ VaR}) || (VaRy VaRy) | (VaR/",VaR.")
@O 9%5% 16.5 (0,125) (0,125) (4.042 , 47.76) (6.18, 45.58)
99.5% 29.5 (5.037 , 250) (8.181 , 250) (5.586 , 140.6) (13.89 , 126.7)
2 9%% 29.5 (0, 125) (0, 123.8) (1.775 , 91.27) (7.034 , 68.21)
99.5% 83.5 (5.037 , 250) (29.35 , 250) (5.037 , 250) (32.88 , 249.9)
B 9%5% 32.96 (0, 189.8) (0, 182.2) (5.134 , 92.25) (11.94 , 85.91)
99.5% 59 (7.014 ,499.7) | (16.74,499.1) || (8.132,277.2) | (28.39, 243.5)
@) 9%% 58.89 (0, 235.2) (0, 235.6) (2778 , 182.4) (13.99 , 137.4)
99.5% 168 (9.366 , 500) (62.6 , 499.9) (9.366 , 500) (68.46 , 498)
B) 9% 66.92 (0.1437,275.3) | (0.4212, 264.4) || (4.231, 197.6) (17.12,156.9)
99.5% 175 (11.53 , 484.9) | (75.42 ,481.8) || (11.53 , 484.9) (75.77 , 480)
6)  95% 56.88 (0, 228.9) (0, 226.4) (2462, 182.2) (13.24 , 132.4)
99.5% 175 (9.102 , 499.9) | (68.02,499.2) || (9.102, 499.9) (71.4 , 472.2)

Table 5.1 VaR bounds for credit risk portfolios. Homogeneous cases: (1) a = 0, n =
500, ¢ = 25%,r =10%; (2) a =0, n =500, g =25%,r=40% ; (3) a = —4, n =
500, g =2.5%, r=10% ; (4) a = —4, n = 500, ¢ = 2.5%, r = 40 %. Heterogeneous cases:
(5) a=—-4,n=500, ¢; € {0.1%,...,9.9%}, ri =r =40% ; (6) a = —4, n = 500, ¢ = 2.5 %,
r; € {10.6%,...,69.4%}.

6 Conclusion

In this paper we study risk bounds for factor models with known marginal dis-
tributions of the components but with a dependence structure that is not com-
pletely specified. Our structural assumption regarding dependence is prevalent
in the statistical and finance literature and can be backtested. We determine
upper and lower bounds for VaR and convex risk measures such as TVaR and
compare their distance (i.e., the dependence uncertainty spread) with the one
obtained when only marginal distributions are assumed to be known. Specif-
ically, we obtain asymptotic sharp bounds for VaR and show that they are
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straightforward to compute. We also show that in a factor-constrained setting
the dependence uncertainty spread of VaR is not necessarily larger than that
of TVaR. We obtain further improved bounds by using variance information.
The reduction in the dependence uncertainty spread that we observe depends
on the magnitude of the common risk factor in comparison to the idiosyncrat-
ic factors. All in all, the results of the paper show that the assumption of a
partially specified factor model is a flexible tool with a wide range of possible
applications and with a promising capability to reduce the risk bounds that
are based on knowledge solely of marginal information.
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A Proof of Proposition 2.1

For any admissible risk vector X € A(H) we have that the conditional distri-
bution of X;|Z = z is given by F; .. Therefore, conditionally under Z = z, the
random vector X has marginal distributions Fj|., 1 <4 < n. As a consequence,
we obtain, by conditioning,

P(ZZ:Xi>t) :/P<§TL:XZ->t|Z:z)dG(z)</Mz(t)dG(z), (A1)

i=1

and thus M/ () < [ M,(t)dG(t).
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Conversely, let X, = (X, ,) be random vectors with marginal distributions
F). such that, for given ¢ > 0,

P(Zn:XW > t) > M, (t) —e. (A.2)

i=1

The risk vector X has a representation as a mixture model: X = X ., where
Z is a random variable with distribution G, independent of (X; ). Then, by
conditioning, we obtain that (X, Z) is admissible, i.e., X € A(H) and

P n X;>t) > | M,(t)dG(z) —e. (A.3)
(xze)=/

As aresult, (A.2) and (A.3) establish equality in (2.10). The case of the lower
bound is proved in a similar way. O

Remark A.1 (Existence of worst case distributions.) By a measurable selection
result as in Riischendorf (1985), a worst case distribution for M7 exists, and
thus the e-argument in the proof of Proposition 2.1 could be avoided in the
case of the upper bound. However, the lower bounds M/ and M. (t) are only
attainable when we modify the definition of the Value-at-Risk slightly (see
Bernard et al. (2014, 2015)).

B Proof of Proposition 3.2

a) Consider the vector X§ having components FZTZI(U ) and observe that their

conditional dfs are Fj. and that their marginal dfs are F;. Hence, X7 €
A(H) and S§ € S(H). Furthermore, for any X € A(H) we can use the

mixture representation Xz for X with X, , = FiTzl(Ui’z)v as in Section 2.

From the convex ordering result in (3.5), it follows that

S, = ZXz\z <cx Fszl(U)

This implies, by conditioning, Sz <cz >, FiTZI(U) = 5.
b) Since p is consistent with convex order, the result follows from a).
¢) The summands of S§ having dfs F;, the result follows from (3.5). O
C Proof of Proposition 4.9
For any Xz € A(H), it holds that
VaRa(Sz) = VaRa(VaRU(SZ))

< VaR,, (min (TV&RU(S%),uZ + vy U)) ,
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where have used that for all z € D, u € (0,1), VaR,(S5,) < TVaR,(S%) and
VaR,(S.) < p. +v., /1% (Cantelli bound). This shows the desired result for

VaRi. The case of VaR/ is similar. O

D Proof of Proposition 4.10

For any Xz € A(H), it holds that TVaR,(Sz) < TVaR,(S%) = TVaR,(VaRy (5%)).
Furthermore, TVaR,(Sz) = TVaR,(VaRy(Sz)) and for all z € D, u € (0,1),

VaR,(S.) < pz +v., /1% (Cantelli bound). Hence, by combining we obtain
the desired result.



