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1 Introduction

Measuring risk is of pivotal importance in insurance and general finance. Not surprisingly,

therefore, a large number of risk measures have been proposed and explored in the litera-

ture, which is abundant. The 2007–2009 financial crisis revived the interest in the notion

of prudence in the regulatory frameworks for insurance and banking sectors (e.g., Cruz

(2009), Sandström (2010), Cannata and Quagliariello (2011), Embrechts et al. (2014),

and the references therein). As a result, a prominent trend associated with tail-based

1Corresponding author. Phone number: (+1)519-888-4567 ext. 31569
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risk measures has emerged, with the value-at-risk (VaR) and the expected shortfall (ES)

being arguably the most popular nowadays tail-based risk measures.

The VaR is a quantile, that is, given a prudence level p ∈ (0, 1) and a risk random

variable (rv) X, whose cumulative distribution function (cdf) we denote by FX , the value-

at-risk VaRp(X) is the p-th quantile of FX given by

VaRp(X) = inf{x ∈ R : FX(x) ≥ p}. (1.1)

The ES is the average of VaR over large prudence levels, that is,

ESp(X) =
1

1− p

∫ 1

p

VaRq(X)dq. (1.2)

When the cdf FX is continuous, then the ES risk measure coincides with the tail condi-

tional expectation (TCE) risk measure, which is given by

TCEp(X) = E[X | X > xp], (1.3)

where E denotes the expectation operator, and xp = VaRp(X); from here to the end of

the section we assume P(X > xp) > 0 so that (1.3) is properly defined. Throughout the

paper we interchangeably use the notation VaRp(X), xp and F−1X (p) for the p-th quantile,

depending on the tradition or notational simplicity.

Due to their nature, the above risk measures do not capture the variability of the risk

rv X beyond the quantile xp, yet the notion of variability in risk assessment has been

prominent since at least 1952 when Harry Markowitz published his celebrated “Portfolio

Selection” (Markowitz (1991)). To incorporate variability in tail risk analysis, Furman

and Landsman (2006a) suggested the tail-standard-deviation (TSD) risk measure

TSDλ
p(X) = TCEp(X) + λ SDp(X), (1.4)

where p ∈ (0, 1) is the prudence level, λ ≥ 0 is the loading parameter, and the (tail)

standard-deviation measure SDp(X) is given by the equation

SDp(X) =
√

E[(X − TCEp(X))2 | X > xp]. (1.5)

When TCE is replaced by ES in equations (1.4) and (1.5), we call the resulting risk

measure the standard-deviation shortfall (SDS) and denote it by SDSλp(X). Obviously,

the TSD and SDS risk measures may only be different if the cdf FX is discontinuous.

Unfortunately, the two risk measures TSD and SDS lack some crucial properties, such as:

2



• their definitions require finite second moments of the underlying risk rv’s, and thus

seriously impede the practical applicability. Indeed, plenty of evidence has come to

light suggesting that the risks in insurance and finance often have infinite variance

and finite mean (see e.g. Seal (1980) and Rachev (2003), respectively);

• they are not monotone, which contradicts the natural intuition behind the economic

capital regulation, i.e., the smaller the risk, the less capital is required to make the

risky position acceptable;

• they are not additive for co-monotonic risks. Additivity for co-monotonic risks

means no diversification benefits rewarded to the aggregation of co-monotonic risks

(e.g. Emmer et al. (2015)), and this property is satisfied by the practical risk mea-

sures VaR and ES;

• the TSD and SDS risk measures are undefined on some discrete risks violating the

requirement P(X > xp) > 0.

In the present paper, therefore, we set out to develop an alternative way for measuring

variability so that the resulting risk measures would be well defined for risks with infinite

variances, monotone, and co-monotonically additive. These requirements naturally lead

us to Gini-type measures of risk and variability, that we introduce and discuss below,

thus providing an informative complement to the classical risk assessment based on the

ubiquitous value-at-risk and expected shortfall risk measures.

The rest of the paper is organized as follows. In Section 2 we introduce and discuss

necessary preliminaries such as fundamental properties of measures of risk and variability,

including the notion of co-monotonicity, and we also elucidate the role of the Choquet

integral in our considerations. In Section 3, starting with the classical variance and the

Gini mean difference, we lay out the motivation and the origins of our Gini-based idea,

and in turn introduce what we call the tail-Gini functional. In Section 4 we introduce

the notion of the Gini shortfall and explore its various properties and advantages. In

Section 5 we derive closed-form expressions for the Gini shortfall in the case of several

parametric families of distributions, including the normal, Student-t, and more generally,

elliptical distributions, as well as certain skew distributions. In Section 6 we extend

our considerations to introduce a capital allocation rule, that we call the Gini shortfall

allocation, and then illustrate it on a portfolio of elliptical risks. We further elucidate our

general considerations in Section 7 where we analyse a portfolio of risks of a bancassurance

company.
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2 Preliminaries

We work with an atomless probability space (Ω,A,P). Let Lr denote the set of all rv’s

on (Ω,A,P) with finite r-th moment, r ∈ [0,∞), and let L∞ be the set of all essentially

bounded rv’s. Throughout the paper, positive (negative) values of X ∈ L0 represent

financial losses (profits). For every X ∈ L0, we use FX to denote the cdf of X, and UX

to denote any uniform [0, 1] rv such that the equation F−1X (UX) = X holds almost surely.

The existence of such rv’s is given, for example, in Proposition 1.3 of Rüschendorf (2013).

We assume that the probability space (Ω,A,P) is rich enough so that for any set of rv’s

X1, . . . , Xn ∈ L0 there is always a non-constant rv V independent of X1, . . . , Xn. We deal

with several convex cones X of rv’s, of which X = L1 is of particular importance and L∞

is always contained in X . We use I for the indicator function.

2.1 Measures of risk

For any convex cone X of rv’s, a risk measure ρ is a functional that maps X to (−∞,∞].

Below we outline several properties that are important in the literature of risk measures,

and we start with law-invariance, which is satisfied by all the risk measures that we

consider.

(A) Law-invariance: if X ∈ X and Y ∈ X have the same distributions under P, succinctly

X
d
= Y , then ρ(X) = ρ(Y ).

The following properties have been standard in the theory of coherent risk measures

(Artzner et al. (1999); also Föllmer and Schied (2002)):

(B1) Monotonicity : ρ(X) ≤ ρ(Y ) when X, Y ∈ X are such that X ≤ Y P-almost surely.

(B2) Translation invariance: ρ(X −m) = ρ(X)−m for all m ∈ R and X ∈ X .

(A1) Positive homogeneity : ρ(λX) = λρ(X) for all λ > 0 and X ∈ X .

(A2) Sub-additivity : ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ X .

(A3) Convexity : ρ(λX+(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ) for all λ ∈ [0, 1] and X, Y ∈ X .

We refer to Föllmer and Schied (2011, Chapter 4), Delbaen (2012), and McNeil et al.

(2015) for interpretations of these properties. It is well known that any pair among three

properties (A1), (A2) and (A3) implies the remaining one.
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Definition 2.1 (Artzner et al. (1999)). A risk measure is monetary if it satisfies properties

(B1) and (B2), and a risk measure is coherent if it satisfies (B1), (B2), (A1) and (A2).

Another important property of risk measures is co-monotonic additivity, which is based

on the following notion (Schmeidler (1986)).

Definition 2.2. Two rv’s X and Y are co-monotonic when

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0 for (ω, ω′) ∈ Ω× Ω (P× P)-almost surely.

Co-monotonicity of X and Y is equivalent to the existence of a rv Z ∈ L0 and two

non-decreasing functions f and g such that X = f(Z) and Y = g(Z) almost surely. We

refer to Dhaene et al. (2002) for an overview on co-monotonicity.

(A4) Co-monotonic additivity : ρ(X + Y ) = ρ(X) + ρ(Y ) for every co-monotonic pair

X, Y ∈ X .

2.2 VaR, ES and the Choquet integral

We recall that the value-at-risk functional VaRp : L0 → R is defined by equation (1.1),

and the corresponding expected shortfall functional ESp : L1 → R is given by equation

(1.2). Obviously, when p = 0, then ES0(X) is the average E[X] of X. Furthermore,

both functionals VaRp and ESp are monetary and co-monotonically additive, whereas

ESp is also coherent. As noted in Section 1, ESp is equal to TCEp defined by equation

(1.3) whenever the cdf FX is continuous. For more details on various properties of these

regulatory risk measures, we refer to, e.g., McNeil et al. (2015).

We next recall the Choquet integral (e.g., Denneberg (1994)) that plays a pivotal role

in our following considerations. To begin with, h : [0, 1]→ R is called a distortion function

when it is non-decreasing and satisfies the boundary conditions h(0) = 0 and h(1) = 1.

Whenever h : [0, 1] → R is of finite variation and such that h(0) = 0, the functional

defined by the equation

I(X) =

∫ ∞
0

(h(1)− h(FX(x)))dx−
∫ 0

−∞
h(FX(x))dx (2.1)

for all X ∈ X is called the signed Choquet integral, and it is called the Choquet integral

when h is a distortion function. When h is right-continuous, then equation (2.1) can be

rewritten as

I(X) =

∫ 1

0

F−1X (t)dh(t). (2.2)
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Furthermore, when h is absolutely continuous, with a function φ such that dh(t) = φ(t)dt,

then equation (2.2) becomes

I(X) =

∫ 1

0

F−1X (t)φ(t)dt. (2.3)

In this case, φ is called the weighting function of the signed Choquet integral I. Equations

(2.2) and (2.3) always define a signed Choquet integral, and we frequently use them in

our considerations below.

The signed Choquet integral is clearly co-monotonically additive, which is readily seen

from representation (2.2) (Schmeidler (1986)). Moreover, we know from Yaari (1987) and

Theorem 4.88 of Föllmer and Schied (2011) that any law-invariant risk measure is co-

monotonically additive and monetary if and only if it can be represented as a Choquet

integral. Finally, the functional I defined by equation (2.1) is sub-additive if and only if

the function h is convex (e.g. Yaari (1987) and Acerbi (2002)).

2.3 Measures of variability

Measures of variability, used to quantify the magnitude of variability of rv’s, are func-

tionals that map X to [0,∞]. Desirable properties of measures of variability can be quite

different from those of risk measures. For example, for a measure of variability ν, we as

a rule require:

(C1) Standardization: ν(m) = 0 for all m ∈ R.

(C2) Location invariance: ν(X −m) = ν(X) for all m ∈ R and X ∈ X .

For particular applications (e.g. portfolio optimization, capital allocation, risk aggre-

gation), we may also wish ν to satisfy convexity, sub-additivity, positive homogeneity or

co-monotonic additivity, which are defined in (A1)–(A4). The following set of properties

that we propose for measures of variability bear similarity with the axioms of deviation

measures proposed by Rockafellar et al. (2006) and further explored in, e.g., Rockafellar

et al. (2008) and Grechuk et al. (2009).

Definition 2.3. A functional ν : X → [0,∞] is a measure of variability if it satisfies

properties (A), (C1) and (C2). A measure of variability is coherent if it further satisfies

(A1) and (A2).

For instance, the classical measures of variability are the variance

Var(X) = E[(X − E[X])2], X ∈ L2, (2.4)
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and the standard deviation SD0 =
√

Var(X). The standard deviation functional is a

coherent measure of variability as it satisfies properties (C1), (C2), (A1), (A2) and (A).

The variance functional satisfies properties (C1), (C2), (A) but not (A1) or (A2), and

hence it is not coherent in our terminology. Note that neither the variance nor the

standard deviation satisfies co-monotonic additivity (A4).

The concept of measures of variability that we propose is admittedly very similar to the

deviation measures of Rockafellar et al. (2006). At the outset, we point out two differences.

First, our measure of variability is law-invariant, which is a desirable property because we

are interested in the distributional variation of risks. Second, and more importantly, the

measures considered in this paper are not necessarily strictly-positive for all non-constant

rv’s, thus allowing us to focus on the variability of risks in the tail (e.g., large losses in the

insurance context) while ignoring the variability (or lack of it) in the surplus. These are

typical and crucial considerations when using tail-based risk measures in capital adequacy.

The definition of a coherent measure of variability is the same as that of a deviation

measure of Rockafellar et al. (2006) except for the above two points.

A terminological reason to introduce measures of variability is that the measures of

interest in this paper (Section 3) are center-free, hence calling them “deviation” measures

may not be the most accurate. Most of the mathematical results on deviation measures in

Rockafellar et al. (2006, 2008) and Grechuk et al. (2009) hold for measures of variability.

Below we give the characterization for co-monotonically additive coherent measures of

variability, essentially established in Grechuk et al. (2009, Proposition 2.4), though in a

somewhat different form.

Theorem 2.1. For r ∈ [1,∞), let ν : Lr → R be any Lr-continuous functional. The

following three statements are equivalent:

(i) ν is a co-monotonically additive and coherent measure of variability.

(ii) There is a convex function h : [0, 1]→ R, h(0) = h(1) = 0, such that

ν(X) =

∫ 1

0

F−1X (u)dh(u), X ∈ Lr. (2.5)

(iii) There is a non-decreasing function g : [0, 1]→ R such that

ν(X) = Cov[X, g(UX)], X ∈ Lr, (2.6)

where Cov is the covariance functional.
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Proof. For (iii)⇒(i), it is straightforward to check that equation (2.6) defines a co-

monotonically additive coherent measure of variability. To show that (ii)⇒(iii), since

h is almost everywhere differentiable in [0, 1], we can take g such that g(t)dt = dh(t).

Then

ν(X) =

∫ 1

0

F−1X (u)dh(u) =

∫ 1

0

F−1X (u)g(u)du = E[Xg(UX)].

Also note that E[g(UX)] =
∫ 1

0
g(u)du = h(1) − h(0) = 0, and so ν(X) = Cov[X, g(UX)].

It remains to show (i)⇒(ii).

By Proposition 2 of Schmeidler (1986), the functional ν admits the signed Choquet

integral representation

ν(X) =

∫ ∞
0

(ξ(Ω)− ξ(X ≤ x))dx−
∫ 0

−∞
ξ(X ≤ x)dx, X ∈ Lr,

where ξ : F → R is given by ξ(A) = ν(I(A)). From ν(1) = 0, we have ξ(Ω) = 0 and

therefore

ν(X) = −
∫
R
ξ(X ≤ x)dx, X ∈ Lr.

Since ν is law-invariant, ξ(X ≤ x) is a function of P(X ≤ x) and hence we can write

ξ(X ≤ x) = h(FX(x)). Note that h(0) = 0 and h(1) = 0, and

ν(X) = −
∫
R
h(FX(x))dx, X ∈ Lr.

By Theorem 2 of De Waegenaere and Wakker (2001), convexity of ν implies that h is

convex and hence right-continuous. Via equation (2.2) we arrive at

ν(X) =

∫ 1

0

F−1X (u)dh(u), X ∈ Lr.

This completes the proof of Theorem 2.1.

Theorem 2.1 provides a guideline for the appearance of co-monotonically additive

coherent measures of variability: they have either representation (2.5) or (2.6). A natural

choice of g in (2.6) may be the identity on [0, 1]; this shall be discussed in Section 3

below. If one drops co-monotonic additivity, then every Lr-continuous coherent measure

of variability ν has the sup-covariance representation

ν(X) = sup
g∈G

Cov[X, g(UX)], X ∈ Lr, (2.7)

where G is the set of all non-decreasing functions on [0, 1]. For various characterization

results of deviation measures, and also of coherent measures of variability, we refer to

Rockafellar et al. (2006), Grechuk et al. (2009), and the references therein.

Finally, we discuss a few partial orders of variability that have been popular in eco-

nomics, insurance, finance, and probability theory.
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Definition 2.4. For X, Y ∈ L1, we say that X is second-order stochastically dominated

(SSD) by Y , succinctlyX �SSD Y , if E[f(X)] ≤ E[f(Y )] for all increasing convex functions

f , assuming that both expectations exist. If, in addition, E[X] = E[Y ], then we say that

X is smaller than Y in convex order, succinctly X �CX Y .

Both SSD and CX orders describe dominance in terms of variability. Since a measure

of variability ν is always standardized, it is often desirable for a measure of variability ν to

be monotone with respect to CX. Similarly, if a risk measure ρ is obtained by combining

a measure of variability and another risk measure, then it may be desirable for ρ to

be monotone with respect to SSD. Hence, it is natural to introduce the following two

properties:

(B3) SSD-monotonicity : if X �SSD Y , then ρ(X) ≤ ρ(Y ).

(C3) CX-monotonicity : if X �CX Y , then ν(X) ≤ ν(Y ).

It is clear that for the same functional, i.e. ρ = ν, property (C3) is weaker than (B3)

since �CX implies �SSD. The standard deviation and variance functionals on L2 satisfy

property (C3). The expected shortfall ESp satisfies (B3) for every p ∈ (0, 1). In fact, on

Lq, q ∈ [1,∞], all real-valued coherent measures of variability are CX-monotone, and all

real-valued law-invariant coherent risk measures are SSD-monotone. We refer to Dana

(2005), Grechuk et al. (2009), and Föllmer and Schied (2011) for proofs of the above

assertions, and to Mao and Wang (2016) for a characterization of SSD-monotone risk

measures.

Remark 2.1. In this section, several properties of measures of risk and variability are pre-

sented. Speaking generally, whether specific properties such as convexity, sub-additivity,

positive homogeneity or co-monotonic additivity are reasonable/desirable or not depends

on the underlying application2. For instance, in the context of portfolio selection, con-

vexity is a natural property to consider, whereas in the context of risk aggregation or

risk capital allocation, sub-additivity is common. Desirable properties in the context of

financial regulation are discussed in several recent papers (e.g., Embrechts et al. (2014),

Emmer et al. (2015) and Föllmer and Weber (2015)).

3 Classical and tail-based Gini functionals

Throughout the rest of this paper, unless explicitly noted otherwise, we work with the

cone X = L1 as the natural domain of our measures of risk and variability.

2We are grateful to an anonymous referee for raising this point.
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3.1 Classical Gini functional and the signed Choquet integral

Our main idea of this paper originates from the work of Corrado Gini who argued more

than a hundred years ago (e.g., Giorgi (1990, 1993) and Ceriani and Verme (2012) for

references and historical notes) that representation (2.4) of the variance Var(X) might

be misleading in the sense that variability of any rv should not be based on the center

of the corresponding distribution. Consequently, C. Gini noted the following alternative

expression for the variance

Var(X) =
1

2
E[(X∗ −X∗∗)2], X ∈ L2,

where X∗ and X∗∗ are two independent copies of X. This representation is free of any

center, but it raises a further question about the rationale of using the quadratic function

(x− y)2 because it distorts the values of X∗−X∗∗ by making them larger when they are

outside the interval [−1, 1] and smaller otherwise. Even the square root in the definition

of standard deviation does not rectify the problem, as we have already argued in the

context of the TSD risk measure in Section 1. This reasoning led C. Gini to the idea of

introducing the variability measure

Gini(X) = E[|X∗ −X∗∗| ], X ∈ L1, (3.1)

which is nowadays known as the Gini mean difference; we call Gini : L1 → [0,∞) the Gini

functional throughout this paper. The Gini functional has been remarkably influential in

numerous research areas, applied and theoretical (e.g., Yitzhaki and Schechtman (2013),

and the references therein). Note that definition (3.1) can be rewritten as

Gini(X) =

∫ 1

0

∫ 1

0

|F−1X (u)− F−1X (v)|dudv. (3.2)

Our next step in developing the main idea of the present paper is based on the obser-

vation of Denneberg (1990) that the Gini functional is co-monotonically additive, that is,

the equation Gini(X +Y ) = Gini(X) + Gini(Y ) holds for every co-monotonic pair X and

Y in L1. The co-monotonic additivity of the Gini functional follows immediately from

the fact that it is a signed Choquet integral, that is, the representation

Gini(X) = 2

∫ 1

0

F−1X (u)(2u− 1)du (3.3)

holds for every X ∈ L1. Equation (3.3) is of course well-known (it is also a special case

of Proposition 3.2 below). The next corollary follows immediately from Theorem 2.1 and

the fact that all continuous coherent measures of variability are CX-monotone.
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Corollary 3.1. The Gini functional is a coherent measure of variability, and it is CX-

monotone.

It is a simple exercise to check that equation (3.3) can be rewritten as a covariance:

Gini(X) = 4Cov[F−1X (U), U ], (3.4)

where U can be any uniformly on [0, 1] distributed rv. This interpretation of the Gini

functional provides a pivotal starting point for constructing Gini-based risk measures and

capital allocation rules that we introduce and explore later. Equation (3.4) can further

be written as

Gini(X) = 4Cov[X,UX ]; (3.5)

recall that UX is a uniform [0, 1] rv such that the equation F−1X (UX) = X holds almost

surely. In the spirit of Theorem 2.1(iii), the Gini functional offers a most natural choice of

co-monotonically additive and coherent measure of variability, where g in (2.6) is chosen

as the identity on [0, 1].

We conclude this subsection with the note that closed-form expressions for the Gini

functional and related quantities in the case of many economic-size distributions can be

found in numerous articles and books dealing with measures of economic inequality. In

addition, in Section 5 below we provide closed-form expressions for the Gini functional

for several parametric families of interest in financial and actuarial risk modelling.

3.2 Tail-Gini functional

In the modern ‘prudent’ financial risk management, practitioners and researchers often

look at the tail risk. The value-at-risk and the expected shortfall (Section 2.2 above) are

risk measures that conform to such philosophy, but none of them appropriately reflects

tail variability. Therefore, we next introduce the tail-Gini functional (TGini).

Given any risk rv X ∈ L1 and a prudence level p ∈ [0, 1), let FX,p denote the cdf of

the rv F−1X (Up), where Up is uniformly distributed on [p, 1]. Then the tail-Gini functional

is given by

TGinip(X) = E[|X∗p −X∗∗p | ], (3.6)

where the rv’s X∗p and X∗∗p are two independent copies with the cdf FX,p. Obviously,

when p = 0, then TGini0(X) is equal to Gini(X), as is easily seen either directly from

equation (3.6) or by comparing equation (3.2) and the following representation of the

TGini functional

TGinip(X) =
1

(1− p)2

∫ 1

p

∫ 1

p

|F−1X (u)− F−1X (v)|dudv, X ∈ L1. (3.7)
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To work out additional intuition, assume for a moment that the cdf FX is continuous.

Then the tail-Gini functional can be written in the form of a conditional covariance:

TGinip(X) =
4

1− p
Cov[X,FX(X) | X > xp]. (3.8)

Alternatively, the functional can be written in the form of a conditional expectation:

TGinip(X) = E[|X∗ −X∗∗| | X∗ > xp, X
∗∗ > xp], (3.9)

where X∗ and X∗∗ are two independent copies of X. Setting p = 0 reduces equation (3.8)

to formula (3.4) for Gini(X), and equation (3.9) to original Gini definition (3.1).

Just like the Gini functional, for any (continuous or not) cdf FX , the tail-Gini func-

tional can be represented as a signed Choquet integral.

Proposition 3.2. For every p ∈ (0, 1), the tail-Gini functional is a signed Choquet inte-

gral given by the equation

TGinip(X) =
2

(1− p)2

∫ 1

p

F−1X (u)(2u− (1 + p))du. (3.10)

Therefore, the tail-Gini functional is co-monotonically additive.

Proof. Direct calculations give

TGinip(X) =
2

(1− p)2

∫ 1

p

(∫ 1

u

(F−1X (v)− F−1X (u))dv

)
du

=
2

(1− p)2

∫ 1

p

(∫ 1

u

F−1X (v)dv − F−1X (u)(1− u)

)
du

=
2

(1− p)2

(∫ 1

p

F−1X (v)(v − p)dv −
∫ 1

p

F−1X (u)(1− u)du

)
=

2

(1− p)2

∫ 1

p

F−1X (u)
(
2u− (1 + p)

)
du.

This completes the proof of Proposition 3.2.

Similarly to the Gini functional, it is easy to see that the tail-Gini functional is law-

invariant, standardized, location invariant, and positively homogeneous. However, the

tail-Gini functional is not sub-additive for any p ∈ (0, 1), as shown in Proposition 3.3 below

(one may also directly compare (2.5) and (3.10)). Therefore, unlike the Gini functional,

the tail-Gini functional is not a coherent measure of variability.

Proposition 3.3. For every p ∈ (0, 1), the tail-Gini functional TGinip is not sub-additive.

12



Proof. Note first that TGinip(c) = 0 for every constant c ∈ R, and TGinip(X) > 0 for

every rv X such that F−1X is not constant over the interval (p, 1). Let X be such that

P(X = −1) = p and P(X = 0) = 1 − p, and let the rv’s X and Y be independent and

identically distributed. Obviously P(X+Y = 0) = (1−p)2 < 1−p, which means that the

quantile function F−1X+Y is not constant over the interval (p, 1). From the above arguments

we have

TGinip(X + Y ) > 0 = 0 + 0 = TGinip(X) + TGinip(Y ).

Moreover, for every p ∈ (0, 1), the functional TGinip is not CX-monotone, which can be

seen from the fact that X + Y �CX 2X and

TGinip(X + Y ) > 0 = TGinip(2X).

This completes the proof of Proposition 3.3.

From the proof of Proposition 3.3, we see that TGinip(X) may be zero even if the rv X

is not constant. This property violates the definition of deviation measures in Rockafellar

et al. (2006), but it is essential to any tail-based measure of variability. Although TGinip

is not a coherent measure of variability, we see in the next section that when combined

with ESp, it gives rise to a coherent risk measure that quantifies both the magnitude and

the variability of tail risks.

4 Gini shortfall

Here we introduce the Gini shortfall (GS), which is a linear combination of the expected

shortfall ESp and the tail-Gini functional TGinip. Namely,

GSλp(X) = ESp(X) + λTGinip(X), X ∈ L1, (4.1)

where p ∈ [0, 1) is the prudence level and λ ≥ 0 is the loading parameter. GS yields

a two-parameter class of tail risk measures in the sense of Liu and Wang (2016). The

case p = 0 needs to be considered separately because of mathematical and terminological

reasons. A mathematical reason will be given in Remark 4.2 below, once the necessarily

background has been established. For a terminological reason, we note that, for any

λ ≥ 0, the functional

GSλ0(X) = E[X] + λGini(X), X ∈ L1, (4.2)

was originally introduced (under a different notation) by Denneberg (1990) and called the

Gini principle (see Remark 4.2).
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4.1 Basic properties

We let p ∈ (0, 1) throughout this subsection, unless explicitly noted otherwise. For the

functional GSλp to be a reasonable risk measure, it should satisfy some desirable properties

listed in Section 2.1. Specifically, in the previous section we noted that, for p ∈ (0, 1), the

functional TGinip is not sub-additive and, as a measure of variability, it is not monotone.

Therefore, in order to make GSλp monotone or sub-additive, the parameter λ ≥ 0 cannot

be too large. Indeed, when λ is zero, then GSλp obviously inherits all the properties of the

expected shortfall ESp, but when λ is sufficiently large, then the TGinip-term starts to

dominate ESp, and thus monotonicity and sub-additivity of GSλp cannot be expected to

hold. This suggests that there might be a threshold that delineates the values of λ ∈ (0,∞)

for which GSλp is monotone and/or sub-additive. As we show in the next theorem, the

thresholds for both monotonicity and sub-additivity are the same, and equal to 1/2.

Theorem 4.1. Let p ∈ (0, 1) and λ ∈ [0,∞).

(1) The Gini shortfall GSλp is a signed Choquet integral given by the equation

GSλp(X) =

∫ 1

0

F−1X (u)φp,λ(u)du, (4.3)

with the function

φp,λ(u) =
1

(1− p)2

(
1− p+ 4λ

(
u− 1 + p

2

))
I[p,1](u), u ∈ [0, 1], (4.4)

where I[p,1] is the indicator function of the interval [p, 1].

(2) The functional GSλp is translation invariant, positively homogeneous, and co-monotonically

additive.

(3) The following statements are equivalent:

(i) GSλp is monotone;

(ii) GSλp is sub-additive;

(iii) GSλp is SSD-monotone;

(iv) GSλp is a coherent risk measure;

(v) λ ∈ [0, 1/2].
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Proof. Part (1) follows from the equations:

GSλp(X) = ESp(X) + λTGinip(X)

=
1

1− p

∫ 1

p

F−1X (u)du+
4λ

(1− p)2

∫ 1

p

F−1X (u)

(
u− 1 + p

2

)
du

=
1

(1− p)2

∫ 1

p

F−1X (u)

(
1− p+ 4λ

(
u− 1 + p

2

))
du

=

∫ 1

0

F−1X (u)φp,λ(u)du.

To prove part (2), we note that co-monotonic additivity and positive homogeneity arise

directly from equation (4.3). For translation invariance, we note that TGinip(X + c) =

TGinip(X) for all c ∈ R, and so

GSλp(X + c) = ESp(X + c) + λTGinip(X + c)

= c+ ESp(X) + λTGinip(X).

To prove part (3), we need an auxiliary result, which we formulate as Lemma 4.2

below. Noting that φp,λ(u) = 0 for all u ∈ [0, p), and that φp,λ is an increasing function

on [p, 1], elementary analysis shows that φp,λ is non-negative if and only if λ ∈ [0, 1/2]

and, moreover, φp,λ is non-decreasing if and only if λ ∈ [0, 1/2]. Lemma 4.2 implies that

statements (i), (ii) and (v) are equivalent. The equivalence (iv)⇔(i)+(ii) is trivial because

GSλp is translation invariant and positively homogeneous. Note that statement (iv) implies

(iii) (e.g., Corollary 4.65 in Föllmer and Schied (2011)), which in turn implies statement

(i). This proves that all statements (i)–(v) are equivalent, and thus completes the proof

of Theorem 4.1.

In the following lemmas, we say that a function φ ∈ L∞([0, 1]) is a.e. non-decreasing

if for all a, b ∈ [0, 1], a < b and ε ∈ (0, a− b), it holds that
∫ a+ε
a

φ(u)du ≤
∫ b
b−ε φ(u)du.

Lemma 4.2. For φ ∈ L∞([0, 1]), let the functional Rφ : L1 → R be defined by the equation

Rφ(X) =

∫ 1

0

F−1X (u)φ(u)du. (4.5)

The following statements hold:

(a) Rφ is monotone if and only if φ ≥ 0 on [0, 1] a.e.;

(b) Rφ is sub-additive if and only if φ is non-decreasing on [0, 1] a.e.

Below we quote Theorem 4.1 of Acerbi (2002), which is similar to and slightly weaker

than Lemma 4.2.
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Lemma 4.3 (Theorem 4.1 of Acerbi (2002), adjusted to our sign convention). For φ ∈
L∞([0, 1]), let the functional Rφ : L1 → R be defined by equation (4.5). The following are

equivalent:

(i) Rφ is monotone, sub-additive and translation invariant.

(ii)
∫ 1

0
φ(u)du = 1, and φ ≥ 0 and φ is non-decreasing on [0, 1] a.e.

Furthermore, two counter-examples in the proof of Theorem 4.1 of Acerbi (2002) reveal

that Rφ is monotone only if φ ≥ 0 on [0, 1] a.e., and Rφ is sub-additive only if φ is non-

decreasing on [0, 1] a.e. Hence, to show Lemma 4.2, it remains to show the “if” direction

of both (a) and (b).

Proof of Lemma 4.2. For part (a), note that when X ≤ Y , then F−1X (u) ≤ F−1Y (u) for

all u ∈ [0, 1]. Using this fact together with the non-negativity of φ, we obtain Rφ(Y ) ≤
Rφ(X). For part (b), suppose that φ is non-decreasing. Let M = ess-infu∈[0,1]φ(u), which

is finite because φ ∈ L∞([0, 1]). Let φ+(u) = M +φ(u), u ∈ [0, 1]. Noting that φ+ is non-

negative and non-decreasing, by Theorem 4.1 of Acerbi (2002) we have that the functional

Rφ+/‖φ+‖1 is a coherent risk measure and hence sub-additive. As the functional Rφ+−Rφ,

which is equal to ME[·], is additive, we have that Rφ is sub-additive.

Remark 4.1. One can show that the functional Rφ is consistent with SSD if and only

if both statements (a) and (b) hold. This result has essentially been obtained by Yaari

(1987) although the formulation in the noted paper is different from ours. From this result,

the equivalence of statements (i)–(v) in Theorem 4.1 becomes clear without necessarily

consulting Föllmer and Schied (2011).

Remark 4.2. The Gini shortfall GSλ0 , which is called the Gini principle by Denneberg

(1990), has not been included into Theorem 4.1 due to the following mathematical reason.

Namely, from Corollary 3.1 and Lemma 4.2, the functional GSλ0 is always translation

invariant, positively homogeneous, co-monotonically additive, and sub-additive. This is

in stark contrast with the case p ∈ (0, 1): the functional GSλp is sub-additive only when

λ ∈ [0, 1/2].

4.2 Continuity properties

In this section we study continuity properties of the Gini shortfall GSλp with respect to

certain types of convergence. Since no distinction between the cases p = 0 and p ∈ (0, 1)

is necessary, throughout the section we work with p ∈ [0, 1).
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The continuity of law-invariant risk measures corresponds to Hampel’s classic notion

of qualitative robustness, which has been a focal point in the recent study of risk measures

(e.g., Krätschmer et al. (2014), Embrechts et al. (2014, 2015), and Föllmer and Weber

(2015)). Given that we work with Gini-type functionals, it is not surprising that the

Wasserstein distance becomes a natural tool in our context: for two rv’s X and Y , the

distance is defined by (Dobrushin (1970))

W1(X, Y ) = supE[|X∗ − Y ∗| ]

with the supremum taken over all rv’s X∗ ∼ FX and Y ∗ ∼ FY . The Wasserstein distance

can equivalently be written as (Dobrushin (1970))

W1(X, Y ) =

∫ 1

0

|F−1X (u)− F−1Y (u)|du.

Theorem 4.4. For p ∈ [0, 1) and λ ∈ [0,∞), the following statements hold:

(i) GSλp is continuous with respect to the Wasserstein distance in L1;

(ii) GSλp is continuous with respect to the L1-norm;

(iii) for every M > 0, the functional GSλp is continuous with respect to weak convergence

in the subspace LM = {X ∈ L1 : |X| ≤M} of L1.

Proof. For the function φp,λ defined by equation (4.4), we have

|φp,λ(u)| ≤ max

{
1− p+ 2λ(1− p)

(1− p)2
,
|1− p− 2λ(1− p)|

(1− p)2

}
≤ 1 + 2λ

1− p
=: cp,λ <∞.

Hence,

|GSλp(Xn)−GSλp(X)| ≤
∫ 1

0

|F−1Xn
(u)φ(u)− F−1X (u)φp,λ(u)|du

≤ cp,λ

∫ 1

0

|F−1Xn
(u)− F−1X (u)|du. (4.6)

Part (i) follows from bound (4.6) because if Xn → X in the Wasserstein distance, then

|GSλp(Xn)−GSλp(X)| ≤ cp,λW1(Xn, X)→ 0

when n → ∞. Part (ii) follows from part (i) because E[|Xn − X| ] ≤ W1(Xn, X). To

prove part (iii), note that when X1, X2, . . . ∈ LM and Xn → X ∈ LM weakly, then
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F−1Xn
(t) → F−1X (t) for all continuity points t ∈ [0, 1] of the quantile function F−1X . Bound

(4.6) together with the Bounded Convergence Theorem imply |GSλp(Xn)−GSλp(X)| → 0

when n → ∞. This establishes the continuity of GSλp with respect to weak convergence

in LM , thus completing the proof of Theorem 4.4.

We conclude this section with a few additional observations regarding the continuity

of the Gini shortfall.

Remark 4.3. From the proof of Theorem 4.4 we see that for a signed Choquet integral to

have continuity properties (i)–(iii), it is sufficient to have a bounded weighting function.

Because of this reason, the functionals ESp and TGinip satisfy the three continuity prop-

erties. For more results on the continuity properties of distortion risk measures, we refer

to Emmer et al. (2015), and Föllmer and Weber (2015).

Remark 4.4. Since the Gini shortfall is continuous with respect to the L1-metric, it is also

continuous with respect to any stronger metric, such as the L2- and L∞-metrics.

Remark 4.5. Another way to establish statement (ii) is to use Corollary 2.3 of Kaina

and Rüschendorf (2009), which says that a finite-valued convex risk measure on L1 is

continuous with respect to the L1-norm.

Remark 4.6. By Theorem 2.4 of Embrechts et al. (2015), the functional GSλp is aggregation-

robust, which means that GSλp(X1 + · · · + Xn) is continuous with respect to convergence

in the dependence structure (copula) of (X1, . . . , Xn), assuming that the marginal distri-

butions are fixed.

4.3 Comparison of tail variability

In this section, to further study features of the Gini shortfall, we introduce an ordering

of tail variability, similarly to the partial orders of variability in Definition 2.4 but with a

focus on the tail distribution. Recall that for any rv X ∈ L1 and p ∈ [0, 1), we denote by

FX,p the cdf of the rv F−1X (Up), where Up is uniformly distributed on [p, 1].

Definition 4.1. For X, Y ∈ L1, we say that Y has a larger p-tail variability compared

to X, succinctly X �p-CX Y , if F−1X (Up) �CX F
−1
Y (Up). If, in addition, FX,p and FY,p are

not identical, then we say that Y has a strictly larger p-tail variability compared to X,

succinctly X ≺p-CX Y .

Intuitively, the partial order�p-CX compares the variability of the two tail distributions

FX,p and FY,p, that is, the variability of risks beyond the prudence level p. The following
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theorem states that the tail Gini functional is strictly monotone with respect to tail

variability.

Theorem 4.5. For p ∈ [0, 1), λ ∈ [0,∞) and X, Y ∈ L1, if X �p-CX Y , then TGinip(X) ≤
TGinip(Y ). Moreover, if X ≺p-CX Y , then TGinip(X) < TGinip(Y ).

Proof. Write Xp = F−1X (Up) and Yp = F−1Y (Up), where Up is uniformly distributed on

[p, 1]. Since the Gini functional is CX-monotone (Corollary 3.1) and Xp �CX Yp, we have

Gini(Xp) ≤ Gini(Yp); thus TGinip(X) ≤ TGinip(Y ).

Now suppose X ≺p-CX Y, which implies ESq(Xp) ≤ ESq(Yp) for all q ∈ (0, 1). By

Proposition 3.2,

TGinip(X) =
2

(1− p)2

∫ 1

p

F−1X (u)(2u− (1 + p))du

=
2

(1− p)2

∫ 1

p

F−1X (u)

(∫ u

p

2dv − (1− p)
)

du

=
4

(1− p)2

∫ 1

p

∫ u

p

F−1X (u)dvdu− 2

1− p

∫ 1

p

F−1X (u)du

=
4

(1− p)2

∫ 1

p

∫ 1

v

F−1X (u)dudv − 2ESp(X)

=
4

(1− p)2

∫ 1

p

(1− v)ESv(X)dv − 2E[Xp].

As FX,p and FY,p are not identical, there exists q ∈ (0, 1) such that ESq(Xp) < ESq(Yp).

Note that, by definition, for any random variable X ∈ L1, ESq(X) is continuous with

respect to q. It follows that there exists a neighborhood [q − ε, q + ε] of q such that

ESv(Xp) < ESv(Yp) for v ∈ [q− ε, q+ ε]. Therefore,
∫ 1

p
(1− v)ESv(X) <

∫ 1

p
(1− v)ESv(Y ).

Noting E[Xp] = E[Yp], we conclude that TGinip(X) < TGinip(Y ).

For X ∈ L1, ESp(X) is the mean of the distribution FX,p, and as such, ESp(X) =

ESp(Y ) if either X �p-CX Y or Y �p-CX X. From there, it is clear that the expected

shortfall ESp is not strictly monotone with respect to tail variability, whereas the Gini

shortfall GSλp for λ > 0 is, since GSλp is a combination of ESp and TGinip.

Remark 4.7. In the literature, differentiation between riskiness and variability is rather

vague. Indeed, some classic articles (e.g. Rothschild and Stiglitz (1970)) treat the terms

“riskier” and “more variable” identically. In our approach, the Gini shortfall is a combi-

nation of an expected shortfall (a risk measure) and a tail Gini functional (a variability

measure), thus capturing both the magnitude of the risk and the variability of the risk.
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4.4 Comparing the Gini shortfall with other risk measures

In this section, we discuss some advantages of the new class of risk measures, the Gini

shortfall. The Gini shortfall GSλp is a co-monotonically additive monetary risk measure,

and it is coherent for λ ∈ [0, 1/2] (co-monotonically additive and coherent risk measures

are known as spectral risk measures). When compared to other spectral risk measures,

GS has the following advantages:

1. GS admits a formulation in terms of the tail risks, i.e.,

GSλp(X) = E[X∗p ] + λE[|X∗p −X∗∗p | ], (4.7)

where the rv’s X∗p and X∗∗p are two independent copies having the cdf FX,p. Form

(4.7) provides remarkable tractability to the Gini shortfall (e.g. Monte-Carlo simu-

lation), and distinguishes it from a majority of spectral risk measures.

2. GS adequately complements existing tail risk measures, especially ES and VaR, by

taking into account both the tail expectation and tail variability of the underlying

risks.

3. Some classes of spectral risk measures require the finiteness of higher-order moments

of the underlying risks (e.g. power spectral risk measures of Dowd et al. (2008)),

whereas for the Gini shortfall the finiteness of the first moment suffices. On a related

note, robustness properties of GS are generally attractive (Theorem 4.4).

4. GS yields a flexible two-parameter class of tail risk measures, which is suitable for

the regulatory consideration of tail risk (see, e.g., Liu and Wang (2016)).

5. GS is closely related to the Gini functional. The Gini functional is one of the most

natural and well studied co-monotonically additive measures of variability. It has a

clear economic interpretation, and is widely applied in many disciplines.

6. GS is strictly monotone with respect to tail variability (Section 4.3).

We note in passing that among the merits mentioned above, ES also enjoys the advantages

in points 1, 3 and 4, but not the ones in points 2, 5 and 6.

5 Gini shortfall for some parametric risks

To simplify our considerations, we work with standardized rv’s, collectively denoted by

Z, whose location and scale parameters are 0 and 1, respectively. The general case follows
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immediately because when X
d
= α+βZ for α ∈ R and β ∈ (0,∞), then for every p ∈ [0, 1)

we have

ESp(X) = α + β ESp(Z) (5.1)

and

TGinip(X) = β TGinip(Z). (5.2)

In what follows, therefore, we concentrate on deriving closed-form expressions for ESp(Z)

and TGinip(Z). Specifically, we start with the general elliptical family and then specialize

the obtained results to normal and Student-t families that have been popular when mod-

eling financial returns (e.g., Knight and Satchel (2001)). Then we proceed to discuss how

ESp(Z) and TGinip(Z) can be calculated for the skew-normal and skew-t distributions

(e.g. Azzalini (1985), Azzalini and Capitanio (2003)).

5.1 General formulas for elliptical risks

Let Z be a spherical rv with characteristic generator ψ : [0,∞)→ R; succinctly Z ∼ S(ψ).

When Z has a probability density function (pdf), which is the case that we are interested

in, then there is a density generator g : [0,∞) → [0,∞) such that
∫∞
0
z−1/2g(z)dz < ∞,

and hence we succinctly write Z ∼ S(g). The pdf f : R → [0,∞) of Z can be expressed

by the formula

f(z) = c g(z2/2),

where c > 0 is the normalizing constant. The mean E[Z] is finite when∫ ∞
0

g(z)dz <∞, (5.3)

in which case we have E[Z] = 0 because the pdf f is symmetric around 0. Under condition

(5.3), the function G : [0,∞)→ [0,∞) given by

G(y) = c

∫ ∞
y

g(x)dx

is well defined and called the tail generator of Z (see e.g. Furman and Landsman (2006a)).

The function G plays a crucial role in our following considerations. Denote the p-quantile

of Z by zp.

Theorem 5.1. When Z ∼ S(g) and the mean E[Z] is finite, then for every p ∈ (0, 1) we

have

ESp(Z) =
G(z2p/2)

1− p
(5.4)
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and

TGinip(Z) =
4

1− p
E
[
G(Z2/2) | Z > zp

]
− 2ESp(Z). (5.5)

Letting p ↓ 0, equation (5.5) reduces to

Gini(Z) = 4E
[
G(Z2/2)

]
. (5.6)

Proof. Equation (5.4), which is well known (e.g. Landsman and Valdez (2003), Furman

and Landsman (2006a)), can easily be established by using the definition of the pdf f

of Z and then appropriately changing the variable of integration. To establish equation

(5.5), we first note that FZ(Z) is a uniform on [0, 1] rv, and thus

Cov[Z, F (Z) | Z > zp] =
1

1− p

∫ ∞
zp

zF (z)f(z)dz − 1 + p

2
ESp(Z). (5.7)

Next, we use the equation zf(z)dz = −dG(z2/2), integrate by parts, and arrive at∫ ∞
zp

zF (z)f(z)dz =

∫ ∞
zp

G(z2/2)f(z)dz + pG(z2p/2)

=

∫ ∞
zp

G(z2/2)f(z)dz + p(1− p)ESp(Z). (5.8)

Using equation (5.8) on the right-hand side of equation (5.7), we obtain

Cov[Z, F (Z) | Z > zp] = E
[
G(Z2/2 | Z > zp)

]
− 1− p

2
ESp[Z]. (5.9)

Upon recalling representation (3.8) of the tail-Gini functional, equation (5.9) implies equa-

tion (5.5) from which equation (5.6) follows immediately. This completes the proof of

Theorem 5.1.

Remark 5.1. The variance Var(Z) is finite whenever
∫∞
0
z1/2g(z)dz < ∞, in which case

Var(Z) is equal to
∫∞
−∞G(z2/2)dz. Hence, f ∗(z) = G(z2/2)/Var(Z) is a pdf. With Z∗

denoting a rv that has this pdf, equation (5.5) becomes

TGinip(Z) =
4Var(Z)

1− p
E[f ∗(Z) | Z > zp]− 2ESp(Z). (5.10)

We find this equation convenient in the next subsection.

5.2 Normal risks

Here we work with the standard normal rv Z ∼ N(0, 1) whose cdf we denote by Φ, and

the p-quantile by zp.
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Corollary 5.2. For Z ∼ N(0, 1) and every p ∈ (0, 1), we have

ESp(Z) =
Φ′(zp)

1− p
(5.11)

and

TGinip(Z) =
2(1− Φ(

√
2zp))√

π(1− p)2
− 2ESp(Z). (5.12)

Letting p ↓ 0, equation (5.12) reduces to

Gini(Z) =
2√
π
. (5.13)

Proof. The standard normal is a spherical distribution with g(z) = exp(−z). Hence

c = 1/
√

2π and G(z2/2) = Φ′(z). Equation (5.11), which is well known (e.g., Exercise

2.7.16 on p. 98 in Denuit et al. (2005)), follows immediately from equation (5.4).

To prove equation (5.12), we first rewrite equation (5.10) as

TGinip(Z) =
4Var(Z)

(1− p)2

∫ ∞
zp

f(z)f ∗(z)dz − 2ESp(Z) (5.14)

with f ∗(z) = G(z2/2)/Var(Z). Since Z∗
d
= Z, we have Var(Z) = 1. Hence, f(z) =

f ∗(z) = Φ′(z) and so

f(z)f ∗(z) =
1√
2π

Φ′
(√

2z
)
.

Consequently, ∫ ∞
zp

f(z)f ∗(z)dz =
1

2
√
π

(
1− Φ(

√
2zp)

)
.

This establishes equation (5.12). Letting p ↓ 0 in equation (5.12), we arrive at equation

(5.13), which is well known (e.g., Yitzhaki and Schechtman (2013)).

5.3 Student-t risks

Let Z be a standard Student-t rv, succinctly Z ∼ t(θ), with parameter θ > 1/2 and the

pdf

fθ(z) = cθ

(
1 +

z2

2kθ

)−θ
, z ∈ R, (5.15)

where

cθ =
1√

2kθ Beta(1/2, θ − 1/2)

with Beta(a, b) denoting the classical beta function, and

kθ =

{
1/2 when 1/2 < θ ≤ 3/2,

θ − 3/2 when θ > 3/2.
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Remark 5.2. The above choice of parametrization guarantees that the variance Var(Z),

whenever it exists (θ > 3/2), is equal to 1 (see McDonald (1996)). In order to obtain the

standard form of the Student-t pdf from (5.15), one may choose θ = (1 + ν)/2 and kθ =

ν/2, where ν denotes the degrees of freedom parameter (with the latter parametrization,

Var(Z) is no longer 1).

We denote the cdf of Z ∼ t(θ) and its p-quantile by Fθ and zp, respectively, and note

that the mean of Z is finite only if θ > 1.

Corollary 5.3. For Z ∼ t(θ), θ > 1 and every p ∈ (0, 1), we have

ESp(Z) =
cθkθ

(θ − 1)(1− p)

(
1 +

z2p
2kθ

)−(θ−1)
(5.16)

and

TGinip(Z) =
4c2θk

3/2
θ

c2θ−1k
1/2
2θ−1(θ − 1)(1− p)2

(
1− F2θ−1

(√
k2θ−1
kθ

zp

))
− 2ESp(Z). (5.17)

Consequently,

Gini(Z) =
4c2θk

3/2
θ

c2θ−1k
1/2
2θ−1(θ − 1)

. (5.18)

Proof. Student-t is a spherical distribution with the density generator g(z) = (1 + z/kθ)
−θ.

Hence

G(z) = cθ

∫ ∞
z

(
1 +

x

kθ

)−θ
dx =

cθkθ
θ − 1

(
1 +

z

kθ

)−(θ−1)
.

The variance Var(Z) is infinite when 1 < θ ≤ 3/2 and thus f ∗(z) does not exist. Never-

theless, we have

G(z2/2)fθ(z) =
c2θkθ
θ − 1

(
1 +

z2

2kθ

)−(2θ−1)
=

c2θkθ
c2θ−1(θ − 1)

f2θ−1

(√
k2θ−1
kθ

z

)
and then∫ ∞

zp

G(z2/2)fθ(z)dz =
c2θkθ

c2θ−1(θ − 1)

√
kθ
k2θ−1

(
1− F2θ−1

(√
k2θ−1
kθ

zp

))
.

Equation (5.17) follows via equation (5.5). Consequently, when θ > 1, we have the

equation

lim
p↓0

TGinip(Z) =
4c2θkθ

c2θ−1(θ − 1)

√
kθ
k2θ−1

from which equation (5.18) follows immediately.
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Remark 5.3. Since the standard Student-t distribution converges to the standard normal

distribution when θ ↑ ∞, we recover equation (5.13) by taking the limit of the right-hand

side of equation (5.18) when θ ↑ ∞.

5.4 Skew-normal risks

In this section we demostrate that deriving explicit formulas for the Gini shortfall risk

measure is feasible beyound the context of symmetric distributions. To this end we

employ the skew-normal distributions (e.g. Azzalini (1985)). Namely, recall that rv ξ

has a standard skew-normal distribution with skewness parameter α ∈ R, succinctly

ξ ∼ SN(α), if its pdf is given by

fξ(z) = 2φ(z)Φ(αz), z ∈ R, (5.19)

where, as before, φ and Φ denote, respectively, the pdf and cdf of a standard normal

rv. The following proposition is latter on employed to develop the desired expressions for

ESp(ξ) and TGinip(ξ) with p ∈ (0, 1).

For z ∈ R, let 0(z) = (0, 0, z)′, and 0 = (0, 0)′.

Proposition 5.4. Let a, b ∈ R and σ > 0 be constants, and let Φ and Φn(·; Σ) denote,

respectively, the cdf of Z ∼ N(0, 1) and the cdf of an n-dimensional normal rv with zero

mean vector and variance-covariance matrix Σ. Also let

Σ2 =

(
1 + a2σ2 abσ2

abσ2 1 + b2σ2

)
and Σ3 =


1 + a2σ2 abσ2 −aσ2

abσ2 1 + b2σ2 −bσ2

−aσ2 −bσ2 σ2

 .

Then we have

E[Φ(aσZ)Φ(bσZ)I{σZ > z}] = Φ2(0; Σ2)− Φ3(0(z); Σ3) (5.20)

for every z ∈ R.

Proof. Let Z∗ and Z∗∗ denote two independent copies of the rv Z. Then we have

E[Φ(aσZ)Φ(bσZ)I{σZ > z}]

= E[P[Z∗ ≤ aσZ, Z∗∗ ≤ bσZ]I{σZ > z}]

= E [E[I{Z∗ − aσZ ≤ 0, Z∗∗ − bσZ ≤ 0}| Z]I{σZ > z}]]

= E [E[I{Z∗ − aσZ ≤ 0, Z∗∗ − bσZ ≤ 0, σZ > z}| Z]]

= P[Z∗ − aσZ ≤ 0, Z∗∗ − bσZ ≤ 0, σZ > z]

= P[Z∗ − aσZ ≤ 0, Z∗∗ − bσZ ≤ 0]− P[Z∗ − aσZ ≤ 0, Z∗∗ − bσZ ≤ 0, σZ ≤ z],
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and the desired formula follows because the class of normal rv’s is closed under affine

transformations.

Further consider the following matrices

Σ12 =

(
1 + α2/2 α2/2

α2/2 1 + α2/2

)
, Σ13 =


1 + α2/2 α2/2 −α/2
α2/2 1 + α2/2 −α/2
−α/2 −α/2 1/2

 ,

Σ22 =

(
1 + α2 α

√
1 + α2

α
√

1 + α2 2 + α2

)
, and Σ23 =


1 + α2 α

√
1 + α2 −α

α
√

1 + α2 2 + α2 −
√

1 + α2

−α −
√

1 + α2 1

 .

Corollary 5.5. For ξ ∼ SN(α), its p-quantile ξp with p ∈ (0, 1), we have

ESp(ξ) =
2

1− p

(
Φ(αξp)φ(ξp) +

α√
2π(1 + α2)

(
1− Φ

(
ξp
√

1 + α2
)))

(5.21)

and

TGinip(ξ) =
8

(1− p)2

(
Fξ(ξp)Φ(αξp)φ(ξp) +

Φ2(0; Σ12)− Φ3(0(ξp); Σ13)√
π

+
1− Fξ(ξp)Φ

(
ξp
√

1 + α2
)
− 2Φ2(0; Σ22) + 2Φ3(0(ξp); Σ23)√

2π(1 + α2)

)

− 2(1 + p)

1− p
ESp(ξ). (5.22)

Consequently,

Gini(ξ) = 8

(
Φ2(0; Σ12)√

π
+

1− 2Φ2(0; Σ22)√
2π(1 + α2)

)
− 2α

√
2

π(1 + α2
. (5.23)

Proof. To obtain (5.21) we integrate by parts and have

ESp(ξ) =
1

1− p

∫ ∞
ξp

zfξ(z)dz =
2

1− p

∫ ∞
ξp

zφ(z)Φ(αz)dz

=
2

1− p

(
Φ(αξp)φ(ξp) + α

∫ ∞
ξp

φ(αz)φ(z)dz

)

=
2

1− p

(
Φ(αξp)φ(ξp) +

α√
2π(1 + α2)

E [I{Z0 > ξp}]

)
,

where Z0 is a normal rv with zero mean and variance 1/(1 + α2). Formula (5.21) then

follows by evoking Proposition 5.4 with a = 0, b = 0 and σ = 1/
√

1 + α2. We note
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in passing that when α = 0, that is the skewness parameter is equal to zero and so

ξ ∼ N(0, 1), then (5.21) reduces to the expression derived in Panjer (2001). In addition,

when p ↓ 0, we readily obtain that

lim
p↓0

ESp(ξ) = E[ξ] = α

√
2

π(1 + α2)
,

which confirms the findings of Azzalini (1985).

To further compute the TGinip functional, we recall (3.8), and so our main target is

E[ξFξ(ξ)I{ξ > ξp}] =

∫ ∞
ξp

zFξ(z)fξ(z)dz = 2

∫ ∞
ξp

zFξ(z)φ(z)Φ(αz)dz,

which after integration by parts reduces to

E[ξFξ(ξ)I{ξ > ξp}]

= 2

(
Fξ(ξp)Φ(αξp)φ(ξp) +

∫ ∞
ξp

fξ(z)Φ(αz)φ(z)dz + α

∫ ∞
ξp

Fξ(z)φ(αz)φ(z)dz

)
.

In order to compute the two integrals in the last expression we employ Proposition

5.4. Specifically, for Z1 being a normal rv with zero mean and variance 1/2, we use the

following change of measure

E[Φ(αξ)φ(ξ)I{ξ > ξp}] =
1√
π
E
[
Φ(αZ1)

2I{Z1 > ξp}]
]

=
1√
π
E

[
Φ

(
α

1√
2
Z

)2

I
{

1√
2
Z > ξp

}]

and further evoke Proposition 5.4 with a = b = α and σ = 1/
√

2 to obtain

√
π

∫ ∞
ξp

fξ(z)Φ(αz)φ(z)dz

= Φ2

(
0;

(
1 + α2/2 α2/2

α2/2 1 + α2/2

))
− Φ3

0(ξp);


1 + α2/2 α2/2 −α/2
α2/2 1 + α2/2 −α/2
−α/2 −α/2 1/2


 .

In a similar fashion, we integrate by parts and have√
2π(1 + α2)

∫ ∞
ξp

Fξ(z)φ(λz)φ(z)dz

= 1− Fξ(ξp)Φ
(
ξp
√

1 + α2
)
− 2E

[
Φ(αZ)Φ(Z

√
1 + α2)I{Z > ξp}

]
,
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which after setting a = α, b =
√

1 + α2 and σ = 1 in Proposition 5.4 implies√
2π(1 + α2)

∫ ∞
ξp

Fξ(z)φ(λz)φ(z)dz

= 1− Fξ(ξp)Φ
(
ξp
√

1 + α2
)
− 2Φ2

(
0;

(
1 + α2 α

√
1 + α2

α
√

1 + α2 2 + α2

))

+ 2Φ3

0(ξp);


1 + α2 α

√
1 + α2 −α

α
√

1 + α2 2 + α2 −
√

1 + α2

−α −
√

1 + α2 1


 .

This proves (5.22), from which formula (5.23) follows as a simple limiting case.

5.5 Skew-t risks

A natural generalization of the skew-normal distribution that encompasses heavy-tailed

risks is the skew-t distribution. Let fν and Fν denote, respectively, the pdf and cdf of the

standard Student-t rv with the degrees of freedom parameter ν > 0; that is, fν follows

from (5.15) by setting θ = (ν + 1)/2 and kθ = ν/2 as

fν(z) =
Γ((ν + 1)/2)

Γ(ν/2)
√
νπ

(
1 +

z2

ν

)−(ν+1)/2

, z ∈ R.

Then the standard skew-t rv, succinctly ξ ∼ St(α, ν) with skewness α ∈ R and degrees of

freedom ν > 0, has the pdf (see e.g. Azzalini and Capitanio (2003))

fξ(z) = 2fν(z)Fν

(
αz

√
ν + 1

ν + z2
; ν + 1

)
, z ∈ R.

We further provide a number of figures depicting the ES and TGini risk measures

in the context of the skew-t risk rv’s. We note in passing that even for the skew-normal

distributions, that are the limiting case of the skew-t distributions for ν ↑ ∞, the formulas

for ES and TGini are rather involved (Section 5.4). In the case of the skew-t distributions,

the task of developing analytical expressions for ES and TGini is noticeably more cum-

bersome. For this reason, in this section we have opted for the Monte-Carlo simulation

approach, and to this end we have embarked on equation (3.6), as well as on the stochastic

representation of the skew-t rv’s as scale mixtures of the skew-normal rv’s (Azzalini and

Capitanio (2003)).

In Figures 1 and 2, values of ESp, TGinip and GS1/2
p for skew-t risks are reported

for several choices of α and ν. All calculations are carried out via simulation of sample

size 106. It is clear from Figures 1 and 2 that, compared to the expected shortfall, the
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Figure 1: ESp and TGinip, p ∈ [0.9, 0.99] for skew-t risks with α = 2 and ν = 2 (left) and

α = 2 and ν = 1.2 (right)
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Figure 2: GS1/2
p , p ∈ [0.9, 0.99] for skew-t risks with α = 0, 1, 2, ν = 2 (left) and α = 2,

ν = 1.5, 2, 2.5 (right)
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TGini functional (and hence the Gini shortfall) is more sensitive to the degrees of freedom

parameter ν, which represents the heaviness of tail risk. In particular, if ν is close to 1,

the TGini functional is larger than the corresponding expected shortfall; it is the other

way around for larger values of ν (e.g. ν ≥ 2).

6 Gini shortfall allocation

6.1 Intuitive definition

Driven by the recent regulatory frameworks (e.g., Cruz (2009), Sandström (2010), Can-

nata and Quagliariello (2011)), here we introduce a capital allocation counterpart to the

Gini shortfall GSλp .

For any portfolio X = (X1, . . . , Xn)′ ∈ X n and its aggregate risk S =
∑n

k=1Xi, the

aim is to allocate the total capital GSλp(S) to n constituents corresponding to X1, . . . , Xn.

A natural idea for such allocation hinges on appropriate extensions of the earlier defined

functionals X 7→ ESp(X) and X 7→ TGinip(X). For this, we first introduce additional

notation. Namely, let US be the distributional transform of S (Proposition 1.3 of Rüschen-

dorf (2013)) defined by

US = FS(S−) + V (FS(S)− FS(S−)), (6.1)

where V is a uniform on [0, 1] rv independent of X1, . . . , Xn. This implies the uniform

on [0, 1] distribution for US and ensures the equation F−1S (US) = S almost surely. The

aforementioned extensions of the expected shortfall and the tail-Gini are, for k = 1, . . . , n,

then defined as follows:

ESp(Xk, S) = E[Xk | US > p] (6.2)

and

TGinip(Xk, S) =
4

1− p
Cov[Xk, US | US > p]. (6.3)

Functional (6.2) has recently been employed (e.g. Acharya et. al. (2012)) to measure sys-

temic risk (SRISK). In a more general context of weighted capital allocations, functional

(6.2) has been explored in detail by Furman and Zitikis (2008, 2009).

Note that when P(S = sp) = 0 with sp = F−1S (p), which is the case for elliptical

portfolios to be considered in Section 6.2 below, definitions (6.2) and (6.3) simplify because

we do not need to involve the distributional transform US. Namely, we have

ESp(Xk, S) = E[Xk | S > sp] (6.4)
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and

TGinip(Xk, S) =
4

1− p
Cov[Xk, FS(S) | S > sp]. (6.5)

Mimicking equation (4.1), we next define the Gini shortfall allocation by the equation

GSλp(Xk, S) = ESp(Xk, S) + λ TGinip(Xk, S), (6.6)

where p ∈ [0, 1) is the prudence level, and λ ≥ 0 is the loading parameter. In Section

6.2 below, we illustrate this Gini shortfall allocation by deriving closed-form expressions

for the elliptical portfolio of risks. In this case, S has a continuous distribution and we

can thus rely on formulas (6.4) and (6.5). Note the obvious though important equation∑n
k=1 GSλp(Xk, S) = GSλp(S, S), with the right-hand side equal to the Gini shortfall GSλp(S)

given by equation (4.1) with the aggregate risk S in the role of X.

Remark 6.1. Capital allocation rules (6.2)-(6.6) coincide with the corresponding Euler

allocation principles (see Section 8.5 of McNeil et al. (2015)) when some regularity of

the joint distribution of (X1, . . . , Xn, S) is assumed; see Proposition 1 of Tsanakas and

Millossovich (2016).

6.2 Aggregate elliptical risks

Let X = (X1, . . . , Xn)′ ∈ X n be a portfolio of elliptical risks with the vector µ =

(µ1, . . . , µn)′ of finite expectations, a positive-definite symmetric matrix B, and the pdf

fX(x) =
cn√
|B|

gn

(
1

2
(x− µ)′B−1(x− µ)

)
, x ∈ Rn,

where gn is an n-dimensional density generator, and cn is a normalizing constant. Suc-

cinctly, we write X ∼ En(µ, B, gn). For the aggregate risk S = X1+· · ·+Xn, let µS = µ′1

and β2
S = 1′B1, where 1 = (1, . . . , 1)′ is the n-dimensional vector of 1’s. The next theorem

provides formulas for calculating the Gini shortfall GSλp(S) of the aggregate risk S.

Let g denote the univariate density generator corresponding to gn (see Fang et al.

(1987) for details). Recall that Z ∼ S(g) is a spherical rv, zp denotes its p-quantile, and

G(y) = c

∫ ∞
y

g(x)dx

is the tail generator, which is well defined because we assume that E[Z] <∞.

Theorem 6.1. When X ∼ En(µ, B, gn), then for every p ∈ (0, 1) we have

ESp(S) = µS +
G(z2p/2)

1− p
βS (6.7)
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and

TGinip(S) =

(
4

1− p
E
[
G(Z2/2) | Z > zp

]
− 2ESp(Z)

)
βS. (6.8)

Letting p ↓ 0 in equation (6.8), we obtain

Gini(S) = 4E
[
G(Z2/2)

]
βS. (6.9)

Proof. Recall (e.g., Fang et al. (1987)) that S ∼ E1(µS, βS, g). Hence, equations (6.7)

and (6.9) follow from Theorem 5.1 as follows

ESp(S) = ESp(µS + βSZ) = µS + βS ESp[Z]

and

TGinip(S) = TGinip(µS + βSZ) = βS TGinip(Z).

This completes the proof of Theorem 6.1.

Remark 6.2. Theorem 6.1 implies that, similarly to VaRq, q ∈ [1/2, 1), TGinip, p ∈ (0, 1)

is sub-additive for jointly elliptical risks; note that VaRq and TGinip are not sub-additive

in general (Proposition 3.3). By Theorem 8.28 of McNeil et al. (2015), all positively

homogeneous, translation-invariant and law-invariant risk measures no less than the mean

are sub-additive for jointly elliptical risks; this applies to GSλp for all λ ≥ 0 and p ∈ (0, 1).

We next derive formulas for the Gini shortfall allocation, and our task mainly hinges

on deriving expressions for ESp(Xk, S) and TGinip(Xk, S). To this end, assume that

the aforementioned matrix B has diagonal entries β2
k and off-diagonal entries βk,l =

βl,k, k, l = 1, . . . , n, and recall the following well-known regression formula that holds

for X ∼ En(µ, B, gn) (e.g., Fang et al. (1987))

E[Xk| S = s] = µk +
βk,S
β2
S

(
s− µS

)
, s ∈ R, (6.10)

where βk,S = βk,1 + · · ·+ βk,n.

Theorem 6.2. Let X ∼ En(µ, B, gn). For every p ∈ (0, 1) and k = 1, . . . , n, we have

ESp(Xk, S) = µk +
βk,S
β2
S

(
ESp[S]− µS

)
, (6.11)

and

TGinip(Xk, S) =
βk,S
βS

(
4

1− p
E
[
G(Z2/2) | Z > zp

]
− 2ESp(Z)

)
. (6.12)

Letting p ↓ 0 in equation (6.12), we obtain

Gini(Xk, S) = 4Cov[Xk, FS(S)] = 4
βk,S
βS

E
[
G(Z2/2)

]
. (6.13)
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Proof. Equation (6.11) follows immediately from equation (6.10), with a formula for

ESp(S) given in Theorem 6.1. Hence, we only need to verify formula (6.12). We start

with the equations

TGinip(Xk, S) =
4

1− p
E[(Xk − ESp(Xk, S))FS(S) | S > sp]

=
4

1− p
E[(Xk − E[Xk])FS(S) | S > sp]

− 4

1− p
(ESp(Xk, S)− E[Xk])E[FS(S) | S > sp]. (6.14)

Equation (6.10) implies

E[(Xk − ESp(Xk, S))FS(S) | S > sp]

=
βk,S
β2
S

E[(S − E[S])FS(S) | S > sp]

=
βk,S
β2
S

E[(S − ESp(S))FS(S) | S > sp] +
βk,S
β2
S

(ESp(S)− E[S])E[FS(S) | S > sp]

=
βk,S
β2
S

Cov[S, FS(S) | S > sp] +
βk,S
β2
S

(ESp(S)− E[S])
1 + p

2
. (6.15)

With the help of Theorem 6.1 for calculating the quantities on the right-hand side of

equation (6.15), we obtain

4

1− p
E[(Xk − ESp(Xk, S))FS(S) | S > sp]

=
βk,S
βS

(
4

1− p
E
[
G(Z2/2) | Z > zp

]
− 2ESp(Z)

)
+

2(1 + p)

(1− p)2
βk,S
βS

G(z2p/2). (6.16)

Upon recalling equation (6.11), we have

4

1− p
(ESp(Xk, S)− E[Xk])E[FS(S) | S > sp] =

2(1 + p)

1− p
(ESp(Xk, S)− E[Xk])

=
2(1 + p)

1− p
βk,S
β2
S

(
ESp[S]− E[S]

)
=

2(1 + p)

(1− p)2
βk,S
βS

G(z2p/2). (6.17)

Using formulas (6.16) and (6.17) on the right-hand side of equation (6.14), we arrive at

equation (6.12). This finishes the proof of Theorem 6.2.

7 An application

We consider a bancassurance company with ten business lines, as described in Panjer

(2001). The rv’s of interest represent the present values of the amounts that are required
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to guarantee solvency over a fixed time horizon with a high confidence level. We find it

reasonable to assume that the joint distribution is the Student-t distribution (Section 5.3

for details) with the mean vector

µ = (25.69, 37.84, 0.85, 12.70, 0.15, 24.05, 14.41, 4.49, 4.39, 9.56)′

and the positive definite matrix

B =



7.24 0 0.07 −0.07 0.28 −2.71 −0.51 0.28 0.23 −0.21

0 20.16 0.05 1.60 0.05 1.39 1.14 −0.91 −0.81 −1.74

0.07 0.05 0.04 0.00 −0.01 0.08 0.01 −0.02 −0.02 −0.07

−0.07 1.60 0.00 1.74 0.17 0.26 0.19 −0.14 0.18 −0.79

0.28 0.05 −0.01 0.17 0.32 −0.24 0.01 −0.02 0.08 −0.01

−2.71 1.39 0.08 0.26 −0.24 14.98 0.43 −0.33 −1.89 −1.60

−0.51 1.14 0.01 0.19 0.01 0.43 2.53 −0.38 0.13 0.58

0.28 −0.91 −0.02 −0.14 −0.02 −0.33 −0.38 0.92 −0.16 −0.40

0.23 −0.81 −0.02 0.18 0.08 −1.89 0.13 −0.16 1.12 0.58

−0.21 −1.74 −0.07 −0.79 −0.01 −1.60 0.58 −0.40 0.58 6.71



.

Because of the special parametrization of the Student-t distribution adopted in Section

5.3, whenever the variance is finite, it is equal to 1, and thus the matrix B is the variance-

covariance matrix for all θ > 3/2. Letting θ ↑ ∞ yields the normal distribution. The

Student-t distribution inherits properties of the class of elliptical distributions, and thus

when X ∼ tn(µ, B, q), then Xk and S jointly follow the two-dimensional Student-t distri-

bution t2(µk,S, Bk,S, q) with µk,S = A′kµ and Bk,S = A′kBAk, where

Ak =

 0 0 0 0 0

k-th︷︸︸︷
1 0 0 0 0

1 1 1 1 1 1 1 1 1 1


′

.

This way we obtain the vector

βk,S = (4.52, 20.84, 0.13, 3.20, 0.61, 10.41, 4.17,−1.16,−0.50, 3.14)′

whose entries are the off-diagonal elements of the positive-definite matrix Bk,S. When

Bk,S is a covariance matrix, then the Pearson correlations of the risk due to the k-th

business line and the aggregate risk S are

ρk,S = (0.25, 0.69, 0.09, 0.36, 0.16, 0.40, 0.39,−0.18,−0.07, 0.18)′.

In what follows we apply the earlier introduced Gini-type risk measures and allocation

rules in three contexts, which make up Sections 7.1–7.3 that we now briefly overview:
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• In Section 7.1 we discuss pricing the portfolio constituents when the risks are con-

sidered stand alone and when they are pulled. We find that the Gini shortfall

encourages diversification at a rate that is higher than that of the expected short-

fall.

• In Section 7.2 we calculate the allocated economic capitals in the context of our

portfolio of ten risks. We see that the stand alone risks are significantly more

expensive than the combined ones and, also, that two risks – which are #8 and

#9 – are negatively correlated with the aggregate portfolio risk and thus require

negative economic capital.

• In Section 7.3, we evaluate the risk margins required for the aggregate risk of the

portfolio. Often in practice, insurance companies estimate the risk margins using

the value-at-risk at the prudence level p = 0.75. We discover that the risk mar-

gins derived from this rule are significantly underestimated in particular when the

underlying risks have heavier tails than those of the normal distribution.

7.1 Pricing

We already noted in Section 1 that the tail-standard-deviation/standard-deviation short-

fall risk measures of Furman and Landsman (2006a) cannot price risks with infinite second

moments. Hence, we use the Gini shortfall. In Table 1 we report our findings for the afore-

mentioned portfolio of ten risks. Note that the Gini shortfall is more supportive when it

comes to diversification than the expected shortfall. Also, the expected shortfall seems

to be less sensitive to the tail risk as it finds the Student-t risk with θ = 2 less expensive

than the normally distributed risk, although the tail of the former risk is heavier. The

prices obtained with the help of the standard-deviation shortfall

SDSλp(X) = ESp(X) + λ
√
E[(X − ESp(X))2 | X > xp]

and Gini shortfall risk measures are very close, and thus the latter risk measure seems

to provide a good substitute for the former one in situations when the second moment

is infinite, e.g., for Student-t risks with θ = 1.5. We note in passing that the ESp risk

measure was used for pricing insurance risks in Furman and Landsman (2006b).

7.2 Economic capital allocation

Once the aggregate economic capital has been determined, it is usually in the interest of

upper management to learn how this economic capital is allocated to different sources of
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Lines of business

1 2 3 · · · 8 9 10 Total DIV

θ = 1.5

SDSλ0 NaN NaN NaN · · · NaN NaN NaN NaN NaN

ESp 30.35 45.62 1.21 · · · 6.15 6.23 14.05 145.78 0.15

SDSλp NaN NaN NaN · · · NaN NaN NaN NaN NaN

GSλp 34.25 52.12 1.52 · · · 7.54 7.76 17.80 155.53 0.26

θ = 2

SDSλ0 28.38 42.33 1.06 · · · 5.45 5.45 12.15 140.86 0.09

ESp 28.56 42.62 1.07 · · · 5.51 5.52 12.32 141.30 0.10

SDSλp 30.97 46.65 1.26 · · · 6.37 6.47 14.64 147.33 0.17

GSλp 30.40 45.70 1.22 · · · 6.17 6.25 14.10 145.91 0.15

θ =∞

SDSλ0 28.38 42.33 1.06 · · · 5.45 5.45 12.15 140.86 0.09

ESp 29.11 43.54 1.12 · · · 5.71 5.74 12.85 142.68 0.11

SDSλp 30.44 45.76 1.22 · · · 6.18 6.26 14.13 146.00 0.15

GSλp 30.53 45.92 1.23 · · · 6.22 6.30 14.22 146.24 0.16

Table 1: Risk measures for the Student-t risks with varying parameter θ, as well as

p = 0.75, λ = 1, and the diversification per unit of risk (DIV).

riskiness, such as business lines in a financial enterprise. Below we present an allocation

that is based on the weighted insurance pricing model (WIPM) introduced by Furman and

Zitikis (2009). We note, that this allocation is akin to the Capital Asset Pricing Model’s

(CAPM) “beta”, but unlike the CAPM, the WIPM does not require the finiteness of the

second moment. In the context of Student-t portfolios, the WIPM’s allocation is given by

wk,S =
βk,S
β2
S

,

which is precisely the CAPM’s beta when βk,S = Cov[Xk, S] and β2
S = Var(S), which

happens when θ > 1.5. Table 2 reports the values of wk,S corresponding to the earlier

introduced portfolio of ten risks. Note that the standard-deviation shortfall cannot be

used because the second moment is infinite when θ = 1.5, which we have set in the table.

7.3 Risk margins

As mentioned earlier, the quantile approach frequently sets the risk margin to the value-

at-risk at the level p = 0.75. Table 3 shows that this may become particularly insufficient

for distributions with tails that are heavier than the tail of the normal distribution. More

specifically, the risk margin that results from VaR0.75 is 18% of the risk margin based on

Gini shortfall for Student-t with θ = 1.5 risks, 25% of the risk margin associated with
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Cost of capital k 1 2 3 4 5 6 7 8 9 10

wk,S 0.10 0.46 0.01 0.07 0.01 0.23 0.09 -0.03 -0.01 0.07

ESp(Xk, S)− E[Xk] 6.69 30.78 0.67 4.68 0.67 15.39 6.02 -2.01 -0.67 4.68

ESp(Xk)− E[Xk] 26.77 44.67 2.09 13.13 5.67 38.51 15.82 9.55 10.55 25.70

GSλp(Xk, S)− E[Xk] 11.19 51.47 1.12 7.83 1.12 25.74 10.07 -3.36 -1.12 7.83

GSλp(Xk)− E[Xk] 44.75 74.70 3.49 21.96 9.48 64.38 26.45 15.97 17.63 43.09

Table 2: Economic capital allocations according to the expected shortfall and Gini

shortfall allocation rules alongside the corresponding stand-alone economic capitals when

θ = 1.5, p = 0.99 and λ = 1.

standard deviation shortfall for Student-t with θ = 2 risks, and 39% of the risk margin

corresponding to Gini shortfall for normally distributed risks.

Risk margin per unit of risk θ = 1.5 θ = 2 θ =∞
SDSλ0(S)/E[S]− 1 NaN 0.0502 0.0502

VaRp(S)/E[S]− 1 0.0290 0.0221 0.0338

ESp(S)/E[S]− 1 0.0869 0.0535 0.0637

SDSλp(S)/E[S]− 1 NaN 0.0984 0.0885

GSλp(S)/E[S]− 1 0.1595 0.0878 0.0903

Table 3: Risk margins per unit of risk for several risk measures in the case of Student-t

risks with varying parameter θ, the prudence parameter p = 0.75, and λ = 1.
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Föllmer, H. and Weber, S. (2015). The axiomatic approach to risk measures for capital determination.

Annual Review of Financial Economics, 7, 301–337.

Furman, E. and Landsman, Z. (2006a). Tail variance premium with applications for elliptical portfolio of

risks. ASTIN Bulletin: Journal of the International Actuarial Association, 36, 433–462.

Furman, E. and Landsman, Z. (2006b). On some risk-adjusted tail-based risk measures Journal of Actu-

arial Practice, 13, 175–191.

Furman, E. and Zitikis, R. (2008). Weighted risk capital allocations. Insurance: Mathematics and Eco-

nomics 42, 459–465.

Furman, E. and Zitikis, R. (2009). Weighted pricing functionals with applications to insurance: an

overview. North American Actuarial Journal, 13, 483–496.

Giorgi, G.M. (1990). Bibliographic portrait of the Gini concentration ratio. Metron, 48, 183–221.

Giorgi, G.M. (1993). A fresh look at the topical interest of the Gini concentration ratio. Metron, 51,

83–98.

Grechuk, B., Molyboha, A. and Zabarankin, M. (2009). Maximum entropy principle with general devia-

tion measures. Mathematics of Operations Research, 34, 445–467.

Knight, J. and Satchel, S. (2001). Return Distributions in Finance. Butterworth–Heinemann, Oxford.

Landsman, Z.M. and Valdez, E.A. (2003). Tail conditional expectations for elliptical distributions. North

American Actuarial Journal, 7, 55–71.

Liu, F. and Wang, R. (2016). A theory for measures of tail risk. Preprint available at SSRN:

https://ssrn.com/abstract=2841909.

Markowitz, H. (1991). Portfolio Selection: Efficient Diversification of Investments (Second edition).

Wiley, New York.

McDonald, J.B. (1996). Probability distributions for financial models. In G.S. Maddala and C.R. Rao

(eds.) Handbook of Statistics, 14, Statistical Methods in Finance, Amsterdam, Elsevier Science,

pp. 427–461.

39



Mao, T. and Wang, R. (2016). Risk aversion in regulatory capital principles. Preprint available at SSRN:

https://ssrn.com/abstract=2658669.

McNeil, A.J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques

and Tools. (Revised Edition.) Princeton University Press, Princeton, NJ.
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