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Abstract

Minimizing an arrangement increasing (AI) function with a matrix input over intra-column

permutations is a difficult optimization problem of a combinatorial nature. Unlike maximiza-

tion of AI functions (which is achieved by perfect positive dependence, namely, arranging all

columns in an increasing order), minimization is a much more challenging problem due to the

lack of a universal definition and construction of compensating arrangements in more than two

dimensions. We consider AI functions with a special structure, which facilitates finding close-

to-optimal solutions by employing the concept of Σ-countermonotonicity and the (Block) Rear-

rangement Algorithm. We show that many classical optimization problems, including stochastic

crew scheduling and assembly of reliable systems, have objective functions with this structure,

and illustrate with a numerical case study. This paves a path to obtaining approximate solutions

for problems that have so far been considered intractable.

Keywords: Schur-convexity, negative dependence, scheduling, systems assembly, Archimedean

copulas, Rearrangement Algorithm

1 Introduction

In this paper we address a class of matrix arrangement problems. Let Sn be the set of n-permutations,

we then write xπ = (xπ(1), . . . , xπ(n)) for a column vector x = (x1, . . . , xn) ∈ Rn and π ∈ Sn. For a

given matrix X = (x1, . . . ,xd) ∈ Rn×d and a target function φ : Rn×d → R, the aim is to minimize

or maximize

φ(Xπ) over π ∈ (Sn)d, where Xπ = (xπ11 , . . . ,x
πd
d ) for π = (π1, . . . , πd). (1)
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That is, one is allowed to permute the elements within each column of the matrix, but not to

exchange elements between columns. In this paper, any minimization and maximization of an

Rn×d → R function refers to the problem in (1).

As one example, we consider an assembly line crew scheduling problem, where n items are to

be produced on n assembly lines. To each line we must assign d workers, specialized in different

jobs. In total, there are nd workers (n from each of the d specializations), and each has a different

random completion time of their job. The objective is to maximize the probability of finishing all n

items within a given deadline by assigning the workers to the assembly lines optimally. The matrix

X in this example represents some known parameters of the distributions of the completion time

for the nd individual workers.

Another example is a systems assembly problem, where n systems are to be assembled, each

composed of d components of different types, connected in parallel. There are nd components avail-

able (n of each type), with different individual probabilities of failure. The objective is to maximize

the sum of system reliabilities, i.e. the expected number of systems that function satisfactorily. The

matrix X in this example represents the individual probabilities of failure for the nd components.

In these contexts, a compensating arrangement is often desirable, in the sense that the fast

workers compensate for the slow workers in each team, or the reliable components compensate for

the less reliable ones within each system. The teams or systems, respectively, are represented by

the rows of the matrix. The decision variable is a vector of permutations, corresponding to the

arrangement of elements within each column of the input matrix.

The above two problems of a stochastic nature will be addressed in Section 4. The main focus

of this article is on a general class of objective functions in (1): ones that have the form

φ(X) = g
(∑d

j=1 hj(x1j), . . . ,
∑d

j=1 hj(xnj)
)
, X ∈ Rn×d, (2)

where g is a Schur-convex function (see Section 2.2 for the definition) and (throughout) hj : R→ R,

j = 1, . . . , d are monotone in the same direction. Here and in the following, the terms “monotone”,

“increasing” and “decreasing” are used in the non-strict sense. A simple example of such an objective

function is

φ1(X) = max
i=1,...,n

{∑d
j=1 xij

}
, X ∈ Rn×d. (3)

To maximize φ1(X
π) over π ∈ (Sn)d is a relatively easy task; the solution is simply to arrange

Xπ as a similarly ordered matrix (see Section 2.1). However, the minimization of φ1(X
π) over

π ∈ (Sn)d is known to be a highly non-trivial task; for d ≥ 3, the minimization of (3) was shown

to be NP-complete in Hsu (1984); Coffman and Yannakakis (1984), see also Haus (2015) for a

further analysis of the complexity of this problem. Note that the set of possible arrangements of

a given matrix X ∈ Rn×d is enormous (of size (n!)d), corresponding to all possible intra-column

permutations.
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To handle the above minimization problems, we borrow some recent developments from prob-

abilistic dependence modeling. A matrix in Rn×d can be interpreted as a discrete random vector

that is uniformly distributed over n points in Rd, where each column corresponds to a univariate

margin and each row - to a possible outcome. Permuting the elements within the columns would

therefore alter the joint distribution, but not the (univariate) marginal distributions. Thus, we can

interpret different intra-column arrangements of a given matrix as different dependence structures

of the corresponding random variable with fixed marginals. The solution to the maximization of

φ1(X
π) over π ∈ (Sn)d is naturally translated into dependence modeling as an extremal positive

dependence. Although not properly formulated, one would expect a solution for the minimization

of φ1(X
π) to be translated as an extremal negative dependence. The extremal positive dependence,

known as comonotonicity in dependence modeling, is a well-studied and well-understood concept.

A considerable amount of research has applied the concept of positive multivariate dependence to

optimization problems; see Shaked and Shanthikumar (1990, 1997); Derman et al. (1972); Colan-

gelo et al. (2005). In contrast, negative dependence has attracted less attention, largely due to the

difficulties associated even with defining it; see Ebrahimi and Ghosh (1981); Block et al. (1982);

Joag-Dev and Proschan (1983) for early examples. The recent paper by Puccetti and Wang (2015)

contains an overview of extremal positive and negative dependence concepts, where a clear asym-

metry between the two sides of the coin can easily be spotted.

The recent developments in dependence modeling offer some insights into the problem of mini-

mizing φ1(X
π) over π ∈ (Sn)d. For example, it is intuitively clear that one needs to find π ∈ (Sn)d

such that the row-sums of Xπ are as similar as possible. The concepts of joint mixability (Wang

and Wang (2011, 2016)) and Σ-countermonotonicity (Puccetti and Wang (2015)) are introduced to

characterize such dependence scenarios. In the area of financial risk management, a novel matrix

rearrangement method (the Rearrangement Algorithm) has recently been introduced for obtaining

bounds on risk measures of the aggregate risk, under dependence uncertainty between the individual

random variables (risks) with given marginal distributions; see Puccetti and Rüschendorf (2012);

Embrechts et al. (2013); Puccetti (2013). This method was successfully applied in a practical case

study (Aas and Puccetti, 2014) and has contributed to the regulatory discussion in the financial

industry (Embrechts et al., 2014). The above ideas from the risk management context have fur-

ther applications, beyond computing these so-called dependence uncertainty bounds. For example,

Boudt et al. (2017) show that k-partitioning and other classical, non-stochastic problems can be

formulated as matrix rearrangement problems. The contributions of this paper are twofold. First,

we formalize a class of objective functions to which the concept of Σ-countermonotonicity and the

new Rearrangement Algorithm can be applied. To our knowledge, this is the most general char-

acterization up to date. Second, we provide explicit examples of stochastic problems in scheduling

and reliability engineering that belong to this type, and that have so far not been considered in the

literature.
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This article aims to expand the usage of concepts and algorithms that originally stem from

applications in the financial industry, to problems in other fields. For other examples of such

academic cross pollination, see Prékopa (2012); Lee and Prékopa (2013), where multivariate risk

measures are examined from an optimization point of view. We also use stochastic orderings to

characterize optimal solutions, an approach similar to Yao (1987); Li and You (2014). See also

Katehakis and Smit (2012); Shi et al. (2013) for further related stochastic optimization problems.

This paper is organized as follows. In Section 2, we identify and discuss a large class of objective

functions associated with the matrix arrangement problem considered in this article. In Section 3,

with the help from recent developments in dependence modeling and risk management, we show

that the potential minimizers for objective functions of the form (2) belong to a smaller set of

matrices having a Σ-countermonotonic structure, leading to a practical sub-optimal solution via

efficient algorithms; we also show that Archimedean copulas are suitable objective functions for

the matrix arrangement problems we consider. In Section 4, two problems in stochastic scheduling

and systems assembly are shown to have objective functions of the form (2).We apply a heuristic

which provides arrangements belonging to the smaller set of Σ-countermonotonic arrangements and

illustrate, by means of a numerical case study, that often any of these special arrangements provides

a close-to-optimal solution.

2 Notation and preliminaries

An excellent reference for the concepts defined in this section is Marshall et al. (2011); we shall

mostly follow the notation from this textbook. For a vector x = (x1, . . . , xn) ∈ Rn, let x↓ =

(x[1], . . . , x[n]) and x↑ = (x[n], . . . , x[1]) be the decreasing and increasing arrangements of x, respec-

tively. Vectors x,y ∈ Rn are called similarly ordered if (xπ,yπ) = (x↑,y↑) for some π ∈ Sn, and

oppositely ordered if (xπ,yπ) = (x↑,y↓) for some π ∈ Sn. These notions correspond, respectively, to

comonotonicity and countermonotonicity of random variables in probability theory (the matrix rep-

resentation is relevant in a finite sample space; however, these concepts are also defined for general

random variables). In the following, we introduce arrangement increasing functions and the related

notions of Schur-convexity, supermodularity, and total positivity. The concept of arrangement in-

creasing functions will be useful to formalize the broader class of functions which are maximized,

respectively, minimized by matrix arrangements corresponding to extremal positive, respectively,

negative dependence. We shall see however, that the former case is trivial, while the latter requires

considerable restrictions to be tractable.
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2.1 Arrangement increasing functions

Boland and Proschan (1988) consider functions φ : (Rn)d → R of d vector arguments in Rn (equiv-

alently, functions φ : Rn×d → R with a matrix argument, writing X = (x1, . . . ,xd)), which in-

crease in value as the components of the vector arguments become more similarly arranged. To

rigorously define “more similarly arranged”, they introduce an equivalence relation =a and a pre-

ordering 4a between matrices. If X,Y ∈ Rn×d and (xπ1 , . . . ,x
π
d ) = Y for some π ∈ Sn, then

X =a Y . An operation called basic rearrangement consists of replacing the entries in two rows k, l

(1 ≤ k < l ≤ n) of a matrix X by their coordinate-wise minimum (xk1∧xl1, . . . , xkd∧xld) and max-

imum (xk1 ∨ xl1, . . . , xkd ∨ xld), respectively. If matrix X can be transformed into matrix X ′ =a Y

using a sequence of basic rearrangements, then we write X 4a Y ; this defines the arrangement

preordering on Rn×d.

Definition 1. A function φ : Rn×d → R is called arrangement increasing (AI) if, for any X,Y ∈
Rn×d,

X 4a Y implies φ(X) ≤ φ(Y ).

Hence, arrangement increasing functions preserve the arrangement preordering. Three useful

classes of AI functions are provided by the following results from Boland and Proschan (1988); see

also Marshall et al. (2011, Section 6.F).

(A) If φ has the form φ(X) = g(x1 + · · · + xn) = g(
∑d

j=1 x1j , . . . ,
∑d

j=1 xnj), then φ is AI if and

only if g is Schur-convex.

(B) If φ has the form φ(X) =
∑n

1 g(xi1, . . . , xid), then φ is AI if and only if g is supermodular.

(C) If φ has the form φ(X) =
∏n

1 g(xi1, . . . , xid), then φ is AI if and only if g is MTP2.

These examples motivate the relevance of the properties of Schur-convexity (defined in Section 2.2),

and supermodularity and MTP2 (defined in Appendix A.1). We will frequently refer to the above

three types of AI functions throughout the paper. Type (A) functions are indeed our main objectives

in (2), albeit in (2) one allows further monotone transformations h1, . . . , hd. Taking the logarithm

of a type (C) function yields a type (B) function, and functions of the form

φ(X) =
n∑
i=1

f
(∑d

j=1 xij

)
, X ∈ Rn×d, (4)

where f : R → R is convex, belong to the intersection of types (A) and (B). The types (A)-(C)

by no means provide a complete classification of all AI functions, but merely identify three large,

possibly overlapping classes.

It is straightforward to obtain the arrangement that maximizes an AI function φ:

φ(X) ≤ φ(x↑1, . . . ,x
↑
d) = φ(x↓1, . . . ,x

↓
d) for any X ∈ Rn×d. (5)
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This follows from the fact that any matrix X can be transformed into a comonotonic one by

applying at most n(n − 1)/2 basic rearrangements. Arrangement increasing functions φ of two

vectors, φ : Rn × Rn → R (case d = 2), were first considered in Hollander et al. (1977) under the

name decreasing in transposition. For two vector arguments it is also easy to obtain the minimizing

arrangement - it is the countermonotonic i.e. oppositely ordered arrangement:

φ(x↓,y↑) = φ(x↑,y↓) ≤ φ(x,y) for any x,y ∈ Rn.

For higher dimensions d, however, the minimizing arrangement is not easily constructed, because an

oppositely ordered arrangement is only defined for d = 2. Therefore, while maximizing AI functions

is trivial, reversing the direction of the optimization problem often leads to a much more difficult

problem. In the following, we investigate in more depth the classes of AI functions which can indeed

be (approximately) minimized by applying recent developments in dependence modeling.

2.2 Majorization order and Schur-convex functions

In this section, we define the majorization preorder and Schur-convexity - concepts that are relevant

to the type (A) of AI functions and, in particular, our main objective function (2). For x,y ∈ Rn,

we say that x majorizes y, written x <m y, if

k∑
i=1

x[i] ≥
k∑
i=1

y[i] for k = 1, . . . , n− 1, and
n∑
i=1

xi =
n∑
i=1

yj .

Definition 2. A function g : D ⊂ Rn → R is called Schur-convex if, for any x,y ∈ D,

x <m y implies g(x) ≥ g(y).

A function g : D ⊂ Rn → R is called strictly Schur-convex if, for any x,y ∈ D,

x <m y and y 6<m x imply g(x) > g(y).

Reversing the inequality for g would define a Schur-concave function. Note that Schur-convexity

requires that the function is symmetric (arguments are exchangeable). From Definition 2, it follows

that a majorization-least1 element in some set D ⊂ Rn minimizes Shur-convex functions over the

set D. For example, if the set D consists of the row-sum vectors of matrices in {Xπ : π ∈ (Sn)d}
(column-rearrangements of X ∈ Rn×d), Day (1972) shows that the minimizing arrangement for

d = 2 is the countermonotonic one (with row-sum vector x∗ = x↑1 + x↓2). A comprehensive account

of the applications of majorization order in statistics, probability and reliability theory can be found

in Marshall et al. (2011, Chapters 11-13).

Examples of Schur-convex functions include (see Proposition 1 below)

1A least element v of a preordered set (A,�) satisfies u � v for all u ∈ A. For some preordered sets, such an

element may not exist.
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a) g(x) = max{x1, . . . , xn},

b) g(x) =
∑n

i=1 f(xi), where f is convex,

c) g(x) =
∏n
i=1 f(xi), where f is log-convex.

d) g(x) =
∑n

i=1wix[i], where w1 ≥ · · · ≥ wn ≥ 0.

e) g(x) =
∑n

i=1wif(x[i]), where w1 ≥ · · · ≥ wn ≥ 0 and f is increasing and convex.

Observe that substituting b) into a type (A) of AI functions, we obtain a function of the form

(4). Note that, applying an increasing transformation to a Schur-convex function would preserve the

Schur-convexity, however, such transformations do not affect optimization problems. By taking a

logarithm of c), we arrive at b). Functions of the form d) are a special case of L-statistics, i.e. linear

combinations of order statistics. The form in e) is the most general, in the sense that it includes

a), b) and d) as special cases, and also c) after a log-transform. The Schur-convexity of functions

in e) is characterized in the following proposition.

Proposition 1. Let g : Rn → R be of the form

g(x) =

n∑
i=1

wif(x[i]), x = (x1, . . . , xn) ∈ Rn, (6)

where w1, . . . , wn ≥ 0 and f : R→ R is increasing. The following are equivalent.

(i) g is Schur-convex.

(ii) g is convex.

(iii) w1 ≥ · · · ≥ wn and f is convex.

Functions of the form (6) belong to the family of Rank-Dependent Expected Utilities (RDEU);

see Quiggin (1993). The majorization order, translated into probability theory, is equivalent to

convex order between discrete random variables. From there, the equivalence of (i) (called strong

risk aversion for RDEU) and (iii) is given in Chew et al. (1987); see also Schmidt and Zank (2008).

A precise formulation of (i)⇔(ii)⇔(iii) is given in Theorem 5.1 of Mao and Wang (2015).

The maximum operator is a special case of (6), taking f = id and weights (1, 0, . . . , 0). In Quan-

titative Risk Management, the Expected Shortfall at some level α ∈ (0, 1) of a random loss, whose

distribution is represented by a vector x (as explained in the Introduction), is of the form (6) by

taking equal weights 1/(1−α) for the first n(1−α) entries (for simplicity assume nα ∈ Z). Matrix

arrangement problems where type (A) objectives with g = max or g = −min(·) = max(−·) are

minimized, have been investigated in Puccetti and Rüschendorf (2012), and the Expected Shortfall

case in Puccetti (2013). In the above examples, the matrix would correspond to a random vector
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with a discrete uniform distribution, the sum of columns - to the aggregate loss, and the maximiza-

tion/minimization problems would correspond to determining the so-called dependence uncertainty

bounds (recall that different arrangements of the input matrix represent different dependence struc-

tures between the components of the random vector). We do not further pursue these types of

objectives in this article.

3 A heuristic solution to matrix arrangement problems

3.1 Sigma-countermonotonicity

As explained earlier, matrix arrangement problems are challenging problems of a combinatorial

nature. The set of possible arrangements of a matrix X ∈ Rn×d is of size (n!)d, so finding the

solution by brute force search is not possible in practice. Hence, reducing the set of possible

optimizers by identifying a necessary property would be advantageous. Puccetti and Wang (2015)

introduce the property of Σ-countermonotonicity for general multivariate random variables. Here,

we give the finite (discrete) formulation.

Definition 3. A matrix X ∈ Rn×d is said to be Σ-countermonotonic, if
∑

j∈J xj and
∑

j /∈J xj are

oppositely ordered for all nonempty J ( {1, . . . , d}.

A weaker property than Σ-countermonotonic is column oppositely ordered (COO), which corre-

sponds to considering only singleton sets J = {j}, j = 1, . . . , d in Definition 3. In order to apply

these properties in the minimization problem with the objective (2), we first transform the entries

of the jth column of the input matrix X by the function hj , j = 1, . . . , d, and denote the resulting

matrix by H(X) (or simply H), where (H)ij = hj(xij). Then, we can work with arrangements of

H instead, defining

φ̃(H) := g
(∑d

j=1(H)1j , . . . ,
∑d

j=1(H)nj

)
(= φ(X)).

The following theorem provides the theoretical basis for restricting the minimization problem with

objective φ̃ to Σ-countermonotonic arrangements of H.

Theorem 2. For a given matrix X ∈ Rn×d and a function φ of the form (2), there exists an

arrangement π∗ ∈ (Sn)d that minimizes φ(Xπ∗), such that H(Xπ∗) = H(X)π
∗

is Σ-counter-

monotonic. Furthermore, if g in (2) is strictly Schur-convex, then H(X)π
∗

is Σ-countermonotonic

for all minimizers π∗.

The proof of Theorem 2 is similar to those of Propositions 2.4 and 2.6 of Puccetti and Rüschen-

dorf (2015). One difference is that we use the stronger property of Σ-countermonotonicity instead

of COO. The other difference is permitting general monotone transformations hj in (2). This allows
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Theorem 2 to include more general objective functions than the above mentioned Proposition 2.4,

while still including all known explicit and non-trivial objectives considered in Proposition 2.6 of

Puccetti and Rüschendorf (2015); see Section 3.3 for details and a further explicit class of objective

functions for which Theorem 2 applies and that, to our knowledge, has so far not been considered

in the context of minimizing AI functions.

Proof of Theorem 2. Since there are finitely many arrangements of the matrix X, there exists a

minimizing arrangementX∗. If the correspondingH(X∗) = (h1, . . . ,hd) is not Σ-countermonotonic,

by definition, there exists a nonempty J ( {1, . . . , d} such that a =
∑

j∈J hj and b =
∑

j /∈J hj are

not oppositely ordered. Define φ̃2 : Rn × Rn → R by

φ̃2(x,y) = g(x1 + y1, . . . , xn + yn)

and note that φ̃(H) = φ̃2(
∑

j∈J hj ,
∑

j /∈J hj) for any J . Let πa, πb ∈ Sn be such that aπa = a↑ and

bπb = b↓. Denote H̃ = (h̃1, . . . , h̃d), where h̃j = hπaj for j ∈ J and h̃j = hπbj for j /∈ J . Since g

is Schur-convex and a + b <m a↑ + b↓ (Day (1972)), we have φ̃2(a,b) ≥ φ̃2(a
↑,b↓) (Definition 2).

Thus φ̃(H) ≥ φ̃(H̃). For any arrangement, we can also compute a score function

V (H) :=
∑n

i=1(hi1 + . . .+ hid)
2.

Since a and b are not oppositely ordered by assumption, it follows that V (H) > V (H̃). As the set of

arrangements of H is finite and each iteration from H to H̃ strictly decreases the value of the score

function V , after a bounded number of iterations we obtain a matrix Ĥ that is Σ-countermonotonic.

The corresponding arrangement X̂ is still optimal for the objective function φ, as the iterations do

not increase its value φ(X̂) = φ̃(Ĥ). Furthermore, if g in (2) is strictly Schur-convex, the same

argument shows that any minimizer H∗ must be Σ-countermonotonic to begin with.

In particular, the above result means that instead of minimizing φ(X) over all arrangements

of X, we can minimize φ̃(Ĥ) over Σ-countermonotonic arrangements Ĥ of H(X). In the following

section, we connect the theoretical properties of Σ-countermonotonicity and COO with practical

algorithms for obtaining arrangements that satisfy these properties.

3.2 The Rearrangement Algorithm

A procedure for obtaining a COO arrangement of a given matrix, called the Rearrangement Al-

gorithm (RA), is described in Puccetti and Rüschendorf (2012); Embrechts et al. (2013); Puccetti

(2013). The original application of the RA is computing dependence uncertainty bounds for risk

measures of sums of random variables with given univariate distributions. In the risk management

context, the algorithm has proven to be easily applicable, and to reliably give close-to-optimal
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bounds (testing in cases where the analytical solution is known). Improvements on the RA, e.g. re-

garding the stopping conditions, are given in Hofert et al. (2015); for other recent updates, see

sites.google.com/site/RearrangementAlgorithm.

Recently, a modification called the Block Rearrangement Algorithm has been introduced, which

finds a Σ-countermonotonic arrangement of a given matrix; see Remark 4.1 in Bernard et al. (2015)2,

and further analysis in Bernard and McLeish (2016); Boudt et al. (2017). The basic iteration of this

algorithm is indeed as described in the proof of Theorem 2. Thus, for type (A) AI functions and,

more generally, objectives in (2), the Block RA can directly be applied to obtain an approximate

solution.

We remark that theoretical results on efficiency and run-time analysis of the RA and its vari-

ations are not available, and they seem to be mathematically intractable at the moment. Earlier

heuristic algorithms for optimizing (3) were given in Hsu (1984); Coffman and Yannakakis (1984),

including a known run-time and a 3/2-optimality guarantee; however, the typical performance is

also close to this guarantee.

3.3 Further objectives compatible with negative dependence

In this section we discuss further types of AI objectives for which the Rearrangement Algorithm

may be of use. Puccetti and Rüschendorf (2015) generalize the RA for a special class of type (B)

functions, in which the supermodular row-aggregation function g : Rd → R is decomposable.

Definition 4. A supermodular function g : Rd → R is decomposable if it is coordinate-wise mono-

tone, and there exist supermodular functions g(2) : R2 → R and g(d−1) : Rd−1 → R such that

g(z1, . . . , zd) = g(2)(zj , g
(d−1)(z1, . . . , zj−1, zj+1, . . . , zd)), j = 1, . . . , d. (7)

For a decomposable supermodular function g, minimizing type (B) AI functions is indeed a two-

dimensional problem. Expression (7) may seem to considerably extend the scope of applications

beyond our main focus, functions of the form (2). However, the only explicit examples given by

Puccetti and Rüschendorf (2015) satisfying the decomposition (7) are the sum, the product, the

minimum and (minus) the maximum operators.

Remark 1. It is perhaps useful to note that minimizing the sum of row-minima has a trivial solution:

putting the n smallest elements of the matrix, one in each row. Analogously, for the sum of (minus)

row-maxima, we put the n largest elements in different rows; see also Section 4.1 in Puccetti and

Rüschendorf (2012). Hence, while these examples cannot be directly expressed in the form (2), it is

2It seems to the authors that there is a parallel development for Σ-countermonotonicity: in Puccetti and Wang

(2015) as a probabilistic concept (continuous and discrete settings) and in Bernard et al. (2015) and Boudt et al.

(2017) as an algorithmic concept (discrete setting). The term Σ-countermonotonicity is proposed by Puccetti and

Wang (2015).
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straightforward to obtain the solution, so we do not further discuss these special cases of submodular

functions.

Here we identify another useful class of functions that are submodular and have the required

structure (7): the class of multivariate distributions with an Archimedean copula. This is a flexible

subclass of supermodular functions, it includes the product function, and corresponding optimiza-

tion problem is non-trivial. For the reader’s convenience, we provide the definition of Archimedean

copulas in Appendix A.2. For further details on Archimedean copulas, and copulas in general, see

McNeil and Nešlehová (2009); Joe (2014). For another example where the Archimedean copula

enables tractable results on stochastic orderings, see the portfolio allocation problem in Li and You

(2014).

All distribution functions are supermodular, but those that admit an Archimedean copula also

have the structure (7) (after a marginal transformation), as shown in the following proposition.

Proposition 3. Let F : Rd → [0, 1] be a distribution function with an Archimedean copula. Then

F admits the following form:

F (z1, . . . , zd) = g(F1(z1), . . . , Fd(zd)) (8)

for some decomposable supermodular function g, where Fj denote the margins of F , j = 1, . . . , d.

Furthermore, F admits the form

F (z1, . . . , zd) = f(
∑d

j=1 hj(zj)), (9)

for some convex function f and decreasing functions hj, j = 1, . . . , d,

Proof. Sklar’s theorem states that any multivariate cdf F can be expressed in terms of its margins

Fj , j = 1, . . . , d and a copula C : [0, 1]d → [0, 1], that is,

F (z1, . . . , zd) = C(F1(z1), . . . , Fd(zd)).

Let ψ be the generator of the Archimedean copula C and let C
(k)
ψ be the k-variate Archimedean

copula with generator ψ. Observe that ψ−1 ◦ ψ(z) = z for z ∈ {x : ψ(x) > 0}, since ψ is strictly

decreasing on its support; see Embrechts and Hofert (2013) for properties of inverses. By definition,

Cψ(u1, . . . , ud) = ψ(ψ−1(u1) + . . .+ ψ−1(ud))

= ψ(ψ−1(u1) + ψ−1 ◦ ψ(ψ−1(u2) + . . .+ ψ−1(ud)))

= C
(2)
ψ (u1, C

(d−1)
ψ (u2, . . . , un)).

By symmetry, for each j = 1, . . . , d, we have

F (z1, . . . , zd) = C
(2)
ψ (Fj(zj), C

(d−1)
ψ (F1(z1), . . . , Fj−1(zj−1), Fj+1(zj+1), . . . , Fd(zd)), (10)
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which admits the form (8), since any copula is supermodular. Taking hj = ψ−1 ◦ Fj , j = 1, . . . , d

and f = ψ in (10), we obtain (9). As ψ is the generator of an Archimedean copula, f is convex and

hj are decreasing (see Definition 7 in Appendix A.2).

From representation (9) in Proposition 3, it follows that in order to minimize

φ(X) =
n∑
i=1

F (xi1, . . . , xid), X ∈ Rn×d, (11)

where F has an Archimedean copula, we can apply the Block RA to the matrix H(X) to obtain a Σ-

countermonotonic arrangement; we shall see in Section 4.2 that this often provides an approximate

solution.

A straightforward corollary of Proposition 3 is that AI functions of type (C) that have the form

φ(X) =
n∏
i=1

F (xi1, . . . , xid), X ∈ Rn×d, (12)

where F has an Archimedean copula, are also compatible with Σ-countermonotonicity and the

Block RA (after applying a logarithmic transformation). The fact that Archimedean distributions

are MTP2 is shown in Müller and Scarsini (2005), see also Appendix A.2.

Interestingly, we notice that although we attempted to expand the class of objectives for which

Σ-countermonotonicity and the Block RA can be applied, the only tractable examples of type (B)

and (C) AI functions also admit the form (2), with Schur function g of type b) (see page 7).

We conclude this section with a brief discussion regarding a possible extension to more general

distribution functions, beyond Archimedean. Notice that the Σ-countermonotonicity condition

for F with an Archimedean copula is equivalent to FJ(xiJ) and FJc(xiJc), i = 1, . . . , n, being

oppositely ordered for all nonempty J ( {1, . . . , d} (where FJ = Fj1,...,jk are multivariate marginal

distributions and xiJ = (xij1 , . . . , xijk) for J = {j1, . . . , jk}). One may wonder whether the necessity

of this structure remains true for minimizing (11) with an arbitrary distribution function F (not

necessarily associated with an Archimedean copula). As the following example demonstrates, this is

in general not true; restricting to the class of distributions associated with an Archimedean copula

is important for our approach to work.

Consider a distribution on {0, 1}3 as given in Table 1, and suppose that the input matrix and

the corresponding marginal distributions are

X =

(
0 0 1

1 1 0

)
,

F1(0) = 0.5 F2,3(0, 1) = 0.7

F1(1) = 1 F2,3(1, 0) = 0.6

The marginal probabilities are oppositely ordered, and the corresponding objective value of type

(B) is F (0, 0, 1) +F (1, 1, 0) = 0.3 + 0.6 = 0.9. Arranging the first column similarly, however, would

give a smaller objective value, F (1, 0, 1)+F (0, 1, 0) = 0.7+0.1 = 0.8. In fact, this is the minimizing
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Table 1: Probability mass function and cdf of a distribution of (X1, X2, X3) on {0, 1}3.

P(Xi = xi, i = 1, 2, 3) P(Xi ≤ xi, i = 1, 2, 3)

x1 = 0 x1 = 1 x1 = 0 x1 = 1

x2
x3 0 1 x2

x3 0 1 x2
x3 0 1 x2

x3 0 1

0 0 0.3 0 0.4 0 0 0 0.3 0 0.4 0.7

1 0.1 0.1 1 0.1 0 1 0.1 0.5 1 0.6 1

arrangement, moreover F1,2 and F3 are also similarly ordered for this arrangement. This shows that

for general dependence structures, the arrangement that minimizes the sum of joint cdfs may not

have oppositely ordered marginal cdfs. Note that the arrangement that maximizes the sum of cdfs

is the comonotonic one, with F (0, 0, 0) + F (1, 1, 1) = 0 + 1 = 1. This is true for any choice of the

distribution function, since AI functions are always maximized by the comonotonic arrangement;

see (5).

4 Scheduling and systems assembly problems

In the following subsections, we provide two classical examples of practical problems: the assembly

line crew scheduling and the systems assembly problems. These problems, on their first appearance,

may not directly translate to problems discussed in Sections 2-3. However, with some careful

analysis, we show that they indeed belong to the class of minimization problems with an objective

function of the form (2). Thereby, we apply the (Block) RA to obtain approximate solutions

following the methodology outlined in Section 3 and the numerical results are discused.

4.1 Assembly line crew scheduling problem

The deterministic version of the assembly line crew scheduling (ALCS) problem was introduced in

Hsu (1984); in the following, we describe a stochastic version of this problem, which includes more

real-world applications. ALCS considers the production of n items on n parallel assembly lines (one

item on each line), where each item requires d different operations. There are n workers specialized

in each of the d operations, hence nd workers in total. The time taken by worker i of specialty j to

complete the operation is a random variable Tij ∼ Fij , where Fij is a distribution function (df) that

models the completion time of operation j. All the rvs Tij , i = 1, . . . , n, j = 1, . . . , d are assumed

to be independent. We are allowed to assign the workers within each specialty to the n assembly

lines in any order. Writing T = (Tij)n×d, the assignment of workers corresponds to permuting the

entries within each column (representing specialty) of T . Denote by Ci =
∑d

j=1 Tij the completion

time of the ith item, and by Cmax = maxni=1Ci the makespan of the project. We will consider three

13



different objectives for this stochastic problem.

• Maximize the probability of meeting a deadline D ∈ R,

P(Cmax ≤ D) =
n∏
i=1

P(Ci ≤ D) =
n∏
i=1

(∗dj=1Fij
)
(D), (13)

where F∗G denotes the df of the sum of independent variables with dfs F and G, respectively.

• Minimize the expected makespan

E[Cmax] =

∫ ∞
t=0

P(Cmax > t) dt. (14)

• Maximize the expected number of items finished within the deadline D ∈ R,

E

[
n∑
i=1

1{Ci≤D}

]
=

n∑
i=1

P(Ci ≤ D) =

n∑
i=1

(∗dj=1Fij
)
(D). (15)

Suppose the individual completion time of worker i of specialty j follows the Normal distribution

with mean θij and variance σ2j , namely Fij(·) = Φ((· − θij)/σj). Let Θ = (θij)n×d be the matrix of

location parameters, and let σ2+ =
∑d

j=1 σ
2
j , θi+ =

∑d
j=1 θij . Then Ci ∼ N (θi+, σ

2
+) for i = 1, . . . , n.

The assumption of homogeneity in σj within each column allows us to translate the arrangement

problem of T to that of Θ. Note that the same approach would also be applicable if the workers

on the same assembly line had dependent completion times, modeled by a multivariate Normal

distribution with covariance matrix Σ, by taking σ2+ = 1>Σ1. Since the logarithm is an increasing

function, maximizing (13) is equivalent to maximizing

log(P(Cmax ≤ D)) =

n∑
i=1

log Φ((D − θi+)/σ+). (16)

Furthermore, the Normal df is log-concave (see Bagnoli and Bergstrom (2005) for this and other

examples), so (16) is a sum of a concave function evaluated at row-sums of Θ.

Hence, the objective (13) and its log-counterpart (16) are Schur-concave, corresponding to the

cases c) and b) (with a negative sign, to switch from convex to concave) in Section 2.2, respectively.

Thus, an arrangement of Θ which makes the row-sum vector “small” in majorization order yields a

larger objective value (13). Moreover, the objective is then large for all deadlines D = t simultane-

ously (i.e. large in stochastic order), hence the objective (14), being the integral of tail probabilities,

is “small” for this permutation. Therefore, a row-sum vector that is small in majorization order

is desirable with respect to both objectives (13) and (14). The objective (15) does not obey the

majorization order, because Φ is not convex on its domain. For example, suppose that θij = i for

14



i = 1, . . . , 3 and j = 1, 2; σ2+ = 1 and D = 4. Then the countermonotonic arrangement is

Θ =


1 3

2 2

3 1

⇒ 3∑
i=1

P(Ci ≤ 4) = 1.5, while Θ =


1 2

2 1

3 3

⇒ 3∑
i=1

P(Ci ≤ 4) = 1.71.

An alternative heuristic for functions that are convex on the left and concave on the right would be

to take the k ∈ {0, 1, . . . , n} slowest workers in each specialty and arrange them comonotonically,

while the fastest (n− k) workers Σ-countermonotonically (which is optimal in the example above).

However, we do not pursue this idea further and leave it for future research.

For a simple numerical example, we choose dimensions n = 15, d = 4; note that even for such

small dimensions a brute force search of all (15!)3 ≈ 1036 arrangements is out of the question.

We take σ2j = j, j = 1, . . . , d and generate the matrix Θ of location parameters by sampling

θij ∼ 5σj(1+Beta(2, 5)); the entries of this matrix are then fixed for the remainder of the case study

(the choice of the parameters is such that the completion times have a negligible probability of being

negative). Thereafter, we consider 1000 random (intra-column) arrangements of the matrix Θ and

compute the value of objectives (13)-(15) with deadline D = 45. A histogram of the objective (13)

values is given in Figure 1. Taking each random arrangement as the input, we apply the (Block) RA

to obtain a Σ-countermonotonic or COO matrix, and again compute the corresponding probability

of meeting the project deadline. We observe that in all cases the resulting arrangements consistently

yield high probabilities of success, supporting the assertion that Σ-countermonotonic matrices are

often close-to-optimal. The COO matrices are also close, but show slightly more variation (see

Figure 1, right panel, as well as Table 2), since it is a larger set of arrangements. Table 3 in the

Appendix B shows a Σ-countermonotonic arrangement of Θ with the corresponding probabilities of

exceeding the deadline.

Table 2: Range (minimum and maximum over 1000 experiments) of the objective functions (13)-(15) for

Σ-countermonotonic, COO and random arrangements for the matrix Θ for the assembly line crew scheduling

example with n = 15, d = 4 and deadline D = 45. The last column shows the results for the comonotonic

arrangement of Θ (worst case).

Objective Block RA RA random comonotonic

max P(Cmax ≤ 45)
0.6691 0.6670 0.0430

0.0101
0.6723 0.6723 0.5686

max
∑15

i=1 P(Ci ≤ 45)
14.6037 14.6007 13.1289

12.6084
14.6081 14.6081 14.4545

min E[Cmax]
44.3512 44.3513 44.8328

50.3584
44.3660 44.3760 49.0833
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Figure 1: Left panel: Histogram of P(Cmax ≤ 45) corresponding to 1000 random initial arrangements of Θ, as

well as the result after applying the (Block) Rearrangement Algorithm in order to obtain Σ-countermonotonic

or column oppositely ordered matrices. Worst case is given by the comonotonic arrangement. Right panel:

Close-up of the best cases.

Figure 2 shows the expected number of items finished on time (left panel) and the expected

makespan (right panel); see also Table 2 for the range of observed values for these objectives. Again,

we notice that the Σ-countermonotonic and COO arrangements consistently give solutions that are

significantly better than the random arrangements, with the Σ-countermonotonic ones showing less

variation. Although the objective max
∑15

i=1 P(Ci ≤ 45) in (15) does not respect majorization order,

from Table 2 and Figure 2, the Σ-countermonotonic and COO arrangements perform quite well,

suggesting that they may have a wider range of applications than the ones described in Section 2,

and this is left for future exploration.

4.2 Systems assembly problem

In reliability theory, a system that is composed of d individual components, each of which may

be functioning properly of not, is characterized by its structure function ρ : {0, 1}d → {0, 1}.
Denoting the state of component j by xj ∈ {0, 1} (representing failed or functional, respectively),

ρ(x1, . . . , xd) ∈ {0, 1} returns the state of the system. For example, a series system is described by

ρ(x1, . . . , xd) = min{x1, . . . , xd} =

d∏
j=1

xj =

0 if xj = 0 for some j,

1 if xj = 1 for all j.

The state of the components is usually not known in advance and is modeled by a random vector

(X1, . . . , Xd) taking values in {0, 1}d. Then, the reliability of the system is given by

R = E[ρ(X1, . . . , Xd)] = P(ρ(X1, . . . , Xd) = 1).
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Figure 2: Left panel: Histogram of
∑15
i=1 P(Ci ≤ 45), based on 1000 random initial arrangements of Θ, after

applying the (Block) Rearrangement Algorithm in order to obtain Σ-countermonotonic or column oppositely

ordered matrices, respectively. Right panel: Histogram for the objective E[Cmax].

First, we describe a series systems assembly problem following the setup of Derman et al.

(1972), and then proceed to our example with parallel systems. Suppose that a system consists of

d components, each of a different type, and there are n components of each type available. This

enables the assembly of n systems. The state of the components (Xi1, . . . , Xid) within system i is

determined by a vector (Zi1, . . . , Zid) ∼ FZ of external shocks and individual “quality” parameters

aij for each of the components. Specifically, Xij = 1{Zij≤aij}, i = 1, . . . , n, j = 1, . . . , d. Hence, the

reliability of system i is

Ri = P(Zi1 ≤ ai1, . . . , Zid ≤ aid) = FZ(ai1, . . . , aid).

We can freely choose the order of components of each type when assembling the systems, which

corresponds to rearranging elements within the columns a1, . . . ,ad of the input matrix (A)ij = aij ,

so that each row corresponds to an assembled system. The expected number of systems that perform

satisfactorily is
d∑
i=1

Ri =

d∑
i=1

FZ(ai1, . . . , aid) (17)

Recall from Section A.1 that cumulative distribution functions are supermodular, therefore the

objective function (17) is arrangement increasing, in particular, of the type (B). This yields the main

result in Derman et al. (1972), that the comonotonic arrangement A∗ = (a↑1, . . . ,a
↑
d) of components

maximizes the expected number of systems that perform satisfactorily. They also note that under

a further assumption that the probabilities that components within a system work are independent

(FZ has the independence copula), the comonotonic arrangement also maximizes the probability

that at least k systems perform satisfactorily, 1 ≤ k ≤ n.
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We now consider the assembly of parallel systems, where at least one component is required to

work for a system to perform satisfactorily. In this case, the structure function is

ρ‖(x1, . . . , xd) = max{x1, . . . , xd} = 1−
d∏
j=1

(1− xj) =

0 if xj = 0 for all j,

1 if xj = 1 for some j.

Using the same model for component states Xij = 1{Zij≤aij} as in the series example, the reliability

of system i in the parallel case is

R
‖
i = 1− P(Zi1 > ai1, . . . , Zid > aid) = 1− SZ(ai1, . . . , aid), (18)

where SZ denotes the so-called survival function of (Zi1, . . . , Zid). Maximizing the reliability (18)

is equivalent to minimizing a survival function. Since the survival function is also a distribution

function, it is supermodular. Therefore, maximizing the expected number of functioning systems,∑d
i=1R

‖
i , is equivalent to minimizing the sum of supermodular functions (type (B) of AI functions).

Derman et al. (1972) note that in the special case of independence copula and d = 2 types of

components, the countermonotonic arrangement is optimal. Prasad et al. (1991) consider a related

problem, and also only give the solution for the case d = 2. In Derman et al. (1974) another

variation with independent component failures is considered, and a pairwise component interchange

heuristic is proposed.

Using the insights from Section 3, we are able to consider dimensions higher than 2, and relax

the assumption of independence. In particular, we suppose that for the survival function SZ of the

external factors, the dependence is modeled using an Archimedean copula (see Section A.2). For a

concrete example, we consider the Clayton copula Cθ with parameter θ > 0 and generator

ψ(t) = (1 + θt)−1/θ, t ∈ [0,∞), ψ−1(u) = (u−θ − 1)/θ, u ∈ (0, 1].

Note that the “survival” function SZ in (18) actually gives the probability of system failure, therefore

we will work with the marginal and joint probabilities of component failures. For i = 1, . . . , n and

j = 1, . . . , d, define Uij = 1 − Fj(Zij) and pij = 1 − Fj(aij), where Fj is the jth margin of FZ

(assumed continuous for simplicity, so that Uij ∼ UNIF(0, 1)). Applying Sklar’s theorem, we can

take (P )ij = pij as the input matrix, and express the probability that the ith system fails as

1−R‖i = P(Ui1 ≤ pi1, . . . , Uid ≤ pid) = Cθ(pi1, . . . , pid).

Clayton copula induces a tail dependence with lower-tail dependence index λL = 2−1/θ; see Nelsen

(2006, Section 5.4). For the present model this implies that the probability of joint failures for

reliable components (with small marginal probability pij of failure) is higher than in the independent

case; see Figure 3 for a bivariate sample of (U1, U2) ∼ Cθ, as well as the conditional probability

P(U2 ≤ 0.1|U1 ≤ p).
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Figure 3: Left panel: 1000 sample points from a bivariate Clayton copula with parameter θ = 2. Right

panel: Conditional failure probability P(U2 ≤ 0.1 |U1 ≤ p) = Cθ(p, 0.1)/p as a function of p ∈ [0, 1] on the

horizontal axis.

For a numerical example, we generate the input matrix P ∈ R20×5 by sampling the component

failure probabilities pij
iid∼ UNIF(0, 1); we fix the entries of this matrix for the remainder of the

experiment. Following the approach from Section 3.3, we transform P by applying ψ−1 to its

entries, thus obtaining H(P ). Thereafter, we consider 1000 random arrangements of the matrix

H(P ) and compute the expected number of failed systems. A histogram of the results is given in

Figure 4. Taking each random arrangement as the input, we apply the (Block) RA to obtain a

Σ-countermonotonic or COO matrix, respectively, and again compute the corresponding expected

number of failed systems. We observe that in all cases the resulting arrangements consistently yield

highly reliable systems, supporting the hypothesis that Σ-countermonotonic matrices are close-to-

optimal. The COO matrices are also close, but show more variation (see Figure 4, right panel),

since it is a larger set or arrangements. Table 4 in the Appendix B shows a Σ-countermonotonic

arrangement of H(P ) with the corresponding failure probabilities.

5 Conclusions

While maximizing an arrangement increasing (AI) function over intra-column rearrangements of a

given matrix is trivial, the corresponding minimization problem is in general intractable. We have

shown that for a subclass of AI functions with a special structure, the minimizing arrangement

has to satisfy a specific property of negative dependence. This can be exploited to obtain close-

to-optimal arrangements using a practical heuristic called the (Block) Rearrangement Algorithm;

this is possible due to the special structure of the considered AI functions. We also show that this

subclass of AI functions includes the objective functions of many classical optimization problems,

also stochastic ones, and give explicit examples. The numerical case study seems to support the
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Figure 4: Left panel: Histogram of
∑20
i=1(1 − R‖

i ) corresponding to 1000 random initial arrangements of

H(P ), as well as the result after applying the (Block) Rearrangement Algorithm in order to obtain Σ-

countermonotonic or column oppositely ordered matrices. With the Block RA, the result was always 1.7176

(up to four decimal digits), with the standard RA - in the range [1.7176, 1.7202], for the random arrangements

- in the range [1.9465, 3.6781], and equal to 5.8037 for the comonotonic arrangement. Right panel: Close-up

of the best cases.

intuition that any arrangement with the mentioned countermonotonicity property gives a close-to-

optimal objective value.
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Bernard, C., Rüschendorf, L., and Vanduffel, S. (2015). Value-at-Risk bounds with variance con-

straints. Journal of Risk and Insurance. Available at http://dx.doi.org/10.1111/jori.12108.

Block, H. W., Griffith, W. S., and Savits, T. H. (1989). L-superadditive structure functions. Ad-

vances in Applied Probability, 21(4):919–929.

Block, H. W., Savits, T. H., and Shaked, M. (1982). Some concepts of negative dependence. The

Annals of Probability, 10(3):765–772.

Boland, P. J. and Proschan, F. (1988). Multivariate arrangement increasing functions with appli-

cations in probability and statistics. Journal of Multivariate Analysis, 25(2):286–298.

Boudt, K., Jakobsons, E., and Vanduffel, S. (2017). Block rearranging elements within matrix

columns to minimize the variability of the row sums. 4OR. Available at http://dx.doi.org/

10.1007/s10288-017-0344-4.

Chew, S. H., Karni, E., and Safra, Z. (1987). Risk aversion in the theory of expected utility with

rank dependent probabilities. Journal of Economic Theory, 42(2):370–381.

Coffman, Jr., E. G. and Yannakakis, M. (1984). Permuting elements within columns of a matrix in

order to minimize maximum row sum. Mathematics of Operations Research, 9(3):384–390.

Colangelo, A., Scarsini, M., and Shaked, M. (2005). Some notions of multivariate positive depen-

dence. Insurance: Mathematics and Economics, 37(1):13–26.

Day, P. W. (1972). Rearrangement inequalities. Canadian Journal of Mathematics, 24(5):930–943.

Derman, C., Lieberman, G. J., and Ross, S. M. (1972). On optimal assembly of systems. Naval

Research Logistics Quarterly, 19(4):569–574.

Derman, C., Lieberman, G. J., and Ross, S. M. (1974). Assembly of systems having maximum

reliability. Naval Research Logistics Quarterly, 21(1):1–12.

Ebrahimi, N. and Ghosh, M. (1981). Multivariate negative dependence. Communications in Statis-

tics - Theory and Methods, 10(4):307–337.

Embrechts, P. and Hofert, M. (2013). A note on generalized inverses. Mathematical Methods of

Operations Research, 77(3):423–432.

Embrechts, P., Puccetti, G., and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation.

Journal of Banking & Finance, 37(8):2750–2764.

21

http://dx.doi.org/10.1111/jori.12108
http://dx.doi.org/10.1007/s10288-017-0344-4
http://dx.doi.org/10.1007/s10288-017-0344-4
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A Relevant concepts

A.1 Supermodularity and total positivity

In this section, we define the properties of submodularity and MTP2, which are relevant to arrange-

ment increasing functions of types (B) and (C), respectively.

Definition 5. A function g : D ⊂ Rd → R is said to be supermodular if it satisfies

g(z ∧w) + g(z ∨w) ≥ g(z) + g(w) for all z,w ∈ D,

where ∧ and ∨ denote the component-wise minimum and maximum, respectively.

Supermodular functions are sometimes called L-superadditive, where L stands for “lattice”.

Reversing the inequality in Definition 5 yields submodularity. In reliability theory, Block et al.

(1989) explains the intuition that the supermodular/submodular property for a structure function

describes whether the system is more series-like or more parallel-like; see Section 4.2 for further

details. Examples of supermodular functions (z1, . . . , zd) 7→ g(z1, . . . , zd) include

a) f(z1 + . . .+ zd), if and only if f is convex,

b) for a twice differentiable f , f(
∏d

1 zj), if and only if f ′(z) + zf ′′(z) ≥ 0,

c) f(mindj=1 zj) and f(−maxdj=1 zj), where f is non-decreasing,

d) elementary symmetric polynomials,

e) cumulative distribution functions.
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Observe that if we substitute a) into type (B) of AI functions, we obtain a function of type (A).

Expressing f(
∏d

1 zj) = f(exp{log(z1) + . . . + log(zd)}), we effectively reduce example b) to a); in

particular, if the conditions for f in b) hold, then f ◦ exp is convex, hence we have again recovered

an objective of the structure (2). If we substitute e) into type (B) of AI functions, the sum of cdfs

can be interpreted as the expected number of events that occur; see the example in Section 4.2.

Lorentz (1953) shows that the comonotonic arrangement maximizes the sum of a supermodular

function applied to the rows of a matrix; this can also be seen by applying a sequence of basic

rearrangements (see Section 2.1). Furthermore, for d = 2 columns, the minimizing arrangement is

the countermonotonic one; see Marshall et al. (2011, Sections 6.D-E) for these and further properties

and examples. For d ≥ 3 columns, finding the minimizing arrangement is more challenging; this is

related to the fact that the “opposite” operation of a basic rearrangement is no longer well-defined.

Multivariate total positivity of order 2 (MTP2) is the log-analogue of supermodularity, namely,

a positive-valued function g is MTP2 if and only if log ◦g is supermodular.

Definition 6. A function g : D ⊂ Rd → R+ is said to be multivariate totally positive (MTP2), if

g(z ∧w)g(z ∨w) ≥ g(z)g(w) for all z,w ∈ D.

If g represents a density function, then the MTP2 property is often seen as a characteristic of

multivariate positive dependence; see Karlin and Rinott (1980a); Hu et al. (2003); Colangelo et al.

(2005). Reversing the inequality in Definition 6 defines a multivariate reverse regular of order 2

(MRR2) function. This property is considered as a characteristic of negative dependence; see Karlin

and Rinott (1980b); Block et al. (1982); Joag-Dev and Proschan (1983). In statistics, the product

of densities represents the likelihood of independent (vector-valued) observations. Alternatively, g

may represent a cumulative distribution function, in which case the product is the joint probability

of independent events occurring. A useful result Joe (1997, p.55) states: if g is an MTP2 density,

then its cdf and survival function are also MTP2. For applications of MTP2 in reliability theory,

see Shaked and Shanthikumar (1990).

It was observed by John Napier in Mirifici Logarithmorum Canonis Descriptio (1614) that by

applying the logarithm, we can transform multiplication into addition, which is easier to work with.

This is also well-known to statisticians, who typically prefer to use log-likelihoods. Hence, it may be

easier to transform type (C) AI functions into type (B) by taking the logarithm, and then continue

working with sums of supermodular functions.

A.2 Archimedean copula

In this section, we recall the definitions of d-monotonicity and Archimedean copulas from McNeil

and Nešlehová (2009).
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Definition 7. A function ψ : [0,∞) → R is called d-monotone, where d ≥ 2, if it is differentiable

up to the order d− 2 and the derivatives satisfy

(−1)kψ(k)(x) ≥ 0, k = 0, . . . , d− 2,

for any x ≥ 0 and further if (−1)d−2ψ(d−2) is decreasing and convex. If ψ has derivatives of all

orders and if (−1)kψ(k)(x) ≥ 0 for any x ≥ 0, then ψ is called completely monotone.

Proposition 4. Let ψ : [0,∞) → [0, 1] be a d-monotone function such that ψ(0) = 1 and

limx→∞ ψ(x) = 0. Then Cψ : [0, 1]d → [0, 1] defined by

Cψ(u1, . . . , ud) = ψ(ψ−1(u1) + . . .+ ψ−1(ud)) (19)

is a copula. If ψ is completely monotone, then (19) is a copula for any d ≥ 2.

Any copula of the form (19) is called Archimedean, and the function ψ is the generator of the

copula. Note that in the literature, the notation of ψ and ψ−1 is sometimes swapped, e.g. in Nelsen

(2006).

A useful property which connects Archimedean copulas to the optimization with objectives of

type (C) is given in Müller and Scarsini (2005) and stated below.

Lemma 5. If ψ is completely monotone, then Cψ : [0, 1]d → [0, 1] is MTP2 for any d ≥ 2.

In fact, this result is proved by showing that log ◦ψ is a convex function for completely mono-

tone ψ.
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B Numerical results

Table 3: A Σ-countermonotonic arrangement for the matrix Θ (obtained using the Block Rearrangement

Algorithm) for the assembly line crew scheduling example (Section 4.1) with n = 15, d = 4. The last

four columns show row-sums θi+ and P(Ci > 45) = 1 − Φ((θi+ − 45)/σ+) for a Σ-countermonotonic and

comonotonic arrangement of Θ, respectively.

Σ-countermonotonic Σ-countermonotonic Θ comonotonic Θ

arrangement of Θ Row-sums P(Ci > 45) Row-sums P(Ci > 45)

5.73 8.39 11.84 12.83 38.79 0.025 31.60 1.13 · 10−5

6.90 8.38 10.41 13.13 38.82 0.025 32.86 6.15 · 10−5

6.21 9.26 13.06 10.30 38.83 0.026 33.69 1.75 · 10−4

5.32 10.27 8.93 14.31 38.83 0.026 35.17 9.44 · 10−4

7.29 8.02 10.14 13.39 38.84 0.026 35.43 0.00124

7.71 9.43 9.87 11.84 38.84 0.026 36.07 0.00238

7.38 7.66 11.68 12.12 38.84 0.026 36.52 0.00366

7.14 7.78 11.76 12.17 38.85 0.026 38.42 0.0187

7.70 7.76 11.34 12.05 38.85 0.026 39.64 0.0450

6.12 9.46 12.67 10.60 38.85 0.026 40.12 0.0614

7.13 7.68 12.19 11.86 38.86 0.026 41.51 0.135

7.28 9.42 9.73 12.44 38.87 0.026 42.29 0.195

5.96 7.62 14.66 10.69 38.93 0.027 43.80 0.352

6.02 7.30 9.65 15.98 38.95 0.028 46.20 0.648

5.16 7.21 9.64 16.96 38.98 0.028 49.60 0.927

P(Cmax ≤ 45) 0.6721 0.0101∑15
i=1 P(Ci ≤ 45) 14.6079 12.6084

E[Cmax] 44.3519 50.3584
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Table 4: A Σ-countermonotonic arrangement for the matrix H(P ) (obtained using the Block Rearrangement

Algorithm) for the systems assembly example (Section 4.2) with n = 20, d = 5 and Clayton(θ = 2) copula.

The last four columns show the row-sums and individual system failure probabilities for a Σ-countermonotonic

and comonotonic arrangement of H(P ), respectively (R
‖
i is the reliability of the ith system).

Σ-countermonotonic arrangement of H(P ) Σ-countermonotonic comonotonic

Row-sums 1−R‖i Row-sums 1−R‖i
6.23 4.48 1.48 12.56 2.12 26.86 0.14 0.20 0.85

6.04 9.94 1.26 9.02 1.48 27.74 0.13 0.48 0.71

13.13 3.26 4.10 5.64 1.67 27.80 0.13 1.00 0.58

3.41 3.18 14.22 5.03 2.10 27.94 0.13 1.76 0.47

3.15 2.67 1.09 1.95 20.98 29.83 0.13 2.24 0.43

2.11 2.13 0.91 2.92 21.77 29.84 0.13 2.97 0.38

1.49 23.69 1.06 2.38 1.29 29.91 0.13 3.96 0.33

1.48 2.06 0.86 32.05 1.23 37.67 0.11 4.34 0.32

1.09 1.05 0.81 34.58 1.05 38.58 0.11 4.89 0.30

0.79 0.82 39.44 1.75 0.83 43.63 0.11 5.89 0.28

0.57 0.68 0.60 43.07 0.78 45.69 0.10 7.19 0.25

0.48 87.49 0.30 1.69 0.74 90.71 0.07 11.06 0.21

0.34 0.51 139.28 1.24 0.62 141.98 0.06 12.03 0.20

0.32 0.51 0.30 0.95 152.77 154.85 0.06 19.38 0.16

0.31 0.30 0.10 171.77 0.50 172.99 0.05 34.77 0.12

0.28 0.28 222.46 0.78 0.40 224.20 0.05 80.25 0.08

0.15 0.16 265.89 0.42 0.25 266.86 0.04 186.50 0.05

2637.05 0.10 0.04 0.12 0.22 2637.54 0.01 302.68 0.04

0.14 0.08 10927.86 0.02 0.09 10928.19 0.01 496.25 0.03

0.04 0.07 0.01 12971.12 0.05 12971.30 0.01 26776.29 0.00∑20
i=1(1−R

‖
i ) 1.7176 5.8037
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