
Collective Risk Models with Dependence Uncertainty

Haiyan Liu∗ and Ruodu Wang†

February 27, 2017

Abstract

We bring the recently developed framework of dependence uncertainty into collective risk

models, one of the most classic models in actuarial science. We study the worst-case values of

the Value-at-Risk (VaR) and the Expected Shortfall (ES) of the aggregate loss in collective risk

models, under two settings of dependence uncertainty: (i) the counting random variable (claim

frequency) and the individual losses (claim sizes) are independent, and the dependence of the

individual losses is unknown; (ii) the dependence of the counting random variable and the indi-

vidual losses is unknown. Analytical results for the worst-case values of ES are obtained. For

the loss from a large portfolio of insurance policies, an asymptotic equivalence of VaR and ES is

established. Our results can be used to provide approximations for VaR and ES in collective risk

models with unknown dependence. Approximation errors are obtained in both cases.
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1 Introduction

The question we address in this paper comes from a practical challenge of measuring large in-

surance portfolios using a risk measure under model uncertainty at the level of the dependence among

individual claims and the number of claims.

The aggregate loss of an insurance company (the total amount paid on all claims occurring over

a fixed period) is often modelled by a sum of random variables,

S N = Y1 + · · · + YN , (1.1)

where Y1,Y2, . . . are non-negative random variables and N (random or deterministic) takes values in

non-negative integers. Nowadays the simple model (1.1) is taught in practically every undergraduate

actuarial science course on loss models; see, for instance, standard textbooks Kaas et al. (2008) and

Klugman et al. (2012).

When N is a non-random positive integer, (1.1) is called an individual risk model, in which

Y1,Y2, . . . represent losses from each individual policy and N is the number of policies. When N itself

is random, (1.1) is called a collective risk model. For portfolio analysis, individual risk models are a

priori the most natural, whereas for ruin theoretic problems, collective risk models are more natural.

In the classic treatment of collective risk models, Y1,Y2, . . . are iid random variables representing in-

dividual claim sizes, and the counting random variable N is assumed to be independent of (Y1,Y2, . . . ).

This classic assumption on the independence of N,Y1,Y2, . . . provides great mathematical convenience

and elegance, as well as nice interpretations.

In some practical situations, the claims or losses Y1,Y2, . . . , in individual risk models or collective

risk models are dependent, and they may also be dependent on the number of claims N. Think about,

for instance, the losses from wind and flood damage in a certain region; see Kousky and Cooke (2009)

for related real-life examples. In the context of collective risk models or the closely related setting

of compound Poisson processes, certain types of dependence among N,Y1,Y2, . . . are studied. For

instance, see Cheung et al. (2010), Albrecher et al. (2014) and Landriault et al. (2014) for recent devel-

opment on dependent Sparre Anderson risk models, and see Denuit et al. (2005) for a comprehensive

treatment of dependent losses in actuarial science.

Due to the high dimensionality of the joint model and sometimes limited data, it is often difficult

to accurately model or justify a dependence structure. In such situations, the dependence between

Y1,Y2, . . . , is completely or partially unknown, and this setting is nowadays referred to as dependence
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uncertainty and extensively developed in the past few years. See Bernard et al. (2014) and Embrechts

et al. (2014) for a general discussion on dependence uncertainty. In this paper, we bring in the frame-

work of dependence uncertainty into collective risk models. We assume that Y1,Y2, . . . are identically

distributed as in classic collective risk models, but we do not assume a particular model for the depen-

dence structure among random variables in (1.1). Two different practical settings will be considered:

(i) N is independent of Y1,Y2, . . . and the dependence structure of Y1,Y2, . . . is unknown.

(ii) The dependence structure of N,Y1,Y2, . . . is unknown.

From the perspective of risk management, we are particularly interested in quantifying S N by

certain risk measures under dependence uncertainty, a crucial concern for risk management in the

presence of model uncertainty. The two most popular risk measures in banking and insurance are the

Value-at-Risk (VaR) and the Expected Shortfall (ES, also called TVaR in actuarial science). The VaR

of a risk X at the confidence level α ∈ (0, 1) is defined as

VaRα(X) = inf{x ∈ R : F(x) > α}, X ∈ L0, (1.2)

and the ES of a risk X at the confidence level α ∈ (0, 1) is defined as

ESα(X) =
1

1 − α

∫ 1

α
VaRγ(X)dγ, X ∈ L1, (1.3)

where F is the distribution function of the random variable X. Risk measures for individual and

collective risk models are well studied; see for instance Cai and Tan (2007) for optimal stop-loss

reinsurance for these models under VaR and ES, and Hürlimann (2003) for ES bound for compound

Poisson risks. It is well-known that an analytical calculation of the distribution of S N , as well as

VaRα(S N) and ESα(S N), is often unavailable (see Klugman et al. (2012)). Approximation, simulation

or numerical calculation is often needed.

We study the worst-case values of VaRα(S N) and ESα(S N), under the two settings (i) and (ii)

above. The recent literature on dependence uncertainty has focused on the individual risk model, in

which N = n in (1.1) is non-random. Analytical calculation of the worst-case VaRα(S n) is generally

unavailable; some analytical results can be found in Wang et al. (2013) and Jakobsons et al. (2016),

and an efficient numerical algorithm is established in Puccetti and Rüschendorf (2012) and Embrechts

et al. (2013). In the meanwhile, as a well-known result, the worst-case value of ESα(S N) for a non-

random N = n is simply equal to the sum of the individual ESα values, and this worst-case value is

attained by comonotonic Y1, . . . ,Yn.
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Due to a natural connection between collective risk models and individual risk models, using

a collective model as in setting (i) can be also seen as one of the several ways to introduce partial

dependence information into risk aggregation; see the Appendix for details and a comparison. For

more studies of risk aggregation with partial dependence information, see Bernard et al. (2017a,b,c),

Bernard and Vanduffel (2015), Bignozzi et al. (2015) and Puccetti et al. (2016, 2017).

The main contributions of this paper are summarized as follows. Based on the classic theory

of stochastic orders, we first derive some convex ordering inequalities for collective risk models and

thereby obtain analytical formulas for the worst-case values of ES. Using the results on ES for col-

lective risk models, we are able to study the worst-case values of VaRα(S N) and ESα(S N) as E[N]

increases to infinity, that is, a very large insurance portfolio. For simplicity the reader may think of

the case where N is Poisson-distributed with parameter E[N], the most classic choice for the counting

random variable N. In both settings (i) and (ii), under some moment and convergence conditions,

we show that the worst-case values of VaRα(S N) and ESα(S N) enjoy very nice asymptotic properties.

In particular, one can approximate them using the asymptotic equivalent E[N]ESα(Y1) and the conver-

gence rates are obtained in both settings. The results can be used to approximate VaR and ES of a large

insurance portfolio since it is straightforward to calculate E[N]ESα(Y1). Mathematically, our results

generalize the asymptotic equivalence results for homogeneous individual risk models (i.e. N in (1.1)

is non-random) in Wang and Wang (2015).

The rest of this paper is organized as follows. In Section 2, we present basic notation and defi-

nitions, stochastic orders, properties of ES, and some preliminary results on VaR-ES risk aggregation

with dependence uncertainty. In Section 3, we study collective risk models with dependence uncertain-

ty and obtain formulas for the worst-case ES. In Section 4, we establish asymptotic equivalence results

under setting (i) and give the convergence rate under this setting. In Section 5, asymptotic equivalence

results under setting (ii) are given, albeit stronger regularity conditions are needed compared to the

case of setting (i). In Section 6, a brief conclusion is drawn.

2 Preliminaries

2.1 Some notation

Let (Ω,F ,P) be an atomless probability space in which all random variables are defined. Assume

that (Ω,F ,P) is rich enough such that for any random variable X that appears in the paper, there exists
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a random variable independent of X. Let Lp, p ∈ R+, be the set of random variables with finite p-th

moment, and L∞ be the set of bounded random variables; in this paper R+ = [0,∞). For two random

variables X and Y , we write X d
= Y if they have the same distribution. For a distribution F, let XF be

the set of random variables with distribution F, and for N ∈ L0, letXN
F be the set of random variables in

XF independent of N. Let X0 be the set of counting random variables (i.e. taking value in {0, 1, . . . , }).

For a sequence Y = (Yi, i ∈ N), we write (with a slight abuse of notation) Y ⊂ XF if Yi ∈ XF , i ∈

N, and similarly for Y ⊂ XN
F . Denote byYN

F the set of random sequences with marginal distribution F

and independent of N, that is,

YN
F = {(Y1,Y2, . . . ) ⊂ XF : (Y1,Y2, . . . ) is independent of N}.

Note that for a sequence Y = (Yi, i ∈ N), there is a subtle difference between Y ⊂ XN
F and Y ∈ YN

F :

the latter requires independence between the sequence Y and N, whereas the former only requires

pair-wise independence between N and Yi for i ∈ N.

Throughout, for N ∈ X0 and Y = (Yi, i ∈ N) ⊂ L0, write

S N =

N∑
i=1

Yi,

where by convention
∑0

i=1 Yi = 0. In the following, whenever S N or S n appears, it implicitly depends

on Y = (Yi, i ∈ N) which should be clear from the context.

In collective risk models, Yi, i ∈ N are always assumed to be identically distributed, since Yi

represents the claim size of the i-th claim from a pool of policies, not the loss from a specific policy.

We also assume Yi, i ∈ N to be integrable; otherwise ESα(Y1) is infinite for α ∈ (0, 1). In the case

when the claim size Y1 is not integrable, ES is not a proper risk measure to use in insurance practice;

see, for instance, the general discussion on applicability of risk measures in McNeil et al. (2015).

For p ∈ (0, 1) and any non-decreasing function F, we write

F−1(p) = inf{x ∈ R : F(x) > p}.

It is well known that for any random variable X with distribution F, F−1(U) d
= X, where U is any

U[0, 1]-distributed random variable.

2.2 Stochastic orders

Definition 2.1. For X,Y ∈ L1, X is said to be smaller than Y in convex order (resp. increasing convex

order), denoted by X 6cx Y (resp. X 6icx Y), if E[ f (X)] 6 E[ f (Y)] for all convex functions (resp. in-
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creasing convex functions) f : R→ R, provided that the above expectations exist (can be infinity).

For a general introduction to convex order and increasing convex order, see Müller and Stoyan

(2002) and Shaked and Shanthikumar (2007). Convex order is closely associated with the concept of

comonotonicity.

Definition 2.2. Two random variables X and Y are comonotonic if

(X(ω) − X(ω′))(Y(ω) − Y(ω′)) > 0 for (ω,ω′) ∈ Ω ×Ω (P × P)-a.s.

Comonotonicity of X and Y is equivalent to the existence of a random variable Z ∈ L0 and two

non-decreasing functions f and g, such that X = f (Z) and Y = g(Z) almost surely. We say that

several random variables X1, . . . , Xn are comonotonic if Xi and X j are comonotonic for each pair of

i, j = 1, . . . , n1. See Dhaene et al. (2002) and Rüschendorf (2013) for an overview on comonotonicity.

Given random variables X1, X2, . . . , Xn, the following lemma presents an upper bound for sums

S n = X1+X2+· · ·+Xn in the sense of convex order; see Theorem 7 of Dhaene et al. (2002) and Theorem

3.5 of Rüschendorf (2013). In particular, Rüschendorf (2013, Chapter 3) contains two different proofs

and a brief history of this celebrated result.

Lemma 2.1. For any random vector (X1, . . . , Xn) ∈ (L1)n we have

X1 + · · · + Xn 6cx Xc
1 + · · · + Xc

n,

where Xc
i

d
= Xi, i = 1, . . . , n, and Xc

1, . . . , X
c
n ∈ L1 are comonotonic.

Another property about increasing convex order and comonotonicity is given in the following

lemma, which is Corollary 3.28 (c) of Rüschendorf (2013).

Lemma 2.2. For X,Y, Xc,Yc ∈ L1 such that Xc,Yc are comonotonic, X d
= Xc, Y d

= Yc and XcYc ∈ L1,

we have

XY 6icx XcYc.

The stochastic inequality in the above lemma holds for every monotonic supermodular function

of X and Y; see Theorem 2 of Tchen (1980) and Theorem 2.1 of Puccetti and Wang (2015).

1Generally, this definition is stronger than assuming that X1 and X j are comonotonic for j = 2, . . . , n; see for instance,

Example 4 of Cheung et al. (2014).
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2.3 Some properties of ES

In this paper, we will frequently use some well-known properties of the Expected Shortfall de-

fined in (1.3); see e.g. McNeil et al. (2015) for details on properties of ES.

Lemma 2.3. For α ∈ (0, 1), ESα : L1 → R satisfies: for any X,Y ∈ L1,

(i) Monotonicity: ESα(X) 6 ESα(Y) if X 6 Y P-a.s;

(ii) Cash-invariance: ESα(X − m) = ESα(X) − m for any m ∈ R;

(iii) Subadditivity: ESα(X + Y) 6 ESα(X) + ESα(Y);

(iv) Positive homogeneity: ESα(λX) = λESα(X) for any λ > 0;

(v) Law-invariance: ESα(X) = ESα(Y) if X d
= Y;

(vi) Comonotonic additivity: ESα (X + Y) = ESα (X) + ESα (Y) if X and Y are comonotonic.

The reader is referred to Föllmer and Schied (2011, Chapter 4) and Delbaen (2012) for interpre-

tations of these standard properties in the literature of risk measures. The following lemma is also well

known in the literature of convex order (see Theorem 4.A.3 of Shaked and Shanthikumar (2007)).

Lemma 2.4. For X,Y ∈ L1, X 6icx Y if and only if ESα (X) 6 ESα (Y) for all α ∈ (0, 1).

As a consequence of Lemma 2.4, for α ∈ (0, 1), ESα preserves increasing convex order (and

hence convex order). Another property that will be used later is the L1-continuity of ES below; for a

proof of this property, see, for instance, Svindland (2008).

Lemma 2.5. For α ∈ (0, 1), ESα : L1 → R is continuous with respect to the L1-norm.

Recalling the definition of the L1-continuity, the above lemma means that for a sequence of

random variables X1, X2, . . . and X ∈ L1, as n→ ∞, E[|Xn − X|]→ 0 implies that ESα(Xn)→ ESα(X).

2.4 VaR-ES asymptotic equivalence in risk aggregation

We give some preliminary results on the VaR-ES asymptotic equivalence in risk aggregation,

which will be useful to the main results in this paper.
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Lemma 2.6 (Corollary 3.7 of Wang and Wang (2015)). For any distribution F and Y ∈ XF ,

lim
n→∞

supY⊂XF
VaRα (S n)

n
= ESα (Y) , α ∈ (0, 1). (2.1)

The result in (2.1) can be rewritten as

lim
n→∞

supY⊂XF
VaRα (S n)

supY⊂XF
ESα (S n)

= 1, α ∈ (0, 1), (2.2)

provided that 0 < ESα(Y) < ∞, Y ∈ XF . Result of type (2.2) is called an asymptotic equivalence

between VaR and ES.

The equivalence (2.2) was shown in Puccetti and Rüschendorf (2014) and Puccetti et al. (2013)

under different conditions, and with generality in Wang and Wang (2015). For equivalence of type

(2.2) under the setting of inhomogeneous marginal distributions and for risk measures other than VaR

and ES, see Embrechts et al. (2015), Wang et al. (2015) and Cai et al. (2017). The convergence rate of

(2.2) is given in the following lemma.

Lemma 2.7 (Corollary 3.8 of Wang and Wang (2015)). Suppose that the distribution F has finite p-th

moment, p > 1, and ES at level α ∈ (0, 1) is non-zero. Then as n→ ∞,

supY⊂XF
VaRα (S n)

supY⊂XF
ESα (S n)

= 1 − o
(
n1/p−1

)
.

3 Collective risk models with dependence uncertainty

3.1 Setup and a motivating example

In this section, we study the worst-case values of VaR and ES for collective risk models. As

mentioned in the introduction, we consider two different settings of dependence uncertainty:

(i) the number of claims N is independent of the claim sizes Y1,Y2, . . . and the dependence structure

of Y1,Y2, . . . is unknown;

(ii) the dependence structure of N,Y1,Y2, . . . is unknown.

We refer to the setting (i) as the classic collective risk model with dependence uncertainty and to the

setting (ii) as the generalized collective risk model with dependence uncertainty. Using the notation

introduced in Section 2, for some distribution F on R+ (i.e. non-negative claim sizes), setting (i) reads
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as Y ∈ YN
F and setting (ii) reads as Y ⊂ XF . The quantities of interest in setting (i) are

sup
Y∈YN

F

VaRα (S N) and sup
Y∈YN

F

ESα (S N), (3.1)

and the quantities of interest in setting (ii) are

sup
Y⊂XF

VaRα (S N) and sup
Y⊂XF

ESα (S N). (3.2)

It turns out that under both settings (i) and (ii), the worst-case value of ES is straightforward

to calculate, whereas an analytical formula for the worst-case value of VaR is not available. This is

similar to the well-studied case of individual risk models; see Embrechts et al. (2014) for a review on

worst-case VaR aggregation when N is non-random.

Before we carry out a theoretical treatment, we illustrate with a simple example in the theory of

loss models by comparing an individual risk model and a corresponding collective risk model formu-

lation. Assume both models admit dependence uncertainty, and we evaluate worst-case ES for both

models as in (3.2). We shall see that the ES bound is largely reduced by knowing the distribution of

the claim frequency, as opposed to an uncertain distribution of the claim frequency implied by the

individual risk model with dependence uncertainty.

Example 3.1. Let n = 40000. Consider an individual risk model

S =

n∑
i=1

Xi,

where for i = 1, . . . , n, Xi follows a distribution F such that P(Xi > x) = 1
1000 e−x, x > 0. If we assume

that X1, . . . , Xn are independent, then the collective reformulation of S is given by

S N =

N∑
i=1

Yi,

where N follows the Poisson distribution with parameter λ = 40 (denoted by Pois(40)), Yi follows an

Exponential distribution with mean 1 (denoted by Expo(1)), i ∈ N, and N,Y1,Y2, . . . are independent.

Below we assume that only N and (Yi, i ∈ N) are independent, but the dependence among X1, . . . , Xn

and the dependence among Y1,Y2, . . . , are uncertain. Take α = 0.95. To evaluate the corresponding

9



worst-case ESα values, we have2

sup
Y∈YN

F

ESα

 N∑
i=1

Yi

 = 164.09,

sup
Xi∈XF ,i6n

ESα

 n∑
i=1

Xi

 = 800.

As we can see from the numerical results, the knowledge of N ∼ Pois(40) greatly reduces the worst-

case ES value, as compared to the individual risk model. In the sequel, we shall investigate the VaR

and ES bounds for collective risk models under dependence uncertainty.

3.2 VaR and ES bounds for collective risk models

In this section we establish some explicit formulas for VaR and ES bounds in (3.1) and (3.2). We

first provide a simple result on convex order for collective risk models with unknown dependence.

Lemma 3.1. Suppose that (Yi,N) ∈ L1 × X0, i ∈ N, have identical joint distributions and NY1 ∈ L1.

We have
N∑

i=1

Yi 6cx NY1. (3.3)

Proof. First, one can easily verify E[
∑N

i=1 Yi] = E[NY1] and hence both sides of (3.3) are in L1. Let

D = {n ∈ {0, 1, . . . } : P(N = n) > 0} be the range of N. Denote by Fn the conditional distribution of

Y1 given N = n for n ∈ D. Let f be a convex function such that both E[ f (
∑N

i=1 Yi)] and E[ f (NY1)] are

properly defined. For n ∈ D, there exist some U[0, 1]-distributed random variables Un
1 , . . . ,U

n
n such

that

E[ f (Y1 + · · · + Yn)|N = n] = E[ f (F−1
n (Un

1) + · · · + F−1
n (Un

n))].

It follows from Lemma 2.1 that

E[ f (Y1 + · · · + Yn)|N = n] 6 E[ f (nF−1
n (Un

1))] = E[ f (nY1)|N = n].

Summing up over n ∈ D yields

E[ f (Y1 + · · · + YN)] 6 E[ f (NY1)],

and hence by definition, (3.3) holds. �

2the first value is calculated via Theorem 3.3 (see below) and the average of 100 repetitions of simulation with a sample

of size 100,000, and the second value is calculated analytically.
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As a special case of Lemma 3.1, if N is in L1 and independent of the identically distributed

random variables Y1,Y2, . . . ∈ L1, then (3.3) holds. This particular result will be used later.

To deal with setting (ii) in which the dependence structure between N and Y1,Y2, . . . is unspec-

ified, we give a result in the following lemma on increasing convex order instead of convex order.

Note that for X,Y ∈ L1, X 6cx Y implies that E[X] = E[Y]. Since E[S N] depends on the depen-

dence structure between N and Y1,Y2, . . . , convex order between collective risk models under different

dependence structures cannot be expected.

Lemma 3.2. Suppose that the distribution F on R+ has finite second moment, and N ∈ X0 ∩ L2. For

Y1,Y2, . . . ∈ XF , we have
N∑

i=1

Yi 6icx NY,

where Y ∈ XF and N,Y are comonotonic.

Proof. Note that NY ∈ L1 by Hölder’s inequality. Define Xn =
∑n

i=1 YiI{N>i}, n ∈ N and X∞ =∑∞
i=1 YiI{N>i}. Note that P(X∞ > Xn) → 0 as n → ∞, and hence P(X∞ < ∞) = 1. Thus X∞ is a

finite random variable. Then we have Xn → X∞ almost surely and hence Xn → X∞ in distribution.

Since F → F−1(γ) is weakly continuous at each F0 for which s → F−1
0 (s) is continuous at s = γ (see

e.g. Cont et al. (2010)), we have

VaRγ(Xn)→ VaRγ(X∞) almost everywhere in γ ∈ [0, 1]. (3.4)

For any Y ⊂ XF and any α ∈ (0, 1), we have

ESα

 N∑
i=1

Yi

 = ESα

 ∞∑
i=1

YiI{N>i}

 =
1

1 − α

∫ 1

α
VaRγ(X∞)dγ

(by (3.4)) =
1

1 − α

∫ 1

α
lim
n→∞

VaRγ(Xn)dγ

(Fatou’s Lemma) 6 lim inf
n→∞

ESα (Xn)

(subadditivity of ES) 6 lim inf
n→∞

n∑
i=1

ESα
(
YiI{N>i}

)
(by Lemmas 2.2 and 2.4) 6 lim inf

n→∞

n∑
i=1

ESα
(
YI{N>i}

)
(comonotonic additivity of ES) = lim inf

n→∞
ESα

 n∑
i=1

YI{N>i}


(L1-continuity of ES) = ESα (NY) .

Since ESα
(∑N

i=1 Yi
)
6 ESα (NY) for all α ∈ (0, 1), by Lemma 2.4, we have

∑N
i=1 Yi 6icx NY . �
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Remark 3.1. Using the same proof, the stochastic inequality in Lemma 3.2 can be generalized to the

random sum of non-identically distributed random variables as follows. Suppose that N ∈ X0, Yi > 0,

i ∈ N, and
∑N

i=1 Yc
i ∈ L1, where Yc

i
d
= Yi, i ∈ N, and Yc

1 ,Y
c
2 , . . . and N are comonotonic. Then we have

N∑
i=1

Yi 6icx

N∑
i=1

Yc
i .

With the help of Lemmas 3.1 and 3.2, we arrive at the worst-case values of ES for collective risk

models under dependence uncertainty.

Theorem 3.3. Suppose that F is a distribution on R+, N ∈ X0 and Y,Y∗ ∈ XF such that N,Y are

independent and N,Y∗ are comonotonic.

(i) If Y,N ∈ L1, then

sup
Y∈YN

F

ESα(S N) = ESα(NY), α ∈ (0, 1). (3.5)

(ii) If Y,N ∈ L2, then

sup
Y⊂XF

ESα(S N) = ESα(NY∗), α ∈ (0, 1). (3.6)

Proof. Note that NY ∈ L1 since N,Y are independent. Since Y ⊂ XN
F for any Y ∈ YN

F , we have

sup
Y∈YN

F

ESα(S N) 6 sup
Y⊂XN

F

ESα(S N).

By Lemma 2.4, ES preserves increasing convex order. Further, by Lemmas 3.1 and 3.2, we have

sup
Y∈YN

F

ESα(S N) 6 sup
Y⊂XN

F

ESα(S N) 6 ESα(NY) and sup
Y⊂XF

ESα(S N) 6 ESα(NY∗).

It suffices to take Y1,Y2, . . . to be identical to Y ∈ XN
F to show that supY∈YN

F
ESα(S N) > ESα(NY) in (i)

and to take Y1,Y2, . . . to be identical to Y∗ ∈ XF to show supY⊂XF
ESα(S N) > ESα(NY∗) in (ii). �

The results in Theorem 3.3 are consistent with simple intuition. Assume that the riskiness of an

insurance portfolio is measured by an ES. If the number of claims and the claim sizes are independent,

then, in the worst-case dependence scenario, all claims are comonotonic. If the number of claims

and the claim sizes are also dependent, then in the worst-case dependence scenario, all claims are

comonotonic and they are further comonotonic with the number of claims. This could for instance be

close to reality in the case of insurance losses from flood damage in an area, where the claim sizes

and the number of claims are largely determined by the magnitude of the flood, and hence they are all
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positively correlated. Thus, the portfolio of insurance policies with heavy positive dependence has the

most dangerous dependence structure, if an ES is the risk measure in use. Note that such an intuition

is not valid for the risk measure VaR.

The values of ESα(NY) and ESα(NY∗) in (3.5) and (3.6) are straightforward to calculate. For

(3.5), one needs to calculate the distribution of NY , which is the product of two independent random

variables. This involves a one-step convolution after a logarithm transformation. For (3.6), note that

NY∗ d
= G−1(U)F−1(U), where U is U[0, 1]-distributed and G is the distribution of N. In that case, its

ES is simply

ESα(NY∗) =
1

1 − α

∫ 1

α
G−1(u)F−1(u)du,

which is as simple as calculating the ES of any known distribution.

The following corollary gives an ES ordering for an individual risk model with dependence un-

certainty, a collective risk model under setting (i), and a collective risk model under setting (ii).

Corollary 3.4. Suppose that F is a distribution on R+ with finite first moment, N ∈ X0 and E[N] ∈ N.

We have the following orders

sup
Y⊂XF

ESα
(
S E[N]

)
6 sup

Y∈YN
F

ESα(S N) 6 sup
Y⊂XF

ESα(S N), α ∈ (0, 1). (3.7)

Proof. Since Y ∈ YN
F implies Y ⊂ XF , the second inequality follows immediately. To show the first

inequality, take Y ∈ XN
F . Note that from the properties of ES,

sup
Y⊂XF

ESα
(
S E[N]

)
= E[N]ESα(Y) = ESα(E[N]Y),

and from Theorem 3.3,

sup
Y∈YN

F

ESα (S N) = ESα(NY).

By Theorem 3.A.33 of Shaked and Shanthikumar (2007), E[N]Y 6cx NY . The rest of the proof follows

since ES preserves convex order as in Lemma 2.4. �

In the case of N,Y ∈ L2, the order in (3.7) can be formulated as follows. For N ∈ X0, Y d
= Y∗

such that N,Y are independent and N,Y∗ are comonotonic, we have

E[N]ESα(Y) 6 ESα(NY) 6 ESα(NY∗), α ∈ (0, 1). (3.8)

As for the problem of the worst-case value of VaR for collective risk models, there is no simple

analytical formula, as expected from classic results on dependence uncertainty. Note that VaRα is

13



dominated by ESα, for α ∈ (0, 1); thus VaRα(S N) 6 ESα(S N) for all model settings. From Theorem

3.3, we have

sup
Y∈YN

F

VaRα(S N) 6 ESα(NY) and sup
Y⊂XF

VaRα(S N) 6 ESα(NY∗), (3.9)

where F, N, Y and Y∗ are as in Theorem 3.3. In the next two sections, we will see that

sup
Y∈YN

F

VaRα(S N) ≈ ESα(NY) and sup
Y⊂XF

VaRα(S N) ≈ ESα(NY∗),

if N is large (in some sense). That is, the inequalities in (3.9) are almost sharp and can be used to

approximate VaR.

Remark 3.2. In Lemma 3.2 and Theorem 3.3 (ii), we require Y,N ∈ L2 so that NY∗ ∈ L1; recall that

L1 is the domain of ESα. One may also use the slightly more general assumption that N ∈ Lp and

Y ∈ Lq for some p, q > 1 such that 1/p + 1/q = 1.

4 Asymptotic results for classic collective risk models

4.1 Setup and objectives

The rest of the paper is dedicated to the study of an analog of the asymptotic equivalence in (2.2)

for collective risk models. Recall that throughout we write

S N(v) =

N(v)∑
i=1

Yi, Y = (Y1,Y2, . . . ).

For some distribution F on R+, and a counting random variable N(v) with parameter v, the analog of

(2.2) in setting (i) is

lim
v→∞

supY∈YN(v)
F

VaRα
(
S N(v)

)
supY∈YN(v)

F
ESα

(
S N(v)

) = 1, (4.1)

and the analog of (2.2) in setting (ii) is

lim
v→∞

supY⊂XF
VaRα

(
S N(v)

)
supY⊂XF

ESα
(
S N(v)

) = 1. (4.2)

Here, v → ∞ indicates that the expected number of claims goes to infinity. The parameter v is

interpreted as the volume of the insurance portfolio, and it can be chosen as, for instance, E[N(v)].

One of the key assumptions we propose is N(v)/v → 1 in L1. This assumption naturally holds

if N(v) is a Poisson random variable with parameter v > 0, or N(v) is the partial sum of a short-range
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dependent stationary sequence (so that a law of large numbers holds). Indeed, the problem we study

in this paper first appeared as a question of measuring large insurance portfolios under dependence

uncertainty, where N(v) is a Poisson random variable with a large parameter. Moreover, an insurance

company can analyze effects from potential extension of business by measuring the insurance portfolio

as v increases.

Results under setting (i) are presented in this section and results under setting (ii) are given in

Section 5 below. Since vESα(Y) is straightforward to calculate and thus serves as a basis for approxi-

mation of the two worst-case values of interest, we present our results in terms of the two ratios

supY∈YN(v)
F

VaRα
(
S N(v)

)
vESα(Y)

and
supY∈YN(v)

F
ESα

(
S N(v)

)
vESα(Y)

.

We also establish convergence rates in both cases.

4.2 VaR-ES asymptotic equivalence

Theorem 4.1. Suppose that the distribution F on R+ has finite first moment, Y ∈ XF , and {N(v), v >

0} ⊂ X0 such that N(v)/v→ 1 in L1 as v→ ∞. Then for α ∈ (0, 1),

lim
v→∞

supY∈YN(v)
F

VaRα
(
S N(v)

)
v

= lim
v→∞

supY∈YN(v)
F

ESα
(
S N(v)

)
v

= ESα (Y) . (4.3)

Proof. By the independence of N(v) and Y , and N(v)
v

L1

→ 1 , we have

E

∣∣∣∣∣N(v)Y
v
− Y

∣∣∣∣∣ 6 E ∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣ · E [Y]→ 0, as v→ ∞.

Hence, N(v)Y
v

L1

→ Y . Continuity of ES with respect to the L1-norm implies

lim
v→∞

ESα

(
N(v)Y
v

)
= ESα (Y) . (4.4)

From Theorem 3.3 (i), we have

sup
Y∈YN(v)

F

ESα(S N(v)) = ESα (N(v)Y) . (4.5)

By (4.4) and the positive homogeneity of ES, we have

lim
v→∞

supY∈YN(v)
F

ESα(S N(v))

v
= ESα (Y) .

Thus, we obtain the second equality in (4.3).
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Since L1-convergence implies convergence in probability, N(v)
v

L1

→ 1 yields that for any ε > 0 and

δ > 0, there exists an M1 > 0 such that for all v > M1,

P

(∣∣∣∣∣N (v)
v
− 1

∣∣∣∣∣ > δ) < ε.
Write S N(v) = Y1 + · · · + YN(v). Define

S ∗N(v) =

 S N(v) if N(v)/v > 1 − δ,

0 if N(v)/v < 1 − δ.

Since S N(v) > S ∗N(v), we have

VaRα+ε
(
S N(v)

)
> VaRα+ε

(
S ∗N(v)

)
= inf

{
t ∈ R : P

(
S ∗N(v) 6 t

)
> α + ε

}
= inf

{
t ∈ R : P

(
S N(v) 6 t,N(v)/v > 1 − δ

)
+ P (0 6 t,N(v)/v < 1 − δ) > α + ε

}
> inf

{
t ∈ R : P

(
S N(v) 6 t,N(v)/v > 1 − δ

)
> α

}
> inf

{
t ∈ R : P

(
S b(1−δ)vc 6 t

)
> α

}
= VaRα

(
S b(1−δ)vc

)
. (4.6)

By Lemma 2.6, for any ε2 > 0, there exists an M2 > 1/ε such that for all v > M2,

supY⊂XF
VaRα−ε

(
S b(1−δ)vc

)
b(1 − δ)vc

> ESα−ε(Y) − ε2.

Thus, for the above ε > 0 and v > max{M1,M2},

supY∈YN(v)
F

VaRα
(
S N(v)

)
v

>
supY∈YN(v)

F
VaRα−ε

(
S b(1−δ)vc

)
v

=
supY⊂XF

VaRα−ε
(
S b(1−δ)vc

)
b(1 − δ)vc

·
b(1 − δ)vc

v

> [ESα−ε(Y) − ε2] ·
(1 − δ)v − 1

v

> [ESα−ε(Y) − ε2] (1 − δ − ε),

which implies

lim inf
v→∞

supY∈YN(v)
F

VaRα
(
S N(v)

)
v

> ESα (Y) .

On the other hand,

lim sup
v→∞

supY∈YN(v)
F

VaRα
(
S N(v)

)
v

6 lim
v→∞

supY∈YN(v)
F

ESα(S N(v))

v
= ESα (Y) .

Therefore,

lim
v→∞

supY∈YN(v)
F

VaRα
(
S N(v)

)
v

= ESα (Y) .

Thus, we obtain the first equality in (4.3). �
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Theorem 4.1, together with Lemma 2.6, suggests that for α ∈ (0, 1) and Y ∈ XF , the following

five quantities are all asymptotically equivalent as v→ ∞:

(i) supY∈YN(v)
F

VaRα
(
S N(v)

)
;

(ii) supY∈YN(v)
F

ESα
(
S N(v)

)
;

(iii) supY⊂XF
VaRα

(
S bvc

)
;

(iv) supY⊂XF
ESα

(
S bvc

)
;

(v) vESα(Y).

Hence, one may use (v) above (straightforward to calculate) to approximate the other four quanti-

ties. The approximation error, that is, the convergence rate in Theorem 4.1, is studied in the following

section.

Remark 4.1. Since VaRα 6 ESα, the quantity in (i) is smaller than or equal to the quantity in (ii), and

similarly for (iii) and (iv). Another observation is that supY⊂XF
ESα

(
S bvc

)
= bvcESα(Y) 6 vESα(Y).

From Corollary 3.4, the quantity in (iv) is smaller than or equal to the quantity in (ii), provided that

E[N(v)] = bvc. However, there is no general order between (i) and (v) (or (iv)); when we approximate

supY∈YN(v)
F

VaRα
(
S N(v)

)
with vESα(Y), it is not clear which one is larger. See Theorem 4.2 below for

more detailed analysis on their relationship.

4.3 Rate of convergence

Theorem 4.2. Suppose that the distribution F on R+ has finite p-th moment, p > 1, Y ∈ XF , E[Y] > 0,

and lim supv→∞ v
qE

∣∣∣∣N(v)
v − 1

∣∣∣∣ 6 c for some q > 0, c > 0. Then for α ∈ (0, 1),

− 2C1/2v−q/2 + o
(
v1/p−1

)
+ o

(
v−q/2

)
6

supY∈YN(v)
F

VaRα
(
S N(v)

)
vESα (Y)

− 1 6 Cv−q + o
(
v−q) , (4.7)

and ∣∣∣∣∣∣∣supY∈YN(v)
F

ESα
(
S N(v)

)
vESα (Y)

− 1

∣∣∣∣∣∣∣ 6 Cv−q + o
(
v−q) , (4.8)

where C = c
1−α .

Proof. Let δ =
√

Cv−q/2, η =

(
vqE

∣∣∣∣N(v)
v − 1

∣∣∣∣ − c
)
+
, and ε =

c+η
δ v
−q. Clearly ε =

√
c(1 − α)v−q/2 +

o(v−q/2). Note that

v−q(c + η) > E
∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣ > ∫
|N(v)/v−1|>δ

∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣ dP > δP (∣∣∣∣∣N (v)
v
− 1

∣∣∣∣∣ > δ) .
Hence,

P

(∣∣∣∣∣N (v)
v
− 1

∣∣∣∣∣ > δ) < c + η

δ
v−q = ε.
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This implies VaRα
(
S N(v)

)
> VaRα−ε

(
S b(1−δ)vc

)
as shown in (4.6). By Lemma 2.7, we have

supY∈YN(v)
F

VaRα
(
S N(v)

)
vESα (Y)

>
supY⊂XF

VaRα−ε
(
S b(1−δ)vc

)
supY⊂XF

ESα−ε
(
S b(1−δ)vc

) · b(1 − δ)vcESα−ε (Y)
vESα (Y)

>
[
1 − o

(
v1/p−1

)]
·
(
1 − δ − v−1

)
·

ESα−ε (Y)
ESα (Y)

. (4.9)

Note that∣∣∣∣∣1 − ESα−ε (Y)
ESα (Y)

∣∣∣∣∣ =

(
1

1−α −
1

1−α+ε

) ∫ 1
α

VaRγ (Y) dγ − 1
1−α+ε

∫ α

α−ε
VaRγ (Y) dγ

ESα (Y)
6

ε

1 − α
.

Therefore,
ESα−ε (Y)
ESα (Y)

> 1 −
ε

1 − α
.

Plugging the above inequality into (4.9), one has

supY∈YN(v)
F

VaRα
(
S N(v)

)
vESα (Y)

>
[
1 − o

(
v1/p−1

)]
·
(
1 − δ − v−1

)
·

(
1 −

ε

1 − α

)
= 1 − 2

√
Cv−q/2 − o

(
v1/p−1

)
− o

(
v−q/2

)
.

Thus, we obtain the first inequality in (4.7).

In the next step we show (4.8). From Theorem 3.3 (i),

supY∈YN(v)
F

ESα
(
S N(v)

)
vESα (Y)

=
ESα (N(v)Y)
vESα (Y)

.

By the subadditivity of ES, we have

ESα (Y) = ESα

(
N(v)
v

Y + Y −
N(v)
v

Y
)
6 ESα

(
N(v)
v

Y
)

+ ESα

(
Y −

N(v)
v

Y
)
.

Similarly, ESα
(

N(v)
v Y

)
6 ESα (Y) + ESα

(
N(v)
v Y − Y

)
. It follows that

ESα (Y) − ESα

(
N(v)
v

Y
)
6 ESα

(
Y −

N(v)
v

Y
)
6 ESα

(∣∣∣∣∣Y − N(v)
v

Y
∣∣∣∣∣) ,

and

ESα

(
N(v)
v

Y
)
− ESα (Y) 6 ESα

(
N(v)
v

Y − Y
)
6 ESα

(∣∣∣∣∣Y − N(v)
v

Y
∣∣∣∣∣) .

Therefore, ∣∣∣∣∣∣ESα

(
N(v)
v

Y
)
− ESα (Y)

∣∣∣∣∣∣ 6 ESα

(∣∣∣∣∣Y − N(v)
v

Y
∣∣∣∣∣) (4.10)

6
1

1 − α
E

∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣ · E [Y] ,
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which implies ∣∣∣∣∣∣∣∣
ESα

(
N(v)
v Y

)
ESα(Y)

− 1

∣∣∣∣∣∣∣∣ 6 Cv−q + o(v−q).

Thus we obtain (4.8) as ∣∣∣∣∣∣∣supY∈XN(v)
F

ESα
(
S N(v)

)
vESα (Y)

− 1

∣∣∣∣∣∣∣ 6 Cv−q + o(v−q),

and the second inequality in (4.7) is automatically implied since VaRα is dominated by ESα. �

In Example 4.1 of the next section, we will see that q = 1/2 for Poisson(v)-distributed N(v). In

this case, assuming p > 4/3 (typically true), the convergence rate in the left-hand side of (4.7) is led by

O(v−1/4) and the one in (4.8) is led by O(v−1/2). Admittedly, the convergence rate O(v−1/4) is not very

fast in general, and its applicability for approximation depends on the models and the magnitude of v.

However, for risk management purpose, one should be on the conservative side; as such, the faster rate

O(v−q) in the right-hand side of (4.7) and in (4.8) is more important in practice. In Example 4.4 below,

we will see that the term O(v−q) for the upper bounds in Theorem 4.2 is sharp.

4.4 Some examples

Example 4.1 (Poisson number of claims). As the primary example, suppose that N(v) follows a Pois-

son distribution with parameter v. We check the conditions and parameters in Theorems 4.1 and

4.2. Clearly, N(v)/v → 1 in L1 as v → ∞ by the L1-Law of Large Numbers. Indeed, note that

E |N(v) − v| = 2e−v v
bvc+1

bvc! , and further by Stirling’s formula and some elementary analysis, one has

2e−v
vbvc+1

bvc!
v−1/2 →

√
2
π
,

which means

lim
v→∞

v1/2E

∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣ =

√
2
π
.

Therefore in Theorem 4.2, c =

√
2
π and q = 1/2.

Example 4.2 (Non-random number of claims). Suppose that N(v) equals bvc. Then q = ∞ in the

conditions of Theorem 4.2, and the lower bound on VaR convergence rate given in (4.7) is equivalent

to Lemma 2.7.

Example 4.3 (Non-random claim sizes). Suppose that Y is not random and lim supv→∞ v
qE

∣∣∣∣N(v)
v − 1

∣∣∣∣ 6
c for some q > 0, c > 0. In this case, we have a convergence rate that is slightly stronger than the one
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given in (4.7),

1 − 2C1/2v−q/2 − o
(
v−q/2

)
6

supY∈YN(v)
F

VaRα
(
S N(v)

)
vESα (Y)

6
supY∈YN(v)

F
ESα

(
S N(v)

)
vESα (Y)

6 1 + Cv−q + o(v−q), (4.11)

where C = c
1−α . Compared with Theorem 4.2, the term o(v1/p−1) in the lower bound for VaR con-

vergence disappears. This is quite natural since the term o(v1/p−1) is due to the randomness of Y as

suggested by Lemma 2.7. To see the first inequality in (4.11), let ε = α and δ =
√

Cv−q/2. For v large

enough,

P

(∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣ > δ) < ε and P

(
N(v)
v

< 1 − δ
)
< α,

which imply

VaRα

(
N(v)
v

)
> 1 − δ.

Therefore,

supY∈YN(v)
F

VaRα
(
S N(v)

)
vESα (Y)

=
VaRα (N(v))

v
> 1 − δ > 1 − 2C1/2v−q/2 − o

(
v−q/2

)
.

The rest of (4.11) comes from Theorem 4.2.

Example 4.4 (Sharpness of the rate in the right-hand side of (4.7) and in (4.8)). For some q > 0, take

N(v) = bv + v1−qc and let F be a degenerate distribution of a constant, say 1. In this case, S N(v) = N(v)

is not random, and obviously

VaRα(S N(v))
v

=
ESα(S N(v))

v
= O(v−q).

This shows that the leading term v−q in the right-hand side of (4.7) and in (4.8) is sharp up to a constant

scale, even in the case when Y1,Y2, . . . and N(v) are deterministic.

5 Asymptotic results for generalized collective risk models

In this section, we study the more complicated setting (ii) in which N and Y1,Y2, . . . are not

necessarily independent, and their joint distribution is also uncertain. We have similar results as in

Theorem 4.1 and Theorem 4.2 under stronger regularity conditions.
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5.1 VaR-ES asymptotic equivalence

Theorem 5.1. Suppose that the distribution F on R+ has finite second moment, Y ∈ XF , and {N(v), v >

0} ⊂ X0 such that N(v)/v→ 1 in L2 as v→ ∞. Then for α ∈ (0, 1),

lim
v→∞

supY⊂XF
VaRα

(
S N(v)

)
v

= lim
v→∞

supY⊂XF
ESα

(
S N(v)

)
v

= ESα (Y) . (5.1)

Proof. From Theorem 3.3, for fixed v > 0, we have

sup
Y⊂XF

ESα
(
S N(v)

)
= ESα

(
N(v)Y∗

)
, (5.2)

where Y∗ ∈ XF is comonotonic with N(v). Hölder’s inequality implies

E

∣∣∣∣∣N(v)Y∗

v
− Y∗

∣∣∣∣∣ 6
√
E

∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣2 · E [
(Y∗)2]→ 0, as v→ ∞.

Hence, N(v)Y∗
v

L1

→ Y∗. As a consequence, continuity of ES with respect to the L1-norm implies

lim
v→∞

ESα
(
N(v)Y∗/v

)
= ESα

(
Y∗

)
= ESα(Y).

Therefore,

lim
v→∞

supY⊂XF
ESα(S N(v))
v

= lim
v→∞

ESα (N(v)Y∗)
v

= ESα (Y) .

Thus we obtain the second equality in (5.1).

For the first equality in (5.1), N(v)
v

L2

→ 1 implies that for any ε > 0 and δ > 0, for v large enough,

one has

P

(∣∣∣∣∣N (v)
v
− 1

∣∣∣∣∣ > δ) < ε.
Similarly to the proof of Theorem 4.2, we have

ESα−ε (Y)
ESα (Y)

> 1 −
ε

1 − α
,

and

supY⊂XF
ESα(S N(v))

vESα (Y)
>

supY⊂XF
VaRα

(
S N(v)

)
vESα (Y)

>
[
1 − o

(
v1/p−1

)]
·
(
1 − δ − v−1

)
·

ESα−ε (Y)
ESα (Y)

.

Thus,

lim
v→∞

supY⊂XF
VaRα

(
S N(v)

)
v

= ESα (Y) ,

and we obtain the first equality in (5.1). �
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5.2 Rate of convergence

In this section we provide the convergence rate in generalized collective risk models. Similarly

to Theorem 5.1, stronger regularity conditions are required as compared to results in Section 4.

Theorem 5.2. Suppose that the distribution F on R+ has finite p-th moment, p > 2, Y ∈ XF , E[Y] > 0,

and lim supv→∞ v
rE

∣∣∣∣N(v)
v − 1

∣∣∣∣2 6 c for some r > 0 and c > 0. Then we have

−2
( c
1 − α

)1/3
v−r/3 + o

(
v1/p−1

)
+ o

(
v−r/3

)
6

supY⊂XF
VaRα

(
S N(v)

)
vESα (Y)

− 1 (5.3)

6

∣∣∣∣∣∣supY⊂XF
ESα

(
S N(v)

)
vESα (Y)

− 1

∣∣∣∣∣∣ 6
√
E[Y2]

ESα(Y)

√
c

1 − α
v−r/2 + o

(
v−r/2

)
. (5.4)

Proof. Let δ =
(

c
1−αv

−r
)1/3

, η =

(
vrE

∣∣∣∣N(v)
v − 1

∣∣∣∣2 − c
)
+

, and ε =
c+η

δ2 v
−r. Clearly ε =

(
c(1 − α)2v−r

)1/3
+

o(v−r/3). Similar to the proof of Theorem 4.2, we have

P

(∣∣∣∣∣N (v)
v
− 1

∣∣∣∣∣ > δ) < ε and
ESα−ε (Y)
ESα (Y)

> 1 −
ε

1 − α
.

Moreover,

supY⊂XF
VaRα

(
S N(v)

)
vESα (Y)

>
supY⊂XF

VaRα−ε
(
S b(1−δ)vc

)
supY⊂XF

ESα−ε
(
S b(1−δ)vc

) · b(1 − δ)vcESα−ε (Y)
vESα (Y)

>
[
1 − o

(
v1/p−1

)]
·
(
1 − δ − v−1

) (
1 −

ε

1 − α

)
> 1 − 2

( c
1 − α

)1/3
v−r/3 − o

(
v1/p−1

)
− o

(
v−r/3

)
.

Thus we obtain (5.3). The first inequality in (5.4) comes from the fact that ESα dominates VaRα.

By (4.10) and Hölder’s inequality, we have∣∣∣∣∣∣ESα

(
N(v)
v

Y
)
− ESα (Y)

∣∣∣∣∣∣ 6 ESα

(∣∣∣∣∣Y − N(v)
v

Y
∣∣∣∣∣) 6 1

1 − α

√
E

∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣2 · E [
Y2].

As a consequence, ∣∣∣∣∣∣supY⊂XF
ESα

(
S N(v)

)
vESα (Y)

− 1

∣∣∣∣∣∣ 6
√
E[Y2]

ESα(Y)

√
c

1 − α
v−r/2 + o

(
v−r/2

)
.

Thus we obtain the second inequality in (5.4). �

Example 5.1 (Poisson number of claims, revisited). Suppose that N(v) follows a Poisson distribu-

tion with parameter v. We can check the parameters in Theorem 5.2. Since E[|N(v)/v − 1|2] =

Var(N(v))/v2 = 1/v, we have r = 1 and c = 1. Therefore, the leading term in the left-hand side
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of (5.3) is O(v−1/3), which converges to zero faster than O(v−1/4) as in Example 4.1 under setting

(i). This is intuitive as supY⊂XF
VaRα

(
S N(v)

)
> supY⊂XN(v)

F
VaRα

(
S N(v)

)
. The right-hand side of (5.4)

remains the same order O(v−1/2).

5.3 A remark on the dependence between the claim frequency and the claim sizes

In Sections 4 and 5, we studied the asymptotic equivalence of VaR and ES in two settings. A

natural question that follows would be whether an asymptotic equivalence holds also for specified

dependence structures between N(v) and Y1,Y2, . . . other than independence. That is, whether the

following limit

lim
v→∞

supY⊂X̂N(v)
F

VaRα
(
S N(v)

)
supY⊂X̂N(v)

F
ESα

(
S N(v)

) = 1 (5.5)

holds, where X̂N(v)
F ⊂ XF is the set of random variables with distribution F and a pre-specified depen-

dence structure (copula) with N(v). Note that from Lemma 3.1, the worst-case ES can be calculated as

ESα(N(v)Y), where Y ∈ X̂N(v)
F .

In general, the knowledge on the dependence structure of (N(v),Yi), i = 1, 2, . . . , would put

some restrictions on the dependence structure of (Y1,Y2, . . . ); the latter was assumed to be arbitrary

in our settings (i) and (ii), as well as in the classic setup of dependence uncertainty. With the “effect

of dependence uncertainty” demolished, (5.5) may no longer hold true. This is evidenced by the

following (rather extreme) example where N(v),Yi are comonotonic for i = 1, 2, . . . (note that this does

not necessarily imply that Y1,Y2, . . . are comonotonic since N(v) is discrete). For other pre-specified

dependence structures between (N(v),Yi), i = 1, 2, . . . , the question of (5.5) requires a case-by-case

study.

Assume that the distribution F has finite second moment, {N(v), v > 0} ⊂ X0 such that N(v)/v→

1 in L2 as v → ∞, and Y ∈ Xc,v
F . Denote by Xc,v

F ⊂ XF the set of random variables with distribution F

and comonotonic with N(v). In this case one still has the ES convergence as in Theorem 4.1,

lim
v→∞

supY⊂Xc,v
F

ESα
(
S N(v)

)
v

= ESα (Y) , α ∈ (0, 1), (5.6)

whereas the VaR convergence

lim
v→∞

supY⊂Xc,v
F

VaRα
(
S N(v)

)
v

= ESα (Y) , α ∈ (0, 1), (5.7)

may fail to hold.
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To see (5.6), by Hölder’s inequality, we have

E

∣∣∣∣∣N(v)Y
v
− Y

∣∣∣∣∣ 6
√
E

∣∣∣∣∣N(v)
v
− 1

∣∣∣∣∣2 · E [
Y2]→ 0, as v→ ∞.

Hence, N(v)Y
v

L1

→ Y . From Lemma 3.1, we have supY⊂Xc,v
F

ESα
(
S N(v)

)
= ESα (N(v)Y), and (5.6) follows

from the continuity of ES with respect to the L1-norm.

To see that (5.7) may not hold true, we simply give a counter-example. Take any α ∈ (0, 1). Let

F be a Bernoulli distribution with parameter (1 − α)/2, and assume that for each v > 0, there exists a

positive integer fv such that P(N(v) > fv) = (1 − α)/2. For fixed v and any Y1,Y2, · · · ∈ Xc,v
F , we have

{Yi = 1} = {N(v) > fv} almost surely for each i = 1, 2, . . . , and hence Y1,Y2, . . . are almost surely

equal. As a consequence, there is indeed no dependence uncertainty: S N(v) = N(v)Y1 almost surely.

Since P(N(v)Y1 > 0) 6 P(Y1 > 0) = (1 − α)/2, we have

sup
Y⊂Xc,v

F

VaRα(S N(v)) = VaRα(N(v)Y1) = 0.

Therefore,

lim
v→∞

supY⊂Xc,v
F

VaRα
(
S N(v)

)
v

= 0.

Thus (5.7) does not hold noting that ESα(Y) > 0.

6 Conclusion

In this paper, we study the worst-case values of VaR and ES of the aggregate loss in collective risk

models under two settings of dependence uncertainty. Analytical formulas for the worst-case values of

ES are obtained. For both settings, an asymptotic equivalence of the VaR and ES for a random sum of

risks is established under some general moment and regularity conditions. The conditions in our main

results are easily satisfied by common models, including the classic compound Poisson collective

risk models. Our main results suggest that under dependence uncertainty, we can use vESα(Y) to

approximate the worst-case risk aggregation when the risk measure is VaRα or ESα and v is large

enough; the approximation error is also obtained in terms of some moment and convergence rate of

the claim sizes and the claim frequency.

There are various methods developed to incorporate dependence information into risk aggrega-

tion with model uncertainty. Practically, one should choose a formulation depending on information
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available to the user; collective risk models become relevant should the claim frequency distribution

be available. For individual risk models, various types of dependence information were considered,

such as moment information and variance information by Bernard et al. (2017a,b), positive depen-

dence or independence information by Bignozzi et al. (2015) and Puccetti et al. (2017), and factor

relation by Bernard et al. (2017c). Information similar to the above types can be naturally incorporated

into the collective risk model. This leads to promising future research directions; we anticipate great

mathematical and practically relevant implications.
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A Appendix

Below we discuss the difference between a collective risk model and a corresponding individual

risk model. Let N be the counting random variable which is bounded by some n ∈ N, i.e. N 6 n, and

Yi ∼ F, i ∈ N (in fact, only Y1, . . . ,Yn are used). A random sum S N may be written in two ways: a

collective risk model

S N =

N∑
i=1

Yi (A.1)

and an individual risk model

S N =

n∑
i=1

YiI{N>i} =

n∑
i=1

Zi, (A.2)

where Zi = YiI{N>i}, i = 1, . . . , n. Note that this setup is different from the collective reformulation

in Example 3.1, where one starts with a homogeneous individual risk model with small probability of

loss from each individual risk, and arrives at a Poisson collective risk model.

In the recent literature of dependence uncertainty for an individual risk model, Z1, . . . ,Zn in (A.2)

are assumed to have an arbitrary dependence. In our collective risk model, although S N may be written
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as in (A.2), the dependence among Z1, . . . ,Zn is not arbitrary anymore, as it is driven by a common

random variable N. There are further essential differences, if we look at the two formulations more

closely under the two settings of dependence uncertainty studied in this paper.

(i) N and the sequence Y1,Y2, . . . are independent. In this case, the distribution of Zi can be

determined by that of Yi and N. Denote this distribution by Fi. We can consider the worst-case

risk measure (take an ES for instance) in our model

sup
Y∈YN

F

ESα

 N∑
i=1

Yi

 (A.3)

and in the classic model

sup
Zi∈XFi ,i6n

ESα

 n∑
i=1

Zi

 . (A.4)

Clearly, through (A.1) and (A.2), the collective risk model formulation Y ∈ YN
F in (A.3) is a

submodel of the individual risk model formulation Zi ∈ XFi , i 6 n in (A.4), and hence the worst-

case value in (A.3) should be smaller than or equal to the one in (A.4). We shall illustrate this

difference with a numerical example where one has

sup
Y∈YN

F

ESα

 N∑
i=1

Yi

 < sup
Zi∈XFi ,i6n

ESα

 n∑
i=1

Zi

 .
See Example A.1 below.

(ii) The dependence between N and the sequence Y1,Y2, . . . is also unknown. In this case, the

distribution of Zi, and the conditional distribution of Zi given N are both unknown. Hence, no

existing result in the literature of dependence uncertainty that we are aware of can be applied to

this setting.

Example A.1. Let n = 10. Suppose that for i = 1, . . . , n, Yi follows Expo(1), and N follows the

binomial distribution with parameters n and 1/3 (denoted by Bin(n, 1/3)), independent of {Yi, i ∈ N}.

For i = 1, . . . , n, denote the distribution of YiI{N>i} by Fi. Take α = 0.95. By Theorem 3.3, we can

calculate

sup
Y∈YN

F

ESα

 N∑
i=1

Yi

 = ESα(NY1) = 15.813,

sup
Zi∈XFi ,i6n

ESα

 n∑
i=1

Zi

 =

n∑
i=1

ESα(Zi) = 19.026,
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where the first value is the average of 100 repetitions of simulation with a sample of size 100,000, and

the second value is calculated analytically.

The above illustration shows that, under the above setting (i), the collective risk model imposes

a special type of dependence through the counting random variable N, and has a smaller worst-case

ES value of the aggregate risk as compared to the corresponding individual risk model with depen-

dence uncertainty. Thus, using a collective risk model is one of the many ways of introducing partial

dependence information into risk aggregation.
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