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Abstract

We consider a family of random locations, called intrinsic location functionals,

of periodic stationary processes. This family includes but is not limited to

the location of the path supremum and first/last hitting times. We first show

that the set of all possible distributions of intrinsic location functionals for

periodic stationary processes is the convex hull generated by a specific group of

distributions. We then focus on two special subclasses of these random locations.

For the first subclass, the density has a uniform lower bound; for the second

subclass, the possible distributions are closely related to the concept of joint

mixability.
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1. Introduction

Random locations of stationary processes have been studied for a long time,

and various results exist for special random locations and processes. For ex-

ample, the results regarding the hitting time for Ornstein-Uhlenbeck processes

date back to Breiman’s paper in 1967 [1], with recent developments made by5

Leblanc et al. [2] and Alili et al. [3]. Early discussions about the location of

path supremum over an interval can be found in the work of Leadbetter et al
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[4]. The book by Lindgren [5] provides an excellent summary of general results

in stationary processes.

Recently, properties of possible distributions of the location of the path10

supremum have been obtained, and the sufficiency of the properties was proven

[6, 7]. In [8], Samorodnitsky and Shen proceeded to introduce a general type

of random locations called intrinsic location functionals, including but also ex-

tending far beyond the random locations mentioned above. In [9], equivalent

representations of intrinsic location functionals were established using partially15

ordered random sets and piecewise linear functions.

In this paper, we study intrinsic location functionals of periodic stationary

processes, and characterize all the possible distributions of these random loca-

tions. The periodic setting leads to new properties along with challenges, which

are the focus of this paper. The periodicity also adds a discrete flavor to the20

problem, which, surprisingly, suggests a link with other well-studied properties

such as joint mixability [10].

The motivation of this work is twofold. From the general theoretical per-

spective, since the study of continuous-time stationary processes requires a d-

ifferentiable manifold structure to apply analysis techniques as well as a group25

structure to define stationarity, the most general and natural framework under

which the random locations of stationary processes can be considered is an A-

belian Lie group. It is well known that any connected Abelian Lie group can

be represented as the product of real lines and one-dimensional torus, i.e., cir-

cles. In other words, the real line R and one-dimension circle S1 are building30

blocks for connected Abelian Lie groups. Therefore, in order to understand the

properties of random locations of stationary processes in the general setting,

it is crucial to study their behaviors on R and S1 first. While the case for R

was done in [7], this paper deals with the circular case, which is equivalent to

imposing a periodic condition on the stationary processes over the real line.35

A more specific motivation comes from a problem in the extension of the so-

called “relatively stationary process”. A relatively stationary process is, briefly

speaking, a stochastic process only defined on a compact interval, the finite
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dimensional distribution of which is invariant under translation, as long as all

the time indices in the distribution remain inside the interval. Parthasarathy40

and Varadhan [11] showed that a relatively stationary process can always be

extended to a stationary process over the whole real line. A question to ask

as the next step is when such an extension can be periodic. Equivalently, if

the relatively stationary process is defined on an arc of a circle instead of the

compact interval on the real line, can it always be extended to a stationary45

process over the circle? This paper will provide an answer to this question.

The rest of the paper is organized as follows. In Section 2, we introduce

some notation and assumptions for intrinsic location functionals and stationary

and ergodic processes. In Section 3, we show some general results on intrinsic

location functionals of periodic stationary processes. Sufficient and necessary50

conditions are established to characterize the distributions of these random lo-

cations. The following two sections are devoted to two special types of intrinsic

location functionals. In Section 4, the class of invariant intrinsic location func-

tionals is studied. The density of any invariant intrinsic location functional has

a uniform lower bound, and such a distribution can always be constructed via55

the location of the path supremum over the interval. In Section 5, we show that

the density of a first-time intrinsic location functional is non-increasing, and

establish a link between the structure of the set of first-time intrinsic locations’

distributions and the joint mixability of some distributions.

2. Notation and preliminaries60

Throughout the paper, X = {X(t), t ∈ R} will denote a periodic stationary

process. Without loss of generality, assume X has period 1. Moreover, for

simplicity, we assume the sample function X(t) is continuous unless specified

otherwise. Indeed, all the arguments in the following parts also work for X with

càdlàg sample paths.65

As mentioned in the Introduction, an equivalent description of a periodic

stationary stochastic process is a stationary process on a circle. That is, consider
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{X(t), t ∈ R} as a process defined on S1, where S1 is a circle with perimeter 1.

Let H be a set of functions on R with period 1, and assume it is invariant

under shifts. The latter means that for all g ∈ H and c ∈ R, the function70

θcg(x) := g(x+ c), x ∈ R belongs to H. We equip H with its cylindrical σ-field.

Let I be the set of all compact, non-degenerate intervals in R: I = {[a, b] : a <

b, [a, b] ⊂ R}. We first define intrinsic location functionals, the primary object

of this paper.

Definition 2.1. [8] A mapping L: H × I → R ∪ {∞} is called an intrinsic75

location functional, if it satisfies the following conditions:

1. For every I ∈ I, the mapping L(·, I) : H → R ∪ {∞} is measurable.

2. For every g ∈ H and I ∈ I, L(g, I) ∈ I ∪ {∞}.

3. (Shift compatibility) For every g ∈ H, I ∈ I and c ∈ R,

L(g, I) = L(θcg, I − c) + c,

where I−c is the interval I shifted by −c, and by convention,∞+c =∞.

4. (Stability under restrictions) For every g ∈ H and I1, I2 ∈ I, I2 ⊆ I1, if80

L(g, I1) ∈ I2, then L(g, I2) = L(g, I1).

5. (Consistency of existence) For every g ∈ H and I1, I2 ∈ I, I2 ⊆ I1, if

L(g, I2) 6=∞, then L(g, I1) 6=∞.

All the conditions in Definition 2.1 being natural and general, the family of

intrinsic location functionals is a very large family of random locations, including85

and extending far beyond the location of the path supremum/infimum, the

first/last hitting times, the location of the first/largest jump, etc.

Remark 2.2. ∞ is added to the range of the intrinsic location functionals to deal

with the issue that some intrinsic location functionals may not be well defined

for certain paths in some intervals. The σ-field on R ∪ {∞} is then given by90

treating {∞} as a separate point and taking the σ-field generated by the Borel

sets in R and {∞}.

It turns out that with the presence of a period, the relation between sta-

tionary processes and ergodic processes plays a crucial role in analyzing the
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distributions of the random locations. Let (Ω,F ,P) be a probability space. Re-

call that a measurable function f is called T -invariant for a measurable mapping

T : Ω→ Ω, if

f(Tω) = f(ω) P-almost surely.

For a stationary process X = {X(t), t ∈ R}, let Ω̃ be its canonical space

equipped with the cylindrical σ-field F̃ , and θt be the shift operator as defined

earlier. That is,

θtω̃(s) = w̃(s+ t), for ω̃ ∈ Ω̃.

Denote by PX(·) = P(X ∈ ·) the distribution of X on (Ω̃, F̃). A stationary

process {X(t), t ∈ R} is called ergodic, if each measurable function f defined

on (Ω̃, F̃) which is θt-invariant for every t is constant PX-almost surely.95

It is known that the set of the laws of all stationary processes is a convex set

and the extreme points of this set are the laws of the ergodic processes. Thus,

we have the ergodic decomposition for stationary processes:

Theorem 2.3. (Theorem A.1.1, Kifer [12]) LetM be the space of all stationary

probability measures, and Me the subset of M consisting of all ergodic probabil-

ity measures. EquipM andMe with the natural σ-field: σ(µ→ µ(A) : A ∈ F).

For any stationary probability measure µX ∈M, there exists a probability mea-

sure λ on Me such that

µX =

∫
ρ∈Me

ρdλ.

The following proposition shows that for periodic stationary processes, er-

godicity simply means that all the paths are the same up to translation. This100

simple fact will be used later in showing the main results of this paper.

We say a probability space (Ω,F ,P) can be extended to a probability space

(Ω̃, F̃ , P̃), if there exists a measurable mapping π from (Ω̃, F̃) to (Ω,F) satisfying

P = P̃◦π−1. In this case, the process X̃ defined on (Ω̃, F̃ , P̃) by X̃(ω̃) = X(π(ω̃))

will be identified with the original process X.105
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Proposition 2.4. For any continuous periodic ergodic process X with period 1,

there exists a deterministic function g with period 1, such that X(t) = g(t+ Ũ)

for t ∈ R almost surely on an extended probability space, in which Ũ follows a

uniform distribution on [0, 1].

Proof. Let C1(R) be the space of continuous functions with period 1. For h ≥ 0,110

define set Bh := {g ∈ C1(R) : supt∈R |g(t)| ≤ h}. Note that Bh is in the

invariant σ-algebra, and hence by ergodicity, P(X ∈ Bh) is either 0 or 1 for any

h. Consequently, there exists h0 (depending on X) such that P(X ∈ Bh0
) = 1.

Similarly, for function δ : [0,∞)→ [0,∞), define set

Cδ := {g ∈ C1(R) : |g(x)− g(y)| < ε for any ε > 0 and all |x− y| < δ(ε)},

then Cδ is in the invariant σ-algebra, P(X ∈ Cδ) ∈ {0, 1}, and there exists

function δ0 such that P(X ∈ Cδ0) = 1.115

Furthermore, for any n, t = (t1, ..., tn) and A = (A1, ..., An), where t1 <

t2 < · · · < tn and A1, ..., An are non-degenerate closed intervals, define sets

Ht,A := {g ∈ C1(R) : g(t1) ∈ A1, . . . , g(tn) ∈ An}

and

H0
t,A := {g ∈ C(R) : there exists a constant c, θcg ∈ Ht,A}.

Again, H0
t,A is in the invariant σ-algebra, and hence by ergodicity P(X ∈ H0

t,A)

is either 0 or 1 for any n, t1, ..., tn and A1, ..., An.

For m = 0, 1, ..., let nm = 2m and tmi = (i − 1)2−m for i = 1, ..., nm. Then

there exists Am1 , ..., A
m
nm

of the form Ami = [ki2
−m, (ki + 1)2−m], ki ∈ Z, i =

1, ..., nm, such that P(X ∈ H0
tm,Am) = 1, where tm = (tm1 , ..., t

m
nm

), Am =120

(Am1 , ..., A
m
nm

). Moreover, we can choose the sets such that {H0
tm,Am}m=0,1,...

form a decreasing sequence, i.e., H0
tm1 ,Am1 ⊇ H0

tm2 ,Am2 if m1 ≤ m2.

Consider the sequence of sets {H0
tm,Am ∩Bh0

∩Cδ0}m=0,1,.... Each set in this

sequence is closed and consists of functions which are uniformly bounded and

equicontinuous. By Arzelà-Ascoli Theorem and the fact that we are looking at

functions with period 1, which can be 1-1 mapped to {g ∈ C([0, 1]) : g(0) =
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g(1)} ⊂ C([0, 1]), the sets in this sequence are compact. As a result, the inter-

section of all the sets is non-empty. Moreover, there exists a single deterministic

function with period 1, denoted by g, such that for any f in the intersection,

f(t) = g(t + c) for some c ∈ R. Indeed, assume this is not the case, i.e., there

exists f1, f2 both in H0
tm,Am ∩ Bh0 ∩ Cδ0 for all m = 0, 1, ..., yet f1 6= θcf2 for

any c, then fundamental analysis shows that

inf
c∈R

sup
i∈Z
|f1(i2−m)− θcf2(i2−m)| ≥ 1

2
inf
c∈R

sup
t∈R
|f1(t)− θcf2(t)| > 0

for m large enough, hence f1 and f2 will eventually be separated by some

H0
tm,Am . Thus, we conclude that X(t) = g(t + V ) almost surely for some

random variable V .125

The last step is to show that there exists an extended probability space and a

uniform [0, 1] random variable Ũ defined on that space, such thatX(t) = g(t+Ũ)

almost surely. First, suppose there exists a uniform [0, 1] random variable U in

some probability space, then {X(t), t ∈ R} d
= {g(t + U), t ∈ R}. Indeed, since

the equality is in the distributional sense, we can assume that U is independent

of everything else by considering, for example, the product space of the original

probability space and [0, 1] equipped with the Borel σ-field and the Lebesgue

measure. Then by stationarity and ergodicity, we have

{X(t), t ∈ R} d
= {X(t+ U), t ∈ R}

= {g(t+ V + U), t ∈ R}
d
= {g(t+ U), t ∈ R}.

Moreover, the mapping h : [0, 1]→ C([0, 1]) given by h(x) = {g(t+x), t ∈ [0, 1]}

is continuous, hence measurable. (Note that the Borel σ-field and the cylindrical

σ-field coincide on C([0, 1]).) As a result, there exists an extended probability

space (Ω̃, F̃ , P̃) with a uniform [0,1] random variable Ũ defined on that, such

that {X(t), t ∈ R} = h(Ũ) = {g(t+ Ũ), t ∈ R} almost surely on (Ω̃, F̃ , P̃).130

7



3. Distributions of intrinsic location functionals

In this section, we characterize (properties of) intrinsic location functionals

of periodic stationary processes. For a compact interval [a, b], denote the val-

ue of an intrinsic location functional L for the process X on that interval by135

L(X, [a, b]). Since X is stationary and L is shift compatible, the distribution of

L − a depends solely on the length of the interval. Thus, we can focus on the

intervals starting from 0, in which case L(X, [0, b]) is abbreviated as L(X, b).

Furthermore, with the 1-periodicity of X, it turns out that the only interesting

cases are those with b ≤ 1. In the following we assume b ≤ 1 throughout. The140

case where b > 1 will be briefly discussed in Remark 3.4, after the introduction

of a representation result for intrinsic location functional.

Denote by FX
L,[a,b] the law of L(X, [a, b]). It is a probability measure sup-

ported on [a, b] ∪ {∞}.

It was shown in [8] that the distribution of an intrinsic location functional145

for any stationary process over the real line, not necessarily periodic, possesses

a specific group of properties. Adding periodicity obviously will not change

these results. Here we present a simplified version of the original theorem for

succinctness.

Proposition 3.1. Let L be an intrinsic location functional and {X(t), t ∈ R}

a stationary process. The restriction of the law FX
L,T to the interior (0, T ) of

the interval is absolutely continuous. Moreover, there exists a càdlàg version of

the density function, denoted by fXL,T , which satisfies the following conditions:

(a) The limits

fXL,T (0+) = lim
t↓0

fXL,T (t) and fXL,T (T−) = lim
t↑T

fXL,T (t) (1)

exist.

(b)

TV(t1,t2)(f
X
L,T ) ≤ fXL,T (t1) + fXL,T (t2)
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for all 0 < t1 < t2 < T , where

TV(t1,t2)(f
X
L,T ) = sup

n−1∑
i=1

∣∣fXL,T (si+1)− fXL,T (si)
∣∣

is the total variation of fXL,T on the interval (t1, t2), and the supremum is taken150

over all choices of t1 < s1 < · · · < sn < t2.

Note that we have
∫ T

0
fXL,T (s)ds < 1 if there exists a point mass at ∞ or at

the boundaries 0 and T .

We call the condition (b) in Proposition 3.1 “Condition (TV )”, or the “vari-155

ation constraint”, because it puts a constraint on the total variation of the

density function. It is not difficult to show that Condition (TV ) is equivalent

to the following Condition (TV ′):

There exists a sequence {tn}, tn ↓ 0, such that

TV(tn,T−tn)(f) ≤ f(tn) + f(T − tn), n ∈ N.

The above general result about the distribution of the intrinsic location

functionals for stationary processes over the real line is still valid for periodic160

stationary processes, and serves as a basis for further exploration. It is, however,

not the focus of this paper. For the rest of the paper we will concentrate on the

new properties introduced by the periodicity assumption, which do not hold in

the general case.

For any intrinsic location functional L and T ≤ 1, let IL,T be the set of165

probability distributions FX
L,T for periodic stationary processes X with period

1 on [0, T ]. Our goal is to understand the structure of the set IL,T , and the

conditions that the distributions in IL,T need to satisfy. To this end, note that

since ergodic processes are extreme points of the set of stationary processes, the

extreme points of the set IL,T can only be the distributions of L for periodic170

ergodic processes with period 1. The next proposition gives a list of properties

for these distributions.

9



Proposition 3.2. Let L be an intrinsic location functional, X be a periodic

ergodic process with period 1, and T ≤ 1. Then FX
L,T and its càdlàg density

function on (0, T ), denoted by f , satisfy:175

1. f takes values in non-negative integers;

2. f satisfies the condition (TV );

3. If FX
L,T [0, T ] > 0, and there does not exist t ∈ (0, T ) such that FX

L,T [0, t] =

1 or FX
L,T [t, T ] = 1, then f(t) ≥ 1 for all t ∈ (0, T ). If furthermore,

FX
L,T ({∞}) > 0, then f − 1 also satisfies the condition (TV ).180

Note that the condition in the first part of property 3 can be translated into

requiring either a positive but smaller than 1 mass at ∞, or a positive point

mass or a positive limit of the density function at each of the two boundaries 0

and T .

The proof of Proposition 3.2 relies on the following representation result185

given in [9].

Proposition 3.3. A mapping L(g, I) : H×I → R∪{∞} is an intrinsic location

functional if and only if

1. L(·, I) is measurable for I ∈ I;

2. There exists a subset of R determined by g, denoted as S(g), and a partial190

order � on it, satisfying:

(1) For any c ∈ R, S(g) = S(θcg) + c;

(2) For any c ∈ R and t1, t2 ∈ S(g), t1 � t2 implies t1 − c � t2 − c in

S(θcg),

such that for any I ∈ I, either S(g) ∩ I = ∅, in which case L(g, I) = ∞, or195

L(g, I) is the unique maximal element in S(g) ∩ I according to �.

Such a pair (S,�) in the above proposition is called a partially ordered ran-

dom set representation of L. Intuitively, this representation result shows that a

random location is an intrinsic location functional if and only if it always takes

the location of the maximal element in a random set of points, according to200
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some partial order. Both the random set and the order are determined by the

path and are shift-invariant.

Remark 3.4. By Proposition 3.3, for a function g with period 1, t ∈ S(g) implies

t+ c ∈ S(θ−cg) = S(g) for any c ∈ Z. Moreover, if t+ 1 � t, then t+ c2 � t+ c1

for all c1, c2 ∈ Z, c2 > c1. As a result, for an interval [a, b] with length greater205

than 1, only the points in the leftmost cycle [a, a + 1) can have the maximal

order. Thus, the location of the intrinsic location functional on [a, b] will be

the same as on [a, a + 1]. Symmetrically, if t � t + 1, then the location of the

intrinsic location functional on [a, b] will be the same as on [b− 1, b]. Hence we

only need to consider the intervals with length no larger than 1.210

Proof of Proposition 3.2. Property 2 directly comes from Proposition 3.1. We

only need to check properties 1 and 3.

Property 1. Since X is a periodic ergodic process with period 1, by Propo-

sition 2.4, there exists a periodic deterministic function g with period 1 such

that X(t) = g(t+U) for t ∈ R, where U follows a uniform distribution on [0, 1].

In other words, all the sample paths of X are the same up to translation. Let

(S,�) be a partially ordered random set representation of L. For any s ∈ S(g),

define

as := sup{∆s ∈ R : r � s for all r ∈ (s−∆s, s) ∩ S(g)},

bs := sup{∆s ∈ R : r � s for all r ∈ (s, s+ ∆s) ∩ S(g)},

and define sup ∅ = ∞ by convention. By a slight abuse of notation, we also

use as and bs to denote the same quantity for s ∈ S(X). Intuitively, as and bs

are the largest distance by which we can go to the left and right of the point s

without passing a point with higher order than s according to �, respectively.

Thus, for 0 < t < t+ ∆t < T , we have

P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as > t+ ∆t, bs > T − t)

≤ P (t ≤ L(X, (0, T )) ≤ t+ ∆t)

≤ P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as ≥ t, bs ≥ T − t−∆t) . (2)
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Seeing that X(t) = g(t+U), S(X) = S(g)−U . By change of variable s→ s−U ,

P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as > t+ ∆t, bs > T − t)

=P (there exists s ∈ S(g) : as > t+ ∆t, bs > T − t, s− U ∈ [t, t+ ∆t]) .

Note the values of as and bs remain unchanged, since they are defined with

respect to X on the left hand side, and with respect to g on the right hand side.

Since S(g) has period 1, s ∈ S(g) if and only if s − bsc ∈ S(g) ∩ [0, 1).

Moreover, since s−U and s−bsc−U −bs−bsc−Uc share the same fractional

part and are both in [0, 1), s − U = s − bsc − U − bs − bsc − Uc. Thus, by

another change of variable s− bsc → s, we have

P (there exists s ∈ S(g) : as > t+ ∆t, bs > T − t, s− U ∈ [t, t+ ∆t])

= P (there exists s ∈ S(g) ∩ [0, 1)

such that as > t+ ∆t, bs > T − t, and s− U − bs− Uc ∈ [t, t+ ∆t]) .

Therefore, for ∆t small enough,

P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as > t+ ∆t, bs > T − t)

= |{s ∈ S(g) ∩ [0, 1) : as > t+ ∆t, bs > T − t}| ·∆t,

where |A| denotes the cardinal of set A. Thus, we have

f(t) = lim
∆t→0

P (t ≤ L(X, (0, T )) ≤ t+ ∆t)

∆t

≥ |{s ∈ S(g) ∩ [0, 1) : as > t, bs > T − t}| . (3)

Symmetrically,

f(t) = lim
∆t→0

P (t ≤ L(X, (0, T )) ≤ t+ ∆t)

∆t

≤ |{s ∈ S(g) ∩ [0, 1) : as ≥ t, bs ≥ T − t}|. (4)

Moreover, it is easy to see that the set Σ := {s ∈ S(g)∩[0, 1) : as > 0 and bs > 0}215

is at most countable, then {t : as = t or bs = T − t for some s ∈ Σ} is also at

most countable. Hence the density can be taken as the càdlàg modification of
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|{s ∈ S(g) ∩ [0, 1) : as ≥ t, bs ≥ T − t}|, which only takes values in non-negative

integers.

Property 3. Assume FX
L,T [0, T ] > 0 and there does not exist t ∈ (0, T ), such220

that FX
L,T [0, t] = 1 or FX

L,T [t, T ] = 1. There are two possible cases depending on

whether FX
L,T has a point mass at ∞.

First suppose FX
L,T ({∞}) ∈ (0, 1). Then by the partially ordered random set

representation, there exists an interval [s∞, t∞] (depending on g) satisfying t∞−

s∞ ≥ T , such that S(g)∩[s∞, t∞] = ∅. Since g has period 1, S(g)∩[s∞+1, t∞+225

1] = ∅ as well. Let τ = L(g, [t∞, s∞ + 1]). Since L is not identically ∞, such a

finite τ must exist. Moreover note that there is no point of S(g) in [s∞, t∞] and

[s∞ + 1, t∞ + 1], hence τ is actually the maximal element in S(g) according to

� on the interval [s∞, t∞+1]. Thus, aτ > τ −s∞ = τ − t∞+ t∞−s∞ ≥ T , and

symmetrically bτ ≥ T . Consequently, τ − bτc is in the set {s ∈ S(g) ∩ [0, 1) :230

as ≥ t, bs ≥ T − t} for all t ∈ (0, T ). Since the density function f(t) can

be taken as the càdlàg modification of |{s ∈ S(g) ∩ [0, 1) : as ≥ t, bs ≥ T − t}|,

f(t) ≥ 1 for all t ∈ (0, T ).

For the second possibility, suppose now there is either a positive mass or

a positive limit of the density function on each of the two boundaries 0 and235

T . Suppose for the purpose of contradiction that there exists a non-degenerate

interval [u, T − v] such that f(t) = 0 for all t ∈ [u, T − v]. For t ∈ S(g), we

distinguish four different types: A := {t ∈ S(g) : at ≤ u, bt > T − u− ε}, B :=

{t ∈ S(g) : at > T −v−ε, bt ≤ v}, C := {t ∈ S(g) : at > u, bt > v, at+bt > T}

and D := {t ∈ S(g) : at > u, bt > v, at + bt = T}, where 0 < ε < T−u−v
2 . Sets240

A, B, C and D are disjoint, and for any t ∈ S(g) such that t = L(g, I) for some

interval I with length T , t ∈ A ∪ B ∪ C ∪D. By the assumption about f , it is

easy to see that A 6= ∅, B 6= ∅ and C = ∅.

We claim that for any x ∈ A and y ∈ B, if x > y, then x−y > T . Suppose it

is not true. For interval I = [t, t+T ], where t satisfies 0 ≤ y− t < T − v− ε and

0 ≤ t+ T − x < T − u− ε, let z be the maximal element in S(g) ∩ I according

to �. Note that the choice of t guarantees that x, y ∈ I, hence S(g) ∩ I 6= ∅, z

always exists. Moreover, x � z and y � z. Because y ∈ B, y is larger in � than
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any point to its left within a distance smaller than T − v − ε, which contains

[t, y]. Thus, z cannot be in this part of the interval I. Similarly, z cannot be in

[x, t+ T ], hence z ∈ [y, x]. For such z,

az ≥ ay > T − v − ε > u, bz ≥ bx > T − u− ε > v,

and az + bz > T − v − ε+ T − u− ε > T , which means z ∈ C. However, C = ∅

by assumption. Therefore, for any x ∈ A, y ∈ B and x > y, we have x− y > T .245

On the other hand, we show in the following paragraphs that for any point

y ∈ B, there exists another point y′ ∈ B, such that u
2 < y′ − y ≤ T . To this

end, consider a number of intervals [y− εi, y− εi + T ] given any arbitrary point

y ∈ B and εi = 1
2iu for i = 1, 2, . . . . Denote li as the maximal element in

[y − εi, y − εi + T ] ∩ S(g) according to �. Notice that since y ∈ S(g), li always250

exists. Seeing that ay > T − v− ε > u, li must be in [y, y+T ]. Since li− y ≤ T ,

li must be in the set B ∪D.

Next, we show that there exists i such that li ∈ B. Suppose li ∈ D for all i.

If there exist li = lj ∈ D for some i < j, then li is the maximal element in both

[y − εi, y − εi + T ] ∩ S(g) and [y − εj , y − εj + T ] ∩ S(g). As a result, we have

ali ≥ li − y + εi, and bli ≥ y − εj + T − li. However, this leads to

ali + bli ≥ T + εi − εj > T,

hence li cannot be in D. Thus, for any i 6= j, li 6= lj . By the fact that ali > u

and bli > v, there are at most T
min{u,v} points in the set D ∩ [y, y + T ], which

contradicts the assumption that li ∈ D ∩ [y, y + T ] for all i = 1, 2, . . . . As a255

result, there always exists at least one point li ∈ B.

Furthermore, for such li, if li − y ≤ u
2 , then

bli ≥ T −
u

2
− εi ≥ T − u > v,

which contradicts the fact that li ∈ B. Therefore for any y ∈ B, there always

exists a point y′ = li ∈ B, such that

u

2
< y′ − y ≤ T.
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As a result, for any periodic function g with period 1, there exists y1 ∈ B and

then a sequence of points {yi, i = 2, . . . , k} in B such that for i = 1, . . . , k − 1,

u

2
< yi+1 − yi ≤ T,

and k is chosen such that

yk−1 < 1 + y1 ≤ yk.

However, since g is a periodic function with period 1 and A 6= ∅, this means

that there must exist some points x ∈ A and y ∈ B such that x − y ≤ T ,

which contradicts the result we derived before. Therefore, we conclude that

there does not exist a non-degenerate interval [u, T − v] such that f(t) = 0 for260

all t ∈ [u, T − v], if the condition in the first part of property 3 holds.

Finally we turn to the second part in property 3. Assume FX
L,T ({∞}) > 0,

then we show that f − 1 will satisfy the condition (TV). Recall that a positive

probability at ∞ for FX
L,T implies the existence of a maximal interval [s∞, t∞]

depending on g satisfying t∞ − s∞ ≥ T and S(g) ∩ [s∞, t∞] = ∅. Indeed, the

inequality t∞ − s∞ ≥ T can be strengthened to t∞ − s∞ > T , since otherwise

its contribution to the point mass at ∞ will be 0, even though it allows one

particular value of U such that g(t + U) ∩ [0, T ] = ∅. Consider an interval

[u, v] ⊂ (0, T ), such that f is flat on [u, v]. Since f takes integer values and

satisfies the variation constraint, such an interval always exists. Define

S′(g) = S(g) ∪ {s∞ + v − ε+ C : C ∈ Z} ∪
⋃
C∈Z

(s∞ + T + ε+ C, t∞ + C)

for ε small enough, and extend the order � to S′(g) (still denoted by �) by

setting s∞+v−ε+C � t1 � t2 � t for any C ∈ Z, t1, t2 ∈ (s∞+T+ε+C, t∞+C),

t1 < t2, and any t ∈ S(g). Intuitively, the extended order assigns the minimal

order to s∞ + v − ε, then an increasing order to the points in (s∞ + T + ε, t∞),265

while keeping the order for the added points always inferior to the original points

in S(g), and is finally completed by a periodic extension to R. Let L′ be an

intrinsic location functional having (S′(g),�) as its partially ordered random

set representation, and denote by f ′ the density of FX
L′,T . It is easy to see
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that f ′ = f + I(v−2ε,v−ε]. Hence for ε small enough and tn ↓ 0 with t1 being270

small enough, TV(tn,T−tn)(f
′) = TV(tn,T−tn)(f)+2 for any n. Since f ′ satisfies

the condition (TV ), we must have TV(tn,T−tn)(f) + 2 ≤ f(tn) + f(T − tn).

Thus TV(tn,T−tn)(f − 1) ≤ (f(tn)− 1) + (f(T − tn)− 1), which is the variation

constraint for f − 1.

With the properties of the distributions of L for periodic ergodic processes275

with period 1 at hand, we proceed to study the structure of IL,T , the set of all

distributions of L for periodic stationary processes. Denote by ET the collection

of probability distributions on [0, T ]∪{∞} satisfying the three properties listed

in Proposition 3.2, and let PT be the collection of all probability distributions

on [0, T ] ∪ {∞} which are absolutely continuous on (0, T ). For the rest of the280

paper, denote by C(A) the convex hull generated by a set A ⊆ PT under the

weak topology.

Theorem 3.5. IL,T is a convex subset of PT . Moreover, IL,T ⊆ C(ET ).

Proof. The convexity of IL,T is obvious. If F1, F2 ∈ IL,T , then there exist

stationary processes with period 1, denoted by X1,X2, such that F1 = FX1

L,T285

and F2 = FX2

L,T . For any a ∈ [0, 1], aF1 + (1 − a)F2 = FX
L,T , where the process

X is a mixture of X1 and X2, with weights a and 1− a, respectively.

Next we show IL,T ⊆ C(ET ). By ergodic decomposition, any F ∈ IL,T can

be written as F =
∫
G∈ET

Gdλ, where λ is a probability measure on ET . The

integration holds in the sense of mixture of probability measures, i.e.,∫
x∈[0,T ]∪{∞}

h(x)dF (x) =

∫
G∈ET

∫
x∈[0,T ]∪{∞}

h(x)dG(x)dλ

for all bounded and continuous function h defined on [0, T ] ∪ {∞}. Since the

set of probability measures on [0, T ]∪ {∞} equipped with the weak topology is

separable, we conclude that F ∈ C(ET ).290

The converse of Theorem 3.5, that for an arbitrarily given intrinsic location

functional L and any distribution F ∈ C(ET ) there exists a periodic stationary

process X such that F = FX
L,T , is not true in general. For example, it can

16



be easily checked that L(g, I = [a, b]) := a is an intrinsic location functional.

Yet the only possible distribution for L on [0, T ] is a Dirac measure on the295

boundary 0. However, the next result shows that the converse does hold if we

do not focus on any particular L, but collect the possible distributions for all

the intrinsic locations functionals. In other words, any member in C(ET ) can be

the distribution of some intrinsic location functional on [0, T ] and some periodic

stationary process with period 1. More formally, define IT =
⋃
L IL,T to be the300

set of all possible distributions of intrinsic location functionals on [0, T ], then

IT = C(ET ). Here and throughout the paper, when we discuss the existence

of a stochastic process without specifying the underlying probability space, the

existence should be understood as that of the process together with the existence

of a probability space on which the process is defined.305

Theorem 3.6. For any F ∈ C(ET ), there exist an intrinsic location functional

and a periodic stationary process with period 1, such that F is the distribution

of this intrinsic location for such process on [0, T ].

The proof of Theorem 3.6 consists of three parts. The main steps of the

proof are presented in Part I below. Parts II and III are put in Sections 4 and310

5, respectively, due to the explicit construction required for specific types of

intrinsic location functionals.

Proof of Theorem 3.6, Part I. We define an intrinsic location functional L =

L(g, I) as

L(g, I) =


L1(g, I) if g(t) ≥ 0 for all t ∈ R,

L2(g, I) if there exists t ∈ R such that g(t) = −1,

L3(g, I) otherwise,

where

L1(g, I) = inf

{
t ∈ I : g(t) = sup

s∈I
g(s), g(t) ≥ 1

2

}
,

L2(g, I) = inf{t ∈ I : g(t) = −1},

17



and

L3(g, I) = sup{t ∈ I : g(t) = −2}.

Intuitively, L1 is based on the location of the path supremum, but truncated at

level 1
2 . L2 and L3 are first and last hitting times, respectively.

We first show that such L is an intrinsic location functional, by using the315

partially ordered random set representation of intrinsic location functionals. It

is not difficult to verify that L1, L2 and L3 are all intrinsic location functionals,

and hence they all have their own partially ordered random set representa-

tions, denoted as (S1(g),�1), (S2(g),�2) and (S3(g),�3). For positive sample

paths, L has (S1,�1) as its partially ordered random representation; otherwise320

for sample paths reaching level −1, L has (S2,�2); otherwise, L has (S3,�3).

Combining the three cases gives a complete partially ordered random set repre-

sentation for L. Thus, L is an intrinsic location functional.

Next, we need to show that for any F ∈ ET , there exists a periodic ergodic

process with period 1 such that F is the distribution of L over [0, T ] for such325

process. For any F ∈ ET , let f be its density function on (0, T ). We discuss

two possible scenarios depending on whether f(t) ≥ 1 for all t or not.

1. If f(t) ≥ 1 for all t ∈ (0, T ), we are going to show that there exists a

periodic ergodic process with period 1 and positive sample paths, such

that F is the distribution of L1 on [0, T ] for that process. Since L1 is a330

modified version of the location of the path supremum, this part of the

proof is postponed and will be resumed right after the proof of Theorem

4.7, in which we focus on the distribution of the location of the path

supremum.

2. Otherwise, f(t) = 0 for some t. Recall from the definition of ET that if335

f(0+) ≥ 1 and f(T−) ≥ 1, then f(t) ≥ 1 for all t ∈ (0, T ). Hence in

this case we must have f(0+) = 0 or f(T−) = 0. Assume f(T−) = 0

for example. Take u := inf{t ∈ (0, T ) : f(t) = 0} and a sequence {tn ∈

(u, T )}n∈N such that tn ↑ T as n → ∞ and f(tn) = 0 for all n. The

variation constraint applied to the intervals (0, u) and (u, tn) implies that340
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f is non-increasing in (0, u) and that f(t) = 0 for f ∈ [u, T ), respectively.

Symmetric results hold for the case where f(0+) = 0. To summarize, if f

is the density function for a distribution in ET and f(t) = 0 for some t,

we have

(1) f takes values in non-negative integers;345

(2) Either there exists u ∈ (0, T ) such that f is a non-increasing function

in the interval (0, u) and f(t) = 0 for t ∈ [u, T ), or there exists

v ∈ (0, T ) such that f is a non-decreasing function in the interval

[v, T ) and f(t) = 0 for t ∈ (0, v).

By symmetry, we only prove the case where f is non-increasing in the interval350

(0, u) and f(t) = 0 for t ∈ [u, T ). Since the intrinsic location functional that we

are going to use in this case, L2, is a first hitting time, this part of the proof is

postponed and will be resumed right after the proof of Proposition 5.4, which

deals with this type of intrinsic location functionals.

Remark 3.7. The proof of Theorem 3.6 actually implies a stronger result: all the355

distributions in C(ET ) can be generated by a single intrinsic location functional,

which is the location L defined in the proof of the theorem.

Remark 3.8. Among the three conditions defining the set ET , the condition

(TV ) is stable under convex combination, while the other two, integer values

and a lower bound at level 1 under some conditions, are not. Therefore when360

passing from ergodic processes to stationary processes, these two conditions will

not persist. However, this does not mean that they will simply disappear. They

still affect the structure of the set of all possible distributions IT = C(ET ),

but in a complicated way. While an explicit, analytical description of IT is not

known, we point out in the following example that IT is indeed a proper subset365

of the set of all distributions solely satisfying condition (TV ).

Denote by AT the class of probability distributions on [0, T ] ∪ {∞} with

densities satisfying the variation constraint (TV ). Let T = 1 and consider a
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probability distribution F with density function

f(t) =


4
3 , t ∈ (0, 3

4 ),

0, t ∈ [ 3
4 , 1).

From the construction of f , it is easy to check that F ∈ AT . Suppose F is also

in the set IT , then it can be written as an integral of the elements in the set

ET with respect to a probability measure on ET , as discussed in the proof of

Theorem 3.5. Since f(t) = 0 for all t ∈ [ 3
4 , 1), the variation constraint implies

that any candidate density g to construct f must be non-increasing on the

interval (0, 3
4 ) and g(t) = 0 for all t ∈ [ 3

4 , 1). Moreover, g takes integer values,

so there exists g such that g(t) = 2 for t ∈ (0, 3
4 ). However, the integral of g is∫ T

0

g(t)dt =
3

2
> 1,

which means that there does not exist a distribution in ET such that g is its

density function. Therefore, F /∈ C(ET ), hence IT is a proper subset of AT .

4. Invariant intrinsic location functionals

In this section, we consider a special type of intrinsic location functionals,370

referred to as the invariant intrinsic location functionals.

Definition 4.1. An intrinsic location functional L is called invariant, if it

satisfies

1. L(g, I) 6=∞ for any compact interval I and g ∈ H.

2. L(g, [0, 1]) = L(g, [a, a+ 1]) mod 1, for any a ∈ R and g ∈ H.375

Remark 4.2. Invariance is a natural requirement for an intrinsic location func-

tional on S1. The projection of an interval with length of 1 in S1 forms a loop,

with the starting and ending points being mapped to the same point. The

above definition then requires that the location over the whole circle is always

well-defined, and does not depend on the location of the starting/ending point.380
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Example 4.3. It is easy to see that the location of the path supremum

τg,[a,b] = inf
{
t ∈ [a, b] : g(t) = sup

a≤s≤b
g(s)

}
is an invariant intrinsic location functional, provided that the path supremum

is uniquely achieved.

Besides the location of the path supremum, other invariant intrinsic location

functionals include the location of the point with the largest/smallest slope (if

the sample paths are in C1), the location of the point with the largest/smallest385

curvature (if the sample paths are in C2), etc, provided the uniqueness of these

locations. The related criteria for uniqueness often go back to checking the

uniqueness of the path supremum/infimum in one period. Indeed, if the a peri-

odic stationary process has sample paths in C1 (resp. C2), then its first (resp.

second) derivative is again a periodic stationary process. For a Gaussian process390

X, its derivative X′ is still Gaussian, and Kim and Pollard [13] showed that the

supremum is almost surely achieved at a unique point if Var(X ′(s), X ′(t)) 6= 0

for s 6= t. In our periodic case, this means that the process has no period smaller

than 1. Another condition was developed by Pimentel [14] for general processes

with continuous sample paths.395

For an invariant intrinsic location functional, we have the following lower

bound for its density function.

Proposition 4.4. For T ∈ (0, 1], any invariant intrinsic location functional L

and any periodic stationary process X with period 1, the density fXL,T of L on

(0, T ) satisfies

fXL,T (t) ≥ 1 for all t ∈ (0, T ). (5)

Proof. Let 0 < a < b < 1. Since X is stationary, we have

P(L(X, [0, 1]) ∈ (0, b− a)) = P(L(X, [a, a+ 1]) ∈ (a, b)). (6)

By the assumption of invariant intrinsic location functionals, for any a ∈ R,

L(X, [0, 1]) = L(X, [a, a+ 1]) mod 1.
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Then

P(L(X, [0, 1]) ∈ (0, b− a)) = P(L(X, [a, a+ 1]) ∈ (a, b))

= P(L(X, [0, 1]) ∈ (a, b)).

It means that L(X, [0, 1]) follows a uniform distribution on the interval [0, 1].

Thus, for any t ∈ (0, 1),

fXL,[0,1](t) = 1.

For any Borel set B ∈ B([0, T ]), T ≤ 1, by condition 4 (stability under restric-

tions) in Definition 2.1,

FX
L,[0,T ](B) ≥ FX

L,[0,1](B).

Therefore, for any 0 < t < T ,

fXL,T (t) ≥ fXL,1(t) = 1.

For a given invariant intrinsic location functional L and T ≤ 1, let I1
L,T be

the collection of probability distributions of L on [0, T ] for periodic stationary400

processes with period 1. Let E1
T be the collection of probability distributions

with no point mass at ∞, and (càdlàg) densities f on (0, T ) satisfying:

1. f takes values in positive integers for all t ∈ (0, T );

2. f satisfies the condition (TV ).

Then we have the following result regarding the structure of the set I1
L,T , parallel405

to the result for general intrinsic location functionals, Theorem 3.5.

Corollary 4.5. I1
L,T is a convex subset of PT . Moreover, I1

L,T ⊆ C(E1
T ).

Proof. By Proposition 4.4, the density f for any periodic ergodic process X

with period 1 satisfies f(t) ≥ 1 for all t ∈ (0, T ). The rest of the proof follows

in the same way as that of Theorem 3.5.410
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Before proceeding to the next result, Theorem 4.7, which gives the other

direction of the relation between C(E1
T ) and the set of all possible distributions,

we note that the definition of the location of the path supremum can be extended

to the processes with càdlàg sample paths. This extension will be helpful in the

proof of Theorem 4.7.415

Remark 4.6. For any periodic stationary process X with period 1 and càdlàg

sample paths, let X ′(t) = lim sups→tX(s), t ∈ R. Then X′ = {X ′(t), t ∈ R}

has upper semi-continuous sample paths and its supremum over the interval can

be attained. As a result, for any X with càdlàg sample paths, the location of

the path supremum for X can be defined as

τX,T := inf

{
t ∈ [0, T ] : X ′(t) = sup

s∈[0,T ]

X ′(s)

}
.

Denote by LI the set of invariant intrinsic location functionals. Let I1
T =⋃

L∈LI
I1
L,T be the collection of all the possible distributions for invariant intrin-

sic location functionals and periodic stationary processes with period 1 on [0, T ].

The next result, in combination with Corollary 4.5, shows that I1
T = C(E1

T ).

Theorem 4.7. For any F ∈ C(E1
T ), there exists an invariant intrinsic location420

functional and a periodic stationary process with period 1, such that F is the

distribution of this invariant intrinsic location functional for such process.

Proof. It suffices to show that for any distribution F ∈ E1
T , there exists a

periodic ergodic process Y with period 1 such that F is the distribution of the

unique location of the path supremum for Y on [0, T ]. By Proposition 3.2,

the density function of F , denoted by f , takes non-negative integer values and

satisfies the condition (TV). As a result, f must be a piecewise constant function

and has a unique decomposition

f(t) =

m∑
i=1

I(ui,vi](t), (7)

where m can be infinity and the intervals are maximal, in the sense that for any

i, j = 1, . . . ,m, (ui, vi] and (uj , vj ] have only three possible relations:

(ui, vi] ⊂ (uj , vj ], or (uj , vj ] ⊂ (ui, vi], or [ui, vi] ∩ [uj , vj ] = ∅.
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According to whether ui = 0 or vi = T , we call the intervals of the form (0, T ],

(0, vi], (ui, T ] and (ui, vi] the base, left, right and central block(s), respectively.

Observe that properties 1 and 2 in the definition of E1
T are equivalent to requir-425

ing that there is at least one base block, and the number of the central blocks

does not exceed the number of the base blocks.

We construct the stationary process in spirit of Proposition 2.4. That is,

first construct a periodic deterministic function g, and then uniformly shift its

starting point to get Y (t) = g(t + U), where U is a uniform random variable

on [0, 1]. Let m1 be the number of the base blocks in the collection. We group

the entire collection of blocks into m1 components by assigning to each base

block at most one central block, and assigning the left and the right blocks in

an arbitrary way. Assume a = F (0) > 0 and b = 1− F (T ) > 0. Let

d1 =
1

m1
a and d2 =

1

m1
b.

For j = 1, . . . ,m1, let

Lj = d1 + the total length of the blocks in the jth component + d2,

then
∑m1

i=1 Li = 1. Set g(0) = 2 and g(L1) = 2. Using the blocks of the first

component, we will define the function g on the interval (0, L1]. If the first

component has l left blocks, r right blocks and a central block, where l and

r can potentially be infinity, we denote them by (0, vj ], j = 1, . . . , l, (uk, T ],

k = 1, . . . , r and (u, v] respectively. The case where a central block does not

exist corresponds to letting u = v. Set

g

(
j−1∑
i=1

vi +

j∑
i=1

1

2i+1
d1

)
= g

(
j∑
i=1

vi +

j∑
i=1

1

2i+1
d1

)
= 1 + 2−j , j = 1, . . . , l,

(8)

g

(
d1 +

l∑
i=1

vi

)
= g

(
d1 +

l∑
i=1

vi + v

)
= g

(
d1 +

l∑
i=1

vi + v + T − u

)
=

1

2
,
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and

g

(
L1 −

j∑
i=1

1

2i+1
d2 −

j−1∑
i=1

(T − ui)

)
= g

(
L1 −

j∑
i=1

1

2i+1
d2 −

j∑
i=1

(T − ui)

)
= 1 + 2−j , j = 1, . . . , r. (9)

Next, if the values of g at two adjacent points constructed above, t1 < t2, are

equal, we join them by a V-shaped curve satisfying some Lipschitz condition. We

complete the function g by filling in the other gaps with straight lines between430

adjacent points (with different values). With the similar construction, we can

also define g on the interval [Li, Li+1], for i = 1, . . . ,m1 − 1. Then g is well

defined on the interval [0, 1] and we extend g as a periodic function with period

1. If a or b is equal to 0, we take (the càdlàg version of) the limit of the

corresponding construction with a ↓ 0 or b ↓ 0. We have a periodic ergodic435

process Y as Y (t) = g(t+U) for t ∈ R, where U is uniformly distributed on [0, 1].

It is straightforward, though lengthy, by tracking the value of L(g(t+U), [0, T ])

as a function of U , to see that the distribution of the location of the path

supremum for Y is F . The proof is finally complete with an application of

ergodic decomposition.440

Remark 4.8. Since the only random location used in the proof of Theorem 4.7

is the location of the path supremum, we actually showed that the set of all

possible distributions for invariant intrinsic location functionals is contained in

the set of possible distributions solely for the location of path supremum. In this

sense, the location of path supremum is a representative of the invariant intrinsic445

location functionals. This fact is related to the partially ordered random set

representation of the intrinsic location functionals.

Remark 4.9. In the part of introduction we mentioned the question as whether

every relatively stationary process defined on an interval [0, T ] can always be

extended to a periodic stationary process with a given period T ′ > T . Propo-450

sition 4.4, together with Theorem 4.7, gives a negative answer to this question.

To see this, let T ′ = 1, and consider the location of the path supremum denoted
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as τ . Let T ′′ > 1. As a result of Theorem 4.7, a simple scaling shows that for

a probability distribution F on [0, T ] with its density function f on (0, T ), as

long as f only takes values in positive multiples of 1
T ′′ and satisfies the variation455

constraint (TV ), there exists a periodic ergodic process X with period T ′′, such

that F is the distribution of τ over the interval [0, T ] for X. In particular, the

value of f(t) can be as small as 1
T ′′ for some t ∈ (0, T ). Consider X|[0,T ], the

restriction of X on [0, T ]. It is a relatively stationary process. Suppose it can be

extended to a periodic stationary process with period 1, denoted by Y. Then460

by Proposition 4.4, the density of τ on (0, T ) for Y is bounded from below by 1.

Since Y agrees with X|[0,T ] on [0, T ], the lower bound 1 is also valid for X|[0,T ],

hence X as well. This contradicts the fact that f(t) can take value 1
T ′′ . We

therefore conclude that the relatively stationary process X|[0,T ] does not have a

stationary extension with period 1.465

We now turn back to the second part of the proof of Theorem 3.6 which we

promised in the previous section.

Proof of Theorem 3.6, Part II. Recall that an intrinsic location functional L1

is defined as follows:

L1(g, I) = inf

{
t ∈ I : g(t) = sup

s∈I
g(s), g(t) ≥ 1

2

}
,

and our goal in this part is to show that for any probability distribution F ∈ ET
such that f(t) ≥ 1 for all t ∈ (0, T ), there exists a periodic ergodic process with

period 1 and non-negative sample paths, such that F is the distribution of L1470

on [0, T ] for that process.

Comparing the conditions for the distribution F and those for the distribu-

tions that we constructed in Theorem 4.7, the only difference is that F allows a

possible point mass at∞ while the distributions in Theorem 4.7 do not, because

the location of the path supremum will always exist for processes with upper

semi-continuous paths. This is the reason for which a modification is necessary.

The way to construct the process changes accordingly, but not much. More

precisely, let F be our target distribution, with possible point masses a and
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b at the two boundaries 0 and T , respectively. Additionally, it has a possible

point mass c at ∞. Since the case where c = 0 has been covered in the proof

of Theorem 4.7, here we focus on c > 0. Note that since f − 1 also satisfies

the variation constraint in this case, there exists at least one component which

does not have a central block. Set this component as the first component. The

construction of the process X(t) = g(t+ U), hence the function g, goes exactly

in the same way as in the proof of Theorem 4.7, except for that now for this

first component, instead of building the central block by setting

g

(
d1 +

l∑
i=1

vi

)
= g

(
d1 +

l∑
i=1

vi + v

)
= g

(
d1 +

l∑
i=1

vi + v + T − u

)
=

1

2
,

we set

g

(
d1 +

l∑
i=1

vi

)
= g

(
d1 +

l∑
i=1

vi + T + c

)
=

1

2
,

and join them using a V-shaped curve as in the other cases. The construction

of the rest of this component is shifted correspondingly. It is not difficult to

verify that this part will contribute the desired mass at ∞.

The variation constraint (TV) implies an upper bound for the density for

intrinsic location functionals and stationary processes:

fXL,T (t) ≤ max

(
1

t
,

1

T − t

)
, 0 < t < T. (10)

Moreover, such an upper bound was proved to be optimal [7]. With periodicity475

and the invariance property, we can now improve the above bound, and show

that the improved upper bound is also optimal.

Proposition 4.10. Let L be an invariant intrinsic location functional, X be a

periodic stationary process with period 1, and T ∈ (0, 1]. Then the density fXL,T

satisfies

fXL,T (t) ≤ max

(
b1− T

t
c, b1− T

T − t
c
)

+ 2. (11)

Moreover, for any t ∈ (0, T2 ) such that 1−T
t is not an integer and t ∈ [T2 , T ) such

that 1−T
T−t is not an integer, there exists an invariant intrinsic location functional
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L and a periodic stationary process X with period 1, such that the equality in480

(11) is achieved at t.

Proof. Let gXL,T (t) = fXL,T (t)− 1, then for every 0 < t1 < t2 < T , the variation

constraint will be

TV(t1,t2)(g
X
L,T ) = TV(t1,t2)(f

X
L,T ) ≤ fXL,T (t1) + fXL,T (t2) = gXL,T (t1) + gXL,T (t2) + 2.

Denote a = inf0<s≤t g
X
L,T (s), b = inft≤s<T g

X
L,T (s). For any given ε > 0, there

exists u ∈ (0, t] such that

gXL,T (u) ≤ a+ ε,

and there exists v ∈ [t, T ) such that

gXL,T (v) ≤ b+ ε.

Note that

at+ b(T − t) ≤
∫ T

0

gXL,T (s)ds =

∫ T

0

(fXL,T (s)− 1)ds ≤ 1− T. (12)

Now applying the variation constraint to the interval [u, v], we have

a+ b+ 2ε ≥ gXL,T (u) + gXL,T (v)

≥ |gXL,T (t)− gXL,T (u)|+ |gXL,T (v)− gXL,T (t)| − 2

≥ (gXL,T (t)− a− ε)+ + (gXL,T (t)− b− ε)+ − 2.

By the definition of a and b, a ≤ gXL,T (t) and b ≤ gXL,T (t). Letting ε → 0, we

have

gXL,T (t) ≤ a+ b+ 1. (13)

Combining (12) and (13) leads to

gXL,T (t) ≤ max

(
1− T
t

,
1− T
T − t

)
+ 1.

Then for every 0 < t < T , an upper bound of fXL,T (t) is

fXL,T (t) ≤ max

(
1− T
t

,
1− T
T − t

)
+ 2.
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By Proposition 3.2, fYL,T takes integer values for any periodic ergodic process

Y with period 1. Through ergodic decomposition, we further have the upper

bound:

fXL,T (t) ≤ max

(
b1− T

t
c, b1− T

T − t
c
)

+ 2.

It remains to prove that such upper bound can be approached. For any

t ∈ (0, T2 ) such that 1−T
t is not an integer, define f by

f(s) =


1 + b 1−T

t c, s ∈ (0, t),

2 + b 1−T
t c, s ∈ [t, t+ ε),

1, s ∈ [t+ ε, T ),

where ε is small enough so that
∫ T

0
f(s)ds ≤ 1. As f takes integer values and

satisfies the condition (TV ), by Theorem 4.7, there exists an invariant intrinsic

location functional L and a periodic ergodic stationary process with period 1

such that f is the density of L for such process. By similar construction, we485

can also find an invariant intrinsic location functional L and a periodic ergodic

process with period 1 such that the density of L for such process approaches

b 1−T
T−t c+2 at point t for t ∈ [T2 , T ) satisfying 1−T

T−t is not an integer.

We end this section by comparing the upper bound (11) with the result

(10) for general stationary processes. For t ≤ T
2 , the following inequality holds

between these two bounds:

max

{
b1− T

t
c, b1− T

T − t
c
}

+ 2 ≤ 1− T
t

+ 2 ≤ 1

t
= max

{
1

t
,

1

T − t

}
.

For t ≥ T
2 ,

max

{
b1− T

t
c, b1− T

T − t
c
}

+ 2 ≤ 1− T
T − t

+ 2 ≤ 1

T − t
= max

{
1

t
,

1

T − t

}
.

Therefore, the upper bound in (11) is always sharper than that in (10). The

improvement is most significant when T is close to 1 and t is close to 0 or T .490
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5. First-time intrinsic location functionals

In this section, we introduce another type of intrinsic location functional-

s called the first-time intrinsic location functionals via the partially ordered

random set representation.

Definition 5.1. An intrinsic location functional L is called a first-time intrin-495

sic location functional, if it has a partially ordered random set representation

(S(X),�) such that for any t1, t2 ∈ S(X), t1 ≤ t2 implies t2 � t1.

It is easy to see that the notion of the first-time intrinsic location functionals

is a generalization of the first hitting times. As its name suggests, it contains all

the intrinsic location functionals which can be defined as “the first time” that500

some condition is met.

Proposition 5.2. Let X be a periodic stationary process with period 1, and L

be a first-time intrinsic location functional. Fix T ∈ (0, 1]. Then the density of

L on (0, T ) for X is non-increasing.

Proof. By ergodic decomposition, it suffices to prove the result for periodic

ergodic process X with period 1 having the representation X(t) = g(t + U),

where U is a uniform random variable on [0, 1]. Let (S,�) be a partially ordered

random set representation for L. By a similar argument as the discussion below

(4), we have for t ∈ (0, T ),

f(t) = |{s ∈ S(g) ∩ (0, 1] : as ≥ t, bs ≥ T − t}| ,

where as = sup{∆s ∈ R : r � s for all r ∈ (s −∆s, s) ∩ S(g)}, bs = sup{∆s ∈

R : r � s for all r ∈ (s, s+ ∆s) ∩ S(g)}. By the definition of first-time intrinsic

location functionals and that of bs, we have

bs =∞, for any s ∈ S(g).

Thus for t1 ≤ t2,

f(t2) = |{s ∈ S(g) ∩ (0, 1] : as ≥ t2}| and f(t1) = |{s ∈ S(g) ∩ (0, 1] : as ≥ t1}| .
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If there exists s ∈ S(g)∩(0, 1] such that as ≥ t2, then as ≥ t2 ≥ t1, which means505

that f(t1) ≥ f(t2). As a result, f is non-increasing on the interval (0, T ).

For any first-time intrinsic location functional L and T ≤ 1, let IML,T be

the collection of the probability distributions of L on [0, T ] for all periodic

stationary processes with period 1. Denote by EMT the subset of ET consisting

of the distributions with non-increasing density functions on (0, T ) and no point510

mass at T . Then we have the following result of the structure of IML,T , parallel

to Section 4.

Proposition 5.3. IML,T is a convex subset of PT and IML,T ⊆ C(EMT ).

The proof of Proposition 5.3 follows in a similar way to that of Theorem 3.5

and is omitted.515

As in the previous cases, the other direction also holds.

Proposition 5.4. For any F ∈ C(EMT ), there exists a first-time intrinsic loca-

tion functional and a periodic stationary process with period 1, such that F is

the distribution of this first-time intrinsic location functional for such process.

Proof. We can actually use a single first-time intrinsic location functional for

the proof. For example, let L(g, I) = L2(g, I) = inf{t ∈ I : g(t) = −1} as

defined in the proof of Theorem 3.6. By ergodic decomposition, it suffices to

show the result for distributions in EMT . Let F be a probability distribution in

EMT . Equivalently, F is a probability distribution supported on [0, T ] ∪ {∞},

with a possible point mass a at 0, a possible point mass at ∞, and a non-

increasing density function f which takes non-negative integer values. Our goal

is to show that there exists a periodic ergodic process with period 1 such that

the distribution of the first time reaching level −1 between 0 and T for such

process is F . For ease of exposition, assume the point masses at 0 and at∞ are

both positive. The degenerate cases can be handled in a similar way. Since f is

non-increasing on (0, T ) with non-negative integer values, it can be written as

f(t) =

∞∑
i=0

I(0,ui)(t),
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where ui ≥ ui+1. Define si =
∑i
k=1 uk, i = 1, 2, ... and s0 = 0. Let

g(si) = −1, for i = 0, 1, . . .

In addition to s0, s1, . . . , we set g(t) = −1 for t ∈ [s∞, s∞+a] and g(1) = −1.520

Note that since
∫ 1

0
f(t)dt ≤ 1, 0 ≤ s∞ ≤ s∞ + a ≤ 1. Next we join the

consecutive points (si,−1) and (si+1,−1), i = 0, 1, . . . using V-shaped curves

satisfying some Lipschitz condition with, for example, Lipschitz constant 1.

Similarly, use a V-shaped curve to join (s∞ + a,−1) and (1,−1). Therefore,

we can construct a periodic deterministic function g with period 1, and the525

required periodic ergodic process can be written as X(t) = g(t + U) for t ∈ R,

where U follows a uniform distribution on [0, 1]. It is then routine to check that

the distribution of L is exactly F by expressing the value of L as a function of

U .

We have now all the pieces to complete the proof of Theorem 3.6.530

Proof of Theorem 3.6, Part III. Let F ∈ ET , and f be its density function on

(0, T ). Recall that our goal in this part is to show that if f is non-increasing

with sup{t : f(t) > 0} < T , then for the intrinsic location functional L2(g, I) =

inf{t ∈ I : g(t) = −1}, there exists a periodic ergodic process X, such that F

is the distribution of L2 on [0, T ] for X. Note that since f(t) takes value 0 as t535

approaches T , by the definition of ET , F do not have a point mass at T . As a

result, F ∈ EMT . Thus, by the proof of Proposition 5.4, F is the distribution of

L2 for some periodic ergodic process with period 1.

Denote by LM the set of first-time intrinsic location functionals. Let IMT =⋃
L∈LM

IML,T be the collection of all the possible distributions for first-time in-540

trinsic location functionals and periodic stationary processes with period 1 on

[0, T ]. Denote by AMT the class of probability distribution on (0, T ) with the

properties that the corresponding density is càdlàg and non-increasing. We

would like to give a verification whether a function in AMT is also in IMT . The

recently developed concept of joint mixability [15] is helpful.545
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In the following part, for any set A of distributions, we write f ∈d A, if there

exists F ∈ A such that f is the corresponding density part of F .

In the definition below, we slightly generalize the concept of joint mixability

to the case of possibly countably many distributions. In the following N is either

a positive integer or it is infinity. If N =∞, we interpret any tuple (x1, . . . , xN )550

as (xi, i = 1, 2, . . . ). Joint mixability and intrinsic location functionals are

connected in Proposition 5.6 below.

Definition 5.5. [15] Suppose N ∈ N ∪ {∞}. A random vector (X1, . . . , XN )

is said to be a joint mix if P(
∑N
i=1Xi = C) = 1 for some C ∈ R. An N -tuple

of distributions (F1, . . . , FN ) is said to be jointly mixable if there exists a joint555

mix X = (X1, . . . , XN ) such that Xi ∼ Fi, i = 1, . . . , N .

Proposition 5.6. For any f ∈d AMT , let N = df(0+)e, and define the distri-

bution functions

Fi : R→ [0, 1], x 7→ min{(i− f(x)I{x<T})+, 1}I{x≥0}, i = 1, . . . , N. (14)

Then f ∈d IMT if there exists a random vector X = (X1, . . . , XN ) such that

Xi ∼ Fi, i = 1, . . . , N and P(
∑N
i=1Xi ≤ 1) = 1. In particular, f ∈d IMT if

(F1, . . . , FN ) is jointly mixable.

Proof. Suppose that there exists a random vector X = (X1, . . . , XN ) such that

Xi ∼ Fi, i = 1, . . . , N and P(
∑N
i=1Xi ≤ 1) = 1. For x = (x1, . . . , xN ) satisfying∑N

i=1 xi ≤ 1, define

fx : [0, T ]→ R+, y 7→
N∑
i=1

I{y≤xi}.

Obviously fx is a non-increasing function and we can check∫ T

0

fx(y)dy =

N∑
i=1

∫ T

0

I{y≤xi}dy =

N∑
i=1

xi ≤ 1.

Thus, fx is a non-increasing function on [0, T ] taking values in N0,
∫ T

0
fx(y)dy ≤
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1, and hence fx ∈d EMT . Moreover, for y ∈ [0, T ],

E[fX(y)] = E

[
N∑
i=1

I{y≤Xi}

]
= bf(y)c+ E

[
I{y≤Xbf(y)c}

]
= bf(y)c+ (f(y)− bf(y)c) = f(y).

Therefore, we conclude that f ∈d IMT since it is a convex combination of fx.560

Now suppose that (F1, . . . , FN ) is jointly mixable. Then there exists a joint

mix X = (X1, . . . , XN ) such that Xi ∼ Fi, i = 1, . . . , N and P(
∑N
i=1Xi = C) =

1 for some C ∈ R. It suffices to verify that C ≤ 1, which follows from

C =

N∑
i=1

E[Xi] =

N∑
i=1

∫ T

0

(1− Fi(x))dx

=

N∑
i=1

∫ T

0

min{(f(x)− i+ 1)+, 1}dx =

∫ T

0

f(x)dx ≤ 1. (15)

This completes the proof.

Remark 5.7. In this section, N might be infinity. It can be easily checked that

in the case of N =∞, the limit
∑N
i=1Xi in the above proof is well-defined since∑N

i=1 E[Xi] ≤ 1 and Xi ≥ 0, i = 1, . . . , N .

Corollary 5.8. For a given density function f ∈d AMT , if there exists a step

function g ∈d EMT such that

g(t) ≥ f(t), for all t ∈ (0, T ),

then f ∈d IMT .565

Proof. For any f ∈d AMT , take N and Fi, i = 1, . . . , N as defined in Proposition

5.6. Let X = (X1, . . . , XN ) be a random vector such that Xi ∼ Fi, i = 1, . . . , N .

Then we have

N∑
i=1

Xi ≤
N∑
i=1

f−1(i− 1) ≤
∫ T

0

g(t)dt ≤ 1

hold almost surely. Thus, f ∈d IMT by Proposition 5.6.
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Corollary 5.9. Suppose that f ∈d AMT is convex on [0, T ] and

N∑
i=0

f−1(i) ≤ 1 + f−1(1). (16)

Then f ∈d IMT .

Proof. Let N = df(0+)e and Fi, i = 1, . . . , N be as in (14). Denote by µi

the mean of Fi for i = 1, . . . , N . Apparently Fi has a non-increasing density

supported in [f−1(i), f−1(i − 1)] for each i = 1, . . . , N . By the convexity of f ,

we have

N∑
i=1

f−1(i)+max{f−1(i−1)−f−1(i) : i = 1, . . . , N} =

N∑
i=0

f−1(i)−f−1(1) ≤ 1.

Since each Fi has non-increasing densities, conditions in Corollary 4.7 of [16]

are satisfied, giving that there exists X = (X1, . . . , XN ) such that Xi ∼ Fi,

i = 1, . . . , N and

ess-sup

(
N∑
i=1

Xi

)

= max

{
N∑
i=1

f−1(i) + max
i=1,...,N

{f−1(i− 1)− f−1(i)},
N∑
i=1

µi

}
≤ 1.

The corollary follows from Proposition 5.6.

Remark 5.10. Formally, Corollary 4.7 of [16] only gives, for any ε > 0 and

N ∈ N, the existence of X = (X1, . . . , XN ) such that

ess-sup

(
N∑
i=1

Xi

)

< max

{
N∑
i=1

f−1(i) + max
i=1,...,N

{f−1(i− 1)− f−1(i)},
N∑
i=1

µi

}
+ ε.

A standard compactness argument would justify the case ε = 0 and N = ∞.

Corollary 4.7 of [16] requires the joint mixability of non-increasing densities; see570

Theorem 3.2 of [10]. For f ∈d AMT , there is generally no constraints (except

for location constraints) on the distributions F1, . . . , FN . It is a difficult task
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to analytically verify whether a given tuple of distributions is jointly mixable.

For some other known necessary and sufficient conditions for joint mixability,

see [10].575

Corollary 5.11. Suppose that f ∈d AMT is linear on its essential support [0, b]

and f(b) = 0. Then f ∈d IMT .

Proof. Obviously the slope of the linear function f on its support is not zero.

1.
∫ T

0
f(x)dx = 1. In this case, f is convex on [0, T ]. We only need to verify

(16) in Corollary 5.9. Since T < 1 and since f integrates to 1, we have

N ≥ 3. Note that, from integration by parts and change of variables,∫ N
0
f−1(t)dt =

∫ T
0
f(x)dx = 1. It follows from the linearity of f that

N∑
i=0

f−1(i)− f−1(1) =

N∑
i=3

f−1(i) + f−1(0) + f−1(2)

=

N∑
i=3

f−1(i) +

∫ 2

0

f−1(t)dt

≤
∫ N

2

f−1(t)dt+

∫ 2

0

f−1(t)dt = 1.

The desired result follows from Corollary 5.9.

2.
∫ T

0
f(x)dx < 1. This case can be obtained from a mixture of (a) and580

g ∈d EMT where g : [0, T ]→ {0}.

When
∫ T

0
f(x)dx < 1, we obtain a sufficient condition for f ∈d ATM to be

f ∈d IMT using Proposition 5.6 together with a result in [17].

Corollary 5.12. For any f ∈d AMT , let N = df(0+)e. Then f ∈d IMT if

max
i=1,...,N

{f−1(i− 1)− f−1(i)} ≤ 1−
∫ T

0

f(x)dx.

Proof. Let Fi, i = 1, . . . , N be as in (14). Apparently Fi is supported in

[f−1(i), f−1(i−1)] for each i = 1, . . . , N . Denote L = max{f−1(i−1)−f−1(i) :

i = 1, . . . , N}. From Corollary A.3 of [17], there exists a random vector

X = (X1, . . . , XN ) such that Xi ∼ Fi, i = 1, . . . , N and

P

(∣∣∣∣∣
N∑
i=1

Xi −
N∑
i=1

E [Xi]

∣∣∣∣∣ ≤ L
)

= 1.
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From (15), we have
∑N
i=1 E [Xi] =

∫ T
0
f(x)dx and therefore,

P

(
N∑
i=1

Xi ≤ 1

)
≥ P

(
N∑
i=1

Xi ≤ L+

∫ T

0

f(x)dx

)
= 1.
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