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Summary

This paper proposes general methods for the problem of multiple testing of a single
hypothesis, with a standard goal of combining a number of p-values without making any
assumptions about their dependence structure. An old result by Rüschendorf and, inde- 15

pendently, Meng implies that the p-values can be combined by scaling up their arithmetic
mean by a factor of 2 (and no smaller factor is sufficient in general). A similar result
about the geometric mean (Mattner) replaces 2 by e. Based on more recent developments
in mathematical finance, specifically, robust risk aggregation techniques, we extend these
results to generalized means; in particular, we show that K p-values can be combined 20

by scaling up their harmonic mean by a factor of lnK (asymptotically as K →∞).
This leads to a generalized version of the Bonferroni–Holm procedure. We also explore
methods using weighted averages of p-values. Finally, we discuss the efficiency of various
methods of combining p-values and how to choose a suitable method in light of data and
prior information. 25

Some key words: Hypothesis testing; Multiple hypothesis testing; Multiple testing of a single hypothesis;
Robust risk aggregation

1. Introduction

Suppose we are testing the same hypothesis using K ≥ 2 different statistical tests and
obtain p-values p1, . . . , pK . How can we combine them into a single p-value? 30

Some early answers to this question include those of Tippett [41], Pearson [32] and
Fisher [8]. These solutions assume that the p-values are independent (in practice, ob-
tained from independent test statistics), whereas we would like to avoid any assumptions
besides all p1, . . . , pK being bona fide p-values. Fisher’s method has been extended to
dependent p-values in, e.g., [4, 20], but the combined p-values obtained in those papers 35

are approximate; in this paper we are interested only in precise or conservative p-values.
A summary of combination methods for p-values can be found in e.g., Oosterhoff [30]
and Cousins [5]; see also the more specialized review Owen [31].
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Without assuming any particular dependence structure among p-values, the simplest
way of combining them is the Bonferroni method40

F (p1, . . . , pK) := K min(p1, . . . , pK) (1)

(when F (p1, . . . , pK) exceeds 1 it can be replaced by 1, but we usually ignore this trivial
step). Albeit F (p1, . . . , pK) is a p-value (see Section 2 for a precise definition of a p-value),
it has been argued that in some cases it is overly conservative. Rüger [34] extends the
Bonferroni method by showing that, for any fixed k ∈ {1, . . . ,K},

F (p1, . . . , pK) :=
K

k
p(k) (2)

is a p-value, where p(k) is the kth smallest p-value among p1, . . . , pK ; see [29] for a simpler45

exposition. Hommel [15] develops this by showing that

F (p1, . . . , pK) :=

(
1 +

1

2
+ · · ·+ 1

K

)
min

k=1,...,K

K

k
p(k) (3)

is also a p-value. In the case of independent p1, . . . , pK , Simes [40] improves (3) by
removing the first factor on the right-hand side of (3).

A natural way to combine K p-values is to average them, by using p̄ := (p1 + · · ·+
pK)/K (at least when the tests have similar power). Unfortunately, p̄ is not necessarily50

a p-value. An old result by Rüschendorf [35, Theorem 1] shows that 2p̄ is a p-value;
moreover, the factor of 2 cannot be improved in general. In the statistical literature this
result was rediscovered by Meng [28, Theorem 1].

In this paper we turn to a general notion of the mean as axiomatized by Andrei Kol-
mogorov ([19]) and promoted in the context of combining independent p-values by Lipták55

[22]. We adapt various results of robust risk aggregation [6, 1, 7, 43, 18] to combining p-
values by averaging them in Kolmogorov’s wider sense. In particular, to obtain a p-value
from given p-values p1, . . . , pK , it is sufficient to multiply their geometric mean by e, as
noticed by [26], and to multiply their harmonic mean by e logK for K > 2. More gener-
ally, we consider the mean Mr,K(p1, . . . , pK), sometimes referred to as generalized mean,60

defined by {(pr1 + · · ·+ prK)/K}1/r for r ∈ [−∞,∞], and derive values of ar,K making
ar,KMr,K a merging function. In particular, our results cover the Bonferroni method (1),
which corresponds to M−∞,K(p1, . . . , pK) = min(p1, . . . , pK) (see, e.g., [13], (2.3.1)).

The median is also sometimes regarded as a kind of average. Rüger’s (2), applied to
k := dK/2e, says that p-values can be combined by scaling up their median by a factor65

of 2 (exactly for even K and approximately for large odd K). Therefore, we have the
same factor of 2 as in Rüschendorf’s [35] result. (Taking k = b(K + 1)/2c = dK/2e is
suggested in [25, Section 1.1].) More generally, the α quantile p(dαKe) becomes a p-value
if multiplied by 1/α.

It is often possible to automatically transform results about multiple testing of a single70

hypothesis into results about testing multiple hypotheses; the standard procedures are
Marcus et al.’s ([24]) closed testing procedure and its modification by Hommel [16]. In
particular, when applied to the Bonferroni method the closed testing procedure gives
the well-known procedure due to Holm [14], which we will refer to as the Bonferroni–
Holm procedure; see, e.g., [16, 17] for its further applications. The methods we develop75

in Section 3 can similarly be adapted to the testing of multiple hypotheses, as we briefly
discuss in the Online Supplement. All proofs are also given in the Online Supplement.
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Throughout we will use the following terminology. A function F : [0, 1]→ [0,∞) is
said to be increasing (resp. decreasing) if F (x1) ≤ F (x2) (resp. F (x1) ≥ F (x2)) whenever
x1 ≤ x2. A function F : [0, 1]K → [0,∞) is increasing (resp. decreasing) if it is increasing 80

(resp. decreasing) in each of its arguments. A function is strictly increasing or strictly
decreasing when these conditions hold with strict inequalities.

2. Merging functions

A p-variable is a random variable P that satisfies

P(P ≤ ε) ≤ ε, ∀ε ∈ (0, 1). (4)

The values taken by a p-variable are p-values (allowed to be conservative). In Section 1 85

the expression “p-value” was loosely used to refer to p-variables as well. A merging
function is an increasing Borel function F : [0, 1]K → [0,∞) such that F (U1, . . . , UK) is
a p-variable for any choices of random variables U1, . . . , UK (on the same probability
space, which can be arbitrary) distributed uniformly on [0, 1]. Without loss of generality
we can assume that U1, . . . , UK are defined on the same atomless probability space, 90

which is fixed throughout the paper (cf. [9, Proposition A.27]). Let U be the set of all
uniformly distributed random variables (on our probability space). Using the notation
U , an increasing Borel function F : [0, 1]K → [0,∞) is a merging function if, for each
ε ∈ (0, 1),

sup {P(F (U1, . . . , UK) ≤ ε) |U1, . . . , UK ∈ U} ≤ ε (5)

We say that a merging function F is precise if, for each ε ∈ (0, 1), 95

sup {P(F (U1, . . . , UK) ≤ ε) |U1, . . . , UK ∈ U} = ε. (6)

Remark 1. The requirement that a merging function be Borel does not follow auto-
matically from the requirement that it be increasing: see the remark after Theorem 4.4
in [11] (Theorem 4.4 itself says that every increasing function on [0, 1]K is Lebesgue
measurable).

It may be practically relevant to notice that, for any merging function F , F (P1, . . . , PK) 100

is a p-variable whenever P1, . . . , PK are p-variables (on the same probability space).
Indeed, for each k ∈ {1, . . . ,K} we can define a uniformly distributed (see, e.g., [36,
Proposition 2.1]) random variable Uk ≤ Pk by

Uk(ω) := P(Pk < Pk(ω)) + Θ(ω)P(Pk = Pk(ω)), ω ∈ Ω,

where Θ is a random variable distributed uniformly on [0, 1] and independent of
P1, . . . , PK , and Ω is the underlying probability space extended (if required) to carry 105

such a Θ; we then have

P(F (P1, . . . , PK) ≤ ε) ≤ P(F (U1, . . . , UK) ≤ ε) ≤ ε, ∀ε ∈ (0, 1).

Therefore, combining p-values can be carried out in multiple layers (although it may
make the final combined p-value overly conservative); we will discuss this further in
Subsection 6.3.
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3. Combining p-values by symmetric averaging110

In this section we present our methods of combining p-values via averaging. A general
notion of averaging, axiomatized by Kolmogorov [19], is

Mφ,K(p1, . . . , pK) := ψ

(
φ(p1) + · · ·+ φ(pK)

K

)
, (7)

where φ : [0, 1]→ [−∞,∞] is a continuous strictly monotonic function and ψ is its inverse
(with the domain φ([0, 1])). For example, arithmetic mean corresponds to the identity
function φ(p) = p, geometric mean corresponds to φ(p) = ln p, and harmonic mean cor-115

responds to φ(p) = 1/p.
The problem of finding precise p-value merging functions based on the averaging

method in (7) is closely connected to robust risk aggregation, an active topic in math-
ematical finance (see Remark 2 below). The origin of this field lies in a problem posed
by Kolmogorov (see, e.g., [23]) about bounds on the distribution function of the sum of120

random variables. To establish the main results in this paper, we will use many recent
results in robust risk aggregation, in particular, many results in [6, 44, 1, 7, 43, 18].

Below, we first briefly discuss the connection between the two problems in Section 3.1,
and then present our main results in Section 3.2.

3.1. Quantiles and robust risk aggregation125

We start from a simple result (Lemma 1 below) that translates probability statements
about merging functions into corresponding statements about quantiles. This result will
allow us to freely use some recent results in the literature on robust risk aggregation.
The proof of Lemma 1 is given on page 19 in Appendix A.

Define the left α-quantile of a random variable X for α ∈ (0, 1],130

qα(X) := sup{x ∈ R : P(X ≤ x) < α},

and the right α-quantile of X for α ∈ [0, 1),

q+
α (X) := sup{x ∈ R : P(X ≤ x) ≤ α}.

Notice that q1(X) is the essential supremum of X and q+
0 (X) is the essential infimum of

X. For a function F : [0, 1]K → [0,∞) and α ∈ (0, 1), write

qα(F ) := inf {qα(F (U1, . . . , UK)) |U1, . . . , UK ∈ U} .

Lemma 1. For an increasing Borel function F : [0, 1]K → [0,∞):

(a) F is a merging function if and only if qε(F ) ≥ ε for all ε ∈ (0, 1);135

(b) F is a precise merging function if and only if qε(F ) = ε for all ε ∈ (0, 1).

Remark 2. This remark discusses how the problem of combining p-values is related to
robust risk aggregation in the field of mathematical finance. In quantitative risk man-
agement, the term robust risk aggregation refers to evaluating the value of a risk measure
of an aggregation of risks X1, . . . , XK with specified marginal distributions and unspec-140

ified dependence structure. More specifically, if the risk measure is chosen as a quantile
qα, known as Value-at-Risk and very popular in finance, the quantities of interest are
typically

q := sup {qα(X1 + · · ·+Xn) |X1 ∼ F1, . . . , Xn ∼ Fn}
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and

q := inf {qα(X1 + · · ·+Xn) |X1 ∼ F1, . . . , Xn ∼ Fn} ,

where F1, . . . , Fn denote the prespecified marginal distributions of the risks. The moti- 145

vation behind this problem is that, in practical applications of banking and insurance,
the dependence structure among risks to aggregate is very difficult to accurately model,
as compared with the corresponding marginal distributions. The interval [q, q] thus rep-
resents all possible values of the aggregate risk measure given the marginal information.
A more detailed introduction to this topic can be found in [27, Section 8.4.4] and [37, 150

Chapter 4]. Via Lemma 1, the quantities q and q are obviously closely related to the
problem of combining p-values. There are few explicit formulas for q and q but fortu-
nately some do exist in the literature, and they become useful in our study of merging
functions.

3.2. Main results 155

In this section, we present our main results on merging functions. The proofs of these
results along with a few auxiliary results, can be found in Appendix A. We mostly focus
on an important special case of (7), namely,

Mr,K(p1, . . . , pK) :=

(
pr1 + · · ·+ prK

K

)1/r

, (8)

where r ∈ R \ {0} and the following standard conventions are used: 0c :=∞ for c < 0,
0c := 0 for c > 0, ∞+ c :=∞ for c ∈ R ∪ {∞}, and ∞c := 0 for c < 0. The case r = 0 160

(considered in [26]) is treated separately (as the limit as r → 0):

M0,K(p1, . . . , pK) := exp

(
ln p1 + · · ·+ ln pK

K

)
=

(
K∏
k=1

pk

)1/K

,

where, as usual, ln 0 := −∞, −∞+ c := −∞ for c ∈ R ∪ {−∞}, and exp(−∞) := 0. It
is also natural to set

M∞,K(p1, . . . , pK) := max(p1, . . . , pK),

M−∞,K(p1, . . . , pK) := min(p1, . . . , pK). 165

The most important special cases of Mr,K are perhaps those corresponding to r = −∞
(minimum), r = −1 (harmonic mean), r = 0 (geometric mean), r = 1 (arithmetic mean),
and r =∞ (maximum); the cases r ∈ {−1, 0, 1} are known as Platonic means.

Our main aim is to identify merging functions of the form

ar,KMr,K(p1, . . . , pK), r ∈ [−∞,∞], K = 2, 3, . . . , (9)

where ar,K is a constant, hopefully making the merging function (9) precise. In cases 170

where an explicit formula of ar,K for (9) to be precise is not available, we obtain an
asymptotically sharp bound in explicit form. The main results are summarized in Table 1,
where a family FK , K = 2, 3, . . . , of merging functions on [0, 1]K is called asymptotically
precise if, for any a ∈ (0, 1), the function aFK is not a merging function for a large enough
K; in other words, this family of merging functions cannot be improved by a constant 175

multiplier. It is well known [13, Theorem 16] that

Mr1,K ≤Mr2,K on [0, 1]K if r1 ≤ r2; (10)
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therefore, the constant ar,K making (9) a precise merging function should be generally
decreasing in r.

Table 1: The main results of Section 3: examples of merging functions, all of them precise
or asymptotically precise (except for the case r = −1 where the asymptotic formula is
not a merging function for finite K)

range of r merging function special case claimed in

r =∞ Mr,K precise maximum

r ∈ [K − 1,∞) K1/rMr,K precise Prop. 3

r ∈ [ 1
K−1 ,K − 1] (r + 1)1/rMr,K precise arithmetic Prop. 2

r ∈ (−1,∞] (r + 1)1/rMr,K asymptotically precise Prop. 1

r = 0 eMr,K asymptotically precise geometric Prop. 4

r = −1
e(lnK)Mr,K not precise

harmonic Prop. 6
(lnK)Mr,K (asymptotic formula)

r ∈ (−∞,−1) r
r+1K

1+1/rMr,K asymptotically precise Prop. 5

r = −∞ KMr,K precise Bonferroni

Two of our results, Theorems 1 and 2, are general in the sense of describing properties
of Kolmogorov’s general averaging function (7); Theorem 1 covers the case of integrable φ180

(and therefore, the case r > −1 in (8)), and Theorem 2 covers the case of non-integrable
φ (and therefore, the case r ≤ −1 in (8)). Propositions 1-6 give results shown in Table 1.
We further show in Proposition 7 that, for the definition of a p-variable in (4), one can
replace “for all ε” by “for some ε” in all averaging methods based on (8).

Theorem 1. Suppose a continuous strictly monotonic φ : [0, 1]→ [−∞,∞] is inte-185

grable, i.e.,
∫ 1

0 |φ(u)| du <∞. Then, for any K ∈ {2, 3, . . . } and any ε > 0,

P
(
Mφ,K(p1, . . . , pK) ≤ ψ

(
1

ε

∫ ε

0
φ(u)du

))
≤ ε. (11)

As we stated it, Theorem 1 gives a critical region of size ε. An alternative statement is
that Ψ−1(Mφ,K) is a merging function, where the strictly increasing function Ψ is defined
by

Ψ(ε) := ψ

(
1

ε

∫ ε

0
φ(u)du

)
, ε ∈ (0, 1). (12)

In what follows, the expression (r + 1)1/r is understood to be e = limr→0(r + 1)1/r
190

when r = 0 and 1 = limr→∞(r + 1)1/r when r =∞.
Using Theorem 1 with φ(u) = ur, we see that (r + 1)1/rMr,K is a merging function for

r > −1. Moreover, we can show the constant (r + 1)1/r cannot be improved in general.

Proposition 1. Let r ∈ (−1,∞]. Then (r + 1)1/rMr,K , K = 2, 3, . . . , is a family of
merging functions and it is asymptotically precise.195
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In particular, Proposition 1 implies that for the geometric mean, it has to be multiplied
by the constant factor e, which cannot be improved in general for large K. The next
proposition characterizes the condition under which the merging function in Proposition
1 is precise.

Proposition 2. For r ∈ (−1,∞) and K ∈ {2, 3, . . . }, the merging function (r + 200

1)1/rMr,K is precise if and only if r ∈ [ 1
K−1 ,K − 1].

The most straightforward yet relevant example of Proposition 2, the arithmetic average
multiplied by 2, namely,

M1,K(p1, . . . , pK) :=
2

K

K∑
k=1

pk,

is a precise merging function for all K ≥ 2, a result obtained by [35]. As another special
case of Proposition 2, the scaled quadratic average multiplied by

√
3, namely

√
3M2,K , 205

is a merging function, and it is precise if and only if K ≥ 3.
In the case r ≥ 1, the merging function in Proposition 2 can be modified in an explicit

way such that it remains precise even for r > K − 1.

Proposition 3. For K ∈ {2, 3, . . . } and r ∈ [1,∞), the function min(r + 1,K)1/rMr,K

is a precise merging function. 210

Because of the importance of geometric mean as one of the Platonic means, the fol-
lowing result gives a precise (albeit somewhat implicit) expression for the corresponding
precise merging function.

Proposition 4. For each K ∈ {2, 3, . . . }, aGKM0,K is a precise merging function,
where 215

aGK :=
1

cK
exp (−(K − 1)(1−KcK))

and cK is the unique solution to the equation

ln(1/c− (K − 1)) = K −K2c (13)

over c ∈ (0, 1/K). Moreover, aGK ≤ e and aGK → e as K →∞.

Table 2 reports several values of aGK/e calculated numerically and suggests that in
practice there is no point in improving the factor e for K ≥ 5.

Table 2: Numeric values of aGK/e for the geometric mean

K aGK/e K aGK/e K aGK/e
2 0.7357589 5 0.9925858 10 0.9999545
3 0.9286392 6 0.9974005 15 0.9999997
4 0.9779033 7 0.9990669 20 1.0000000

The condition r > −1 in Proposition 1 ensures that the term (12) is finite, and also 220

that the condition
∫ 1

0 |φ(u)| du <∞ in Theorem 1 is satisfied. However, the condition
rules out the harmonic mean (for which r = −1) and the minimum (r = −∞). The next
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simple corollary of another known result (Theorem 4.2 of [6]; see also Theorem 2.3 of
[33]) will cover these cases as well.

Theorem 2. Suppose φ : [0, 1]→ [−∞,∞] is a strictly decreasing continuous function225

satisfying φ(0) =∞. Then, for any ε ∈ (0, 1) such that φ(ε) ≥ 0,

P (Mφ,K(p1, . . . , pK) ≤ ε) ≤ inf
t∈(0,φ(ε)]

∫ φ(ε)+(K−1)t
φ(ε)−t ψ(u)du

t
. (14)

As t→ 0, the upper bound in (14) is not informative since, for t ≈ 0,∫ φ(ε)+(K−1)t
φ(ε)−t ψ(u)du

t
≈ Ktψ(φ(ε))

t
= Kε,

which is dominated by the Bonferroni bound. On the other hand, the upper bound
is informative when t = φ(ε) provided the integral is convergent. For example, we can
see that for r < −1, r

r+1K
1+1/rMr,K is a merging function. In what follows, the term230

r/(r + 1) should be understood as its limit 1 when r = −∞.

Proposition 5. Let r ∈ [−∞,−1). Then r
r+1K

1+1/rMr,K , K = 2, 3, . . . , is a family
of merging functions and it is asymptotically precise.

Proposition 5 includes the Bonferroni bound (1) as special case: for r := −∞, we obtain
that KM−∞,K is a merging function. On the other hand, Proposition 5 does not cover235

the case r = −1 of harmonic mean directly, but easily implies a bound leading to the
merging function e lnKM−1,K , which turns out to be not so crude.

Proposition 6. Set aHK := (yK+K)2

(yK+1)K , K > 2, where yK is the unique solution to the

equation

y2 = K((y + 1) ln(y + 1)− y), y ∈ (0,∞).

Then aHKM−1,K is a precise merging function. Moreover, aHK ≤ e lnK and aHK/ lnK → 1240

as K →∞.

Even though aHK/ lnK → 1, the rate of convergence is very slow, and aHK/ lnK > 1 for
moderate values of K. In practice, it might be better to use the conservative merging
function (e lnK)M−1,K . Table 3 reports several values of aHK/ lnK calculated numerically.
For instance, for K ≥ 10, one may use (2 lnK)M−1,K , and for K ≥ 50, one may use245

(1.7 lnK)M−1,K .

Table 3: Numeric values of aHK/ lnK for the harmonic mean

K aHK/ lnK K aHK/ lnK K aHK/ lnK
3 2.499192 10 1.980287 100 1.619631
4 2.321831 20 1.828861 200 1.561359
5 2.214749 50 1.693497 400 1.514096

The main emphasis of this section has been on characterizing a > 0 such that F :=
aMr,K is a merging function, or a precise merging function. Recall that F : [0, 1]K →
[0,∞) is a merging function if and only if (5) holds for all ε ∈ (0, 1), and that F is a
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precise merging function if and only if (6) holds for all ε ∈ (0, 1). The next proposition 250

shows that in both statements “for all” can be replaced by “for some” if F = aMr,K . A
practical implication is that even if an applied statistician is interested in the property
of validity (4) only for specific values of ε (such as 0.01 or 0.05) and would like to use
aMr,K as a merging function, she is still forced to ensure that (4) folds for all ε.

Proposition 7. For any a > 0, r ∈ [−∞,∞], and K ∈ {2, 3, . . . }: 255

(a) F := aMr,K is a merging function if and only if (5) holds for some ε ∈ (0, 1);
(b) F := aMr,K is a precise merging function if and only if (6) holds for some ε ∈ (0, 1).

4. Combining p-values by weighted averaging

In this section we will briefly consider a more general notion of averaging:

Mφ,w(p1, . . . , pK) := ψ (w1φ(p1) + · · ·+ wKφ(pK))

in the notation of (7), where w = (w1, . . . , wK) ∈ ∆K is an element of the standard 260

K-simplex

∆K :=
{

(w1, . . . , wK) ∈ [0, 1]K
∣∣w1 + · · ·+ wK = 1

}
.

One might want to use a weighted average in a situation where some of p-values are
based, e.g., on bigger experiments, and then we might want to take them with bigger
weights. Intuitively, the weights reflect the prior importance of the p-values (see, e.g., [3,
p. 5] for further details). 265

Much fewer mathematical results in the literature are available for asymmetric risk
aggregation. For this reason, we will concentrate on the easier integrable case, namely,
r > −1. Theorem 1 can be generalized as follows.

Theorem 3. Suppose a continuous strictly monotonic φ : [0, 1]→ [−∞,∞] is inte-
grable and w ∈ ∆K . Then, for any ε > 0, 270

P
(
Mφ,w(p1, . . . , pK) ≤ ψ

(
1

ε

∫ ε

0
φ(u)du

))
≤ ε.

Similarly to (8), we set

Mr,w(p1, . . . , pK) := (w1p
r
1 + · · ·+ wKp

r
K)1/r

for r ∈ R and w = (w1, . . . , wK) ∈ ∆K . We can see that Proposition 1 still holds when
Mr,K is replaced by Mr,w, for any r ∈ R and w ∈ ∆K . This is complemented by the
following proposition, which is the weighted version of Proposition 2.

Proposition 8. For w = (w1, . . . , wK) ∈ ∆K and r ∈ (−1,∞), the merging func- 275

tion (r + 1)1/rMr,w is precise if and only if w ≤ 1/2 and r ∈ [ w
1−w ,

1−w
w ], where w :=

maxk=1,...,K wk.

Next we generalize Proposition 3 to non-uniform weights.

Proposition 9. For w = (w1, . . . , wK) ∈ ∆K and r ∈ [1,∞), the function min(r +
1, 1

w )1/rMr,w is a precise merging function, where w := maxk=1,...,K wk. 280

An interesting special case of Proposition 9 is for r = 1 (weighted arithmetic mean).
If w ≤ 1/2, i.e., no single experiment outweighs the total of all the other experiments,
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the optimal multiplier for the weighted average is 2, exactly as in the case of the arith-
metic average. If w > 1/2, i.e., there is a single experiment that outweighs all the other
experiments, our merging function is, assuming w1 = w,285

1

w
M1,w(p1, . . . , pK) = p1 +

K∑
k=2

wk
w
pk.

It is obtained by adding weighted adjustments to the p-value obtained from the most
important experiment.

5. Efficiency of merging functions

So far we have emphasized the validity of our methods of combining p-values: the
combined p-value P is guaranteed to satisfy (4) under the null hypothesis p1, p2, . . . , pK ∈290

U . In this section we will discuss their efficiency : under alternative hypotheses, we would
like the combined p-value to be small.

We will be interested in asymptotic results as K →∞. Recall that our merging func-
tions are

Pr,K(p1, . . . , pK) := ar,KMr,K(p1, . . . , pK),

where r ∈ [−∞,∞], Pr,K is the combined p-value, and295

ar,K :=


(r + 1)1/r if r ∈ (−1,∞]

e lnK if r = −1
r
r+1K

1+1/r if r ∈ [−∞,−1),

where for r = 0, r =∞ and r = −∞ one uses the limiting values of e, 1, and K, re-
spectively. Notice that we do not truncate Pr,K by replacing it with min(Pr,K , 1) and
interpret large values of Pr,K , Pr,K � 1, as indicators of the weakness of the merging
function: they show us how far it is from being useful. This will be discussed further
after Proposition 10.300

The rest of this section consists of two parts. In Subsection 5.1 we consider an infinite
sequence of IID p-values p1, p2, . . . and analyze the performance of our merging functions
on p1, . . . , pK as K →∞. Of course, we are not interested in independent p1, p2, . . . per
se; after all, if we know the p-values to be independent, we should use much more efficient
methods, such as Fisher’s, that assume independence. The result in Subsection 5.1 will305

serve as a basic tool for the analysis of the general symmetric framework, considered in
Subsection 5.2. We assume only the exchangeability of p1, p2, . . . , and according to de
Finetti’s theorem every exchangeable probability measure on [0, 1]∞ is a mixture of IID
components (in particular, when we look at the realized sequence of p-values, we can
only draw conclusions about the realized IID component).310

5.1. IID p-values

In this subsection we assume that the p-values p1, p2, . . . are generated independently
from the same probability measure Q on [0, 1]. If the support of Q is finite and does not
include 0, the asymptotic performance of Pr,K is poor for r < −1, but some of r > −1
may have reasonable performance: see Figure 1 for an example.315
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Fig. 1: The asymptotic inflation factor limK→∞ Pr,K/p as function of r when each p-value
pk is either p or 100p (with equal probabilities), for some p ∈ (0, 0.01). (The trivial factor
is 100, and the ideal, but unattainable, factor is 1.)
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Fig. 2: The combined p-value for different r in the cases Π < 1 (top) and Π > 1 (bottom).

In general we impose integrability conditions on pk. Set

Π = Π(Q) := sup

{
m ∈ [0,∞) | E(p−m1 ) =

∫
p−mQ(dp) <∞

}
∈ [0,∞].

By the Lyapunov inequality [12, Theorem 3.2.5], E(p−m1 ) <∞ for m < Π and E(p−m1 ) =
∞ for m > Π. The value of Π reflects the asymptotic power of the p-values; we will
discuss this further at the end of this subsection.

The following proposition describes the performance of our merging functions for vari- 320

ous values of r (except for the two critical values, −1 and −Π). To analyze the asymptotic
behaviour of Pr,K as K →∞, we will write Pr,K ≈ Ka for a ∈ R if

lim inf
K→∞

Pr,K
Kb

= 0 for b > a and lim
K→∞

Pr,K
Kb

=∞ for b < a a.s. (15)

This means that Pr,K is roughly of the order Ka, as least in the sense of lim inf. Also recall
that for two sequences bK and cK , K = 1, 2, . . . , the symbol bK ∼ cK means bK/cK → 1.

Proposition 10. For Π > 1, we have: 325

(i) If r > −1, then

Pr,K → (r + 1)1/r E(pr1)1/r ∈ (0,∞) a.s. (16)

(ii) If −Π < r < −1, then

Pr,K ∼
r

r + 1
K1+1/r E(pr1)1/r →∞ a.s.
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(iii) If −∞ < r < −Π, then Pr,K ≈ K1−1/Π →∞.
(iv) If r = −∞, then limK→∞ Pr,K/K

b =∞ in probability for b < 1− 1/Π.

For Π ∈ (0, 1), we have:330

(i) If r > −Π, then (16) holds.
(ii) If −1 < r < −Π, then Pr,K ≈ K−1/r−1/Π → 0.

(iii) If −∞ < r < −1, then Pr,K ≈ K1−1/Π → 0.
(iv) If r = −∞, then lim infK→∞ Pr,K/K

b = 0 a.s. for b > 1− 1/Π.

The results given in Proposition 10 are roughly summarized in Figure 2, where r ∈335

{−∞,∞} is also allowed. “Finite positive” means that Pr,K converges to a finite positive
number as K →∞, 0 means that it converges to 0 (at least in the sense of lim inf), “good
0” means that the rate of convergence to 0 is optimal (within the accuracy of (15)), ∞
means that it converges to∞, and “bad∞” means the fastest rate of convergence to∞.

As we mentioned earlier, in the IID situation, the natural interpretation of Π is that340

it measures the asymptotic power of the p-values. When p1 is uniformly distributed on
[0, 1] (as it is under the null hypothesis), Π = 1. If Π > 1, the p-values are asymptotically
powerless for rejecting the null hypotheses, and when Π < 1, there is some power (e.g.,
the density function of p1 is f(p) := cpc−1 for c ∈ (0, 1), as in e.g. [39]). The general
message of this section is that, in the IID case, using the Bonferroni merging function is345

a safe option, at least asymptotically, since it performs well in the interesting case Π < 1
(top of Figure 2); it might be also interesting to note that any merging function with
r < −1 would achieve the same best rate of convergence to 0. The situation becomes
more complicated in the case of dependent p-values, which will be considered in the next
subsection.350

5.2. Exchangeable p-values

Now we relax our IID assumption to the more interesting case that the sequence
p1, p2, . . . is exchangeable. This most general symmetry assumption includes cases of
heavy dependence. By de Finetti’s theorem, every exchangeable distribution (of an infi-
nite sequence) is a mixture

∫
Q̃∞ν(dQ̃) of IID distributions Q̃∞; see, e.g., [38, Theorem355

1.49]. We can interpret ν as the limiting empirical distribution function of p1, . . . , pK .
The performance of our merging functions depends on the distribution of Π(Q̃). Ap-

plying Proposition 10 in combination with de Finetti’s theorem, we obtain the following
two cases:

1. If ν(Π(Q̃) < 1) = 1, the values r ∈ [−∞,−1) (including Bonferroni) perform very well360

(they are in the “good 0” area in Figure 2).
2. If ν(Π(Q̃) > 1) > 0, the values r ∈ [−∞,−1) lead to an infinite expected combined

p-value (or, with a positive probability, to a combined p-value of 1 when truncated)
as K →∞.

Recall that the main motivation for our merging methods is the existence of unknown365

(possibly heavy) dependence. With dependence among p-values, the case ν(Π(Q̃) > 1) >
0 is not unusual. For instance, in the extreme case of perfect dependence p1 = · · · = pK ,
if P(p1 = 0) = 0, then ν(Π(Q̃) =∞) = 1.
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To analyze the influence of the strength of dependence on the performance of r ∈
[−∞,∞], we consider the following simple example. Let 370

pk = Φ(Xk), Xk = ρZ +
√

1− ρ2Zk − µ, k = 1, . . . ,K, (17)

where Φ is the standard normal distribution function, Z,Z1, . . . , ZK are IID standard
normal random variables, and µ ≥ 0 and ρ ∈ [0, 1] are constants. In other words, pk is
the p-value resulting from the kth standard one-sided z-test of the null hypothesis µ = 0
against the alternative µ > 0 using the statistic Xk from N(−µ, 1) with unknown µ,
k = 1, . . . ,K. Note that ρ = 0 corresponds to the case where p1, . . . , pK are independent, 375

while ρ = 1 corresponds to the case where p1, . . . , pK are perfectly dependent.
Obviously, the model of (p1, . . . , pK) is exchangeable, and the marginal distribution

Q of (p1, . . . , pK) does not depend on the correlation ρ. For z ∈ R, let Qz be the

distribution of Φ(
√

1− ρ2W + ρz − µ), where W is a standard normal random vari-
able. Clearly, conditional on Z = z, p1, . . . , pK are IID with distribution Qz. Note that 380

Π(Qz) = 1/(1− ρ2) > 1 if ρ > 0 (Π(Qz) is computed in Lemma A.2 on page 27 in
the Appendix). Therefore, in the presence of positive dependence, we are in Case 2
above (ν(Π(Qz) > 1) = 1); thus some choice of r ≥ −1 may be optimal asymptotically
as K →∞. For finite K, some simulation results of Pr,K for the model (17) are reported
in Subsection 6.4. 385

6. Choosing the merging function

In this section we discuss, for simplicity only in the symmetric case, how to choose a
merging function.

6.1. A rule of thumb

First we state a crude rule of thumb for choosing r. Since any method based on the 390

observed values of p1, . . . , pK would affect the validity of the method (see Subsection 6.3),
we have to rely on prior or side information for a suitable choice of r. As a rule of thumb,
if there is potentially substantial dependence among the p-values, then we should not
use Bonferroni, and the harmonic mean might be a safer choice. If we are certain that
the dependence is really strong, then the geometric and the arithmetic means might be 395

an even better option. See Subsection 6.4 for a simulation study illustrating this point.

6.2. Practical issues

A fairly wide family of merging functions is provided in this paper. For a practitioner,
given access to a variety of merging functions, it might be tempting to try many of them
and then pick one of the merging functions that work well (perhaps the one yielding the 400

smallest p-value). Of course, this is not a valid approach, and its inadmissibility has been
discussed at length in recent literature (see, e.g., [45]). A search over various merging
functions itself needs a multiple-testing correction, and the simplest procedure in the
context of this paper would be to apply another merging function in our family to the
outputs of the merging functions that we used in our search. This will be the topic of 405

Subsection 6.3.
It might be also tempting to divide the available p-values into two parts, to find a

suitable value of r from one part, and then compute the combined p-value using ar,KMr,K

applied to the other part. However, this is not a valid approach if dependence is present
among the p-values. Under possibly heavy dependence, any peeking into the data is likely 410
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to destroy validity (e.g., learning any of the p-values makes the conditional distribution
of the remaining p-values non-uniform). From the vantage point of Section 5, the fact
that we can never observe any IID components apart from the realized one prevents us
from using interactive methods of adaptation such as the STAR method in [21].

6.3. Combining merging functions415

In this subsection we will be interested in valid, necessarily very restrictive, ways of
searching for a good merging function. Namely, we consider the following mechanism: for
fixed r1, . . . , rm ∈ [−∞,∞] and partition (A1, . . . , Am) of [0, 1]K , we would like to use

F (p1, . . . , pK) := b
m∑
i=1

Pri,K(p1, . . . , pK)1Ai(p1, . . . , pK) (18)

as a merging function, where b is a positive constant. In this case the observed p-values
p1, . . . , pK determine which of the merging functions in our family Pr,K is used, and the420

partition (A1, . . . , Am) serves as decision criterion. The value of b is chosen in such a way
that F is a valid merging function.

A natural and simple choice of the decision criterion in (18) is to take the minimum of
the merging functions Pr,K to exploit their power. That is, by choosing Ai as the region
in [0, 1]K where Pri,K(p1, . . . , pK) is the smallest, we arrive at425

F (p1, . . . , pK) := b min
i=1,...,m

Pri,K(p1, . . . , pK). (19)

The constant b in (19) may be seen as the price to pay to exploit the power of different
merging functions, and it is typically larger than 1. Clearly, choosing b = m leads to
a valid merging function in (19), and this is precisely applying the Bonferroni method
on the combined p-values Pr1,K , . . . , Prm,K . Simple examples show that in some cases
a smaller value of b will also lead to a valid merging function: e.g., if all r1, . . . , rm are430

similar, then b can be chosen close to 1.
We consider in detail the most applicable cases where we search over only two values

of r, one of them being −∞ (the Bonferroni merging function). We would like to be
competitive with the best of the two values, and so combine the two merging functions
using the Bonferroni merging function. Namely, we consider the compound Bonferroni-435

arithmetic (BA) merging function

FBA
K (p1, . . . , pK) := 2 min (K min(p1, . . . , pK), 2p̄) (20)

where p̄ is the arithmetic mean of p1, . . . , pK , and the compound Bonferroni-geometric
(BG) merging function

FBG
K (p1, . . . , pK) := 2 min (K min(p1, . . . , pK), ep̃) (21)

where p̃ is the geometric mean of p1, . . . , pK . Obviously, both methods are valid merging
functions. Moreover, it turns out that these two merging functions are asymptotically440

precise. In other words, the price to pay for exploiting the power of both the Bonferroni
method and the arithmetic/geometric average is precisely a factor of 2.

Proposition 11. Both families of merging functions FBA
K and FBG

K , K = 2, 3, . . . , in
(20) and (21) are asymptotically precise.

A crucial advantage of FBA
K and FBG

K over the merging functions in our family ar,KMr,K445

is that both FBA
K and FBG

K improve greatly on the performance crudely shown in Figure
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2: for FBA
K and FBG

K , in the top plot, we will get “finite positive” (the best value in that
plot), and in the bottom plot, we will get “good 0” (also the best value in that plot). In
particular, neither FBA

K nor FBG
K is dominated by ar,KMr,K for any r.

6.4. A simulation study 450

We conduct some simulations for the correlated standard z-tests in model (17) to
compare different merging methods. In Figure 3, we fix µ = 3 (other values of µ give
qualitatively similar results), and report the empirical performance for K = 50, 400 of
merging methods with various values of r as well as the compound Bonferroni-geometric
method in (21). The curves in Figure 3 are based on an average of 1,000 replications 455

of Pr,K . For the best of visibility, we plot the range r ∈ [−5, 0] for ρ = 0.1, 0.5 and r ∈
[−5, 2] for ρ = 0.9. For a fair comparison, the multipliers ar,K are chosen to make the
merging functions precise, based on results on robust risk aggregation in [44]. We make
the following observations from Figure 3.

1. If the dependence is light or moderate (ρ = 0.1, 0.5), the Bonferroni method, as well 460

as other methods based on r < −1, work quite well, and their power improves when
K increases from 50 to 400.

2. In the case of very strong dependence (ρ = 0.9), the geometric averaging method and
the arithmetic averaging method perform quite well. Notably, the performance of the
Bonferroni method and other methods with r < −1 gets worse when K increases from 465

50 to 400.
3. The compound BG method generally performs quite well in all cases as it is often

slightly worse (on average) than the best of the two base methods.

7. Directions of further research

Perhaps the most important direction of further research is to find practically useful 470

applications, in multiple testing of a single hypothesis or testing multiple hypotheses,
for our methods of combining p-values. The Bonferroni method of combining a set of
p-values works very well when experiments are almost independent, while it produces
unsatisfactory results under heavy dependence (e.g., if all p-values are approximately
equal). Our methods are designed to work for intermediate situations. Promising results 475

have been obtained using the harmonic mean [46], but other merging functions proposed
in this paper also deserve careful experimental study.

Our emphasis has been on finding valid methods of combining p-values, and we have
just started exploration of their efficiency; the results of Section 5 are asymptotic and
crude. A natural next step is to explore convergence of the combined p-values in distri- 480

bution, as alluded after Proposition 10; such results would be still asymptotic but more
precise (the price to pay will be the need to impose various conditions on the distribution
of the p-values).

The main application of results about efficiency of various combination methods is
choosing a suitable method. Subsection 6.3 is only a first step in this direction. Much 485

wider families of potential merging functions deserve to be explored. In particular, finding
the optimal value of b in merging functions of the form (18) is an interesting open problem.

This paper concentrates on the symmetric case, where the merging function is a sym-
metric function of p1, . . . , pK . However, the weighted case (as in Section 4) is important
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Fig. 3: Empirical averages of Pr,K for K ∈ {50, 400}
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in many applications because the quality of different p-values can be very different. It 490

would be of much interest to study efficient ways of assigning weights to the p-values
using prior or side information.
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[9] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time. De
Gruyter, Berlin, third edition, 2011.

[10] Jelle J. Goeman and Aldo Solari. Multiple testing for exploratory research. Statistical Science,
26:584–597, 2011.

[11] Benjamin T. Graham and Geoffrey R. Grimmett. Influence and sharp-threshold theorems for mono- 525

tonic measures. Annals of Probability, 34:1726–1745, 2006.
[12] Allan Gut. Probability: A Graduate Course. Springer, New York, second edition, 2013.
[13] G. H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cambridge University Press,
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Supplementary material for “Combining p-values via averaging” 595

By Vladimir Vovk and Ruodu Wang

A. Proofs of main results

This appendix contains proofs of our main results. All these proofs are based on known results
in robust risk aggregation. For a > 0, let U(a) be the set of all random variables distributed 600

uniformly over the interval [0, a], a ≥ 0; we can regard U as an abbreviation for U(1).

Proof of Lemma 1

Part “if” of (a): Suppose qε(F ) ≥ ε for all ε ∈ (0, 1). Consider arbitrary U1, . . . , UK ∈
U . We have qε(F (U1, . . . , UK)) ≥ ε for all ε ∈ (0, 1). By the definition of left quantiles,
P(F (U1, . . . , UK) < ε) ≤ ε. It follows that, for all δ ∈ (0, 1− ε), 605

P(F (U1, . . . , UK) ≤ ε) ≤ P(F (U1, . . . , UK) < ε+ δ) ≤ ε+ δ,

which implies

P(F (U1, . . . , UK) ≤ ε) ≤ ε,

since δ is arbitrary. Therefore, F is a merging function.
Part “only if” of (a): Suppose F is a merging function. Let U1, . . . , UK ∈ U and ε ∈ (0, 1).

We have P(F (U1, . . . , UK) ≤ ε) ≤ ε. By the definition of right quantiles, q+
ε (F (U1, . . . , UK)) ≥ ε.

It follows that, for all δ ∈ (0, ε), 610

qε(F (U1, . . . , UK)) ≥ q+
ε−δ(F (U1, . . . , UK)) ≥ ε− δ,

which implies qε(F (U1, . . . , UK)) ≥ ε since δ is arbitrary.
Part “if” of (b): Suppose qε(F ) = ε for all ε ∈ (0, 1). By (a), F is a merging function. For

all ε, δ ∈ (0, 1), there exist U1, . . . , UK ∈ U such that qε(F (U1, . . . , UK)) ∈ [ε, ε+ δ), which implies
P(F (U1, . . . , UK) ≤ ε+ δ) ≥ ε. Since δ is arbitrary, we have

sup {P(F (U1, . . . , UK) ≤ ε) |U1, . . . , UK ∈ U} = ε,

and thus F is precise. 615

Part “only if” of (b): Suppose F is a precise merging function. Since F is a merging
function, by (a) we have qε(M) ≥ ε for all ε ∈ (0, 1). Suppose, for the purpose of contradiction,
that qε(M) > ε for some ε ∈ (0, 1). Then, there exists δ ∈ (0, 1− ε) such that qε(F (U1, . . . , UK)) >
ε+ δ for all U1, . . . , UK ∈ U . As a consequence, we have

P(F (U1, . . . , UK) ≤ ε+ δ/2) ≤ P(F (U1, . . . , UK) < ε+ δ) ≤ ε.

Therefore, 620

sup {P(F (U1, . . . , UK) ≤ ε+ δ/2) |U1, . . . , UK ∈ U} < ε+ δ/2,

contradicting F being precise.
In all proofs below, for statements that have a weighted version in Section 4, namely Theorem 1

and Propositions 2 and 3, we present a proof of the corresponding weighted version, which is
stronger.

Proof of Theorem 3 (weighted version of Theorem 1) 625

Without loss of generality we can, and will, assume that φ is strictly increasing. Indeed, if φ
is strictly decreasing, we can redefine φ := −φ and ψ(u) := ψ(−u) and notice that the statement
of the theorem for new φ and ψ will imply the analogous statement for the original φ and ψ.
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Define an accessory function Φ : (0, 1)→ [−∞,∞] by Φ(ε) = 1
ε

∫ ε
0
φ(u)du. Fix ε ∈ (0, 1). Since

φ is integrable, Φ(ε) is finite.630

Known results from the literature on robust risk aggregation can be applied to random variables
Xk := φ(Uk), where Uk ∈ U ; notice that the distribution function of Xk is ψ:

P(Xk ≤ x) = P(φ(Uk) ≤ x) = P(Uk ≤ ψ(x)) = ψ(x).

Theorem 4.6 of [1] gives the following relation:

qε(Mφ,w) = inf

{
q1

(
ψ

(
K∑
k=1

wkφ(Vk)

))∣∣∣∣∣V1, . . . , VK ∈ U(ε)

}
. (A.1)

Since

q1 (w1φ(V1) + · · ·+ wKφ(VK)) ≥ E [w1φ(V1) + · · ·+ wKφ(VK)] = Φ(ε)

for V1, . . . , VK ∈ U(ε), we have qε(Mφ,w) ≥ ψ(Φ(ε)).635

Proof of Proposition 1

The case r =∞ is trivial, and we focus on r ∈ (−1,∞). Let φ(u) = ur, which gives Φ(ε) =
εr/(r + 1), in the notation of the previous proof. Evaluating the term (12) in (11), we obtain

ψ

(
1

ε

∫ ε

0

φ(u)du

)
=

{
ε/e if r = 0

(r + 1)−1/rε otherwise.

This shows that (r + 1)1/rMr,K is indeed a merging function.
Using Corollary 3.4 of [7], we have640

lim
K→∞

φ(qε(Mr,K))

Φ(ε)
= 1,

leading to

lim
K→∞

qε(Mr,K) = ε(r + 1)−1/r. (A.2)

It follows that, for a < (r + 1)1/r,

lim
K→∞

qε(aMr,K) < ε

and so, by Lemma 1, aMr,K is not a merging function for K large enough.

Proof of Proposition 8 (weighted version of Proposition 2)

Let M = (r + 1)1/rMr,w. Using (A.1) and Theorem 3, we have, for ε ∈ (0, 1):645

(qε(Mr,w))
r

= inf

{
q1

(
K∑
k=1

wkV
r
k

)∣∣∣∣∣V1, . . . , VK ∈ U(ε)

}
≥ εr

1 + r
(A.3)

if r > 0,

(qε(Mr,w))
r

= sup

{
q+
0

(
K∑
k=1

wkV
r
k

)∣∣∣∣∣V1, . . . , VK ∈ U(ε)

}
≤ εr

1 + r
(A.4)

if r < 0, and

qε(Mr,w) = exp

(
inf

{
q1

(
K∑
k=1

wk lnVk

)∣∣∣∣∣V1, . . . , VK ∈ U(ε)

})
≥ ε

e
(A.5)



Combining p-values via averaging 21

if r = 0. By Lemma 1, M is a precise merging function if and only if the inequality in (A.3)–(A.5)
is an equality for all ε ∈ (0, 1).

Fix ε ∈ (0, 1) and r ∈ (−1,∞). For k = 1, . . . ,K, let Fk be the distribution of wkV
r
k where 650

Vk ∈ U(ε). Using the terminology of [43], notice that the inequality in (A.3)–(A.5) is an equality
if and only if (F1, . . . , FK) is jointly mixable due to a standard compactness argument (see [43,
Proposition 2.3]). Therefore, we can first settle the cases r = 0 and r < 0, as in these cases the
supports of F1, . . . , FK are unbounded on one side, and (F1, . . . , FK) is not jointly mixable (see
[43, Remark 2.2]). 655

Next assume r > 0. Since F1, . . . , FK have monotone densities on their respective supports, by
Theorem 3.2 of [43], (F1, . . . , FK) is jointly mixable if and only if the “mean condition”

wεr ≤ εr

1 + r
≤ εr − wεr

is satisfied. This is equivalent to w ≤ 1
1+r ≤ 1− w and, therefore, to the conjunction of w ≤ 1/2

and r ∈ [ w
1−w ,

1−w
w ]. This completes the proof.

Proof of Proposition 9 (weighted version of Proposition 3) 660

Notice that, for each k = 1, . . . ,K, the distribution of wkU
r
k , where Uk ∈ U , has a decreasing

density on its support. Therefore, we can apply Corollary 4.7 of [18], which gives

inf {qε (w1U
r
1 + · · ·+ wKU

r
K) |U1, . . . , UK ∈ U} = max

(
wεr,

εr

1 + r

)
.

Simple algebra leads to

qε(Mr,K) = max

(
w,

1

1 + r

)1/r

ε,

and by Lemma 1, M is a precise merging function.

Proof of Proposition 4 665

First, we note that as limr→0(r + 1)1/r = e, we know aGK ≤ e from Proposition 1. Moreover,
by letting r → 0 in (A.2), we know that aGK → e.

Our next goal is to obtain the precise value of qε(M0,K). Set

bK := sup
{
q+
0 (−(lnU1 + · · ·+ lnUK))

∣∣U1, . . . , UK ∈ U
}

= sup
{
q+
0 (−(lnV1 + · · ·+ lnVK) +K ln ε)

∣∣V1, . . . , VK ∈ U(ε)
}
. 670

It is easy to see that

qε(M0,K) = exp

(
inf

{
q1

(
lnV1 + · · ·+ lnVK

K

) ∣∣∣∣V1, . . . , VK ∈ U(ε)

})
= exp

(
− sup

{
q+
0

(
− lnV1 + · · ·+ lnVK

K

) ∣∣∣∣V1, . . . , VK ∈ U(ε)

})
= exp (−bK/K + ln ε)

= ε exp(−bK/K). 675

It is clear that ebK/KM0,K is a precise merging function, and bK/K → 1.
Since − lnU has the standard exponential distribution for U ∈ U and, therefore, a decreasing

density on R, we can apply Theorem 3.2 of [1] (essentially Theorem 3.5 of [42]) to arrive at

bK = −(K − 1) ln(1− (K − 1)cK)− ln cK ,

where cK is the unique solution to (13) (see [42, Corollary 4.1]). Using (13), we can write

bK/K = − ln cK − (K − 1)(1−KcK).
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Using aGK = ebK/K one obtains the desired result.680

Proof of Theorem 2

We will apply Theorem 4.2 of [6] in our situation where the function φ (and, therefore, ψ as
well) in (7) is decreasing. Letting Xk := φ(pk) and using the notation m+ (used in Theorem 4.2
of [6]), we have, by the definition of m+,

P

(
K∑
k=1

Xk < s

)
≥ m+(s),685

P

(
1

K

K∑
k=1

φ(pk) < s/K

)
≥ m+(s),

P (Mφ,K(p1, . . . , pK) > ψ(s/K)) ≥ m+(s),

P (Mφ,K(p1, . . . , pK) ≤ ψ(s/K)) ≤ 1−m+(s).

The lower bound on m+(s) given in Theorem 4.2 of [6] involves 1− F (x), where F is the common
distribution function of Xk, and in our current context we have:690

1− F (x) = P(Xk > x) = P(φ(pk) > x) = P(pk < ψ(x)) = ψ(x).

The last inequality and chain of equalities in combination with Theorem 4.2 of [6] give

P (Mφ,K(p1, . . . , pK) ≤ ψ(s/K)) ≤ K inf
r∈[0,s/K)

∫ s−(K−1)r

r
ψ(x)dx

s−Kr
.

Setting ε := ψ(s/K) ∈ [ψ(∞), ψ(0)] (so that it is essential that ψ(∞) = 0), we obtain, using
s = Kφ(ε),

P (Mφ,K(p1, . . . , pK) ≤ ε) ≤ K inf
r∈[0,φ(ε))

∫Kφ(ε)−(K−1)r

r
ψ(x)dx

(φ(ε)− r)K
.

Setting t := φ(ε)− r and renaming x to u, this can be rewritten as (14).

Proof of Proposition 5695

The case r = −∞ is trivial, and we focus on r ∈ (−∞,−1). By Theorem 2 applied to φ(u) := ur,
r < −1, we have

P (Mφ,K(p1, . . . , pK) ≤ ε) ≤
∫Kφ(ε)

0
ψ(u)du

φ(ε)
=

r

r + 1
K1+1/rε.

This shows that r
r+1K

1+1/rMr,K is indeed a merging function.
We next show a simple property of a precise merging function via general averaging. Define

the following constant:700

br,K :=

(
1

K
sup{q+

0 (Ur1 + · · ·+ UrK)
∣∣ U1, . . . , UK ∈ U}

)−1/r

.

It is clear that br,K ≥ 1 for r < 0.

Lemma A.1. For r < 0, the function br,KMr,K is a precise merging function.

Proof. By straightforward algebra and Theorem 4.6 of [1],

qε(br,KMr,K) = br,K inf {q1(Mr,K(V1, . . . , VK)) |V1, . . . , VK ∈ U(ε)}
= br,K inf {εq1(Mr,K(U1, . . . , UK)) |U1, . . . , UK ∈ U}705
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= br,Kε

(
1

K
sup

{
q+
0 (Ur1 + · · ·+ UrK)

∣∣U1, . . . , UK ∈ U
})1/r

= ε.

By Lemma 1, br,KMr,K is a precise merging function. �

To construct precise merging functions, it remains to find values of br,K . Unfortunately, for
r < 0 no analytical formula for br,K is available. There is an asymptotic result available in [2], 710

which leads to the following proposition.

Proposition A.1. For r ∈ (−∞,−1),

lim
K→∞

br,K
K1+1/r

=
r

r + 1
.

Proof. The quantity ∆
Fd

in [2], defined as

∆
Fd

:= lim
α→1

sup {qα(Ur1 + · · ·+ UrK) |U1, . . . , UK ∈ U(α)}
K(1− α)r

,

satisfies

∆
Fd

=
1

K
sup

{
q+
0 (Ur1 + · · ·+ UrK)

∣∣U1, . . . , UK ∈ U
}

= b−rr,K .

Using Proposition 3.5 of [2], we have, for r < −1, by substituting β := −1/r in (3.25) of [2] and 715

∆
Fd

= b−rr,K ,

lim
K→∞

b−rr,K
K−r−1

=

(
r

r + 1

)−r
,

and this gives the desired result. �

The claim on the asymptotic precision in Proposition 5 immediately follows from Lemma A.1
and Proposition A.1.

Proof of Proposition 6 720

Let us first find the smallest value of the coefficient r
r+1K

1+1/r in Proposition 5. Setting the
derivative in r of the logarithm of this coefficient to 0, we obtain a linear equation whose solution
is

r =
lnK

1− lnK
. (A.6)

Plugging this into the coefficient gives e lnK. Notice that r defined by (A.6) satisfies r < −1 and
apply the inequality Mr,K ≤M−1,K , a special case of (10). Hence, e lnKM−1,K is a merging 725

function, and aHK ≤ e lnK follows from the fact that aHKM−1,K is a precise merging function,
which we prove below.

Using the notation in Lemma A.1, we need to show aHK = b−1,K , and we shall use Corollary 3.7
of [44]. Write

H(t) :=
K − 1

1− (K − 1)t
+

1

t
=

1

t(1− (K − 1)t)
, t ∈ [0, 1/K].

By Corollary 3.7 of [44], we have 730

b−1,K =
1

K
sup

{
q+
0 (U−1

1 + · · ·+ U−1
K )

∣∣U1, . . . , UK ∈ U
}

=
1

K
H(xK) =

1

KxK(1− (K − 1)xK)
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where xK solves the equation∫ 1/K

x

H(t)dt =

(
1

K
− x
)
H(x), x ∈ [0, 1/K).

Plugging in the expression for H and rearranging the above equation, we obtain

1−Kx
Kx(1− (K − 1)x)

=

∫ 1/K

x

(
K − 1

1− (K − 1)t
+

1

t

)
dt735

=

∫ (K−1)/K

(K−1)x

1

1− y
dy +

∫ 1/K

x

1

t
dt

= ln(1− (K − 1)x)− lnx. (A.7)

The uniqueness of the solution xK to (A.7) can be easily checked, and it is a special case of
Lemma 3.1 of [18]. Writing y = 1−Kx

x > 0, (A.7) reads as y
(y+1)K/(y+K) = ln(y + 1). Rearranging

the terms gives740

y2 = K((y + 1) ln(y + 1)− y), (A.8)

which admits a unique solution, yK = 1−KxK

xK
. Therefore,

b−1,K =
1

KxK(1− (K − 1)xK)
=

(yK +K)2

(yK + 1)K
,

and hence aHK = b−1,K .
Next we analyze the asymptotic behaviour of aHK as K →∞. Using ln(y + 1) ≥ y − y2/2 for

y ≥ 0, we can see that (A.8) implies the inequality

y2 ≥ K

2
y2 − K

2
y3,

which leads to 2 ≥ K(1− y). Hence, we have lim infK→∞ yK ≥ 1.745

Notice that (y + 1) ln(y + 1)− y is a strictly increasing function of y ∈ (0,∞). Using
lim infK→∞ yK ≥ 1, we obtain that

lim inf
K→∞

y2
K ≥ K(2 ln 2− 1).

Therefore, limK→∞ yK =∞. Applying logarithms to both sides of (A.8) and taking a limit in
their ratio, we obtain

1 = lim
K→∞

2 ln yK

lnK + ln(yK + 1) + ln
(

ln(yK + 1)− yK
yK+1

) = lim
K→∞

2 ln yK
lnK + ln yK

,

and hence ln yK/ lnK → 1 as K →∞. Using (A.8) again, we have750

1 = lim
K→∞

y2
K

K((yK + 1) ln(yK + 1)− yK)
= lim
K→∞

y2
K

K(yK ln yK)
= lim
K→∞

yK
K lnK

.

Therefore, we have

lim
K→∞

aHK
lnK

= lim
K→∞

(yK +K)2

(yK + 1)K lnK
= lim
K→∞

(K lnK)2

(K lnK)K lnK
= 1.

This completes the proof.

Proof of Proposition 7

Let us check that for F := aMr,K the following statements are equivalent:
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(a) F is a merging function; 755

(b) (5) holds for some ε ∈ (0, 1);
(c) qε(F ) ≥ ε for some ε ∈ (0, 1).

The implication (a)⇒ (b) holds by definition.
To check (b)⇒ (c), let us assume (b). Since P(X ≤ ε) ≤ ε implies q+

ε (X) ≥ ε for any random
variable X, 760

inf
{
q+
ε (F (U1, . . . , UK))

∣∣U1, . . . , UK ∈ U
}
≥ ε.

Using Lemma 4.5 of [1],

qε(F ) = inf
{
q+
ε (F (U1, . . . , UK))

∣∣U1, . . . , UK ∈ U
}
,

and hence (c) follows.
It remains to check (c)⇒ (a). For any ε ∈ (0, 1), by straightforward algebra and Theorem 4.6

of [1],

qε(F ) = inf {q1(F (V1, . . . , VK)) |V1, . . . , VK ∈ U(ε)} 765

= ε inf {q1(F (U1, . . . , UK)) |U1, . . . , UK ∈ U} .

Therefore, to check qε(F ) ≥ ε for all ε ∈ (0, 1), one only needs to check the inequality for one
ε ∈ (0, 1). By Lemma 1, F is a merging function.

This completes the proof of the first part of Proposition 7, and the second part can be proved
similarly. 770

Proof of Proposition 10

First we consider the integrable case r > −Π. By the Marcinkiewicz strong law of large numbers
[12, Theorem 6.7.1] (and Kolmogorov’s strong law of large numbers, which is its special case), we
have

1

K

K∑
k=1

prk → E(pr1) a.s.

This implies parts (i) and (ii) of the case Π > 1 and part (i) of the case Π < 1. Since P(p1 > 0) = 1 775

unless Π = 0, this also gives the “finite positive” entries in Figure 2.
Now let us consider the non-integrable case r < −Π. In this case −Π/r ∈ [0, 1) and we can

apply Marcinkiewicz’s strong law, assuming Π > 0 (the simple case Π = 0 should be considered
separately). We have E((pr1)−Π/r−ε) <∞ for any ε > 0, and so, by Marcinkiewicz’s law (applicable
when ε < −Π/r), 780∑K

k=1 p
r
k

K−r/Π+ε
→ 0 a.s.

for any ε > 0. This implies (∑K
k=1 p

r
k/K

)1/r

K−1/Π−1/r−ε →∞ a.s. (A.9)

for any ε > 0. On the other hand, we have E((pr1)−Π/r+ε) =∞ for any ε > 0, and so, by the other
part of Marcinkiewicz’s law (applicable when ε < 1 + Π/r),∑K

k=1 p
r
k

K−r/Π−ε
→ 0 a.s.
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fails for any ε > 0. Therefore, (∑K
k=1 p

r
k/K

)1/r

K−1/Π−1/r+ε
→∞ a.s.

fails for any ε > 0. This implies that785

lim inf
K→∞

(∑K
k=1 p

r
k/K

)1/r

K−1/Π−1/r+ε
= 0 (A.10)

with a positive probability for any ε > 0. Kolmogorov’s zero-one law [12, Theorem 1.5.1] allows
us to replace “with a positive probability” by “a.s.” Combining (A.9) and (A.10) gives part (iii)
of the case Π > 1 and parts (ii) and (iii) of the case Π < 1.

It remains to consider the case r = −∞ (Bonferroni). First suppose Π > 1. For any b ∈ (0, 1−
1/Π) and B > 0, take c = (1/(1− b),Π), and note that E(p−c1 ) <∞. We have790

P(Pr,K ≤ BKb) = P(∃k ∈ {1, . . . ,K} : pk ≤ BKb−1)

≤ K P(p1 ≤ BKb−1)

= K P(p−c1 ≥ (BKb−1)−c)

≤ K E(p−c1 )/(BKb−1)−c = E(p−c1 )BcK1−(1−b)c → 0.

This gives Pr,K/K
b →∞ in probability and, therefore, part (iv) of the case Π > 1. Finally,

suppose Π < 1. Note that for any r < −1,

P−∞,K = K min
k∈{1,...,K}

pk ≤ KMr,K(p1, . . . , pK) =
r + 1

r
K−1/rPr,K .

For b > 1− 1/Π, we can take r < −1 small enough such that b+ 1/r > 1− 1/Π, and obtain by
using (iii),

P−∞,K/K
b ≤ r + 1

r
Pr,K/K

b+1/r → 0 a.s.

Proof of Proposition 11795

We first analyze the compound BA method. To show that the family FBA
K is asymptotically

precise, it suffices to show that for some ε ∈ (0, 1),

lim sup
K→∞

(
sup

{
P(FBA

K (U1, . . . , UK) ≤ ε)
∣∣U1, . . . , UK ∈ U

})
= ε. (A.11)

To show (A.11), fix ε ∈ (0, 1) and an even number K. Set δ := ε/(2K). Let A1, . . . , AK , B be dis-
joint events with P(Aj) = δ, j = 1, . . . ,K, and P(B) = (K − 2)δ. Let V, V1, . . . , VK ,W1, . . . ,WK

be independent random variables, between themselves and of A1, . . . , AK , B, such that, for800

j = 1, . . . ,K, Vj is uniformly distributed on [0, δ], V is uniformly distributed on [δ, (K − 1)δ],
and Wj is uniformly distributed on [(K − 1)δ, 1].

Define the random variables

pj := 1B V + 1Aj
Vj + 1(B∪Aj)c Wj

for an odd number j ∈ {1, . . . ,K}, and

pj := 1B(Kδ − V ) + 1Aj
Vj + 1(B∪Aj)c Wj

for an even number j ∈ {1, . . . ,K}. We can easily check that p1, . . . , pK are uniformly distributed805

on [0, 1]. Note that 2
K

∑K
k=1 pk 1B = Kδ 1B , and, by writing A :=

⋃n
j=1AK , min(p1, . . . , pK)1A ≤

δ 1A. Therefore,

P
(
FBA
K (p1, . . . , pK) ≤ ε

)
= P (min(K min(p1, . . . , pK), 2p̄) ≤ Kδ)
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≥ P(A ∪B) = (2K − 2)δ = ε− ε/K.

Hence, (A.11) holds, and the family FBA
K is asymptotically precise. 810

The case of the compound BG method is similar, although an explicit construction is more
complicated. We fix ε ∈ (0, 1/2) and let δ := ε/K. Note that, for a uniform random variable U
on [0, 1], we have

E (lnU | U ∈ [0, ε]) = ln ε− 1.

For K ≥ 3, ln δ < ln ε− 1, and there exists a number t(K) > 0 such that

E (lnU | U ∈ [δ, ε− t(K)]) = ln ε− 1.

Clearly, t(K)→ 0 as K →∞. Next, take an arbitrary η > 0. By [7, Corollary 3.4], there exists 815

K0 ∈ {1, 2, . . . } such that for K > K0, there exist uniform random variables U1, . . . , UK on [δ, ε−
t(K)] satisfying

q1−η(lnU1 + · · ·+ lnUK) < E(lnU1 + · · ·+ lnUK) = K(ln ε− 1).

In other words,

P(eŨ ≤ ε) ≥ 1− η,

where Ũ is the geometric mean of U1, . . . , UK .
Let A1, . . . , AK , B be disjoint events with P(Aj) = δ, j = 1, . . . ,K, and P(B) = ε− t(K). Fur- 820

ther, let V1, . . . , VK ,W1, . . . ,WK be random variables, independent between themselves and of
U1, . . . , UK and A1, . . . , AK , B, and such that, for j = 1, . . . ,K, Vj is uniformly distributed on
[0, δ] and Wj is uniformly distributed on [ε− t(K), 1].

Define the following random variables, for j = 1, . . . ,K:

pj := 1B Uj + 1Aj Vj + 1(B∪Aj)c Wj .

We can easily check that p1, . . . , pK are uniformly distributed on [0, 1]. Note that 825

P(ep̃ ≤ ε | B) = P(eŨ ≤ ε | B) ≥ 1− η.

By setting A :=
⋃n
j=1AK , we have min(p1, . . . , pK)1A ≤ δ 1A. Therefore,

P
(
FBG
K (p1, . . . , pK) ≤ 2ε

)
= P (min(K min(p1, . . . , pK), ep̃) ≤ ε)
≥ P(A) + P(B)(1− η) = ε+ (ε− t(K))(1− η).

Since η is arbitrary and t(K)→ 0 as K →∞, we know that

lim
K→∞

(
sup

{
P(FBG

K (U1, . . . , UK) ≤ 2ε)
∣∣U1, . . . , UK ∈ U

})
= 2ε,

and so the family FBG
K is asymptotically precise. 830

A lemma on moments of p-values from z-tests

Lemma A.2. Let Z be a standard normal random variable and z ∈ R. For all σ > 0,
E[(Φ(σZ + z))r] <∞ if and only if r > −1/σ2 or both r = −1/σ2 and z > 0.

Proof. It suffices to investigate the case r < 0. In this case, only small values of Φ(σZ + z)
matter. To analyze whether 835

E[(Φ(σZ + z))r] =

∫ ∞
−∞

(Φ(σx+ z))r
1√
2π
e−x

2/2dx (A.12)
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Algorithm 1. Generalized Bonferroni–Holm procedure
Inputs: significance level ε > 0; parameter r < −1 (or, w.l.o.g., (B.1));

sequence of p-values p1, . . . , pK ordered as p(1) ≤ · · · ≤ p(K).
For k = 1, . . . ,K
reject := true

I := {k}
For i = K, . . . , 1, 0

If r
r+1 |I|

1+1/rMr,|I|(p(I)) > ε

reject := false

I := I ∪ {i}
If reject = true

reject Hk

is finite, it suffices to look at the limiting behavior of Φ(σx+ z) as x→ −∞. L’Hôpital’s rule

gives Φ(y) ∼ − 1
y

1√
2π
e−y

2/2 as y → −∞. Hence, we have, for some constant C > 0, as x→ −∞,

(Φ(σx+ z))re−x
2/2 ∼

(
− 1

σx+ z

1√
2π

)r
e−r(σx+z)2/2−x2/2

∼ Cx−re−(rσ2+1)x2/2+rσzx.

Therefore, if rσ2 + 1 > 0, the integral in (A.12) is finite, and if rσ2 + 1 < 0, the integral in (A.12)840

is infinite. If rσ2 + 1 = 0, then z ≤ 0 leads to an infinite integral in (A.12), and z > 0 leads to a
finite integral in (A.12). �

B. Application to testing multiple hypotheses

In this section we apply the results of the previous section, concerning multiple testing of a
single hypothesis, to testing multiple hypotheses. Namely, we will arrive at a generalization of845

the Bonferroni–Holm procedure [14]. Fix a parameter

r ≤ lnK

1− lnK
(B.1)

(cf. (A.6)); the Bonferroni–Holm case is r := −∞.
Suppose pk is a p-value for testing a composite null hypothesis Hk (meaning that, for any

ε ∈ (0, 1), P(pk ≤ ε) ≤ ε under Hk). For I ⊆ {1, . . . ,K}, let HI be the hypothesis

HI := (∩k∈IHk) ∩
(
∩k∈{1,...,K}\IHc

k

)
,

where Hc
k is the complement of Hk.850

Fix a significance level ε. Let us reject HI when

r

r + 1
|I|1+1/r

Mr,|I|(pI) ≤ ε,

where pI is the vector of pk for k ∈ I; by Proposition 1, the probability of error will be at most ε.
If we now reject Hk when all HI with I ⊇ {k} are rejected, the family-wise error rate (FWER)
will be at most ε. This gives the procedure described as Algorithm 1, in which (k1, . . . , kK) stands
for a fixed permutation of {1, . . . ,K} such that pk1 ≤ · · · ≤ pkK .855

An alternative representation of the generalized Bonferroni–Holm procedure given as Algo-
rithm 1 is in terms of adjusting the p-values p1, . . . , pK to new p-values p∗1, . . . , p

∗
K that are valid

in the sense of the FWER: we are guaranteed to have P(mink∈I p
∗
k ≤ ε) ≤ ε for all ε ∈ (0, 1), where
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Algorithm 2. Generalized Bonferroni–Holm procedure for adjusting p-values
Inputs: parameter r < −1 (or, w.l.o.g., (B.1));

sequence of p-values p1, . . . , pK ordered as p(1) ≤ · · · ≤ p(K).
For k = 1, . . . ,K
p∗k := 0
I := {k}
For i = K, . . . , 1, 0

If r
r+1 |I|

1+1/rMr,|I|(p(I)) > p∗k
p∗k := r

r+1 |I|
1+1/rMr,|I|(p(I))

I := I ∪ {i}

I is the set of the indices k of the true hypotheses Hk. The adjusted p-values can be defined as

p∗k := max
k∈I⊆{1,...,K}

r

r + 1
|I|1+1/r

Mr,|I|(pI)

and computed using Algorithm 2. 860

If we do not insist on controlling the FWER, we can still use our ways of combining p-values
instead of Bonferroni’s in more flexible procedures for testing multiple hypotheses, such as those
described in [10].


