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Abstract

This article contains various results on a class of non-monotone law-invariant risk functionals,

called the signed Choquet integrals. A functional characterization via comonotonic additivity

is established, along with some theoretical properties including six equivalent conditions for a

signed Choquet integral to be convex. We proceed to address two practical issues currently

popular in risk management, namely, robustness (continuity) issues and risk aggregation with

dependence uncertainty, for signed Choquet integrals. Our results generalize in several direc-

tions those in the literature of risk functionals. From the results obtained in this paper, we

see that many profound and elegant mathematical results in the theory of risk measures hold

for the general class of signed Choquet integrals; thus they do not rely on the assumption of

monotonicity.
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1 Introduction

Over the past few decades, measures of risk and variability are introduced to quantify various

characteristics of random financial losses of a financial institution. These measures are mappings

from the set of random variables to real numbers (thus, risk functionals). Typical examples of

risk measures include the Value-at-Risk, the Expected Shortfall and various coherent or convex

risk measures as introduced by Artzner et al. (1999) and Föllmer and Schied (2002), and typical

examples of variability measures include the variance, the standard deviation, the mean absolute
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deviation, and various deviation measures as introduced by Rockafellar et al. (2006). We refer to

McNeil et al. (2015) for a comprehensive treatment of the use of risk measures in modern risk

management.

In the practice of risk measurement, one very often assesses a risk through its distribution,

which is obtained via statistical and simulation analysis. In academic terms, this means commonly

used measures of risk and variability are law-invariant. From the work of Kusuoka (2001) and

Grechuk et al. (2009), a class of risk functionals becomes the building block of law-invariant risk

measures: the (law-invariant) signed Choquet integrals.

In this paper, a signed Choquet integral Ih : L∞ → R is defined as

Ih(X) =

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx, (1)

where L∞ is the set of bounded random variables in a probability space, and h : [0, 1] → R is

a function of bounded variation with h(0) = 0. The notion of signed Choquet integrals without

law-invariance originates from Choquet (1954) in the framework of capacities, and is further charac-

terized and studied in decision theory by Schmeidler (1986, 1989) and extended by Cerreia-Vioglio

et al. (2012, 2015) to general spaces.

From a risk management perspective, we focus on law-invariant functionals in this paper. In

what follows we shall omit the term “law-invariant”, as all risk functionals we discuss are law-

invariant. There has been an extensive literature on a subclass of signed Choquet integrals, in

which h is increasing and h(1) = 1; we simply call this class of functionals increasing Choquet

integrals. In different contexts, such functionals Ih are referred to as L-functionals (Huber and

Ronchetti (2009)) in statistics, Yaari’s dual utilities (Yaari (1987)) in decision theory, distorted

premium principles (Denneberg (1994) and Wang et al. (1997)) in insurance, and distortion risk

measures (Kusuoka (2001) and Acerbi (2002)) in finance. In particular, the two most important risk

measures used in current banking and insurance regulation, the Value-at-Risk and the Expected

Shortfall, are increasing Choquet integrals. For properties and recent advances on various issues

related to increasing Choquet integrals, we refer to Dhaene et al. (2012), Wang et al. (2015), Kou

and Peng (2016), Delbaen et al. (2016) and Ziegel (2016).

On the other hand, there has been relatively limited research on signed Choquet integrals

compared to that on increasing Choquet integrals. The major difference between an increasing

Choquet integral and a signed one is that the latter, being more general, is not necessarily monotone.

We are particularly interested in signed Choquet integrals for various practical and theoretical

reasons. First, although a suitable risk measure should be monotone as argued by Artzner et al.
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(1999), this issue is irrelevant for a measure of variability. Indeed, all practical measures of variability

are not monotone (for instance, variance, standard deviation, or deviation measures in Rockafellar

et al. (2006) and Grechuk et al. (2009)). Therefore, instead of obtaining an increasing-Choquet-

integral-based representation for law-invariant coherent risk measures as in Kusuoka (2001), one

naturally arrives at a signed-Choquet-integral-based representation of deviation measures as in

Grechuk et al. (2009). In other words, signed Choquet integrals are relevant as long as a measure

of variability is concerned. Second, there are many preferences or risk measures used in practice

which are not monotone. A prominent example is the mean-variance and the mean-standard-

deviation preferences as already studied by Markowitz (1952); see also Filipović and Svindland

(2008) for a study of risk sharing with non-monotone risk measures, and Furman et al. (2017) for

the class of Gini Shortfall risk measures, which are not necessarily monotone. Third, in economic

decision theory, signed Choquet integrals appear naturally in many rank-based decision making;

see Quiggin (1982), Gilboa and Schmeidler (1989) and De Waegenaere and Wakker (2001). Fourth,

from a mathematical perspective, we aim to generalize some elegant results, which are known to

hold true for increasing Choquet integrals, to the broader class of signed Choquet integrals.

The main contributions that we offer are summarized below. In Section 2, we establish a

characterization of signed Choquet integrals via comonotonic additivity based on the seminal work

of Schmeidler (1986). Furthermore, various theoretical properties of signed Choquet integrals are

studied, such as monotonicity, additivity, quantile representations, convexity, quasi-convexity, con-

vex order consistency, and mixture-concavity. The characterization and properties are partially

known in the literature; yet we are unaware of a good summarizing article (hopefully this paper

serves as one). In particular, few results were found for an atomless probability space.

We proceed to discuss in Sections 3 and 4 two practically relevant and currently popular prob-

lems concerning signed Choquet integrals: robustness issues and risk aggregation with dependence

uncertainty. As pointed out by the recent Basel accords (see BCBS (2016)), model uncertainty and

robustness become a focal point in both academic research and industry practice of risk assessment

over the past few years. We refer to Embrechts et al. (2014) and Emmer et al. (2015) for a summary

on these issues and their relation to the recent development in banking and insurance regulation.

For more on robustness of risk measures, see Cont et al. (2010), Kou et al. (2013), Krätschmer et al.

(2014) and Embrechts et al. (2015), and for more on risk aggregation with dependence uncertainty,

see Embrechts et al. (2013), Bernard et al. (2014) and Cai et al. (2018). Our results generalize those

of Cont et al. (2010), Embrechts et al. (2015) and Pesenti et al. (2016) on robustness of distortion
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risk measures and L-statistics, and those of Wang et al. (2015) and Cai et al. (2018) on extreme

risk aggregation for distortion risk measures. In particular, the detailed analysis in Wang et al.

(2015) used to characterize an extreme-aggregation measure cannot be applied to signed Choquet

integrals, and in this paper, we develop a completely different and more systemic approach based

on some recent results on asymptotics of the set of risk aggregation.

From the results obtained in this paper, we clearly see that many profound and elegant mathe-

matical results in the theory of risk functionals remain valid for the general class of signed Choquet

integrals; they do not rely on the common assumption of monotonicity. Hopefully, our results serve

as a building block for future theoretical developments and applications of signed Choquet integrals.

In this paper, our discussions are confined to the space of bounded random variables L∞, in

order for signed Choquet integrals to be properly defined, and for all results to be concisely stated.

Some results involve norm-continuity on the space or an operation (addition or subtraction) on

several signed Choquet integrals, and hence we need to fix a suitable domain upfront. Certainly,

many results can be naturally generalized to functional-specific spaces such as Λ-spaces (Lorentz

(1951)) and Orlicz spaces (e.g. Rao and Ren (1991)). We leave this direction of research for future

work.

2 Characterization and properties

2.1 Notation and definition

We first list some notation which will be used throughout. Let (Ω,A,P) be an atomless

probability space. Consistently with the literature on risk measures, we work with the space L∞

of essentially bounded random variables in (Ω,A,P) equipped with L∞-norm || · ||∞; this choice of

common domain ensures all functionals we encounter are well-defined. A functional ρ : L∞ → R is

law-invariant if ρ(X) = ρ(Y ) for any X,Y ∈ L∞ that have the same distribution under P (denoted

as X
d
= Y ). For all functionals discussed in this paper, we assume law-invariance. Moreover, we

denote by M the set of distribution functions of X ∈ L∞. Terms of “increasing” and “decreasing”

are in the non-strict sense.

For F ∈ M, we write X ∼ F for X ∈ L∞ and X has distribution F . The left-continuous

generalized inverse of F (left-quantile) is denoted by

F−1(t) = inf{x ∈ R : F (x) ≥ t}, t ∈ (0, 1], and F−1(0) = sup{x ∈ R : F (x) = 0},
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whereas its right-continuous generalized inverse (right-quantile) is

F−1+(t) = sup{x ∈ R : F (x) ≤ t}, t ∈ [0, 1), and F−1+(1) = F−1(1).

For any random variable X, we use FX to denote its distribution function. Further, write

H = {h : h maps [0, 1] to R, h is of bounded variation and h(0) = 0}.

Next we present the definition of a signed Choquet integral, which originates from the seminal

work of Choquet (1954) in the theory of capacities without assuming law-invariance.

Definition 1. A signed Choquet integral Ih : L∞ → R is defined as

Ih(X) =

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx, (2)

where h ∈ H. The function h is called the distortion function of Ih.

We first note that Ih is always finite on L∞. For X ∈ L∞, since h ∈ H is of bounded variation,

it is measurable and bounded. We can take M > 0 such that |X| ≤M and hence

Ih(X) =

∫ 0

−M
(h(P(X ≥ x))− h(1)) dx+

∫ M

0
h(P(X ≥ x)) dx.

As h is bounded, we have |Ih(X)| <∞.

Remark 1. Ih has an alternative formulation by replacing P(X ≥ x) with P(X > x) in (2). For

X ∈ L∞, the functions h(P(X ≥ x)) and h(P(X > x)) are equal almost everywhere for x ∈ R, and

therefore

Ih(X) =

∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞
0

h(P(X > x)) dx. (3)

In different places we shall use either of (2) and (3), whichever is more convenient.

From (2), it is clear that Iah1+bh2 = aIh1 + bIh2 for h1, h2 ∈ H and a, b ∈ R. In particular,

for any h ∈ H, we have Ih = Ih+ − Ih− , where h+ ∈ H and h− ∈ H are increasing functions such

that h = h+ − h− via the Jordan decomposition. This decomposition will be used repeatedly in

this paper, as often results are available in the literature for Choquet integrals with an increasing

distortion function.

Before we proceed with characterizing signed Choquet integrals, we present some more ter-

minology used throughout the paper. A most relevant concept to signed Choquet integrals is
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comonotonicity. Random variables X and Y are said to be comonotonic if there exists Ω0 ∈ A with

P(Ω0) = 1 such that ω, ω′ ∈ Ω0,

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0.

For a functional ρ : L∞ → R, we say that ρ is comonotonic-additive, if for any comonotonic random

variables X,Y ∈ L∞, ρ(X + Y ) = ρ(X) + ρ(Y ); ρ is positively homogeneous, if for X ∈ L∞ and

constant λ > 0, ρ(λX) = λρ(X); ρ is (uniformly) norm-continuous, if it is (uniformly) continuous

with respect to L∞-norm; ρ is quasi-convex if ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )} for all X,Y ∈

L∞ and λ ∈ [0, 1].

A random variable X is said to be smaller than a random variable Y in convex order, denoted

by X ≤cx Y , if E[φ(X)] ≤ E[φ(Y )] for all convex φ : R→ R, provided that both expectations exist.

The following fact about comonotonicity and convex order is well-known (see e.g. Theorem 3.5 of

Rüschendorf (2013)): for any integrable random variables X, Y , Xc and Y c such that X
d
= Xc,

Y
d
= Y c, and Xc and Y c are comonotonic, one has X + Y ≤cx X

c + Y c. We say that a functional

ρ : L∞ → R is convex order consistent if ρ(X) ≤ ρ(Y ) for all random variables X,Y ∈ L∞ satisfying

X ≤cx Y .

2.2 Characterization

In the following, we establish a functional characterization for signed Choquet integrals. As far

as we are aware of, this characterization is not known to the literature without assuming monotonic-

ity. We shall first show that a law-invariant, comonotonic-additive and uniformly norm-continuous

functional from L∞ to R is necessarily a signed Choquet integral, based on a remarkable result of

Schmeidler (1986), which we list as Theorem 7 in the appendix for completeness. The converse is

also true, but it will be verified later as we establish some further properties of the signed Choquet

integrals.

Theorem 1. A functional I : L∞ → R is law-invariant, comonotonic-additive and uniformly

norm-continuous if and only if I is a signed Choquet integral.

Proof. (i) “ ⇒”: By Theorem 7 (Proposition 2 of Schmeidler (1986)), a comonotonic-additive

and norm-continuous functional I has a representation

I(X) =

∫ 0

−∞
(v(X ≥ x)− v(Ω)) dx+

∫ ∞
0

v(X ≥ x) dx, X ∈ L∞, (4)
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where the set function v : A → R is given by v(E) = I(1E), E ∈ A. Note that I is law-

invariant, which means I(1E) = h(P(E)) for some function h : [0, 1] → R. Hence v(E) =

h(P(E)) for E ∈ A, and (4) can be rewritten as

I(X) =

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx. (5)

Next we verify h ∈ H, so that I is indeed a signed Choquet integral. Noting that comonotonic

additivity gives I(0) + I(0) = I(0) = h(0), we have h(0) = 0. It remains to verify that h

is of bounded variation. Let U be a uniform random variable on [0, 1]. First, notice that

h(t) = I(1{U<t}) < ∞ for t ∈ [0, 1]. Thus h is finite. As I is uniformly norm-continuous, for

a fixed ε > 0, there exists a δ > 0 such that |I(X) − I(Y )| < ε, whenever ‖X − Y ‖∞ < δ.

Let P = {t0, . . . , tn} be an arbitrary partition of [0, 1], where 0 = t0 < · · · < tn = 1. In the

summation
∑n

i=1 |h(ti) − h(ti−1)|, there are exactly n terms of h(x), x ∈ P with a positive

sign, and n terms of h(y), y ∈ P with a negative sign. Therefore, we can write two increasing

sequences {x1, . . . , xn} ⊂ P and {y1, . . . , yn} ⊂ P such that

n∑
i=1

|h(ti)− h(ti−1)| =
n∑
i=1

h(xi)−
n∑
i=1

h(yi).

Since positive and negative terms in the summation
∑n

i=1 |h(ti)−h(ti−1)| appear in pairs, we

have xi, yi ∈ [ti−1, ti], i = 1, . . . , n.

Next, let f : [0, 1] → R and g : [0, 1] → R be given by f(t) =
∑n

i=1 1{t>1−xi} and g(t) =∑n
i=1 1{t>1−yi}. Let X = δf(U) and Y = δg(U). Clearly, ‖X − Y ‖∞ ≤ δ because xi, yi ∈

[ti−1, ti] for each i = 1, . . . , n. It is straightforward to calculate

I(X) =

∫ ∞
0

h(P(δf(U) > x)) dx = δ

∫ ∞
0

h(P(f(U) > y)) dy = δ

n∑
i=1

h(xi),

and similarly I(Y ) = δ
∑n

i=1 h(yi). Noting that ‖X − Y ‖∞ < δ, we have

|I(X)− I(Y )| = δ

∣∣∣∣∣
n∑
i=1

h(xi)−
n∑
i=1

h(yi)

∣∣∣∣∣ < ε.

It follows that
n∑
i=1

|h(ti)− h(ti−1)| <
ε

δ
<∞,

and this holds for an arbitrary partition P = {t0, . . . , tn}. Thus h has bounded variation.

(ii) “ ⇐”: Law-invariance is obvious. The uniform norm-continuity of a signed Choquet integral

is verified by Lemma 4 in Section 3. Comonotonic additivity is implied by Lemma 3 below;

see Remark 4.
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Remark 2. Theorem 4.2 of Murofushi et al. (1994) characterizes signed Choquet integrals that are

not necessarily law-invariant. Comparing the above result with our Theorem 1, our result suggests

that this extra law-invariance condition implies the existence of a function h such that I = Ih, and

h has bounded variation on [0, 1]. The corresponding condition in Murofushi et al. (1994) is that

the set function µ, which is h ◦ P in our paper, has bounded variation on (Ω,A). In fact, we can

verify from the definition of total variation in Murofushi et al. (1994) that the total variation of h

on [0, 1] is equal to the total variation of h ◦ P on (Ω,A).

We can also compare Theorem 1 with Theorem 22 of Cerreia-Vioglio et al. (2015) which char-

acterizes signed Choquet integrals on general spaces without law-invariance. In the latter result,

a property of functional bounded variation is imposed, instead of the uniform norm-continuity in

Theorem 1. Generally, uniform norm-continuity is not sufficient for functional bounded variation

used in Cerreia-Vioglio et al. (2012, 2015). The assumption of law-invariance provides extra reg-

ularity and continuity for the underlying functional, due to a huge dimension reduction resulting

from mapping random variables to their distributions. This phenomenon is well documented in

the risk management literature, see e.g. Jouini et al. (2006) for the case of convex risk measures

on L∞ and more recently, Gao et al. (2018) and Gao and Xanthos (2018) for the case of convex

risk measures on Orlicz hearts. Generally speaking, assuming the same set of other properties,

law-invariant functionals have better regularity conditions than non-law-invariant ones.

Remark 3. From the proof of Theorem 1, we see that, if uniform norm-continuity of I is weakened

to norm-continuity, a representation of the form (5) holds with a function h not necessarily of

bounded variation (thus, not a signed Choquet integral according to our definition). Indeed, for

a positively homogeneous functional, uniform continuity is equivalent to Lipschitz continuity; see

also Lemma 4.

2.3 Basic properties

In this and the next few sections, we give several basic properties of signed Choquet integrals

which will be useful in Sections 3 and 4. These properties are partially known in the literature (see

e.g. De Waegenaere and Wakker (2001) and Acerbi (2002) for special cases), and can be derived

from classic properties of increasing Choquet integrals; for the sake of completeness we provide

short self-contained proofs in the appendix.

Lemma 1. For h1, h2 ∈ H, if h1(1) = h2(1), then

h1 ≤ h2 on [0, 1] ⇔ Ih1 ≤ Ih2 on L∞.
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In particular, h1 = h2 holds if and only if Ih1 = Ih2 on L∞.

For h ∈ H, Ih is said to be increasing (or decreasing) if, for all random variables X,Y ∈ L∞,

X ≤ Y implies Ih(X) ≤ Ih(Y ) (or Ih(X) ≥ Ih(Y ), respectively).

Lemma 2. For h ∈ H,

(i) Ih is increasing (respectively decreasing) if and only if h is increasing (respectively decreasing);

(ii) for X ∈ L∞ and c ∈ R, Ih(X + c) = Ih(X) + ch(1);

(iii) for X ∈ L∞ and λ > 0, Ih(λX) = λIh(X);

(iv) for X ∈ L∞, Ih(−X) = Iĥ(X), where ĥ : [0, 1]→ R is given by ĥ(x) = h(1− x)− h(1).

In the context of non-law-invariant comonotonic-additive functionals, similar results to Lemma

2 (i)-(iii) can be found in Proposition 4.11 of Marinacci and Montrucchio (2004).

2.4 Quantile representation

In this section, we present an important property of signed Choquet integrals, namely, the

quantile representation. This result will be referred to repeatedly in this paper. In particular,

it is used to show the following properties of a signed Choquet integral: comonotonic additivity

(Theorem 1 above), convex order consistency (Theorem 2 below), continuity with respect to weak

convergence (Theorem 4 below), and extreme-aggregation for heterogeneous portfolios (Theorem 6

below). In the following Lemma, the first two conditions (i) and (ii) for a quantile representation

are known for increasing Choquet integrals (see e.g. Denneberg (1994) and Theorems 4 and 6 of

Dhaene et al. (2012)). Although (i) and (ii) can be obtained from corresponding results on increasing

Choquet integrals via a Jordan decomposition, we give an independent short proof here.

Lemma 3. For h ∈ H and X ∈ L∞,

(i) if h is right-continuous, then Ih(X) =
∫ 1
0 F

−1+
X (1− p) dh(p);

(ii) if h is left-continuous, then Ih(X) =
∫ 1
0 F

−1
X (1− p) dh(p);

(iii) if F−1X is continuous, then Ih(X) =
∫ 1
0 F

−1
X (1− p) dh(p).

Proof. (i) Without loss of generality, we may assume X ≥ 0, and the general case can be easily

obtained via Lemma 2. Noting that h is right-continuous, h(P(X > x)) =
∫ P(X>x)
0 dh(p).
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Since h is of bounded variation, one can apply Fubini’s theorem to the following Lebesgue-

Stieltjes integral,

Ih(X) =

∫ ∞
0

∫ P(X>x)

0
dh(p) dx =

∫ 1

0

∫ F−1+
X (1−p)

0
dx dh(p) =

∫ 1

0
F−1+X (1− p) dh(p),

where the second equality is due to p ≤ P(X > x)⇔ x ≤ F−1+X (1− p).

(ii) Note that ĥ in part (iii) of Lemma 2 is right-continuous, and F−1X (p) = −F−1+−X (1−p). Applying

part (iii) of Lemma 2, we obtain

Ih(X) = Iĥ(−X) =

∫ 1

0
F−1+−X (1− p) dĥ(p) = −

∫ 1

0
F−1X (p) dh(1− p) =

∫ 1

0
F−1X (1− p) dh(p).

(iii) As h can be replaced by its Jordan decomposition h = h+ − h−, it suffices to show the

representation for h increasing. First note that
∫ 1
0 F

−1
X (1 − p) dh(p) is finite, and through

integration-by-parts,∫ 1

0
F−1X (1− p) dh(p) = F−1X (0)h(1)−

∫ 1

0
h(p) dF−1X (1− p).

For p ∈ [0, 1], we have

p ∈ [P(X > F−1X (1− p)),P(X ≥ F−1X (1− p))].

Define g∗1 : R→ R by

g∗1(x) = sup{h(y) ∈ R : y ∈ [P(X > x),P(X ≥ x)]}.

For p ∈ [0, 1],

h(p) ≤ g∗1(F−1X (1− p)) = sup{h(y) ∈ R : y ∈ [P(X > F−1X (1− p)),P(X ≥ F−1X (1− p))]},

and therefore,∫ 1

0
h(p) dF−1X (1− p) ≤

∫ 1

0
g∗1(F−1X (1− p)) dF−1X (1− p) =

∫ F−1
X (0)

F−1
X (1)

g∗1(t) dt

=

∫ F−1
X (0)

F−1
X (1)

h(P(X ≥ t)) dt.

Via a symmetric argument through replacing g∗1 by g∗2 : R→ R,

g∗2(x) = inf{h(y) ∈ R : y ∈ [P(X > x),P(X ≥ x)]},
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we obtain ∫ F−1
X (0)

F−1
X (1)

h(P(X > x)) dx ≤
∫ 1

0
h(p) dF−1X (1− p).

Note that ∫ F−1
X (0)

F−1
X (1)

h(P(X > x)) dx =

∫ F−1
X (0)

F−1
X (1)

h(P(X ≥ x)) dx,

and therefore we have∫ 1

0
h(p) dF−1X (1− p) =

∫ F−1
X (0)

F−1
X (1)

h(P(X ≥ x)) dx.

Finally, for X ∈ L∞,

Ih(X) =

∫ F−1
X (1)

F−1
X (0)

h(P(X ≥ x)) dx−
∫ 0

F−1
X (0)

h(1) dx

= −
∫ 1

0
h(p) dF−1X (1− p) + F−1X (0)h(1)

=

∫ 1

0
F−1X (1− p) dh(p).

This completes the proof.

Remark 4. Part (i) of Lemma 3 implies comonotonic additivity of a signed Choquet integral

Ih. First, we decompose h = hl + hr, where hl and hr are left-continuous and right-continuous,

respectively. This is always possible as h has countably many points of discontinuity. Then, it

follows from Lemma 3 that Ihl and Ihr are both comonotonic-additive, as the left- and right-

quantiles are comonotonic-additive (a well-known fact; see e.g. Proposition 7.20 of McNeil et al.

(2015) for the case of left-quantiles).

2.5 Convexity, convex order consistency, and mixture-concavity

Next we show that convex order consistency of a signed Choquet integral is equivalent to its

distortion function being concave. For increasing Choquet integrals, this result is established by

Yaari (1987).

Theorem 2. For random variables X,Y ∈ L∞, X ≤cx Y if and only if Ih(X) ≤ Ih(Y ) for all

concave functions h ∈ H.

Proof. (i) “⇒”: Given X,Y ∈ L∞ with distributions F and G respectively, let

a = ess inf{X} ∧ ess inf{Y }, b = ess sup{X} ∨ ess sup{Y }
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and f = 1 − F, g = 1 − G. If X ≤cx Y , by Equation (3.A.7) of Shaked and Shanthikumar

(2007),

E[X] = E[Y ] and

∫ ∞
x

F (u) du ≤
∫ ∞
x

G(u) du for all x,

which is ∫ b

a
f(t) dt =

∫ b

a
g(t) dt and

∫ x

a
f(t) dt ≥

∫ x

a
g(t) dt for a ≤ x ≤ b.

A concave function h defined on [0, 1] is necessarily continuous on (0, 1). Define φ : [0, 1]→ R

by

φ(x) =



h(x) for 0 < x < 1;

lim
x↓0

h(x) for x = 0;

lim
x↑1

h(x) for x = 1.

Since h has bounded variation, it can be written as the difference of two increasing functions.

As the bounded monotone functions have finite limits, limx↓0 h(x) and limx↑1 h(x) are well de-

fined. Note that φ is a continuous concave function, φ = h on (0, 1) and φ ≥ h on [0, 1]. By the

classic Hardy-Littlewood-Pólya inequality (listed as Theorem 8 for the sake of completeness),∫ b

a
φ(f(x)) dx ≤

∫ b

a
φ(g(x)) dx.

By Equation (3.A.12) of Shaked and Shanthikumar (2007), a = ess inf{Y } and b = ess sup{Y },

and therefore h(g(x)) = φ(g(x)) for x ∈ (a, b). Moreover, h(f(x)) = h(g(x)) for x > b or x < a.

Utilizing the above observations, we have

Ih(X)− Ih(Y ) =

∫ b

a
(h(f(x))− h(g(x))) dx

=

∫ b

a
(h(f(x))− φ(g(x))) dx

≤
∫ b

a
(φ(f(x))− φ(g(x))) dx ≤ 0.

(ii) “⇐”: For all p ∈ [0, 1], t ∈ [0, 1], let h(t) = −1{t≥1−p}(t− 1 + p), and then h is concave and

in H. For fixed p, by Lemma 3,

Ih(X) = −
∫ 1

1−p
F−1X (1− t) dt = −

∫ p

0
F−1X (u) du.

Thus for all p ∈ [0, 1], Ih(X) ≤ Ih(Y ) results in∫ p

0
F−1(t) dt ≥

∫ p

0
G−1(t) dt,

which implies X ≤cx Y by Theorem 3.A.5 of Shaked and Shanthikumar (2007).
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Remark 5. The forward implication of Theorem 2 can also be deduced by noticing that ν = h ◦ P

defines a submodular game (see Marinacci and Montrucchio (2004)) whenever h is concave. Then

an application of Corollary 4.2 of Marinacci and Montrucchio (2004) and Theorem 4.1 of Dana

(2005) establishes the claim.

At this point, we are ready to establish six equivalent conditions characterizing the convexity

of a signed Choquet integral. For a law-invariant functional ρ on L∞, define ρ̃ : M → R by

ρ̃(F ) = ρ(X) where X ∼ F , and we say that ρ is concave on mixtures if ρ̃ is concave.

Theorem 3. For h ∈ H, the following are equivalent: (i) h is concave; (ii) Ih is convex order

consistent; (iii) Ih is subadditive; (iv) Ih is convex; (v) Ih is quasi-convex; (vi) Ih is concave on

mixtures.

Proof. We complete the proof in the order (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (vi)⇒ (i).

(i)⇒ (ii): Guaranteed by Theorem 2.

(ii) ⇒ (iii): By Theorem 1, Ih is law-invariant and comonotonic-additive. We take random

variables X,Y and comonotonic random variables Xc, Y c whose distribution functions are identical

to X,Y , respectively. Then X + Y ≤cx X
c + Y c as mentioned in Section 2.1. Thus

Ih(X + Y ) ≤ Ih(Xc + Y c) = Ih(Xc) + Ih(Y c) = Ih(X) + Ih(Y ),

and Ih is subadditive.

(iii)⇒ (iv): As Ih is positively homogeneous, subadditivity is equivalent to convexity.

(iv)⇒ (v): Convexity is stronger than quasi-convexity by definition.

(v)⇒ (vi): Take any x, y ∈ [0, 1], x ≤ y. Define random variables X,Y, Z by

P(X = 0) = 1− y, P(X = 1/2) = y − x, P(X = 1) = x,

and the joint distribution function of Y and Z is given by

P(Y = 0, Z = 0) = 1− y, P(Y = 1, Z = 0) = P(Y = 0, Z = 1) =
y − x

2
, P(Y = 1, Z = 1) = x.

Clearly X
d
= 1

2Y + 1
2Z and Y

d
= Z. Since Ih is quasi-convex and law-invariant, we have

Ih(X) = Ih

(
1

2
Y +

1

2
Z

)
≤ max{Ih(Y ), Ih(Z)} = Ih(Y ).

Note that

P(X ≥ t) =



1 t ≤ 0;

y 0 < t ≤ 1
2 ;

x 1
2 < t ≤ 1;

0 t > 1,

and P(Y ≥ t) =


1 t ≤ 0;

1
2x+ 1

2y 0 < t ≤ 1;

0 t > 1.
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As

Ih(X) =

∫ 1
2

0
h(y) dt+

∫ 1

1
2

h(x) dt =
1

2
h(x) +

1

2
h(y),

and

Ih(Y ) =

∫ 0

−∞
(h(1)− h(1)) dt+

∫ 1

0
h

(
1

2
x+

1

2
y

)
dt+

∫ ∞
1

h(0) dt = h

(
1

2
x+

1

2
y

)
,

Ih(X) ≤ Ih(Y ) leads to 1
2h(x)+ 1

2h(y) ≤ h
(
1
2x+ 1

2y
)
; thus h is mid-point concave. By the Sierpinski

Theorem (see page 12 of Donoghue (1969)), a mid-point concave and Lebesgue measurable function

is a concave function. Therefore h is concave; (i) holds. With concavity of h, (vi) is straightforward

from the definition of Choquet integral in (2).

(vi) ⇒ (i): For p, q, λ ∈ [0, 1], let F be a Bernoulli distribution with mean p and G be a

Bernoulli distribution with mean q. Then λF + (1 − λ)G is the Bernoulli distribution with mean

λp+ (1− λ)q. It follows from simple calculation that

λh(p) + (1− λ)h(q) = λĨh(F ) + (1− λ)Ĩh(G) ≤ Ĩh(λF + (1− λ)G) = h(λp+ (1− λ)q),

and thus h is concave.

Remark 6. Concavity on mixtures (mixture-concavity) is a natural property for risk functionals,

especially measures of variability, as it assigns a higher risk value to a mixture of two distributions

with equal risk value; see e.g. Acciaio and Svindland (2013). This property is satisfied by classic

variability measures, such as the variance, the standard deviation and the Gini deviation; see

Section 2.6 below. Although being equivalent for signed Choquet integrals, mixture-concavity is

essentially different from convexity for general functionals, in terms of both mathematical and

economic interpretations. For instance, taking a supremum over convex signed Choquet integrals

preserves convexity and may lose mixture-concavity, whereas taking an infimum over convex signed

Choquet integrals preserves mixture-concavity and may lose convexity.

2.6 Some examples

Example 1. We first present some examples of signed Choquet integrals used as measures of

distributional variability. Note that all distortion functions below are concave but not monotone.

(i) The range:

Range(X) = ess sup(X)− ess inf(X), X ∈ L∞.
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The range is a signed Choquet integral with a concave distortion function h given by h(t) =

1{0<t<1}, t ∈ [0, 1]. This fact can be checked by straightforward calculation:

Ih(X) =

∫ 0

ess inf(X)
dx+

∫ ess sup(X)

0
dx = ess sup(X)− ess inf(X) = Range(X).

(ii) The mean median difference:

MD(X) = min
x∈R

E[|X − x|] = E
[∣∣∣∣X − F−1X

(
1

2

)∣∣∣∣] , X ∈ L∞.

The mean median difference is a signed Choquet integral with a concave distortion function

h given by h(t) = min{t, 1− t}, t ∈ [0, 1]. This can be checked using Lemma 3:

Ih(X) =

∫ 1

1
2

F−1X (u) du−
∫ 1

2

0
F−1X (u) du

=
1

2
F−1X

(
1

2

)
−
∫ 1

2

0
F−1X (u) du+

∫ 1

1
2

F−1X (u) du− 1

2
F−1X

(
1

2

)
=

∫ 1

0

∣∣∣∣F−1X (u)− F−1X

(
1

2

)∣∣∣∣ du = MD(X).

(iii) The Gini deviation:

Gini(X) =
1

2
E[|X1 −X2|], X ∈ L∞, X1, X2, X are iid.

The Gini deviation is a signed Choquet integral with a concave distortion function h given by

h(t) = t− t2, t ∈ [0, 1]. This is due to its alternative form (see e.g. Denneberg (1990))

Gini(X) =

∫ 1

0
F−1X (t)(2t− 1) dt.

Example 2. Next we present some examples of signed Choquet integrals used as measures of risk.

The first two popular risk measures used in regulation are increasing signed Choquet integrals. The

last one does not necessarily have an increasing distortion function.

(i) The Value-at-Risk (VaR) for p ∈ (0, 1):

VaRp(X) = inf{x : P(X ≤ x) ≥ p}, X ∈ L∞.

VaRp for p ∈ (0, 1) is a signed Choquet integral with distortion function h given by h(t) =

1{t>1−p}, t ∈ [0, 1]. This can be directly checked via Lemma 3:

Ih(X) = F−1X (p) = VaRp(X).
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(ii) The Expected Shortfall (ES) for p ∈ (0, 1):

ESp(X) =
1

1− p

∫ 1

p
VaRt(X) dt, X ∈ L∞.

ESp for p ∈ (0, 1) is a signed Choquet integral with distortion function h given by h(t) =

min{ t
1−p , 1}, t ∈ [0, 1]. This can be directly checked via Lemma 3:

Ih(X) =
1

1− p

∫ 1

p
F−1X (t) dt = ESp(X).

(iii) The Gini Shortfall (GS) for p ∈ [0, 1) and λ ≥ 0:

GSλp(X) = ESp(X) + λTGinip(X), X ∈ L∞,

where TGinip is the tail-Gini functional,

TGinip(X) =
2

(1− p)2

∫ 1

p
F−1X (t)(2t− (1 + p)) dt, X ∈ L∞.

By Theorem 4.1 of Furman et al. (2017), GSλp for p ∈ [0, 1) and λ ≥ 0 is a signed Choquet

integral with distortion function h given by

h(t) =
1

(1− p)2

(
(1− p)t+ 4λt

(
1− t

2
− 1 + p

2

))
1{t≤1−p} + 1{t>1−p}, t ∈ [0, 1].

A Gini Shortfall is an increasing Choquet integral if and only if λ ∈ [0, 12 ].

Example 3. Below we look at the standard deviation, which is not a signed Choquet integral, but

a supremum over some signed Choquet integrals. Let

H̃ =

{
h ∈ H : h(1) = 0,

∫ 1

0
(h′(t))2 dt ≤ 1, h is concave

}
.

The standard deviation, defined as

σ(X) =
√
E[X2]− (E[X])2, X ∈ L∞,

has the following representation

σ(X) = sup
h∈H̃

Ih(X), X ∈ L∞, (6)

and hence it is the supremum over a class of signed Choquet integrals.

To show this, let Z = {Z ∈ L∞ : E[Z] = 0, E[Z2] ≤ 1}. It is clear that, for X ∈ L∞,

σ(X) =
E[X(X − E[X])]

σ(X)
= E

[
X
X − E[X]

σ(X)

]
≤ sup

Z∈Z
E[XZ],
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and for any Z ∈ Z, we have E[XZ] = cov(X,Z) ≤ σ(Z)σ(X) ≤ σ(X). Therefore, by the Fréchet-

Hoeffding inequality (see e.g. Lemma 4.60 of Föllmer and Schied (2016)),

σ(X) = sup
Z∈Z

E[XZ] = sup
Z∈Z

∫ 1

0
F−1Z (u)F−1X (u) du.

Via the relation h(t) =
∫ t
0 F
−1
Z (1 − u) du, t ∈ [0, 1], we establish a one-to-one mapping from the

distributions of Z ∈ Z to functions in H̃. Therefore, using Lemma 3,

σ(X) = sup
Z∈Z

∫ 1

0
F−1Z (u)F−1X (u) du = sup

h∈H̃

∫ 1

0
F−1X (1− u) dh(u) = sup

h∈H̃
Ih(X), X ∈ L∞.

Note that h ∈ H̃ is concave. As a consequence, each Ih, h ∈ H̃ is subadditive, convex and

consistent with the convex order (see Theorem 3), and so is the standard deviation σ by noting

that these properties are preserved when taking a supremum.

Indeed, all law-invariant deviation measures in the sense of Rockafellar et al. (2006) admit a

signed Choquet integral representation similar to (6); this result is established in Grechuk et al.

(2009).

Example 4. We look at two further examples of measures of distributional variability based on

risk measures in Example 2. They will be revisited in Sections 3 and 4.

(i) The inter-quantile range (IQR) for p ∈ (1/2, 1):

IQRp(X) = VaRp(X)−VaR1−p(X), X ∈ L∞.

The inter-quantile range is a commonly used measure of dispersion in statistics, and the

typical choice of p is 0.75, yielding the difference between the first quarter and the third

quarter quantiles. IQRp for p ∈ (1/2, 1) is a signed Choquet integral with distortion function

h given by h(t) = 1{1−p<t≤p}, t ∈ [0, 1]; see Figure 1. Unlike the other measures of variability

in Example 1, the distortion function h of IQRp is not concave, and hence IQRp is not convex

or convex-order consistent by Theorem 3. For X ∈ L∞ with a continuous quantile at 1 − p,

noting that F+
X (1− p) = −F−X(p) by Lemma 2 (iv), we can alternatively write

IQRp(X) = VaRp(X) + VaRp(−X). (7)

(ii) The inter-ES range (IER) for p ∈ (1/2, 1):

IERp(X) =
1

1− p

(∫ 1

p
VaRt(X) dt−

∫ 1−p

0
VaRt(X) dt

)
, X ∈ L∞.
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Figure 1: Distortion functions of IQRp (left) and IERp (right)

Similarly to (7), we can write, without assuming a continuous quantile,

IERp(X) = ESp(X) + ESp(−X), X ∈ L∞.

IERp for p ∈ (1/2, 1) is a signed Choquet integral with distortion function h given by h(t) =

min{ t
1−p , 1} + min{ p−t1−p , 0}, t ∈ [0, 1]; see Figure 1. In sharp contrast to IQRp, IERp has a

concave distortion function and hence it is convex and convex-order consistent.

3 Continuity

In this section, we discuss some issues related to continuity of signed Choquet integrals. We

first demonstrate the simple fact that a signed Choquet integral is Lipschitz-continuous with respect

to L∞-norm. This result completes the proof of Theorem 1 above, and will be used later in Section

4 to study risk aggregation. This result can be derived (with a small effort) from Proposition

4.11 of Marinacci and Montrucchio (2004) on the continuity of signed Choquet integrals without

law-invariance. A simple self-contained proof is put in the appendix.

Lemma 4. For h ∈ H and X,Y ∈ L∞,

|Ih(X)− Ih(Y )| ≤ TVh‖X − Y ‖∞, (8)

where TVh is the total variation of h on [0, 1].

Next we study continuity with respect to convergence in distribution (equivalently, weak con-

vergence in the set of distributions M). In general, a signed Choquet integral is not necessarily
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continuous with respect to convergence in distribution in L∞, a well-known property of L-statistics;

see Cont et al. (2010) for a discussion on increasing Choquet integrals (termed distortion risk

measures) in risk management.

In risk management practice, convergence in distribution is the most common type of conver-

gence, due to the statistical nature of data analysis and simulation studies. This issue is closely

related to the notion of qualitative robustness of statistical functionals as pioneered by Hampel

(1971). It would then be of interest to study under what extra conditions a risk functional can be

robust, thus continuous with respect to convergence in distribution. This direction of research is

explored by Embrechts et al. (2015), Pesenti et al. (2016) and Krätschmer et al. (2017).

The following uniform integrability condition turns out to be relevant. A set D ⊂ L∞ is

h-uniformly integrable for h ∈ H, if

lim
k↓0

sup
X∈D

∫ k

0

∣∣F−1X (1− t)
∣∣ dh(t) = 0, (9)

and

lim
k↑1

sup
X∈D

∫ 1

k

∣∣F−1X (1− t)
∣∣ dh(t) = 0. (10)

Note that if h ∈ H is linear and non-constant in some neighborhoods of 0 and 1, then h-uniform

integrability reduces to the usual uniform integrability.

Theorem 4. For h ∈ H and X,X1, X2, · · · ∈ L∞, assume that Xn → X in distribution as n→∞

and {X,X1, X2, . . . } is h-uniformly integrable. If (i) h is continuous, or (ii) X has a continuous

inverse distribution function, then Ih(Xn)→ Ih(X) as n→∞.

Proof. For n ∈ N, let Fn and F be the distribution functions of Xn and X, respectively.

We first assume (i). By Lemma 3, we have

Ih(Xn) =

∫ 1

0
F−1n (1− p) dh(p) and Ih(X) =

∫ 1

0
F−1(1− p) dh(p). (11)

As h can be replaced by its Jordan decomposition h = h+ − h−, it suffices to show the statement

for an increasing and continuous h. The increasing function h induces a finite Borel measure µ on

[0, 1] via µ([0, x]) = h(x), x ∈ [0, 1]. Since F−1n → F−1 as n → ∞ almost everywhere on R and

h is continuous, the convergence is also µ-almost surely. Moveover, the h-uniform integrability of

{Xi}i∈N implies that {F−1n }n∈N is uniformly integrable with respect to the measure µ. Therefore,

using Vitali’s Convergence Theorem (Rudin (1987, p. 133)), we have Ih(Xn)→ Ih(X) as n→∞.

Next we assume (ii). In this case the convergence F−1n → F−1 is point-wise on (0, 1). Suppose

for the moment that h is left-continuous. By Lemma 3, (11) holds. Similarly to the case above, we
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assume that h is increasing, and it induces a finite Borel measure µ on [0, 1] via µ([0, x)) = h(x),

x ∈ [0, 1]. Note that the h-uniform integrability of {X,X1, X2, . . . } implies that, if µ({0}) > 0,

then F−1n (1) → 0 and F−1(1) = 0. Analogously, if µ({1}) > 0, then F−1n (0) → 0 and F−1(0) = 0.

Combining the above facts, F−1n → F−1 µ-almost surely as n → ∞. Using Vitali’s Convergence

Theorem, we have Ih(Xn)→ Ih(X) as n→∞.

If h is right-continuous, define the Borel measure µ on [0, 1] via µ([0, x]) = h(x), x ∈ [0, 1] and

use the representation in Lemma 3 (i). The conclusion follows analogously.

Finally, for a general h, we decompose h = hl + hr, where hl and hr are left-continuous and

right-continuous, respectively. Then we have

|Ih(Xn)− Ih(X)| ≤ |Ihl(Xn)− Ihl(X)|+ |Ihr(Xn)− Ihr(X)| → 0, as n→∞.

The proof is complete.

Next we present a condition on h which implies the h-uniform integrability for all random

variables. We say that h ∈ H is flat in neighborhoods of 0 and 1 if it satisfies the following

condition: if there exists some δ > 0 such that for all 0 < ε < δ, h(ε) = h(0) and h(1− ε) = h(1). In

this case, clearly, any set of random variables is h-uniformly integrable. This condition is satisfied

if, for instance, Ih is a finite linear combination of some quantile functionals.

Corollary 1. For h ∈ H and X,X1, X2, · · · ∈ L∞, assume that Xn → X in distribution as n→∞

and h is flat in neighborhoods of 0 and 1. If (i) h is continuous, or (ii) X has a continuous inverse

distribution function, then Ih(Xn)→ Ih(X) as n→∞.

Robustness properties of the two popular classes of risk measures VaR and ES (defined in

Section 2.6) are well-studied in the literature. With respect to convergence in distribution, it is

known that VaRp is continuous at random variables with a continuous quantile function, and ESp

is continuous at random variables among a uniformly integrable set. These are special cases of

Theorem 4 and Corollary 1.

Theorem 4 and Corollary 1 generalize Theorem 1 of Cont et al. (2010) for distortion risk

measures, Theorem 2.5 of Embrechts et al. (2015) on robustness in the set of risk aggregation, and

Theorem 3.5 of Pesenti et al. (2016) for finite-valued convex risk measures. Moreover, different from

the settings of Krätschmer et al. (2014, 2017) and Pesenti et al. (2016), our results do not rely on

any convexity assumptions.

20



Example 5 (Continuity of measures of distributional variability). As mentioned above, continuity

of risk measures with respect to convergence in distribution are well studied in the recent risk

management literature. Below, we apply Theorem 4 and Corollary 1 to the measures of variability

in Examples 1, 3 and 4.

(i) The range is generally not continuous with respect to convergence in distribution. Note that

for the distortion function h of the range, given by h(t) = 1{0<t<1}, t ∈ [0, 1], the h-uniform

integrality condition in (9) and (10) implies X = 0 a.s. for X ∈ D, which is very restrictive.

(ii) The mean median difference has a continuous distortion function h given by h(t) = min{t, 1−

t}, t ∈ [0, 1]. Since h is linear in neighbourhoods of 0 and 1, the h-uniform integrability is

equivalent to the usual uniform integrability. Hence, by Theorem 4, the mean median differ-

ence is continuous with respect to convergence in distribution over any uniformly integrable

set.

(iii) The Gini deviation has a continuous distortion function h given by h(t) = t − t2, t ∈ [0, 1].

For this distortion function h, as it has non-zero (one-sided) derivatives at 0 and 1, the h-

uniform integrability is equivalent to the usual uniform integrability. Therefore, by Theorem

4, the Gini deviation is also continuous with respect to convergence in distribution over any

uniformly integrable set.

(iv) The inter-quantile range for p ∈ (1/2, 1) has a distortion function h given by h(t) = 1{1−p<t≤p},

t ∈ [0, 1]. Note that h is flat in neighborhoods of 0 and 1, but it is not continuous. Hence, by

Corollary 1, the inter-quantile range is continuous with respect to convergence in distribution

over any set of random variables with continuous quantile functions.

(v) The inter-ES range for p ∈ (1/2, 1) has a distortion function h given by h(t) = min{ t
1−p , 1}+

min{ p−t1−p , 0}, t ∈ [0, 1]. Since h is linear in neighbourhoods of 0 and 1, the h-uniform inte-

grability is equivalent to the usual uniform integrability. Hence, by Theorem 4, the inter-ES

range is continuous with respect to convergence in distribution over any uniformly integrable

set.

(vi) The standard deviation is continuous with respect to convergence in distribution over any

uniformly square-integrable set. One can show this statement by applying Vitali’s Convergence

Theorem to the first and second moments. Theorem 4 does not directly lead to this statement.

Nevertheless, in Example 3 we have seen σ(X) = suph∈H̃ Ih(X), X ∈ L∞. By Hölder’s
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inequality, uniform square-integrability implies h-uniform integrability for each h ∈ H̃. Hence,

Theorem 4 implies that Ih is continuous with respect to convergence in distribution over any

uniformly square-integrable set.

Remark 7. The continuity results of signed Choquet integrals in Theorem 4 also hold on a set larger

than L∞, as long as Ih is well-defined on the corresponding set. In this paper, due to the limitation

of space, we focus on random variables in L∞. For robustness properties of risk functionals defined

on Orlicz hearts, we refer to Krätschmer et al. (2014, 2017).

4 Risk aggregation under uncertainty

In the literature of risk management, risk aggregation concerns quantities related to the sum

S = X1 + · · · + Xn (e.g. the distribution or a risk measure of S) of a risk vector (X1, . . . , Xn)

representing random losses from a certain portfolio. A currently popular direction of research is

risk aggregation with dependence uncertainty, where for each i = 1, . . . , n, the marginal distribution

Fi of Xi, is known while the joint distribution of (X1, ..., Xn) remains unspecified. We refer to

Embrechts et al. (2013, 2014) and Wang et al. (2013) for the case of the risk measure VaR (defined

in Section 2.6), Bernard et al. (2017a,b) for some recent development, and Section 8.4 of McNeil

et al. (2015) for a general discussion. As the precise distribution of S is unknown, one typically

studies the worst-case value of the aggregate risk evaluated by a risk measure ρ, that is,

sup{ρ(X1 + · · ·+Xn) : Xi ∼ Fi, i = 1, ..., n}. (12)

Another important quantity related to portfolio diversification is the worst-case diversification ratio,

defined as

sup

{
ρ(X1 + · · ·+Xn)

ρ(X1) + · · ·+ ρ(Xn)
: Xi ∼ Fi, i = 1, ..., n

}
. (13)

If the functional ρ is not convex, the quantities in (12)-(13) are generally difficult to analytically

compute. In this section we investigate them for signed Choquet integrals.

4.1 Homogeneous portfolios and the extreme-aggregation measure

To investigate the asymptotic behaviour of the values in (12)-(13) for homogeneous portfolios,

Wang et al. (2015) introduced the extreme-aggregation measure as follows. Denote the set of possible

sums of n F -distributed random variables by Sn(F ) = {X1+ · · ·+Xn : Xi ∼ F, i = 1, ..., n}, n ∈ N.
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Definition 2. The extreme-aggregation measure Γρ induced by a law-invariant functional ρ : L∞ →

R is defined as

Γρ : L∞ → (−∞,∞], Γρ(X) = lim sup
n→∞

{
1

n
sup{ρ(S) : S ∈ Sn(FX)}

}
.

Γρ provides a limit of (12)-(13) for homogenous portfolios. The VaR-ES relation ΓVaRp = ESp

for p ∈ (0, 1) is shown in Wang and Wang (2015) via direct construction; some first special cases of

this relation are established by Puccetti and Rüschendorf (2014). Generalizations to inhomogeneous

portfolios are given in Embrechts et al. (2015) (VaR and ES) and Cai et al. (2018) (distortion risk

measures and convex risk measures). For a distortion risk measure (equivalently, an increasing

Choquet integral) ρ, Wang et al. (2015) obtained an explicit expression for Γρ, which is the smallest

subadditive distortion risk measure dominating ρ. The proof used in Wang et al. (2015) is based

on analyzing the precise form of h, which requires a lot of delicate analysis and random variable

construction. Below we give a much more concise proof, generalizing the characterization of Γρ to

signed Choquet integrals.

To present our main result, for h ∈ H, define its concave envelope

h∗(t) = inf{g(t) : g is a concave function on [0, 1] and g ≥ h}, t ∈ [0, 1]. (14)

Note that calculating h∗ for a given h ∈ H is equivalent to finding the convex hull of the set

{(x, y) ∈ [0, 1]× R : h(x) ≥ y}.

It is clear that h∗ is concave as it is an infimum of concave functions. Further, h∗(0) = h(0) = 0

and h∗(1) = h(1); to see this, as h ∈ H is bounded, we can define a concave function g : [0, 1]→ R

as

g(t) =


0 t = 0

supt∈[0,1] h(t) 0 < t < 1

h(1) t = 1

Then one has 0 = h(0) ≤ h∗(0) ≤ g(0) = 0 and h(1) ≤ h∗(1) ≤ g(1) = h(1).

Our main result is the following theorem, which generalizes Theorem 3.2 of Wang et al. (2015)

for increasing Choquet integrals.

Theorem 5. For h ∈ H, the extreme-aggregation measure induced by Ih is Ih∗, and it is the smallest

law-invariant convex functional on L∞ dominating Ih.

The key to our proof of Theorem 5 is to show that the law-invariant functional ΓIh is comonotonic-

additive and uniformly norm-continuous, and from there we can rely on Theorem 1 to justify that
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it is a signed Choquet integral. We first demonstrate some useful facts built on several results in

Mao and Wang (2015). Denote for a distribution function F ∈M,

Bn(F ) =

{
1

n
(X1 + · · ·+Xn) : Xi ∼ F, i = 1, ..., n

}
,

and

C(F ) = {X : X ≤cx Y, where Y ∼ F} .

Lemma 5. For h ∈ H, the following statements hold.

(i) For F ∈M,

lim sup
n→∞

{sup{Ih(X) : X ∈ Bn(F )}} = sup{Ih(X) : X ∈ C(F )}. (15)

(ii) The functional on L∞, X 7→ supY ∈C(FX) Ih(Y ) is comonotonic-additive and convex order

consistent.

Proof. (i) Lemma 3.4 of Mao and Wang (2015) states Bn(F ) ⊂ C(F ) for n ∈ N. Therefore

lim sup
n→∞

{sup{Ih(T ) : T ∈ Bn(F )}} ≤ sup{Ih(T ) : T ∈ C(F )}. (16)

On the other hand, by Proposition 3.6 of Mao and Wang (2015), lim supn→∞ Bn(F )
∗

= C(F ),

where B
∗

is the L∞-closure of a set B. It follows that, for each Y ∈ C(F ), ε > 0 and m ∈ N,

there exists k ∈ N and Xk ∈ Bk(F ) such that ||Xk − Y ||∞ < ε. Hence, by Lemma 4,

sup{Ih(X) : X ∈ Bk(F )} ≥ sup{Ih(X) : X ∈ C(F )} − εTVh.

Therefore,

lim sup
n→∞

{sup{Ih(X) : X ∈ Bn(F )}} ≥ sup{Ih(X) : X ∈ C(F )} − εTVh.

As ε is arbitrary, we obtain

lim sup
n→∞

{sup{Ih(X) : X ∈ Bn(F )}} ≥ sup{Ih(X) : X ∈ C(F )}. (17)

Combining (16)-(17), we obtain (15).

(ii) Corollary 4.3 of Mao and Wang (2015) states that the functional X 7→ supY ∈C(FX) ρ(Y ) is

comonotonic-additive and convex order consistent if ρ is comonotonic-additive, which is the

case if ρ = Ih.
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Proof of Theorem 5. For any X ∈ L∞, by positive homogeneity of Ih and the definition of Bn(FX),

we have

ΓIh(X) = lim sup
n→∞

{
sup

{
Ih

(
1

n
S

)
: S ∈ Sn(FX)

}}
= lim sup

n→∞
{sup{Ih(T ) : T ∈ Bn(FX)}} .

Applying Lemma 5 (i), it is

ΓIh(X) = sup{Ih(T ) : T ∈ C(FX)}, X ∈ L∞.

By Lemma 5 (ii), ΓIh is comonotonic-additive and convex order consistent.

Next we verify that ΓIh is uniformly norm-continuous. Fix n ∈ N. For any S ∈ Sn(FX), write

S = X1 + · · ·+Xn, where Xi ∼ FX , i = 1, . . . , n. Let U1, . . . , Un be uniform random variables on

[0, 1] such that F−1X (Ui) = Xi almost surely, i = 1, . . . , n. The existence of such U1, . . . , Un is given

by, for instance, Lemma A.32 of Föllmer and Schied (2016). Let Z = F−1Y (U1) + · · · + F−1Y (Un).

Clearly, Z ∈ Sn(FY ). By Lemma 4,

Ih(S)− sup{Ih(T ) : T ∈ Sn(FY )}

≤ Ih(S)− Ih(Z)

≤ TVh‖S − Z‖∞

= TVh

∥∥(F−1X (U1) + · · ·+ F−1X (Un)
)
−
(
F−1Y (U1) + · · ·+ F−1Y (Un)

)∥∥
∞

≤ nTVh‖X − Y ‖∞,

where the last inequality is due to the well-known fact that ‖F−1X (U1)− F−1Y (U1)‖∞ ≤ ‖X − Y ‖∞

(see e.g. Lemma 8.2 of Bickel and Freedman (1981)). It follows from taking a supremum over

S ∈ Sn(FX) that

1

n
sup{Ih(S) : S ∈ Sn(FX)} ≤ 1

n
sup{Ih(T ) : T ∈ Sn(FY )}+ TVh‖X − Y ‖∞.

Therefore,

ΓIh(X) ≤ ΓIh(Y ) + TVh‖X − Y ‖∞.

By symmetry, we have |ΓIh(X)−ΓIh(Y )| ≤ TVh‖X−Y ‖∞; thus ΓIh is uniformly norm-continuous.

At this point, we know that the law-invariant functional ΓIh is norm-continuous, comonotonic-

additive and convex order consistent. By Theorem 1, there exists g ∈ H such that ΓIh is identified

with a signed Choquet integral Ig = ΓIh . Note that

Ig(X) = sup
T∈C(FX)

Ih(T ) ≥ Ih(X),
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and therefore g ≥ h by Lemma 1. Since ΓIh is convex order consistent, g is concave by Theorem 3.

From the definition of h∗, h∗ ≤ g, and this implies Ih∗ ≤ Ig by Lemma 1 again.

On the other hand, h∗ ≥ h, and hence Ih∗ ≥ Ih. Noting that h∗ is concave and thus Ih∗ is also

convex order consistent, we have

Ih∗(X) = sup
T∈C(FX)

Ih∗(T ) ≥ sup
T∈C(FX)

Ih(T ) = Ig(X)

Therefore, we conclude that Ih∗ = Ig = ΓIh .

Finally we show that Ih∗ is the smallest law-invariant convex functional on L∞ dominating

Ih. Suppose that I : L∞ → R is a law-invariant convex functional and I ≥ Ih. For any n ∈ N and

X ∈ L∞,

sup{Ih(T ) : T ∈ Bn(FX)} ≤ sup{I(T ) : T ∈ Bn(FX)}

≤ sup

{
1

n
I(X1) + · · ·+ 1

n
I(Xn) : Xi ∼ FX , 1 ≤ i ≤ n

}
=

1

n
nI(X) = I(X).

By taking a limit on both sides of the above equation, we conclude that Ih∗ ≤ I. Thus, Ih∗ is the

smallest law-invariant convex functional dominating Ih.

Example 6. Theorem 5 implies two well-known facts in the literature of risk measures on the

relation between VaRp and ESp for p ∈ (0, 1): First, the worst-case aggregation of VaRp is asymp-

totically equivalent to that of ESp (Corollary 3.7 of Wang and Wang (2015)). Second, ESp is the

smallest law-invariant convex risk measure dominating VaRp (Theorem 9 of Kusuoka (2001); see

also Theorem 4.67 of Föllmer and Schied (2016)). Theorem 5 generalizes these results to all signed

Choquet integrals, and our approach is different from those in the literature.

Example 7 (The inter-quantile range and inter-ES range). In Examples 4 and 5 we have already

seen many differences between the two measures of variability IQRp and IERp in terms of convexity,

convex-order consistency, and continuity. Next, we will see, by applying Theorem 5, an interesting

connection between the two signed Choquet integrals. Recall that for p ∈ (1/2, 1), IQRp has a (non-

concave) distortion function h given by h(t) = 1{1−p<t≤p}, t ∈ [0, 1]. It is straightforward that the

smallest concave function h∗ dominating h is given by h∗(t) = min{ t
1−p , 1}+min{ p−t1−p , 0}, t ∈ [0, 1],

which is the distortion function of IERp; see Figure 1 for these distortion functions. Therefore,

for Ih = IQRp, we have Ih∗ = IERp. By Theorem 5, IERp is the extreme-aggregation measure of

IQRp; in other words, the worst-case value of the aggregate risk evaluated by IQRp is asymptotically
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equivalent to that evaluated by IERp. This relationship will be further illustrated by the numerical

example in Section 4.3.

Remark 8. Wang et al. (2015) gives a few conditions for the upper limit in the definition of Γρ to

be replaced by a supremum or a limit. If ρ is a positively homogeneous functional, then the upper

limit can be replaced by a supremum. Furthermore, for h ∈ H and X ∈ L∞, the upper limit can

be replaced by either a limit or a supremum, namely

ΓIh(X) = lim
n→∞

{
1

n
sup{Ih(S) : S ∈ Sn(FX)}

}
= sup

n∈N

{
1

n
sup{Ih(S) : S ∈ Sn(FX)}

}
.

We conclude this section by showing that the result in Theorem 5 can be generalized to

suprema over a set of signed Choquet integrals. Indeed, suprema over a set of signed Choquet

integrals represent all continuous law-invariant coherent risk measures and deviation measures, as

established in Kusuoka (2001) and Grechuk et al. (2009), respectively.

Corollary 2. Define a functional ρ = suph∈H0
Ih, where H0 ⊂ H. Then Γρ = suph∈H0

Ih∗ and Γρ

is the smallest law-invariant convex functional on L∞ dominating ρ.

Proof. For X ∈ L∞, as ρ is positively homogeneous, we can write

Γρ(X) = sup
n∈N
{sup{ρ(T ) : T ∈ Bn(FX)}};

see Remark 8. By exchanging the order of suprema, we have

Γρ(X) = sup
n∈N

sup
T∈Bn(FX)

sup
h∈H0

Ih(T ) = sup
h∈H0

sup
n∈N

sup
T∈Bn(FX)

Ih(T ) = sup
h∈H0

ΓIh(X) = sup
h∈H0

Ih∗(X),

where the last equality is due to Theorem 5. The last statement of the corollary can be obtained

via an argument analogous to the last part of the proof of Theorem 5.

4.2 Heterogeneous portfolios

For a sequence of distribution functions {Fi}i∈N ⊂ M, denote the set of possible sums of n

random variables with respective distributions by

Sn(F1, . . . , Fn) = {X1 + · · ·+Xn : Xi ∼ Fi, i = 1, ..., n}, n ∈ N.

To investigate risk aggregation for heterogeneous portfolios, we study an asymptotic equivalence of

the following type,

lim
n→∞

sup {Ih(S) : S ∈ Sn(F1, . . . , Fn)}
sup {Ih∗(S) : S ∈ Sn(F1, . . . , Fn)}

= 1. (18)
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The asymptotic equivalence (18) is established in Theorem 3.5 of Cai et al. (2018) for increasing

Choquet integrals under some regularity conditions. Interpreting (18), to evaluate large portfolios

with dependence uncertainty via a non-convex functional Ih, one can replace Ih by a convex func-

tional Ih∗ , the extreme-aggregation measure induced by Ih, which is much easier to calculate due

to its comonotonic-additivity and subadditivity. It is clear that if F1 = F2 = · · · = FX , then (18)

reads as

lim
n→∞

sup {Ih(S) : S ∈ Sn(FX)}
nIh∗(X)

= 1,

which is precisely Theorem 5 if Ih∗(X) 6= 0. For the same relation to hold for heterogeneous

portfolios, one needs some regularity conditions on {Fi}i∈N and h ∈ H.

Condition C1 (non-vanishing). lim
n→∞

|
∑n

i=1 Ih∗(Xi)| =∞, where Xi ∼ Fi, i ∈ N.

Condition C2 (bounded ranges). sup
i∈N
{F−1i (1)− F−1i (0)} <∞.

Sections 2.2 and 3.3 of Cai et al. (2018) contain counter-examples where (18) fails to hold without

some regularity conditions. Next we present the asymptotic equivalence for signed Choquet integrals

with a continuous distortion function h under Conditions C1-C2.

Theorem 6. For a continuous h ∈ H and {Fi}i∈N ⊂M satisfying Conditions C1-C2, we have

lim
n→∞

sup {Ih(S) : S ∈ Sn(F1, . . . , Fn)}
sup {Ih∗(S) : S ∈ Sn(F1, . . . , Fn)}

= 1. (19)

Proof. Our proof is similar to that of Theorem 3.5 of Cai et al. (2018), although the conditions in

the latter result are different from Conditions C1-C2. Since h is continuous, we directly work with

the quantile representation in Lemma 3 (ii). By Lemma 5.1 of Brighi and Chipot (1994), there exist

disjoint open intervals (ak, bk), k ∈ K ⊂ N on which h 6= h∗, and h∗ is linear on each of [ak, bk],

k ∈ K. Define Ak = (1− bk, 1− ak), k ∈ K. Let U, V be independent U[0, 1] random variables, and

Scn = F−11 (U) + · · ·+ F−1n (U),

and

Rn =

 F−11 (U) + · · ·+ F−1n (U), if U 6∈ ∪k∈KAk,

E
[
F−11 (U) + · · ·+ F−1n (U) | U ∈ Ak

]
, if U ∈ Ak, k ∈ K.

Clearly, F−1i (U) ∼ Fi, i = 1, . . . , n, and hence Scn ∈ Sn(F1, . . . , Fn). Since

E
[
F−1i (U) | U ∈ Ak

]
=

∫
(ak,bk)

F−1i (1− t)dt
bk − ak

and F−1Sc
n

(t) =
n∑
i=1

F−1i (t) for t ∈ (0, 1),
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we have∫
(ak,bk)

F−1Sc
n

(1− t)dh∗(t)−
∫
(ak,bk)

F−1Rn
(1− t)dh∗(t)

=
h∗(bk)− h∗(ak)

bk − ak

n∑
i=1

∫
(ak,bk)

F−1i (1− t)dt−
n∑
i=1

∫
(ak,bk)

F−1i (1− t)dt
bk − ak

∫
(ak,bk)

dh∗(t) = 0.

It follows that

Ih∗(S
c
n)− Ih∗(Rn) =

∫ 1

0
F−1Sc

n
(1− t)dh∗(t)−

∫ 1

0
F−1Rn

(1− t)dh∗(t)

=
∑
k∈K

[∫ bk

ak

F−1Sc
n

(1− t)dh∗(t)−
∫ bk

ak

F−1Rn
(1− t)dh∗(t)

]
= 0. (20)

By Corollary A.3 of Embrechts et al. (2015), for each k, we can find random variables Y1k, . . . , Ynk,

independent of U (guaranteed by the existence of V ), such that Yik is identically distributed as

F−1i (U)|U ∈ Ak, i = 1, . . . , n, and

∣∣Y1k + · · ·+ Ynk − E
[
F−11 (U) + · · ·+ F−1n (U) | U ∈ Ak

]∣∣ ≤ max
i=1,...,n

{F−1i (1− ak)− F−1i (1− bk)}.

Let X∗i = F−1i (U)1{U 6∈∪k∈KAk} +
∑

k∈K Yik1{U∈Ak}, i = 1, . . . , n. It is easy to check that X∗i ∼ Fi,

i = 1, . . . , n. Denote by S∗n = X∗1 + · · ·+X∗n. Clearly, S∗n ∈ Sn(F1, . . . , Fn) and by definition

|Rn − S∗n| ≤ sup
k∈K

max
i=1,...,n

{F−1i (1− ak)− F−1i (1− bk)} ≤M,

where M = supi∈N{F−1i (1) − F−1i (0)} and M < ∞ by Condition C2. Therefore, by Lemma 4, we

have

|Ih(Rn)− Ih(S∗n)| ≤ TVh ×M. (21)

Integration by parts yields

Ih∗(Rn)− Ih(Rn) =

∫ 1

0
F−1Rn

(1− t)dh∗(t)−
∫ 1

0
F−1Rn

(1− t)dh(t)

=

∫ 1

0
(h(t)− h∗(t)) dF−1Rn

(1− t)

=
∑
k∈K

∫
(ak,bk)

(h(t)− h∗(t)) dF−1Rn
(1− t) = 0, (22)

where the last equality follows as F−1Rn
(1− t) is constant for t in each (ak, bk). Combining (20)-(22),

we have

|Ih∗(Scn)− Ih(S∗n)| = |(Ih∗(Scn)− Ih∗(Rn)) + (Ih∗(Rn)− Ih(Rn)) + (Ih(Rn)− Ih(S∗n))|

= |0 + 0 + (Ih(Rn)− Ih(S∗n))| = TVh ×M. (23)
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Since h ≤ h∗, we have

sup {Ih(S) : S ∈ Sn(F1, . . . , Fn)} ≤ sup {Ih∗(S) : S ∈ Sn(F1, . . . , Fn)} = Ih∗(S
c
n)

and hence (23) implies |Ih∗(Scn)− sup {Ih(S) : S ∈ Sn(F1, . . . , Fn)} | ≤ TVh×M . By Condition C1,

limn→∞ |Ih∗(Scn)| =∞. Therefore, as n→∞,∣∣∣∣ sup {Ih(S) : S ∈ Sn(F1, . . . , Fn)}
sup {Ih∗(S) : S ∈ Sn(F1, . . . , Fn)}

− 1

∣∣∣∣ ≤ TVh ×M
|Ih∗(Scn)|

→ 0.

The desired result follows.

Remark 9. We can compare Theorem 6 with Theorem 3.5 of Cai et al. (2018), and there are several

major differences on the assumptions. First, the latter result is about increasing Choquet integrals.

Second, random variables are non-negative in Cai et al. (2018) because they focus on random losses

and risk measures. For signed Choquet integrals, non-negativity seems irrelevant, and we assume

instead that the random variables have a bounded sequence of ranges. Third, our Condition C1 is

weaker than their Condition A1, and our Condition C2 is stronger than their Condition A2. Fourth,

we assume h to be continuous for technical convenience.

4.3 Numerical illustration

In this section, we present numerical examples of risk aggregation under dependence uncer-

tainty for the inter-quantile range and the inter-ES range. As explained in Example 7, IQRp and

IERp are asymptotically equivalent in terms of the worst-case risk aggregation under dependence

uncertainty; this also holds for inhomogeneous portfolios as implied by Theorem 6. Although we

work with bounded random variables throughout the paper to establish the theoretical results,

the numerical examples in this section are built for unbounded risks to be more realistic for risk

management practice. As we shall see below, the results of Theorem 6 are numerically valid for

unbounded risks although they do not satisfy Condition C2.

We consider the following three representative models studied in Embrechts et al. (2015).

The portfolios in Models (A) and (B) are inhomogeneous whereas the portfolio in Model (C) is

homogeneous and very heavy-tailed.

(A) (Mixed portfolio) Fi = Pareto(2 + 0.1i), i = 1, . . . , 5; Fi = Exp(i − 5), i = 6, . . . , 10; Fi =

Log-Normal(0, (0.1(i− 10))2), i = 11, . . . , 20.

(B) (Light-tailed portfolio) Fi = Exp(i), i = 1, . . . , 5; Fi = Weibull(i− 5, 1/2), i = 6, . . . , 10; Fi =

Fi−10, i = 11, . . . , 20.
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(C) (Very heavy-tailed portfolio) Fi = Pareto(1.5), i = 1, · · · , 50.

As the common choice of p for the inter-quantile range is 0.75, we compare the values of IQR0.75

and IER0.75 in each of the above models. We look at the influence on the number of risks in the

portfolio (n = 5, 10, 20 for Models (A) and (B) and n = 5, 10, 20, 50 for Model (C)), and on different

dependence structures. We report the following quantities for the sum of random variables Xi ∼ Fi,

i = 1, . . . , n.

(i) IQR0.75(S
⊥
n ): S⊥n =

∑n
i=1Xi and we assume X1, . . . , Xn are independent.

(ii) IER0.75(S
⊥
n ): S⊥n is same as in (i).

(iii) IQR0.75(S
c
n): Scn =

∑n
i=1Xi and we assume X1, . . . , Xn are comonotonic. By comonotonic-

additivity, IQR0.75(S
c
n) =

∑n
i=1 IQR0.75(Xi).

(iv) IQR0.75(Sn): the worst-case value of IQR0.75(S) over S ∈ Sn(F1, . . . , Fn).

(v) IER0.75(Sn): the worst-case value of IER0.75(S) over S ∈ Sn(F1, . . . , Fn). By comonotonic-

additivity and subadditivity, IER0.75(Sn) = IER0.75(S
c
n) =

∑n
i=1 IER0.75(Xi).

(vi) IER0.75(Sn)

IQR0.75(Sn)
: the ratio of the worst-case value of IER0.75(S) to that of IQR0.75(S).

The calculation for the independence model in (i) and (ii) is carried out through a Monte-Carlo

simulation with sample size N = 106, and the marginal values in (iii) and (v) are carried out by

analytical formulas. The numerical calculation of the worst-case value of IQR0.75 in (iv) is carried

out through the Rearrangement Algorithm (RA) of Embrechts et al. (2013) with tail discretization

parameter N = 106 (R package: QRM)1. The numerical results are reported in Tables 1-2.

From Tables 1-2, we make the following observations.

(i) In all models, IQR0.75(Sn) is much larger than IQR0.75(S
c
n) and IER0.75(S

⊥
n ). This sug-

gests that neither independence or comonotonicity serves as a conservative benchmark when

studying risk aggregation with dependence uncertainty for Ih with a non-concave h such as

Ih = IQRp.

(ii) The ratio of IER0.75(Sn) to IQR0.75(Sn) goes to 1 as n grows for all models (for bounded risks

this is shown in Theorem 6). The convergence is very fast for the light-tailed model (B) and

relatively slow for the heavy-tailed model (C).

1Although the RA is designed for the worst-case risk aggregation of VaRp, it also works for IQRp since VaRp(S)

and −VaR1−p(S) can be simultaneously maximized over S ∈ Sn(F1, . . . , Fn); this is because the worst-case scenario

for quantiles concerns only tail events; see e.g. Theorem 4.6 of Bernard et al. (2014).
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Table 1: Numerical values for two inhomogeneous portfolio models

Model (A) Model (B)

n = 5 n = 10 n = 20 n = 5 n = 10 n = 20

IQR0.75(S
⊥
n ) 2.7108 3.2664 5.3565 1.4649 1.6836 2.4712

IER0.75(S
⊥
n ) 6.7298 7.5964 11.4492 2.9024 3.2967 4.7444

IQR0.75(S
c
n) 3.4939 6.0024 13.7364 2.5085 3.9262 7.8523

IQR0.75(Sn) 9.7960 15.3198 33.3608 4.9976 7.8054 15.7044

IER0.75(Sn) 11.0144 16.1504 33.8089 5.1360 7.8541 15.7082

IER0.75(Sn)

IQR0.75(Sn)
1.1243 1.0542 1.0134 1.0277 1.0062 1.0002

Table 2: Numerical values for a very heavy-tailed portfolio model

Model (C)

n = 5 n = 10 n = 20 n = 50

IQR0.75(S
⊥
n ) 6.4091 11.6276 20.4428 41.3704

IER0.75(S
⊥
n ) 21.9388 37.3421 62.6127 121.5008

IQR0.75(S
c
n) 6.5421 13.0843 26.1686 65.4214

IQR0.75(Sn) 22.6459 51.7782 111.7977 296.4094

IER0.75(Sn) 32.3112 64.6225 129.2450 323.1125

IER0.75(Sn)

IQR0.75(Sn)
1.4268 1.2481 1.1561 1.0901
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(iii) The values of IER0.75(Sn) and IQR0.75(Sn) are very close for the light-tailed model (B) even

for small n such as n = 5.

(iv) The difference between IQR0.75(Sn) and IQR0.75(S
c
n) is more pronounced for the heavy-tailed

model (C), compared to the light-tailed model (B).
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A Appendix

A.1 Two classic results

Here we list two classic results used in this paper for the sake of completeness. The first result

is used in the proof of Theorem 1. The original choice of notation in Schmeidler (1986) is kept here.

Theorem 7 (Proposition 2 of Schmeidler (1986)). Let Σ denote a nonempty algebra of subsets of

a set S, let B denote the set of all bounded, real-valued, Σ-measurable functions on S. Suppose that

I : B → R is comonotonic additive and continuous with respect to supremum norm in B. Then,

for any E in Σ, defining v(E) = I(1E) on Σ, we have for all a ∈ B,

I(a) =

∫ 0

−∞
(v(a ≥ α)− v(S)) dα+

∫ ∞
0

v(a ≥ α) dα.

The second result is the classic Hardy-Littlewood-Pólya inequality (see e.g. page 22 of Olkin

and Marshall (2016)), which is used in the proof of Theorem 2.

Theorem 8 (Hardy-Littlewood-Pólya). Let f and g be two decreasing integrable functions on [a, b],

taking values in [0, 1]. Then ∫ b

a
φ(f(x)) dx ≤

∫ b

a
φ(g(x)) dx
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holds for all continuous concave function φ (for which both functions φ ◦ f and φ ◦ g are integrable)

if and only if ∫ x

a
f(t) dt ≥

∫ x

a
g(t) dt for a ≤ x ≤ b

and ∫ b

a
f(t) dt =

∫ b

a
g(t) dt.

A.2 Proofs of some lemmas

Proof of Lemma 1. (i) “⇒”: This is trivial from the definition of signed Choquet integrals.

(ii) “⇐”: Fix p ∈ [0, 1], we take a Bernoulli random variable X such that

P(X = 0) = p, P(X = 1) = 1− p.

It follows that

Ihi(X) = hi(1− p) +

∫ ∞
1

hi(0) dx = hi(1− p), i = 1, 2.

As Ih1 ≤ Ih2 and p is arbitrary, we conclude h1 ≤ h2.

Proof of Lemma 2. (i) “ ⇒”: We only show the case when Ih is increasing. Take U ∼ U[0, 1],

for any t1, t2 ∈ [0, 1], t1 ≤ t2, we let X = 1{U≤t1} and Y = 1{U≤t2}. X ≤ Y implies

h(t1) = Ih(X) ≤ Ih(Y ) = h(t2). This shows that h is increasing.

“⇐”: We only show the case when h is increasing. For random variables X,Y ∈ L∞, x ∈ R,

if X ≤ Y , then P(X ≥ x) ≤ P(Y ≥ x). If h is increasing, then

h(P(X ≥ x)) ≤ h(P(Y ≥ x)),

which implies Ih(X) ≤ Ih(Y ). Hence Ih is increasing.

(ii) By straightforward calculation,

Ih(c) =

∫ 0

−∞
(h(P(c ≥ x))− h(1)) dx+

∫ ∞
0

h(P(c ≥ x)) dx

=

∫ 0

c∧0
(−h(1)) dx+

∫ 0∨c

0
h(1) dx = ch(1).

Since Ih is comonotonic-additive, and X and c are comonotonic, Ih(X + c) = Ih(X) + Ih(c) =

Ih(X) + ch(1).
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(iii) By (2),

Ih(λX) =

∫ 0

−∞
(h(P(λX ≥ x))− h(1)) dx+

∫ ∞
0

h(P(λX ≥ x)) dx

= λ

∫ 0

−∞
(h(P(X ≥ y))− h(1)) dy + λ

∫ ∞
0

h(P(X ≥ y)) dy = λIh(X).

(iv) By (2) and (3),

Ih(−X) =

∫ 0

−∞
(h(P(X < −x))− h(1)) dx+

∫ ∞
0

h(P(X < −x)) dx

=

∫ 0

−∞
ĥ(P(X ≥ −x)) dx+

∫ ∞
0

(
ĥ(P(X ≥ −x))− ĥ(1)

)
dx

=

∫ ∞
0

ĥ(P(X ≥ x)) dx+

∫ 0

−∞

(
ĥ(P(X ≥ x))− ĥ(1)

)
dx = Iĥ(X).

Proof of Lemma 4. Replace h by its Jordan decomposition h = h+−h−, where h+, h− are increas-

ing. We have TVh+ + TVh− = TVh, and

|Ih(X)− Ih(Y )| = |Ih+(X)− Ih−(X)− Ih+(Y ) + Ih−(Y )| ≤ |Ih+(X)− Ih+(Y )|+ |Ih−(X)− Ih−(Y )|.

Therefore, it suffices to show (8) for h increasing. From Lemma 2, we have

Ih(Y ) ≤ Ih(X + ||X − Y ||∞) = Ih(X) + h(1)||X − Y ||∞ = Ih(X) + TVh||X − Y ||∞.

Therefore, by symmetry, (8) holds.
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Bernard, C., Rüschendorf, L., Vanduffel, S. and Wang, R. (2017b). Risk bounds for factor models. Finance

and Stochastics, 21(3), 631–659.

35



Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Annals of Statistics,

1196–1217.

Brighi, B. and Chipot, M. (1994): Approximated convex envelope of a function. SIAM Journal on Numerical

Analysis, 31, 128–148.

Cai, J., Liu, H. and Wang, R. (2018). Asymptotic equivalence of risk measures under dependence uncertainty.

Mathematical Finance, 28(1), 29–49.

Cerreia-Vioglio, S. and Maccheroni, F. and Marinacci, M. and Montrucchio, L. (2012). Signed integral repre-

sentations of comonotonic additive functionals. Journal of Mathematical Analysis and Applications, 385(2),

895–912.

Cerreia-Vioglio, S. and Maccheroni, F. and Marinacci, M. and Montrucchio, L. (2015). Choquet integration

on Riesz spaces and dual comonotonicity. Transactions of the American Mathematical Society, 367(12),

8521–8542.

Choquet, G. (1954). Theory of capacities. Annales de l’institut Fourier, 5, 131–295.

Cont, R., Deguest, R. and Scandolo, G. (2010). Robustness and sensitivity analysis of risk measurement

procedures. Quantitative Finance, 10(6), 593–606.

Dana, R.A. (2005). A representation result for concave Schur concave functions. Mathematical Finance,

15(4), 613–634.

Delbaen, F., Bellini, F., Bignozzi, V. and Ziegel, J. (2016). Risk measures with the CxLS property. Finance

and Stochastics, 20(2), 433–453.

Denneberg, D. (1990). Premium calculation: why standard deviation should be replaced by absolute devia-

tion. ASTIN Bulletin, 20, 181–190.

Denneberg, D. (1994). Non-additive Measure and Integral. Springer Science & Business Media.

De Waegenaere, A. and Wakker, P. P. (2001). Nonmonotonic Choquet integrals. Journal of Mathematical

Economics, 36, 45–60.

Dhaene, J. and Kukush, A., Linders, D. and Tang, Q. (2012). Remarks on quantiles and distortion risk

measures. European Actuarial Journal, 2(2), 319–328.

Donoghue, W. (1969). Distributions and Fourier Transforms. Academic press, New York.
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