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Abstract. The classical notion of comonotonicity has played a pivotal role when solving

diverse problems in economics, finance, and insurance. In various practical problems,

however, this notion of extreme positive dependence structure is overly restrictive and

sometimes unrealistic. In the present paper, we put forward a notion of weak comono-

tonicity, which contains the classical notion of comonotonicity as a special case, and gives

rise to necessary and sufficient conditions for a number of optimization problems, such

as those arising in portfolio diversification, risk aggregation, and premium calculation.

In particular, we show that a combination of weak comonotonicity and weak antimono-

tonicity with respect to some choices of measures is sufficient for the maximization of

Value-at-Risk aggregation, and weak comonotonicity is necessary and sufficient for the

Expected Shortfall aggregation. Finally, with the help of weak comonotonicity acting

as an intermediate notion of dependence between the extreme cases of no dependence

and strong comonotonicity, we give a natural solution to a risk-sharing problem.

Key words and phrases: finance; comonotonicity; risk aggregation; conditional beta.

1 Introduction

Two functions are said to be comonotonic if the ups and downs of one function follows those of the

other function. Hence, though geometric in nature, comonotonicity is also a kind of dependence
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notion between functions. It is not surprising, therefore, that comonotonicity has given rise to suf-

ficient conditions when solving a variety of problems in economics, banking, and insurance, and in

particular those that deal with portfolio diversification, risk aggregation, and premium calculation

principles. Our search for necessary and sufficient conditions has revealed that a certain aug-

mentation of the classical (and inherently point-wise) notion of comonotonicity with appropriately

constructed measures achieves more advanced goals than those associated with sufficient conditions.

As a by-product, the augmented notion of comonotonicity, which we call weak comonotonicity, pro-

vides a natural bridge between a host of concepts in the aforementioned areas of application, and

also in statistics, including measures of association. In what follows, we methodically develop the

notion of weak comonotonicity from first principles, establish its various properties, and demon-

strate manifold uses.

Rigorously speaking, two functions g and h are comonotonic whenever the property

(
g(x)− g(x′)

)(
h(x)− h(x′)

)
≥ 0 (1.1)

holds for all x, x′ ∈ R. This notion of comonotonicity (Schmeidler, 1986) has played a pivotal role in

sorting out numerous applications and developing new theories (e.g., Yaari, 1987; Denneberg, 1994).

Since then, these advances have been in the mainstream of quantitative finance and economics

literature (e.g., Dhaene et al., 2002a,b; Föllmer and Schied, 2016). In this paper, we shall focus on

dependence concepts between uni-dimensional functions (and random variables); for multivariate

extensions and further references on comonotonicity, we refer to Puccetti and Scarsini (2010),

Carlier et al. (2012), Ekland et al. (2012), and Rüschendorf (2013). Note that if non-negativity in

property (1.1) is replaced by non-positivity, the functions g and h are said to be antimonotonic.

Comonotonicity of (Borel) functions g and h is a sufficient condition for non-negativity of the

covariance Cov[g(X), h(X)], where X is a random variable such that g(X) and h(X) have finite

second moments. This is immediately seen from the equations

2 Cov[g(X), h(X)] = E
[
(g(X)− g(X ′))(h(X)− h(X ′))

]
=

∫∫
R2

(
g(x)− g(x′)

)(
h(x)− h(x′)

)
FX(dx)FX(dx′), (1.2)

where X ′ is an independent copy of X, and FX denotes the cumulative distribution function (cdf)

of X. The problem of determining the sign of covariances such as the one above has been of much

interest in economics, insurance, banking, reliability engineering, and statistics. Several offshoots

have arisen from this type of research, including quadrant dependence (Lehmann, 1966), measures
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of association (Esary et al., 1967), monotonic (Kimeldorf and Sampson, 1978) and supremum

(Gebelein, 1941) correlation coefficients. The following example illustrates the need for such results.

Example 1.1. Let X be the severity of a risk, which could, for example, be a profit-and-loss

variable. Let g(X) be the cost associated with the risk X, and let F hX be the so-called (knowledge-

based) weighted cdf of the original random variable X (e.g., Rao, 1997, and references therein).

That is, F hX is defined by the differential equation

F hX(dx) =
h(x)

E[h(X)]
FX(dx), (1.3)

where h is a non-negative function such that E[h(X)] ∈ (0,∞). The role of the function h is to

modify the probabilities of the original random variable X. For example, in insurance, it is usually

designed to lower the left-hand tail of the pdf of X and to lift its right-hand tail, thus making

large insurance risks/losses more noticeable and the premiums loaded; we refer to, e.g., Deprez and

Gerber (1985) for the Esscher principle of insurance premium calculation, where h(x) = etx for

some constant t > 0. Under the weighted cdf F hX , the average cost is

Eh[g(X)] =

∫
g(x)F hX(dx) =

E[g(X)h(X)]

E[h(X)]
,

which is not smaller than the average cost E[g(X)] under the true cdf FX if and only if the

covariance Cov[g(X), h(X)] is non-negative. Several natural questions arise in this context: Under

what conditions on the cost function g and the probability weighting function h is the covariance

non-negative? Should the functions really be comonotonic, as our earlier arguments would suggest?

It is important to note at this point that practical and theoretical considerations may or may

not support the latter assumption, due to the complexity of economic agents’ behaviour (e.g.,

Markowitz, 1952; Pennings and Smidts, 2003; Gillen and Markowitz, 2009).

We have organized the rest of the paper as follows. In Section 2, we define, illustrate, and

discuss the notion of weak comonotonicity, first for Borel functions and then for random variables

(i.e., generic measurable functions). In Section 3 we elucidate the role of weak comonotonicity

in risk aggregation. In particular, we show that a combination of weak comonotonicity and weak

antimonotonicity with respect to some sets of measures is sufficient for the maximization of Value-

at-Risk (VaR) aggregation, and weak comonotonicity is necessary and sufficient for the Expected

Shortfall (ES) aggregation. Both the VaR and the ES aggregation problems have been popular

in the recent risk management literature (e.g., Rüschendorf, 2013; McNeil et al., 2015; Embrechts

et al., 2015). In Section 4, we explore some properties of weak comonotonicity and its relation
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to other dependence structures and measures of association. As most of this paper deals with

weak comonotonicity with respect to product measures, in Section 5 we illuminate the special role

of these measures within the general context of joint measures. With the help of the developed

theory, in Section 6 we present a detailed solution to a risk-sharing problem by invoking a weak

comonotonicity constraint, whose naturalness becomes clear upon noticing that the assumption of

arbitrary dependence among admissible allocations might sometimes be too weak, and the assump-

tion of strong comonotonicity might be too strong, and so an intermediate dependence assumption

based on weak comonotonicity arises most naturally. Section 7 concludes the paper with a brief

overview of main contributions.

2 Weak comonotonicity

Our efforts to tackle problems like those in the previous section, and in particular those related

to risk aggregation (Section 3), have naturally led us to a notion of weak comonotonicity (to be

defined in a moment) which naturally bridges the arguments around quantities in (1.1) and (1.2)

in the following way: First, note the equation

(
g(x)− g(x′)

)(
h(x)− h(x′)

)
=

∫∫
R2

(
g(z)− g(z′)

)(
h(z)− h(z′)

)
δx(dz)δx′(dz

′), (2.1)

where δx and δx′ are point masses at the points x and x′, respectively. It now becomes obvious that

by choosing various product measures instead of δx × δx′ , we can seamlessly move from classical

comonotonicity (1.1) to covariance non-negativity (1.2). Formalizing this flexibility gives rise to a

general definition of weak comonotonicity, which is the topic of Section 2.1.

2.1 Weak comonotonicity of Borel functions

In what follows, we use (R,B) to denote the Borel measurable space, where B := B(R) is the Borel

σ-algebra, and we also work with the measurable space (R2,B2), where B2 := B ⊗ B.

Definition 2.1. Let R be any subset of product measures %1 × %2 on (R2,B2). We say that two

functions g and h are weakly comonotonic with respect to R whenever∫∫
R2

(
g(x)− g(x′)

)(
h(x)− h(x′)

)
%1(dx)%2(dx′) ≥ 0 (2.2)

for every %1 × %2 ∈ R. In case R is a singleton, we also say that g and h are weakly comonotonic

with respect to ρ1 × ρ2 if (2.2) holds.
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We also speak of weak antimonotonicity if non-negativity in (2.2) is replaced by non-positivity.

Property (2.2) gives rise to a whole spectrum of comonotonicity notions, at one end of which is

the classical notion of comonotonicity (i.e., property (1.1)), which can be viewed as g and h being

weakly comonotonic with respect to R = {δx× δx′ : x, x′ ∈ R}. In other words, the classical notion

of comonotonicity can be thought of as the point-wise or strong comonotonicity. On the other hand,

Definition 2.1 and equation (1.2) imply that the covariance Cov[g(X), h(X)] is non-negative if and

only if the functions g and h are weakly comonotonic with respect to {FX ×FX}, where FX is the

cdf of X. By choosing various product measures, we thus arrive at a large array of comonotonicity

notions. The following example is designed to illustrate, and in particular enhance our intuitive

understanding of, the notion of weak comonotonicity.

Example 2.1. Let g(x) = sin(x) and h(x) = cos(x). In the classical sense, the two functions

are neither comonotonic nor antimonotonic on the interval [0, π], but they are antimonotonic on

[0, π/2] and comonotonic on [π/2, π]. As to their weak comonotonicity, consider the integral

∆(a) :=

∫∫
R2

(
g(x)− g(x′)

)(
h(x)− h(x′)

)
F (dx)F (dx′)

with respect to the following three uniform distributions F = F[0,a], F[(π−a)/2,(π+a)/2], and F[π−a,π]

on the noted intervals, where a ∈ [0, π] in every case. We have

∆(a) =


sin2(a)

a
− 2 sin(a)(1− cos(a))

a2
when F = F[0,a],

0 when F = F[(π−a)/2,(π+a)/2],

2 sin(a)(1− cos(a))

a2
− sin2(a)

a
when F = F[π−a,π].

When F = F[π−a,π], we depict ∆(a) as a function of a ∈ [0, π] in Figure 2.1. It is non-negative for

every a ∈ [0, π], thus implying that the functions sin(x) and cos(x), which are neither comonotonic

nor antimonotonic on [0, π] in the classical sense, are nevertheless weakly comonotonic with respect

to {F[π−a,π] × F[π−a,π] : a ∈ [0, π]}. On the other hand, when F = F[0,a], the function ∆(a) is

non-positive for every a ∈ [0, π], and thus sin(x) and cos(x) are weakly antimonotonic with respect

to {F[0,a] × F[0,a] : a ∈ [0, π]}. Finally, under the distribution F[(π−a)/2,(π+a)/2], the two functions

are both weakly comonotonic and weakly antimonotonic. This concludes Example 2.1.

It is useful to reflect upon Example 2.1 from a general perspective, for which we employ Bayesian

terminology. Namely, we first impose the (improper) uniform prior π(x) ∝ 1 on the entire real line.

Then we weight the prior using the indicator function I[x0,x1](x), where [x0, x1] can be any compact
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Figure 2.1: Weak comonotonicity of sin(x) and cos(x) when F is the uniform on [π − a, π] distri-

bution, depicted as the function ∆(a) for all a ∈ [0, π].

interval. This gives rise to the uniform distribution F[x0,x1] defined by the differential equation

F[x0,x1](dx) =
I[x0,x1](x)

Eπ[I[x0,x1]]
π(dx) (2.3)

(compare it with equation (1.3)). This uniform distribution, whose density (pdf) takes the form

f[x0,x1](x) = I[x0,x1](x)/(x1− x0), can be thought of as a magnifying glass over the window [x0, x1]:

by sliding it over the domain of definition of functions, we explore weak comonotonicity of the

functions, as we have done in Example 2.1.

2.2 Weak comonotonicity of random variables

Note that the moment we had shifted our focus from non-decreasing functions to comonotonic

ones, we lost the need for having order relationship in the underlying measurable space. Hence,

we can work with abstract measurable space (Ω,F), in which case F-measurable functions like

X,Y : Ω→ R are called random variables, and this is the general framework within which we work

next. Namely, X and Y are said to be comonotonic whenever

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0

for all ω, ω′ ∈ Ω. The definition is independent of any choice of measure.

Definition 2.2. Let P be any subset of probability product measures π1×π2 on (Ω2,F2). We say

that two random variables X and Y are weakly comonotonic with respect to P whenever∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))π1(dω)π2(dω′) ≥ 0 (2.4)

for every π1 × π2 ∈ P.

6



Again, we also speak of weak antimonotonicity if non-negativity in (2.4) is replaced by non-

positivity. This definition not only generalizes Definition 2.1 but also paves a path toward the

notion of conditional correlation, and thus, in turn, toward conditional beta that has prominently

featured in problems such as dynamic asset pricing and risk estimation with non-synchronous prices

(Engle, 2016, see also references therein). The next example elucidates the connection.

Example 2.2. Let (Ω,F ,P) be a probability space of financial scenarios ω ∈ Ω, and let X,Y :

Ω→ R be, for example, risk severities of two financial instruments. Quite often, it is of interest to

measure association between the two instruments over certain events A ∈ F of positive probabilities.

In this case, the original probability P is re-weighted

P(dω|A) =
IA(ω)

P(A)
P(dω),

thus reducing property (2.4) via π1(dω) = π2(dω) = P(dω|A) to∫
A

∫
A

(X(ω)−X(ω′))(Y (ω)− Y (ω′))P(dω)P(dω′) ≥ 0. (2.5)

Property (2.5) can in turn be rewritten as Corr[X,Y |A] ≥ 0, which can equivalently be interpreted

as the non-negativity requirement on the conditional beta (Engle, 2016) over the events A ∈ F

of interest, which could, for example, make up the σ-field of historical events (see, e.g., Box et al.

(2015) for a time series context; and Pflug and Römisch (2007), Föllmer and Schied (2016) for risk

measurement and management contexts).

Coming now back to Definition 2.2, we check that the following four statements are equivalent:

(i) X and Y are (strongly, or point-wise) comonotonic;

(ii) X and Y are weakly comonotonic with respect to every probability product measures π1×π2

on (Ω2,F2);

(iii) X and Y are weakly comonotonic with respect to P = {δω × δω′ : ω, ω′ ∈ Ω};

(iv) there exist non-decreasing functions f1 and f2 and a random variable Z such that X = f1(Z)

and Y = f2(Z); according to Denneberg’s Lemma (Denneberg, 1994, Proposition 4.5), we can

set Z := X + Y .

We are now ready to elucidate the fundamental role of weak comonotonicity in problems asso-

ciated with risk aggregation.
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3 Risk aggregation and weak comonotonicity

Two of the most popular classes of risk measures used in banking and insurance practice are the

Value-at-Risk (VaR) and the Expected Shortfall (ES, also known as TVaR, CTE, CVaR, AVaR).

We fix an atomless probability space (Ω,F ,P). For a random variable X, the VaR at level p ∈ (0, 1)

is defined as

VaRp(X) = inf{x ∈ R : P(X ≤ x) > p},

and the ES at level p ∈ (0, 1) is defined as

ESp(X) =
1

1− p

∫ 1

p
VaRq(X)dq.

A classic problem in the field of risk management is risk aggregation with given marginal

distributions (e.g., McNeil et al., 2015, Section 8.4). Let X and Y be two integrable random

variables. For p ∈ (0, 1), we say that (X,Y ) maximizes the VaRp aggregation, if

VaRp(X + Y ) = max{VaRp(X
′ + Y ′) : X ′

d
= X, Y ′

d
= Y },

and similarly for the ES aggregation, where “
d
=” stands for equality in distribution.

It is well-known (e.g., McNeil et al., 2015, Section 8.4.4) that the maximization of ES aggregation

is achieved by (strong) comonotonicity, that is, (X,Y ) maximizes the ESp aggregation if they are

strongly comonotonic. A similar statement holds for all convex-order consistent risk measures,

or variability measures, such as the variance, the standard deviation, convex and coherent risk

measures, and the Gini Shortfall (Furman et al., 2017), and this is because of the well-known fact

(e.g., Puccetti and Wang, 2015) that comonotonicity maximizes convex order of the sum. Note that

for a specific p ∈ (0, 1), (strong) comonotonicity is a sufficient condition for (X,Y ) to maximize the

ESp aggregation, but it is not necessary.

Another well-known phenomenon (e.g., McNeil et al., 2015, Proposition 8.31), which is in sharp

contrast to the above situation, is that the maximization of VaR aggregation is not achieved by

comonotonicity. This is due to the fact that VaRp is generally not subadditive. The calculation of

the worst-case VaR aggregation is technically very challenging and the corresponding dependence

structure is quite complicated. For recent analytical and numerical results, we refer to Wang et al.

(2013) and Embrechts et al. (2013, 2014, 2015). Fortunately, the case of n = 2 admits an analytical

solution, which is originally due to Makarov (1981) and Rüschendorf (1982).

To summarize, strong comonotonicity is sufficient but not necessary for the maximization of

ES aggregation, and it is neither sufficient nor necessary for the maximization of VaR aggregation.
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This calls for weaker and alternative dependence notions compared to strong comonotonicity. We

shall see later in Theorem 3.1 that the notion of weak comonotonicity serves this purpose very well,

as it gives a sufficient condition for the maximum VaRp aggregation, as well as a necessary and

sufficient condition for the maximum ESp aggregation.

To prepare for Theorem 3.1, we need some notation and a lemma. For a random variable X

and for any p ∈ (0, 1), we write

AXp = {ω ∈ Ω : X(ω) > VaRp(X)}.

Note that P(AXp ) = 1−p if X is continuously distributed. In this case, AXp is the event of probability

p on which X takes its largest possible values. Further, let

PXp = {δω × δω′ : ω ∈ AXp , ω′ ∈ (AXp )c},

where Ac stands for the complement of a subset A of Ω, and let

QXp = {δω × δω′ : ω, ω′ ∈ AXp }.

In what follows, we treat P-a.s. equal random variables as identical, and thus statements like “X

and Y are weakly comonotonic with respect to PXp ” should be interpreted as they hold for a

representative pair of the random variables X and Y .

Lemma 3.1. Let X and Y be two continuously distributed random variables, and let p ∈ (0, 1).

The following three statements are equivalent:

(i) X and Y are weakly comonotonic with respect to PXp ;

(ii) X and Y are weakly comonotonic with respect to PYp ;

(iii) AXp = AYp a.s. with respect to P.

Proof. We only show (i)⇔(iii) since (ii)⇔(iii) holds by symmetry. First, we assume that statement

(i) holds. For ω ∈ AXp and ω′ ∈ (AXp )c, we have X(ω) − X(ω′) > 0. By definition of weak

comonotonicity, this implies Y (ω)− Y (ω′) ≥ 0. Therefore, Y takes its largest values on AXp . Since

P(AXp ) = p, we have AYp = {Y > VaRp(Y )} = AXp a.s. Next, we assume that statement (iii) holds.

Then, for a.s. ω ∈ AYp and ω′ ∈ (AYp )c, we have X(ω)−X(ω′) > 0 and Y (ω)−Y (ω′) > 0. This gives

the weak comonotonicity of X and Y ; more precisely, of a representative version of (X,Y ).

We are now ready to state our main result on the relationship between risk aggregation and

weak comonotonicity.

9



Theorem 3.1. Let X and Y be two continuously distributed and integrable random variables, and

let p ∈ (0, 1). We have the following two statements:

(i) If X and Y are weakly comonotonic with respect to PXp , and X and Y are weakly antimono-

tonic with respect to QXp , then (X,Y ) maximizes the VaRp aggregation;

(ii) X and Y are weakly comonotonic with respect to PXp if and only if (X,Y ) maximizes the ESp

aggregation.

Proof. First, we prove statement (i). By Lemma 3.1, AXp = AYp a.s. Also note that X and Y

are (strongly) antimonotonic on the set AXp . Let U = FX(X), which is uniformly distributed on

[0, 1], and we know that X and U are strongly comonotonic. As a consequence, X = VaRU (X)

a.s., and the sets AXp , AYp and {U > p} are a.s. equal. Because Y and U are antimonotonic on

the set {U > p}, if U takes value u ∈ (p, 1), then Y takes the value VaR1+p−u(Y ) a.s., and hence

Y = VaR1+p−U (Y ) a.s. on {U > p}. Further, note that if U ≤ p, then X+Y ≤ VaRp(X)+VaRp(Y )

a.s. and if U > p, then X + Y ≥ VaRp(X) + VaRp(Y ) a.s. As a consequence, by definition of the

p-quantile (VaRp), VaRp(X + Y ) is the smallest value (P-a.s.) X + Y takes on the set {U > p},

which is the smallest value of VaRU (X) + VaR1+p−U (Y ) for U ∈ (p, 1). Therefore,

VaRp(X + Y ) = inf{VaRp+t(X) + VaR1−t(Y ) : t ∈ (0, 1− p)}.

This gives the maximum value of the VaRp aggregation according to Makarov (1981, equation (2))

or McNeil et al. (2015, Proposition 8.31), thus concluding the proof of statement (i).

To prove statement (ii), we need some preliminaries. Namely, we use the dual representation

of ESp in the form

ESp(Z) = max{E[Z|B] : B ∈ F , P(B) = 1− p} (3.1)

for any random variable Z, and B = AZp attains the maximum in (3.1) if Z is continuously

distributed (e.g., Embrechts and Wang, 2015, Lemma 3.1). Because of subadditivity of ESp, we

have

ESp(X) + ESp(Y ) = max{VaRp(X
′ + Y ′) : X ′

d
= X, Y ′

d
= Y }.

Hence, (X,Y ) maximizes the ESp aggregation if and only if ESp(X+Y ) = ESp(X)+ESp(Y ). Note

that ESp(X + Y ) ≤ ESp(X) + ESp(Y ) always holds. Now we are able to establish the “if and only

if” statement (ii).
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(⇒) Suppose that X and Y are weakly comonotonic with respect to PXp . This implies AXp = AYp

a.s. by Lemma 3.1. Therefore, by equation (3.1),

ESp(X + Y ) ≥ E
[
X + Y |AXp

]
= E

[
X|AXp

]
+ E

[
Y |AYp

]
= ESp(X) + ESp(Y ).

Hence, (X,Y ) maximizes the ESp aggregation.

(⇐) Suppose that (X,Y ) maximizes the ESp aggregation. Then, using equation (3.1), we have,

for some B ∈ F ,

E [X + Y |B] = ESp(X + Y ) = ESp(X) + ESp(Y ) = E
[
X|AXp

]
+ E

[
Y |AYp

]
≥ E [X|B] + E [Y |B] .

Therefore, E[X|AXp ] = E[X|B]. Since X is continuously distributed and takes its largest

values on AXp , and P(AXp ) = 1 − p = P(B), we conclude that AXp = B a.s. Similarly, we

conclude that AYp = B a.s. Using Lemma 3.1 again, we obtain that X and Y are weakly

comonotonic with respect to PXp

This finishes the proof of Theorem 3.1.

Note that the weak comonotonicity condition on PXp in Theorem 3.1 is truly weaker than strong

comonotonicity, as it does not specify the copula of X and Y . As discussed by Embrechts et al.

(2014, Section 3), the typical worst-case scenario of VaR aggregation is a combination of positive

dependence and negative dependence in some non-rigorous sense. Theorem 3.1(i) answers precisely

what these non-rigorous positive and negative dependence structures mean: weak comonotonicity

with respect to PXp and weak antimonotonicity with respect to QXp . Furthermore, Theorem 3.1(ii)

gives a necessary and sufficient condition for the dependence structure maximizing the ESp aggre-

gation.

As a direct consequence of Theorem 3.1, there exists a dependence structure that maximizes

the VaRp and ESp aggregations simultaneously, as specified in Theorem 3.1(i). Note that the weak

comonotonicity of X and Y with respect to PXp can be interpreted as a positive dependence in which

the large values of X and Y appear simultaneously; but they are not perfectly aligned as in strong

comonotonicity. It is straightforward to see, however, that this dependence structure, although

necessary and sufficient for the ESp aggregation, is not necessary for the VaRp aggregation. For

instance, if Y is positive and X(ω) is large enough, say X(ω) > VaRp(X + Y ), then it does not

matter what value Y (ω) takes because it does not affect the calculation of VaRp(X + Y ).
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Remark 3.1. Theorem 3.1(ii) is formulated for a specific p ∈ (0, 1). If one likes (X,Y ) to maximize

ESp aggregation for all p ∈ (0, 1) or, equivalently, maximize the convex order of the sum, then

strong comonotonicity is the only dependence structure (e.g., Cheung, 2010, Theorem 3). This, in

particular, highlights the lack of practical attractiveness of the classical notion of comonotonicity,

as it is unnecessarily too strong, at least from the perspective of ESp aggregation. Indeed, practical

considerations place emphasis on special values of p, usually specified by regulators, and they are,

for example, close to 1 in banking and insurance (e.g., Basel IV and Solvency II; see McNeil et al.

(2015)). More generally, we can think of examples when we would be concerned with p’s in certain

subinterval of (0, 1), but not in the entire interval (0, 1). This serves yet another justification for

the introduction and explorations of the notion of weak comonotonicity.

Remark 3.2. The VaR aggregation problem is equivalent to the problem of maximizing or minimiz-

ing P(X+Y > x) for a given x ∈ R and given marginal distributions of X and Y . Indeed, this is the

problem originally studied by Makarov (1981) and Rüschendorf (1982). It has become well known

since then that comonotonicity does not maximize or minimize the probability P(X + Y > x), and

hence it is not the right notion to describe the corresponding dependence structures.

4 Some properties of weak comonotonicity

In this section we explore some properties of weak comonotonicity, and its relation to notions of

dependence structures and measures of association.

4.1 Point-masses and comonotonicity

We have already noted that point masses reduce weak comonotonicity to strong comonotonicity,

but the class

Rg,h =
{
ρ1 × ρ2 : h and g are weakly comonotonic with respect to ρ1 × ρ2

}
depends, naturally, on the functions g and h. In a sense, we can circumvent this dependence by

introducing certain classes of point masses. Define

Rc = {δx × δx′ : x, x′ ∈ R}

and

Ra = {δx × δx : x ∈ R}.
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Note that Rg,h is the largest set of product measures ρ1 × ρ2 with respect to which g and h are

weakly comonotonic. The set Rg,h is never empty because Ra ⊆ Rg,h. Finally, we note that for

any two functions g and h, the inclusions Ra ⊆ Rg,h and Ra ⊆ Rc always hold.

Theorem 4.1. We have the following two statements:

(i) Rg,h ⊇ Rc if and only if g and h are strongly comonotonic.

(ii) Rg,h = Ra if and only if g and h are strongly antimonotonic and injective on R.

Proof. Statement (i) is trivial. To prove statement (ii), we first note that if Rg,h = Ra, then for

any two x, x′ ∈ R which are not identical, we have δx × δx′ 6∈ Rg,h. Thus, (g(x) − g(x′))(h(x) −

h(x′)) < 0, and the desired injectivity and antimonotonicity follow. Next, assume injectivity and

antimonotonicity. Then, (g(x)−g(x′))(h(x)−h(x′)) < 0 for all x, x′ ∈ R that are not identical. For

any product measure ρ1×ρ2, if condition (2.2) holds, then ρ1×ρ2 must be supported in the points

(x, x′) where either g(x) = g(x′) or h(x) = h(x′), and hence x = x′. Since ρ1 × ρ2 is a product

measure, we know that it has to be of the form δx × δx for x ∈ R. This concludes the proof of

Theorem 4.1.

We now turn our attention to random variables X and Y . Similarly to Rg,h, let

PX,Y =
{
π1 × π2 : X and Y are weakly comonotonic with respect to π1 × π2

}
.

In other words, PX,Y is the largest set of product measures with respect to which X and Y are

weakly comonotonic. It is a symmetric set with respect to X and Y , that is, we have PX,Y = PY,X .

The validity of this symmetry easily follows from the equation∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))π1(dω)π2(dω′)

= Eπ1 [XY ] + Eπ2 [XY ]− Eπ1 [X]Eπ2 [Y ]− Eπ2 [X]Eπ1 [Y ]. (4.1)

It also follows from the latter equation that if π1 = π2 =: π, then condition (2.4) means that the

correlation of X and Y under the measure π is non-negative. Finally, we note that PX,Y is invariant

under all increasing linear marginal transforms, that is, the equation Pλ1X+a1,λ2Y+a2 = PX,Y holds

for all λ1, λ2 > 0 and a1, a2 ∈ R.

Theorem 4.2. Let Pa = {δω× δω : ω ∈ Ω} and Pc = {δω× δω′ : ω, ω′ ∈ Ω}. We have the following

two statements:
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(i) PX,Y ⊇ Pc if and only if X and Y are strongly comonotonic.

(ii) PX,Y = Pa if and only if X and Y are strongly antimonotonic and injective on Ω.

Note that Pa ⊆ PX,Y and Pa ⊆ Pc. The proof of Theorem 4.2 is analogous to that of Theo-

rem 4.1 and is therefore omitted.

4.2 Set-masses and independence

We now go back to the integral, for a probability space (Ω,F ,P),∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))P(dω)P(dω′)

and distort, or rather weight, its probabilities. This gives rise to the integral∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))PW1(dω)PW2(dω′), (4.2)

where, for two random variables W1 ≥ 0 and W2 ≥ 0, the probability measure PW1 is defined via

the equation

PW1(dω) =
W1(ω)

EP[W1]
P(dω),

with PW2 defined analogously. We next explore the case when the weights W1 and W2 are the

indicators IA and IB, respectively, where A and B are elements of the σ-field F .

Let σ(X) denote the σ-field generated by X, and let

σ+(X) = {A ∈ σ(X) : P(A) > 0}.

For any event A ∈ σ+(X), let PA be the conditional probability of P on A. We call these conditional

probabilities set masses, which are natural extensions of the earlier explored point masses.

We shall next connect weak comonotonicity with (in)dependence of random variables X and

Y . It is instructive to start with the bivariate Gaussian case, and the following proposition is

akin to the classical result which says that the equivalence of uncorrelatedness and independence

characterizes Gaussian random variables.

Proposition 4.1. Let (X,Y ) be jointly Gaussian with standard margins and correlation c ∈ [−1, 1].

Then the following three statements are equivalent:

(i) c ≥ 0;

(ii)
{
PA × PB : A,B ∈ σ+(X)

}
⊆ PX,Y ;

14



(iii)
{
PA × PA : A ∈ σ+(X)

}
⊆ PX,Y .

Proof. We first write Y = cX +
√

1− c2Z for some standard Gaussian Z independent of X. For

any A ∈ σ+(X), we have E[XY |A] = E[cX2|A] and E[Y |A] = E[cX|A]. Therefore, the following

holds if and only if c ≥ 0:

E[XY |A] = cE[X2|A] ≥ c(E[X|A])2 = E[X|A]E[Y |A].

Furthermore, we check that, for c ≥ 0,

E[XY |A] + E[XY |B]− E[X|A]E[Y |B]− E[Y |A]E[X|B]

= cE[X2|A] + cE[X2|B]− 2cE[X|A]E[X|B]

≥ c
(
E[X2|A] + E[X2|B]− (E[X|A])2 − (E[X|B])2

)
≥ 0.

This establishes the proposition.

Generally, {PA × PB : A,B ∈ σ+(X)} ⊆ PX,Y and {PA × PA : A ∈ σ+(X)} ⊆ PX,Y are not

equivalent conditions, although they are in the Gaussian case, as we have just seen in Proposi-

tion 4.1.

Proposition 4.2. We have the following statements:

(i) If X and Y are independent, then {PA × PB : A,B ∈ σ+(X)} ⊆ PX,Y and, by symmetry,

{PA × PB : A,B ∈ σ+(Y )} ⊆ PX,Y .

(ii) If {PA × PB : A,B ∈ σ+(X)} ⊆ PX,Y , then, for A,B ∈ σ+(X), we have the property

E[XY |A] + E[XY |B]− E[X|A]E[Y |B]− E[Y |A]E[X|B] ≥ 0,

which in the “diagonal” case A = B reduces to non-negativity of the conditional correlation

Corr[X,Y |A] for every event A ∈ σ+(X).

Proof. To prove part (i), we use equation (4.1) and have∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))PA(dω)PB(dω′)

= E[XY |A] + E[XY |B]− E[X|A]E[Y |B]− E[Y |A]E[X|B]

= E[X|A]E[Y ] + E[X|B]E[Y ]− E[X|A]E[Y ]− E[Y ]E[X|B] = 0.

Hence {PA × PB : A,B ∈ σ+(X)} ⊆ PX,Y . The other half of (i) is by symmetry. The proof of

statement (ii) is a straightforward verification.
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4.3 Weak comonotonicity and measures of association

The notion of weak comonotonicity has enabled us to establish a whole spectrum of comonotonicity

notions, ranging from the classical (strong) comonotonicity under the pairs of all point masses to

weaker comonotonicity notions under the pairs of more elaborate measures. As we shall see next,

this flexibility enables us to capture a whole array of measures of association.

(S1) The Pearson correlation Corr(X,Y ) is non-negative if and only if X and Y are weakly comono-

tonic with respect to P× P.

(S2) Two random variables X and Y are positively associated (also called positively function

dependent; see Joe (1997) for details) if and only if for all non-decreasing functions h and g,

the random variables h(X) and g(Y ) are weakly comonotonic with respect to P× P.

(S3) Assuming that X and Y have continuous cdf’s FX and FY , respectively, the Spearman corre-

lation is non-negative if and only if FX(X) and FY (Y ) are weakly comonotonic with respect

to the product P× P.

(S4) Two random variables X and Y are independent if and only if, for all A,B ∈ B, the indicators

I{X∈A} and I{Y ∈B} are weakly comonotonic with respect to P×P. The same statement holds

if we replace weak comonotonicity by weak antimonotonicity.

All the above statements are straightforward and follow from the equivalence of weak comono-

tonicity (with respect to P × P) and covariance non-negativity. The fourth property, however,

warrants a simple comment-like proof.

Proof of (S4). It is obvious that independence implies weak comonotonicity, as well as weak anti-

monotonicity, of I{X∈A} and I{Y ∈B}. For the other direction, let (X ′, Y ′) be an independent copy

of (X,Y ). For all A,B ∈ B, we have

E[(I{X∈A} − I{X′∈A})(I{Y ∈B} − I{Y ′∈B})] = 2P(X ∈ A, Y ∈ B)− 2P(X ∈ A)P(Y ∈ B),

which is non-negative. Likewise, we have

E[(I{X∈A} − I{X′∈A})(I{Y ∈Bc} − I{Y ′∈Bc})] = 2P(X ∈ A, Y ∈ Bc)− 2P(X ∈ A)P(Y ∈ Bc),

which is also non-negative. Adding the left-hand sides of the two equations gives zero, which, due

to the just established non-negativity statements, implies that the right-hand sides are also zeros,

which implies independence.
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It is convenient to have probability-based quantities expressed in terms of distribution functions,

and we next do so expressly for the purpose of checking whether or not the random variables h(X)

and g(Y ) are weakly comonotonic with respect to P× P. To this end, we write the equations∫∫
Ω2

(
g(X(ω))− g(X(ω′))

)(
h(Y (ω))− h(Y (ω′))

)
P(dω)P(dω′)

= E
[
(g(X)− g(X ′))(h(Y )− h(Y ′))

]
= E

[
(g(X)− g(X ′))(h∗(X)− h∗(X ′))

]
=

∫∫
R2

(
g(x)− g(x′)

)(
h∗(x)− h∗(x′)

)
FX(dx)FX(dx′), (4.3)

where

h∗(x) := E
[
h(Y )|X = x

]
.

Consequently, h(X) and g(Y ) are weakly comonotonic with respect to P × P if and only if the

functions g and h∗ are weakly comonotonic with respect to FX × FX , that is,∫∫
R2

(
g(x)− g(x′)

)(
h∗(x)− h∗(x′)

)
FX(dx)FX(dx′) ≥ 0. (4.4)

From this we arrive at the following interpretation of positive association in terms of weak comono-

tonicity.

Proposition 4.3. The following two statements are equivalent:

(1) The random variables X and Y are positively associated.

(2) For all non-decreasing Borel functions g and h, the functions g and h∗(x) := E[h(Y )|X = x]

are weakly comonotonic with respect to FX × FX .

From Proposition 4.3 we see that if we require the functions g and h∗ to be weakly comonotonic

with respect to all product measures %1×%2, and thus in particular with respect to the products δx×

δx′ for all x, x′ ∈ R, then this is tantamount to the functions g and h∗ being strongly comonotonic.

The next theorem connects the notion of weak comonotonicity of g and h∗ with the notion of

positive regression dependence (Lehmann, 1966).

Proposition 4.4. The following two statements are equivalent:

(i) For all non-decreasing Borel functions g and h, the functions g and h∗ are weakly comonotonic

with respect to all product measures %1 × %2.
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(ii) The random variable Y is positively regression dependent on X, that is, for every y ∈ R, the

function x 7→ FY |X(y|x) is non-increasing.

Proof. Statement (i) means that g and h∗ are strongly comonotonic for all non-decreasing Borel

functions g and h. With this in mind, the equivalence of statements (i) and (ii) follows by noting that

h∗(x) and 1−FY |X(y|x) are equal to E[h(Zx)] and E[hy(Zx)], respectively, where Zx := [Y |X = x]

and hy = I(y,∞). It now remains to recall that the class of all non-decreasing functions h and the

class {hy, y ∈ R} give rise to two equivalent ways for defining stochastic ordering (e.g., Pflug and

Römisch, 2007; Rüschendorf, 2013; Föllmer and Schied, 2016).

5 Maximality of product measures

Definition 2.2 is based on the product measure π1 × π2, which is a natural choice in view of the

examples that have given rise to the notion of weak comonotonicity. There are, however, situations

when the need for more generality arises, and for this we introduce an extension of integral (2.4):∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))πW (dω,dω′), (5.1)

where, π is a measure on (Ω,F), and for any random variable W on (Ω2,F2),

πW (dω,dω′) =
W (ω, ω′)

Eπ×π[W ]
π(dω)π(dω′).

Definition 5.1. We say that random variables X and Y are weakly comonotonic with respect to

a set P of (not necessarily product) measures π on (Ω2,F2) whenever∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))π(dω,dω′) ≥ 0

for all π ∈ P.

This generalization provides a context within which we can better understand the role of the

product measure π1 × π2, which happens to enjoy the following maximality property:∫∫
Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))π(dω,dω′)

≤
∫∫

Ω2

(X(ω)−X(ω′))(Y (ω)− Y (ω′))π1(dω)π2(dω′), (5.2)

provided that

Cπ(X,Y ) :=
1

2

{∫∫
Ω2

X(ω)Y (ω′)π(dω,dω′)−
∫

Ω
X(ω)π1(dω)

∫
Ω
Y (ω′)π2(dω′)

}
+

1

2

{∫∫
Ω2

Y (ω)X(ω′)π(dω,dω′)−
∫

Ω
Y (ω)π1(dω)

∫
Ω
X(ω′)π2(dω′)

}
≥ 0, (5.3)
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where π1(A) :=
∫

Ω π(A,dω′) and π2(A′) :=
∫

Ω π(dω,A′). If the measure π is symmetric, that

is, π(A,A′) = π(A′, A) for all A,A′ ∈ F , then π1 = π2. Note also that the covariance-looking

quantities inside the first braces and inside the second braces are not, in general, symmetric with

respect to X and Y , but their sum Cπ(X,Y ) is always symmetric, irrespective of the measure π.

Finally, we note that in the “diagonal” case X = Y , we have

Cπ(X,X) =

∫∫
Ω2

X(ω)X(ω′)π(dω,dω′)−
∫

Ω
X(ω)π1(dω)

∫
Ω
X(ω′)π2(dω′).

To get a deeper insight into the above notion, and to also connect it to weak comonotonicity

and positive association, we shift our focus to 1) the measurable space (R2,B2), 2) Borel functions

g and h, and 3) the joint cdf FV,W generated by two random variables V and W , whose marginal

cdf’s we denote by FV and FW , respectively. Under this scenario, bound (5.2) takes on the following

form∫∫
R2

(
g(v)− g(w)

)(
h(v)− h(w)

)
FV,W (dv,dw)

≤
∫∫

R2

(
g(v)− g(w)

)(
h(v)− h(w)

)
FV (dv)FW (dw), (5.4)

which holds (cf. condition (5.3)) if and only if

Cπ(g, h) :=
1

2
Cov[g(V ), h(W )] +

1

2
Cov[h(V ), g(W )] ≥ 0, (5.5)

where π = FV,W . Obviously, Cπ(g, h) = Cπ(h, g) irrespective of the measure π, and we also have

the equation Cπ(g, g) = Cov[g(V ), g(W )].

From the above notes we conclude that within the class of measures π = FV,W generated by

positively-associated random variables V and W , the product measure π0 = FV × FV is maximal

in the sense of bound (5.4) within the class of all pairs of non-decreasing Borel functions g and h.

But the assumptions that 1) V and W are positively associated and 2) g and h are non-decreasing

are rather strong: they ensure non-negativity of the two covariances on the right-hand side of

equation (5.5) and thus, in turn, imply the required non-negativity of Cπ(g, h).

Due to the notion of weak comonotonicity, we can specify necessary and sufficient conditions for

non-negativity of the two covariances on the right-hand side of equation (5.5). For this, we write

Cπ(g, h) =
1

2
Cov[g(V ), h∗(V )] +

1

2
Cov[g∗(V ), h(V )], (5.6)

where h∗(v) = E[h(W )|V = v] and g∗(v) = E[g(W )|V = v]. The two covariances on the right-hand

side of equation (5.6) are non-negative if and only if the two pairs (g, h∗) and (g∗, h) are weakly

comonotonic with respect to the measure π0 = FV × FV .
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Note, however, that the covariance Cπ(g, h) can be non-negative without making the two co-

variances on the right-hand side of equation (5.6) non-negative. To show this, we next construct

an example when one of the two covariances is negative but Cπ(g, h) is positive.

Example 5.1. Let g(x) = sin(x) and h(x) = cos(x). Furthermore, let V and W be random

variables whose marginal distributions are

V =

 0 with 3/10

π/2 with 7/10

and

W =

 2π/3 with 3/10

π with 7/10

and let the dependence structure be given by the matrix


2π/3 π

0 1/10 2/10

π/2 2/10 5/10


with Archimedes’ constant π ≈ 3.14159 not be confused with the earlier used notation for measures.

We have

Cov[g(V ), h(W )] = − 1

200
= −0.005,

Cov[h(V ), g(W )] =

√
3

200
≈ 0.00866,

and thus

Cπ(g, h) =
1

2

(
− 1

200
+

√
3

200

)
≈ 0.00183.

This concludes Example 5.1.

6 An application to quantile-based risk sharing

In this section, we illustrate the above developed theory by studying an optimization problem

arising in the context of risk sharing, where weak comonotonicity provides a natural constraint on

the dependence structure of admissible risk allocations. We follow the framework of Embrechts et

al. (2018, 2019), who studied risk sharing problems with quantile-based risk measures.
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Let X be the set of all random variables in an atomless probability space. The random variable

X ∈ X represents a total random loss, and ρ1, . . . , ρn are risk measures (e.g., VaR or ES) used by

n economic agents (e.g., firms or investors). Denote

An(X) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi ≥ X

}
, (6.1)

which is the set of all possible allocations of losses to the agents, summing up to at least the total

loss X. By Embrechts et al. (2018, Proposition 1), Pareto-optimal allocations for the risk sharing

problem are solutions to the following optimization problem

min

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}
. (6.2)

In problem (6.2), the dependence structure among the allocation (X1, . . . , Xn) is arbitrary. Em-

brechts et al. (2018) also consider the constrained problem

min

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X), Xi ↑ X, i = 1, . . . , n

}
. (6.3)

where Xi ↑ X means that Xi and X are strongly comonotonic.

For a practical situation, the assumption of arbitrary dependence in the admissible allocations

as in problem (6.2) may be too weak, and the assumption of strongly comonotonic allocations in

problem (6.3) may be too strong. Therefore, we can consider an intermediate assumption on the

dependence structure of the admissible allocations in the risk sharing problem, which is modelled

by weak comonotonicity.

To this end, we construct a spectrum of weak comonotonicity indexed by β ∈ [0, 1], such that

β = 0 corresponds to no dependence constraint and β = 1 corresponds to strong comonotonicity.

For this purpose, recall that in Section 3 above, for a random variable X and for any p ∈ [0, 1), we

defined

AXp = {ω ∈ Ω : X(ω) > VaRp(X)}

and

PXp = {δω × δω′ : ω ∈ AXp , ω′ ∈ (AXp )c}.

In what follows, for two random variables Y and Z, we shall use the notation Y ↑β Z when Y and

Z are weakly comonotonic with respect to
⋃
p∈[1−β,1) PZp .

The interpretation of Y ↑β Z is that Y and Z are comonotonic and both take large values on

the event AZ1−β, and there is no dependence assumption on (AZ1−β)c. Note also that the requirement
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Y ↑β Z gets stronger when β increases. In particular, assuming that Z is continuously distributed,

for β = 0, Y ↑β Z imposes no dependence assumption, and for β = 1, it means that Y and Z are

strongly comonotonic. Using this connection, we will impose Xi ↑β X, i = 1, . . . , n as a constraint

on the admissible allocations in our risk sharing problem, so that β = 0 corresponds to (6.2) and

β = 1 corresponds to (6.3).

For the purpose of illustration, we focus on an important special case studied by Embrechts et

al. (2018), when the risk measures ρ1, . . . , ρn are quantiles at different levels. Following the setup

of Embrechts et al. (2018), for α ∈ (0, 1) and Y ∈ X , we define

Qα(Y ) = inf{x ∈ R : P(Y ≤ x) ≥ 1− α}.

Remark 6.1. Note that Qα is the left (1 − α)-quantile, which is different from the VaR (right

quantile) defined in Section 3. The choice of the left quantile here and in Embrechts et al. (2018,

2019) is intentional. For minimization problems, we need to work with left quantiles to guarantee

the existence of optimal allocations. Recall that in Section 3 we study maximization problems, and

hence right quantiles are natural choices there. On the other hand, using (1−α)-quantile instead of

α-quantile leads to concise statements of the results; this will be clear from statements (6.4)–(6.5)

below.

Let ρi = Qαi , i = 1, . . . , n, where α1, . . . , αn are positive constants such that
∑n

i=1 α < 1. For

this choice of risk measures, both problems (6.2) and (6.3) admit analytical solutions, given in

Theorem 2 and Proposition 5 of Embrechts et al. (2018), respectively. These results imply

min

{
n∑
i=1

Qαi(Xi) : (X1, . . . , Xn) ∈ An(X)

}
= Q∑n

i=1 αi
(X) (6.4)

and

min

{
n∑
i=1

Qαi(Xi) : (X1, . . . , Xn) ∈ An(X), Xi ↑ X, i = 1, . . . , n

}
= Q∨n

i=1 αi
(X), (6.5)

and the corresponding optimal allocations can be explicitly constructed as well. Note that re-

sult (6.4) implies

Q∑n
i=1 αi

(
n∑
i=1

Xi

)
≤

n∑
i=1

Qαi(Xi) (6.6)

for all X1, . . . , Xn ∈ X (Embrechts et al., 2018, Corollary 1), which will be useful in our analysis

below.
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Remark 6.2. Embrechts et al. (2018) formulate the admissible allocations in (6.1) using
∑n

i=1Xi =

X instead of
∑n

i=1Xi ≥ X. It is easy to see that in problems (6.2) and (6.3), these two setups are

equivalent for monotone risk measures such as the quantiles. In this paper, we use inequality in

definition (6.1) because our dependence constraint would make the two formulations generally no

longer equivalent, and analytical solutions are found for the current formulation.

For a continuously distributed X and a parameter β ∈ [0, 1], we consider the optimization

problem

Vβ(X) = inf

{
n∑
i=1

Qαi(Xi) : (X1, . . . , Xn) ∈ An(X), Xi ↑β X, i = 1, . . . , n

}
. (6.7)

It is clear that β = 0 corresponds to problem (6.2) and β = 1 corresponds to problem (6.3). There-

fore, the use of weak comonotonicity yields a bridge between the two risk sharing problems (6.2)

and (6.3) considered by Embrechts et al. (2018), and it offers more flexibility as one can impose a

partial dependence constraint on the admissible allocations.

Similarly to many other optimization problems involving quantiles (or VaR), problem (6.7) is

not convex as Qα is generally not convex, and thus a specialized analysis of the problem is needed.

Nevertheless, via some auxiliary technical results, we will show below that problem (6.7) admits

an analytical solution, and an optimal allocation will be obtained in explicit form.

Theorem 6.1. Suppose that X is a continuously distributed random variable, α1, . . . , αn > 0,∑n
i=1 αi < 1, and β ∈ [0, 1]. We have

Vβ(X) = Qγ(X),

where γ = β ∧ (
∨n
i=1 αi) +

∑n
i=1(αi − β)+.

Proof. We first note that γ =
∑n

i=1 αi if β = 0, and γ =
∨n
i=1 αi if β = 1, corresponding to

statements (6.4) and (6.5), respectively. Thus, it suffices to consider β ∈ (0, 1). To proceed, we

need the following lemma, whose proof will be given in the appendix.

Lemma 6.1. Let β ∈ (0, 1) and Y ↑β X. Denote B = AX1−β. We have the statements:

(i) B ⊂ {Y ≥ Qβ(Y )} and Bc ⊂ {Y ≤ Qβ(Y )} a.s.

(ii) If α > β, then Qα(Y ) = Qα−β(z1B + Y 1Bc) for all z ≤ Qα(Y ).

(iii) If α > β, then Qα(Y ) = Qα(z1B + Y 1Bc) for all z ≥ Qα(Y ).
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(iv) If α ≤ β, then Qα(Y ) = Qα(Y 1B + z1Bc) for all z ≤ Qα(Y ).

(v) If α+ β < 1, then Qα(Z) ≥ Qα+β(z1B + Z1Bc) for all Z ∈ X and z ∈ R.

We can now continue the proof of Theorem 6.1. Let β ∈ (0, 1) and take an arbitrary admissible

allocation (X1, . . . , Xn) ∈ An(X) such that Xi ↑β X, i = 1, . . . , n. We need additional notation:

B = AX1−β, J = {i ∈ {1, . . . , n} : αi > β}, and K = {1, . . . , n} \ J . Moreover, let xi = Qαi(Xi),

yi = Qβ(Xi), i = 1, . . . , n, yJ =
∑

i∈J yi, yK =
∑

i∈K yi, XJ =
∑

i∈J Xi, and XK =
∑

i∈K Xi.

By Lemma 6.1(i), we have (all statements are in the sense of a.s.)

B ⊂ {Xi ≥ yi} and Bc ⊂ {Xi ≤ yi} for each i = 1, . . . , n. (6.8)

Using statements (6.8), we see that the random vector (Xi1B +yi1Bc)i∈K is strongly comonotonic,

because (X1, . . . , Xn) is strongly comonotonic on the event B by assumption. Hence, using yi ≤ xi

for i ∈ K, Lemma 6.1(iv) and statement (6.5), we get

∑
i∈K

Qαi(Xi) =
∑
i∈K

Qαi(Xi1B + yi1Bc)

≥ Q∨
i∈K αi

(∑
i∈K

Xi1B +
∑
i∈K

yi1Bc

)

= Q∨
i∈K αi (XK1B + yK1Bc) . (6.9)

Further, statements (6.8) also imply

B ⊂ {XK ≥ yK}, B ⊂ {XJ ≥ yJ}, Bc ⊂ {XK ≤ yK} and Bc ⊂ {XJ ≤ yJ}. (6.10)

We split the following considerations into two cases.

Case 1. Assume β ≥
∨n
i=1 αi, which means K = {1, . . . , n} and γ =

∨n
i=1 αi. Note that state-

ments (6.10) imply XK1B + yK1Bc ≥ XK ≥ X. Using bound (6.9) and the fact that Qγ(Y ) is

increasing in Y , we have

n∑
i=1

Qαi(Xi) ≥ Q∨n
i=1 αi

(XK1B + yK1Bc) ≥ Qγ (XK) ≥ Qγ(X).

Therefore, Vβ(X) ≥ Qγ(X). On the other hand, by statement (6.5), we have

Vβ(X) ≤ Q∨n
i=1 αi

(X) = Qγ(X).

Putting the above observations together, we get Vβ(X) = Qγ(X).
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Case 2. Assume β <
∨n
i=1 αi, which means γ = β +

∑n
i=1(αi − β)+ > β, and J 6= ∅. Using

Lemma 6.1(ii) and (v), and bound (6.6), we get

∑
i∈J

Qαi(Xi) =
∑
i∈J

Qαi−β(xi1B +Xi1Bc)

≥ Q∑
i∈J (αi−β)

(∑
i∈J

xi1B +
∑
i∈J

Xi1Bc

)

≥ Qβ+
∑
i∈J (αi−β) (yJ1B +XJ1Bc)

= Qγ (yJ1B +XJ1Bc) . (6.11)

Therefore, yJ1B +XJ1Bc and XK1B +yK1Bc are strongly comonotonic. Putting inequalities (6.9)

and (6.11) together, and using statements (6.5) and (6.10), we obtain

n∑
i=1

Qαi(Xi) =
∑
i∈J

Qαi(Xi) +
∑
i∈K

Qαi(Xi)

≥ Qγ (yJ1B +XJ1Bc) + Qγ (XK1B + yK1Bc)

≥ Qγ ((XK + yJ)1B + (XJ + yK)1Bc)

≥ Qγ ((yK + yJ)1B + (XJ +XK)1Bc)

≥ Qγ ((yK + yJ)1B +X1Bc) . (6.12)

Note that X is continuously distributed, implying Qγ(X) < Qβ(X). Moreover, yK + yJ ≥ XJ +

XK ≥ X on Bc, and by Lemma 6.1(i), we have

{X ≤ Qγ(X)} ⊂ {X < Qβ(X)} ⊂ Bc ⊂ {X ≤ yK + yJ}.

This shows yK + yJ ≥ Qγ(X). Using Lemma 6.1(iii) and bounds (6.12), we obtain

n∑
i=1

Qαi(Xi) ≥ Qγ ((yK + yJ)1B +X1Bc) = Qγ(X).

This proves Vβ(X) ≥ Qγ(X).

Next, we show Vβ(X) ≤ Qγ(X) by an explicit construction of an optimal allocation. Let

y = Qβ(X) and z = Qγ(X). Without loss of generality, assume 1 ∈ J . Recall that

P(AX1−γ \AX1−β) = γ − β =
∑
i∈J

(αi − β),

and hence we can find a partition (Ai)i∈J of AX1−γ \AX1−β such that P(Ai) = αi− βi for each i ∈ J .
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Define

Xi =


(X − z)

(
1B + 1A1 + 1(AX1−γ)c

)
+ z if i = 1,

y+1B + (X − z)1Ai if i ∈ J \ {1},

0 if i ∈ K.

(6.13)

We easily verify that
∑n

i=1Xi = (#J − 1)y+1B + X ≥ X and Xi ↑β X, i = 1, . . . , n. Hence,

(X1, . . . , Xn) is an admissible allocation for problem (6.7). Furthermore, we check that Qα1(X) = z

and Qαi(Xi) = 0 for i 6= 1. Therefore,

n∑
i=1

Qαi(Xi) = z = Qγ(X),

showing that Vβ(X) ≤ Qγ(X).

With this, we finish the proof of Theorem 6.1.

An explicit construction of an optimal allocation to problem (6.7) has been obtained in the

proof of Theorem 6.1. Specifically, and without loss of generality, let α1 =
∨n
i=1 αi. If β <

∨n
i=1 αi,

then an optimal allocation is given by equation (6.13). On the other hand, if β ≥
∨n
i=1 αi, then an

optimal allocation is trivially given by X1 = X and Xi = 0 for i 6= 1. The optimal allocations are

generally not unique, similarly to the case of problems (6.2) and (6.3) in Embrechts et al. (2018).

Finally, we discuss the implication of the values of the parameter β in problem (6.7). Recall

that Vβ(X) represents the smallest total risk measure after risk redistribution. In Theorem 6.1,

γ = γ(β) is a piece-wise linear decreasing function of β, with γ(0) =
∑n

i=1 αi and γ(β) =
∨n
i=1 αi if

β ≥
∨n
i=1 αi. Thus, if there is no dependence constraint, we arrive at (6.4), the minimum possible

total risk measure obtained by Embrechts et al. (2018, Theorem 2). If the dependence constraint

is strong enough (i.e., β ≥
∨n
i=1 αi), then we arrive at the same value of the minimum total risk

measure to (6.5), obtained by Embrechts et al. (2018, Proposition 5). If the dependence constraint

is intermediate, then the total risk measure Vβ(X) varies between the two values, decreasing in β.

This suggests that the use of weak comonotonicity as a dependence constraint yields a spectrum

of flexible formulations of the risk sharing problem.

7 Summary and concluding notes

In this paper, we introduced the notion of weak comonotonicity. Via the analysis of several prop-

erties and applications, we show the encompassing nature of weak comonotonicity, which contains
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– as a special case – the classical notion of comonotonicity. The new notion serves a bridge that

connects the classical notion of comonotonicity of random variables with a number of well-known

notions of (in)dependence and association (e.g., Joe, 2014; Durante and Sempi, 2015, and references

therein). More importantly, we illustrate that introduced weak comonotonicity provides necessary

and sufficient conditions for a number of problems in economics, banking, and insurance, and in

particular to those dealing with risk aggregation and risk sharing. Specifically, it is shown that the

notion of weak comonotonicity yields a sufficient condition for the maximum VaR aggregation, and

a necessary and sufficient condition for the maximum ES aggregation. As far as we are aware of,

such conditions have been elusive. In addition, we provided analytical solutions to a risk sharing

problem whose constraint on the dependence structure of admissible allocations has been most nat-

urally described by weak comonotonicity, bridging the gap between strong comonotonicity and no

dependence assumption studied in the literature. We finally remark that, as weak comonotonicity

depends on the set P of product measures, its spectrum is very wide, including many types of

dependence.
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A Appendix: Proof of Lemma 6.1

Proof of statement (i). By definition of Y ↑β X, for a.s. all ω ∈ B and ω′ ∈ Bc, we have

Y (ω) ≥ Y (ω′). Therefore, there exists a constant z ∈ R such that B ⊂ {Y ≥ z} and Bc ⊂ {Y ≤ z}

a.s. It is easy to see that this constant can be chosen as z = Qβ(Y ) because P(Y ≥ Qβ(Y )) ≥ 1−β

and P(Y ≤ Qβ(Y )) ≥ β.

Proof of statement (ii). By bound (6.6), we have

Qα−β(z1B + Y 1Bc) + Qβ((Y − z)1B) ≥ Qα(Y ).
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Note that Qβ((Y − z)1B) = 0 since Y ≥ z on B by statement (i) and P(B) = β. Hence,

Qα−β(z1B + Y 1Bc) ≥ Qα(Y ). (A.1)

To show the other direction, we consider two cases. If Qα(Y ) < Qβ(Y ), then {Y ≤ Qα(Y )} ⊂

{Y < Qβ(Y )} ⊂ Bc by statement (i). In this case,

P(z1B + Y 1Bc ≤ Qα(Y )) = P(z ≤ Qα(Y ), B) + P(Y ≤ Qα(Y ), Bc)

= P(B) + P(Y ≤ Qα(Y ))

≥ β + 1− α.

If Qα(Y ) = Qβ(Y ), then Bc ⊂ {Y ≤ Qβ(Y )} = {Y ≤ Qα(Y )} by statement (i). In this case,

P(z1B + Y 1Bc ≤ Qα(Y )) = P(z ≤ Qα(Y ), B) + P(Y ≤ Qα(Y ), Bc)

= P(B) + P(Bc) = 1.

In both cases,

P(z1B + Y 1Bc ≤ Qα(Y )) ≥ 1− (α− β),

which implies Qα−β(z1B +Y 1Bc) ≤ Qα(Y ). By bound (A.1), we get Qα−β(z1B +Y 1Bc) = Qα(Y ).

Proof of statement (iii). Note that

P(z1B + Y 1Bc ≥ Qα(Y )) = P(z ≥ Qα(Y ), B) + P(Y ≥ Qα(Y ), Bc)

= P(B) + P(Y ≥ Qα(Y ), Bc)

≥ P(Y ≥ Qα(Y ), B) + P(Y ≥ Qα(Y ), Bc)

= P(Y ≥ Qα(Y )) ≥ α.

This shows

Qα(z1B + Y 1Bc) ≥ Qα(Y ). (A.2)

For the other direction, we consider two cases, similarly to statement (ii). If Qα(Y ) < Qβ(Y ), then

{Y ≤ Qα(Y )} ⊂ {Y < Qβ(Y )} ⊂ Bc by statement (i). In this case,

P(z1B + Y 1Bc ≤ Qα(Y )) = P(z ≤ Qα(Y ), B) + P(Y ≤ Qα(Y ), Bc)

≥ P(Y ≤ Qα(Y )) ≥ 1− α.
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If Qα(Y ) = Qβ(Y ), then Bc ⊂ {Y ≤ Qβ(Y )} = {Y ≤ Qα(Y )} by statement (i). In this case,

P(z1B + Y 1Bc ≤ Qα(Y )) = P(z ≤ Qα(Y ), B) + P(Y ≤ Qα(Y ), Bc)

≥ P(Bc) = 1− β ≥ 1− α.

In both cases,

P(z1B + Y 1Bc ≤ Qα(Y )) ≥ 1− α

which implies Qα(z1B + Y 1Bc) ≤ Qα(Y ). By bound (A.2), we get Qα(z1B + Y 1Bc) = Qα(Y ).

Proof of statement (iv). If α ≤ β, then Qα(Y ) = Qα(Y 1B + z1Bc) for all z ≤ y. Note that

P(Y 1B + z1Bc ≤ Qα(Y )) = P(Y ≤ Qα(Y ), B) + P(z ≤ Qα(Y ), Bc)

= P(Y ≤ Qα(Y ), B) + P(Bc)

≥ P(Y ≤ Qα(Y )) ≥ 1− α.

This shows

Qα(Y 1B + z1Bc) ≤ Qα(Y ). (A.3)

For the other direction, we again consider two cases. If Qα(Y ) > Qβ(Y ), then {Y ≥ Qα(Y )} ⊂

{Y > Qβ(Y )} ⊂ B by statement (i). In this case,

P(Y 1B + z1Bc ≥ Qα(Y )) = P(Y ≥ Qα(Y ), B) + P(z ≥ Qα(Y ), Bc)

≥ P(Y ≥ Qα(Y )) ≥ α.

If Qα(Y ) = Qβ(Y ), then B ⊂ {Y ≥ Qβ(Y )} = {Y ≥ Qα(Y )} by statement (i). In this case,

P(Y 1B + z1Bc ≥ Qα(Y )) = P(Y ≥ Qα(Y ), B) + P(z ≥ Qα(Y ), Bc)

≥ P(B) = β ≥ α.

In both cases,

P(Y 1B + z1Bc ≥ Qα(Y )) ≥ α

which implies Qα(Y 1B + z1Bc) ≥ Qα(Y ). By bound (A.3), we get Qα(Y 1B + z1Bc) = Qα(Y ).

Proof of statement (v). Using (6.6), we have Qα(Z)+Qβ((Z−z)1B) ≥ Qα+β(z1B +Z1Bc). Note

that Qβ((Z−z)1B) ≤ 0 since P((Z−z)1B ≥ 0) ≤ P(B) = 1−β. Hence Qα(Z) ≥ Qα+β(z1B+Z1Bc).

This establishes statement (v) and concludes the entire proof of Lemma 6.1
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Rüschendorf, L. (1982). Random variables with maximum sums. Advances in Applied Probability, 14, 623–

632.
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