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Abstract

We investigate competitive equilibria in a special type of incomplete markets, referred to as a
comonotone market, where agents can only trade such that their risk allocation is comonotonic.
The comonotone market is motivated by the no-sabotage condition. For instance, in a standard
insurance market, the allocation of risk among the insured, the insurer and the reinsurers is
assumed to be comonotonic a priori to the risk-exchange. Two popular classes of preferences in
risk management and behavioral economics, dual utilities (DU) and rank-dependent expected
utilities (RDU), are used to formulate agents’ objectives. We present various results on prop-
erties and characterization of competitive equilibria in this framework, and in particular their
relation to complete markets. For DU-comonotone markets, we find the equilibrium in closed
form and for RDU-comonotone markets, we find the equilibrium in closed form in special cases.
The fundamental theorems of welfare economics are established in both the DU and RDU mar-
kets. We further propose an algorithm to numerically obtain competitive equilibria based on
discretization, which works for both the DU-comonotone market and the RDU-comonotone mar-
ket. Although the comonotone and complete markets are closely related, many of our findings
are intriguing and in sharp contrast to results in the literature on complete markets in terms
of existence, uniqueness, and closed-form solutions of the equilibria, and comonotonicity of the
pricing kernel.
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1 Introduction

1.1 Background

This paper studies risk sharing games in a special type of one-period exchange markets, called
the comonotone markets, and compare them with those in the classic complete markets. A comono-
tone market is one in which only comonotonic risk allocations (defined in Section 2) are allowed.
Equivalently, market participants only trade risk allocations in the market that are comonotonic
with the market total risk. This may be interpreted as, for instance, the market total risk is the
systematic risk that is present, and participants are not allowed to bet against it.

Comonotone markets are closely related to the following economic setups. First, in the context
of insurance risk allocations, comonotonic contracts are desirable a priori to the risk-exchange
(e.g. Huberman et al. (1983)). In particular, for comonotonic contracts, no insurer or insured would
benefit from an incremental loss, and no participant has an incentive to underreport their losses. As
a policyholder would have no incentive to increase the underlying loss in this case, comonotonicity is
often referred to as the no-sabotage condition (e.g. Carlier and Dana (2003)). In optimal reinsurance
contract theory, comonotonicity of risk allocations implies that individual and aggregate indemnity
contracts are not allowed to increase more than the underlying insured risk (e.g. Cheung et al.
(2014) and Xu et al. (2019)). Therefore, studying competitive equilibria in comonotone markets
helps to understand the insurance/reinsurance market. Alternatively, suppose there is an insurance
market, where all individuals face risk driven by a single factor. For instance, the individuals occur
losses in case of a flood, an earthquake, but one can also think about a single default event of a
major creditor. The individuals in the market can buy insurance against this common factor, but
cannot bet against it. This gives rise to comonotone markets. Second, in collective risk sharing,
the no-sabotage condition is an intuitive condition to impose as a property of risk allocations. It
means that all agents in a collective agree to take positions that are non-decreasing functions of
the total risk. This monotonicity property also plays a central role in cost sharing, where the
cost of a good needs to be allocated among agents that each have a demand for this good. For
instance, Moulin (1987) and Moulin and Shenker (1992) both study monotonicity properties in a
deterministic setting. Moulin (1987) requires that the allocated costs weakly increase for all agents if
the cost of the good increases. Moulin and Shenker (1992) impose that if an agent requires a higher
amount of the good, then the cost allocation should weakly increase as well. Third, in a complete
financial market with homogeneous beliefs, equilibrium allocations are generally comonotonic, and
each position in an equilibrium allocation is counter-comonotonic with respect to the pricing kernel
(see a detailed explanation in Section 2). A natural question is what happens if we constrain up-
front the feasible set of allocations to be comonotonic, and whether and how this would affect the
equilibrium price and allocation. As such, the study of comonotone markets helps to enhance the
understanding of the mechanism in complete markets, and this model is able to accommodate some
intriguing phenomena such as the pricing kernel puzzle. Regardless of the interpretation one takes,
our market setup is generic, and we shall simply refer to a market participant, be it an investor, a

firm, an insured, an insurer or a reinsurer, as an agent.



In this paper, the preferences of agents are modelled by dual utilities (DU, Yaari (1987)) or
rank-dependent utilities (RDU, Quiggin (1982, 1993)). These preference models received consid-
erable attention as an alternative (and generalization) to expected utility, as RDU are one of the
most popular decision models in behavioral economics. DU, as a special case of RDU, are related
to the theory of risk measures Artzner et al. (1999), which has gained great popularity after the
introduction of the Basel III regulations for banks (e.g. Embrechts et al. (2014)). The key feature of
RDU is the non-linearity in the probabilities of the risk evaluation. We focus on RDU preferences
because, even in a complete market, finding competitive equilibria is very challenging; existence
may not be guaranteed, and explicit forms are generally unavailable. This is in sharp contrast to
the case of expected utilities in a complete market, where existence and explicit forms are available.

Recent advances on RDU equilibria in complete markets are summarized in Xia and Zhou
(2016) and Jin et al. (2019). Our paper is essentially different from Xia and Zhou (2016) and Jin
et al. (2019), noting that our market is comonotone to begin with. In the latter two papers, non-
trivial technical assumptions are imposed to guarantee the existence of an RDU equilibrium, and
this also ensures counter-comonotonicity of the pricing kernel with the market risk. In our paper,
we show that the pricing kernel is not necessarily counter-comonotonic with the market risk, and
we require only a very weak condition on the structure of the preferences to guarantee existence.
See Section 4 for more detailed discussions on the differences between our results and those in
the classic complete market model. We shall see that in the comonotone market we consider, the
problem becomes much more mathematically tractable, because comonotonicity yields technical
convenience allowing one to translate between RDU and an expected-utility-based model with
heterogeneous beliefs. Nevertheless, in order for explicit calculation of competitive equilibria, some

non-trivial technical conditions need to be imposed.

1.2 Contribution of the paper

The main part of in this paper is dedicated to finding competitive equilibria in a comonotone
market, discussing their economic properties, and comparing them with the case of a complete
market. In Section 2, we formally introduce the comonotone market, collect its properties and its
relation to the corresponding complete market, and review DU and RDU preference models.

Section 3 contains our main results on markets with DU agents. In complete markets, com-
petitive equilibria do not necessarily exist unless the probability distortions are strictly convex. In
comonotone markets, we show the existence of competitive equilibria, and we provide complete
closed-form solutions. Generally, the equilibrium price is not necessarily unique. If probability
distortions are non-convex, the equilibrium pricing kernel does not need to be counter-comonotonic
with the market risk. If the probability distortions are different almost everywhere, then the
equilibrium risk allocations are unique up to constants. Moreover, we show that the two classic
fundamental theorems of welfare economics hold in comonotone markets with DU agents.

Section 4 addresses markets with RDU agents. In complete markets, once again competitive
equilibria do not need to exist unless the probability distortions are strictly convex. Strict convexity

of distortion functions is consistent with strong risk aversion (Chew et al. (1987)). In contrast, we



establish the existence of competitive equilibria in comonotone markets. This is a result of the
fact that our preferences are strictly convex on the set of comonotonic allocations, and thus the
agents are strong risk averse. Moreover, we establish the two fundamental theorems of welfare
economics in comonotone markets. Although closed-form solutions of competitive equilibria are
not universally available, we do obtain them if the distortions are considered to be “close” to each
other. In particular, we obtain an analytical condition for RDU agents with exponential utilities.

To compute competitive equilibria in a comonotone market with general DU and RDU agents,
especially in the cases where explicit solutions are not available, we design an efficient algorithm in
Section 5, and its numerical performance is reported in Section 6 with various examples.

In general, comonotone markets allows for a flexible framework to accommodate interesting
phenomena. In complete markets, the equilibrium pricing kernel is necessarily counter-comonotonic
with the market risk. This is a reason that competitive equilibria do not necessarily exist for rank-
dependent utilities (Jin et al. (2019)) or the more general cumulative prospect theory preferences
(De Giorgi et al. (2010)). In comonotone markets, the equilibrium pricing kernel does not need to
be counter-comonotonic with the market risk, and existence of the equilibrium is guaranteed under

mild conditions.

1.3 Related literature

There is a relatively large literature that analyzes competitive equilibria in risk sharing, based
on the seminal work of Arrow and Debreu (1954). Pareto-optimal and competitive risk sharing in
complete markets with (convex) risk measures (which include convex dual utilities) is studied by
Heath and Ku (2004), Barrieu and El Karoui (2005), Jouini et al. (2008), and Dana and Le Van
(2010); see Ludkovski and Young (2009) and Boonen (2015, 2017) for a more focused treatment
on dual utilities. The non-convex case is studied recently for quantile-based risk measures (special
cases of dual utilities) by Embrechts et al. (2018, 2020). Risk sharing with rank-dependent utilities
is studied by, amongst others, Chateauneuf et al. (2000) and Tsanakas and Christofides (2006),
who also assume convex probability distortions. In this paper, we consider general probability
distortions (not necessarily concave or convex), that include inverse-S shaped distortions proposed
by Tversky and Kahneman (1992). Competitive equilibria in complete markets for not necessarily
convex distortions are studied recently by Xia and Zhou (2016) and Jin et al. (2019), who establish
some sufficient conditions for the existence of equilibria.

A key concept we introduce and study in this paper is the comonotone market. A summary
of comonotonicity and its related properties can be found in Denuit et al. (2005). The profound
connection between optimality in risk sharing and comonotonicity is studied in Landsberger and
Meilijson (1994) and Ludkovski and Riischendorf (2008); see Riischendorf (2013) and the references
therein. Because of the imposed comonotonicity, a comonotone market with RDU agents is closely
related to a complete market with expected utility agents and heterogeneous beliefs. Risk sharing
in complete markets with expected utilities gained interest already by Arrow and Debreu (1954),
and have been generalized by many authors thereafter (e.g. Borch (1962); Wilson (1968); Dana

(1993)). A more recent account is given by Anthropelos and Kardaras (2017), where agents can



strategically choose their subjective beliefs regarding the underlying risk in the market. A more
common notion of market incompleteness arises by the spanning of the payoff space by a limited
number of securities. For instance, Araujo et al. (2012) and Beissner and Riedel (2019) study
incomplete markets with sublinear price functionals, that are a result of transaction costs. Also,
market incompleteness by constraints on feasible risk sharing contracts has particularly gained
popularity in the financial literature on short-selling constraints, which is a weaker constraint than
the constraints in comonotone markets (Jarrow (1980); Nielsen (1989); Heaton and Lucas (1996)).
Our use of comonotone markets is not driven by constraints on securities, but arise by directly
constraining the payoff space. As far as we are aware of, this paper is the first one to formulate
market incompleteness by means of the comonotone market and to study risk sharing in this market.
In comonotone markets, we assume that our pricing function is comonotonic additive, which is
introduced by Schmeidler (1986).

Another related stream of research is in the literature of optimal insurance/reinsurance design,
where comonotonicity of risk allocation is assumed as a natural requirement of no moral hazard.
Our technical approaches share some similarity with recent developments in this field; for the latter,
the reader is referred to Bernard et al. (2015), Cai et al. (2016), Xu et al. (2019) and the references

therein.

2 Notation and preliminaries

2.1 Dual utilities and rank-dependent utilities

We work with a probability space (€2, B,P), and denote the set of bounded random variables'
on it by X = L>*(Q, B,P). We consider a one-period exchange market with a finite set of agents,
given by N = {1,...,n}. Each agent in the market is endowed with an endowment §; € X,
i € N, that we interpret as a (random) future wealth at a given future reference period. The total
(future) wealth in the market is then given by X = >"" | &, and denote by R(X) the range of X,
which is assumed to be a closed real interval.”? We assume that B is the o-algebra generated by
X. Throughout, Fx(-) = P(X < -) represents the cumulative distribution function of a random
variable X and Sx = 1 — Fx represents its survival function.

In this paper, we focus on rank-dependent utilities (RDU) (Quiggin (1982, 1993)) as class of
risk preferences, which includes dual utilities (DU) (Yaari (1987)) as special cases. Define the set

of distortion functions (also called probability perception functions)?

g= {g :[0,1] — [0,1]|g is continuous and increasing, ¢(0) =0 and g(1) = 1} .

!The reason of working with bounded random variables in this paper is simply to avoid possible infinity in
optimizations. Most results can be naturally generalized to unbounded random variables, assuming that the preference
functionals we encounter take finite values on these random variables.

“For instance, if X is a uniform random variable on (0, 1), then R(X) = [0, 1].

3For the ease of presentation, we only consider continuous distortion functions, although many results can be
applied to the case of discontinuous distortion functions.



A dual utility functional Dy with distortion function g € G is defined as a Choquet integral (see
e.g. Denneberg (1994) and Wang et al. (1997)), namely,
0 o0
D)= [Ydlgor)i= [ (gsy(z)-nds+ [ glSvendz Yer.
—o00 0

For an increasing function u : R — [—00, 00) and a distortion function g € G, a rank-dependent

utility functional R, 4 is given by
Rug(Y) = Dy(u(Y) = [u(¥)d(goP), ¥ e x.

Throughout, we shall use the abbreviations DU for dual utility functionals, and RDU for rank-
dependent utility functionals. Note that DU does not take the value —oo on X whereas RDU may
take the value —oo on a subset of X depending on the choice of u, such as power utility functions.

RDU is a special case of Choquet expected utility, in which the agent’s non-additive measure
(also called a capacity) v is a distortion of a probability measure (v = goP). In this case, convexity
of the probability weighting function g yields convexity of the capacity v. In Choquet expected
utility, a convex capacity reflects ambiguity aversion, and a concave capacity reflects an ambiguity-
seeking behavior. It is well known that R, , is consistent with strong risk aversion® if and only if
u is concave and g is convex. Due to the popularity of and the empirical evidence for non-convex
distortion functions in modern decision theory (e.g. Tversky and Kahneman (1992) and Quiggin

(1993)), we are particularly interested in the cases where g1, ..., g, are not necessarily convex.

2.2 Comonotone market and competitive equilibria

A pair of random variables (Y, Z) € X? is called comonotonic, or equivalently, the pair (Y, —2)
is called counter-comonotonic, if Y = f(Y + Z) and Z = g(Y + Z) for some increasing functions’
f and g. We say that a random vector (X1,...,X,) is comonotonic if each pair of X,..., X, is
comonotonic. Equivalently, there exist increasing functions fi, ..., f, such that X; = f;(X; +---+
Xp),i=1,...,n.

Denote by P the set of all probability measures on (€2, B) which are absolutely continuous with
respect to P. The current price of a random wealth Y in the market is given by EQ[Y] for some
Q € P, which we shall refer to as a pricing measure.

We consider competitive equilibria in two market settings. The main focus is a special type of
incomplete market, the comonotone market, in which allocations are confined to the set C(X) of

comonotonic allocations, namely,

C(X)={Y eXx:(Y,X —Y) is comonotonic}.

4This result was shown by Chew et al. (1987). For risk aversion in more advanced decision models, see Schmidt
and Zank (2008) and Miiller et al. (2017).
5In this paper, terms “increasing” and “decreasing” are in the non-strict sense.



In this market, the set of admissible allocations® is denoted by
AS(X) = { (X1, .0, Xn) € (CX)": 3 X = X
i=1

For comparison with the comonotone market, we also consider a complete market, where the set of

admissible allocations is denoted by

n
Ap(X)=q (X1, Xp) €X™: Y X=X
i=1
The preference of agent i € N is modelled via an objective functional V;, which is a dual utility
or rank-dependent utility functional. In general, competitive equilibrium is a pricing measure and
a risk redistribution, such that given the price formula, each agent i € N individually maximizes
Vi(X}) such that X/ is in the budget set, and the pricing measure QQ induces market-clearing by
equating aggregate supply and demand, i.e., Y . ; X* = X. The formal definition of competitive

equilibria in the two markets is given below.”

Definition 1 (Competitive equilibria). Fix objective functionals Vi,...,V,,, total risk X € & and
initial endowments &, ..., &, € X, and define the budget set B(Q,&;) = {Y € X : EQ[Y] < EQ[¢]}.

(i) A constrained competitive equilibrium (CCE) is a pair of comonotonic allocation and pricing
measure ((X1,...,X,),Q) € AS(X) x P such that for i € N,

X; € B(Q,&) and Vi(X;) =max{V;(V;):Y; € C(X)NB(Q,&)}.

(ii) An unconstrained competitive equilibrium (UCE) is a pair of allocation and pricing measure

(X1,...,X5,),Q) € Ay(X) x P such that for i € N,

X; € B(Q,&) and Vi(X;) = max {Vi(Y;) : Vi € B(Q,&)}.

In a competitive equilibrium, (X7i,...,X,) is an equilibrium allocation, and Q is an equilibrium

price.’

51n fact, any tuple of random variables in C(X) is comonotonic; see Denneberg (1994). According to Denneberg’s
Lemma (Denneberg (1994)), for an allocation (X1, ..., X,) € Af,(X) and each 7 € N, it is possible to write X; = f;(X)
for some f; € F. As a consequence, (X1,...,X») is comonotonic. These facts are used repeatedly in the analysis of
this paper.

"In a market of finitely many linear assets, the existence of a pricing measure follows from the no-arbitrage
assumption by the first Fundamental Theorem of Asset Pricing in the form of Theorem 1.7 of Follmer and Schied
(2016). In the more general markets such as the ones we consider in Definition 1, a small extra assumption of
continuity is required, such as semi-continuity of the pricing functional with respect to the weak* topology (see e.g.,
Theorem 12 of Delbaen (2012)). Following the standard practice in the literature, we directly assume that the pricing
in the market is induced by probability measures.

8Tt may happen that V;(X;) = —co in both (i) and (ii). This may be, for instance, the case where an agent with
a logarithmic utility function has a negative endowment. We shall mainly focus on the cases where V;(X;) > —oo.



Clearly, if the allocation in a UCE is comonotonic, then the UCE is a CCE for the same set
of objective functionals and initial endowments.

Competitive equilibria rely on the assumption that there is a competitive environment, where
individual transactions have no influence on the prices. UCE in the complete market for rank-
dependent utilities are studied recently in Xia and Zhou (2016) and Jin et al. (2019), and an
analytical solution is very difficult to obtain in general for heterogeneous distortion functions. In
this paper, our main focus is put on the comonotone market, and we shall investigate the difference
between equilibria in these two markets, namely CCE and UCE.

Suppose that ((X7,...,X}),Q) is a UCE, and let = dQ/dP, namely the pricing kernel.” As
one of the classic results in equilibrium asset pricing theory in complete markets (e.g. Follmer and
Schied (2016) and Jin et al. (2019)), assuming that the objectives are law-determined and strictly

monotone and 7 is continuously distributed, the following statements hold.
(i) (X7,n) is counter-comonotonic (Dybvig (1988)).
(ii) (X,n) is counter-comonotonic (a result of (i)).

(iii) (X7,..., X)) € AS(X) (aresult of (i)).

The above fact (ii) is commonly referred to as the law of demand and supply, meaning that in an
equilibrium, the higher supply (larger values of X)) is associated with a lower price (smaller values
of n); see e.g. Chabi-Yo (2012) and Hens and Reichlin (2013). Therefore, from (iii), under mild
conditions, a UCE is always a CCE. However, from the detailed analysis in this paper, we shall see
that a CCE is not necessarily a UCE. Moreover, for a CCE ((X7,...,X}),Q), the above (i) and
(ii) are not necessarily true, thus in sharp contrast to the case of complete market.

A concept closely related to competitive equilibria is the classic Pareto optimality, also known

as Pareto efficiency.

Definition 2 (Pareto-optimal allocations). Fix objective functionals Vi,...,V,,, total risk X € X
and initial endowments &1,...,&, € X.
(i) In the comonotone market, an allocation (Xi,...,X,) € A% (X) is Pareto-optimal if for any

allocation (Y7,...,Y,) € AS(X), Vi(Y;) > Vi(X;) for i € N implies V;(Y;) = Vi(X;) for i € N.

(ii) In the complete market, an allocation (Xi,...,X,) € A,(X) is Pareto-optimal if for any
allocation (Y7,...,Y,) € A, (X), Vi(Y;) > Vi(X;) for i € N implies V;(Y;) = Vi(X;) for i € N.

The main part of this paper is dedicated to derive CCE, compare it with properties of UCE,
and establish its relation to Pareto-optimal allocations through the fundamental theorems of welfare
economics.

Note that the classic von Neumann-Morgenstern expected utility functional (EU) is a special
case of RDU by taking ¢ as the identity function on [0, 1]. Moreover, a DU is a special case of an

RDU by taking u as the identity function. In what follows we treat the corresponding CCE problems

9Since E¥[1] = 1, we know that the pricing kernel dQ/dP is in L'(Q, B, P).



with DU and RDU separately in Sections 3 and 4 for two reasons. First, we can analytically solve
CCE for DU, but not for RDU, and second, in this paper we only consider RDU in which u is
strictly concave, a common setup in the study of RDU (Quiggin (1993)), which rules out DU as a

special case; see Section 4.

2.3 Individual optimization

In a comonotone market, the individual optimization problem is to find X" which solves
ma Vi(X;), or, equivalently,
xeehe Y Arventy
Vi(X;) st EQ[X;] < EQgl. 2
ngf(X) (Xi) s [Xi] < (i (2)

If Vi, i € N, are DU or RDU, we first present a simple fact on the individual optimization problem
(2), which will serve as a building block to solving the CCE in Sections 3 and 4 and as the basis of

the numerical algorithm in Section 5.

Lemma 1. Let V; = Ry, q4,, © € N, where u;, i € N, are strictly increasing functions. For a fizved
Q and X; € C(X), let Y; = X; — EQ[&] + EQ[Y;]. Then, X; mazimizes problem (2) if and only if Y;

satisfies

Y; € argmax{V;(Y — E°[Y] + E2[&])}. (3)
YeC(X)

The proof of the lemma follows directly from the fact that the budget constraint E2[Y] < EQ[¢;]
in B(Q,¢&;) is binding, because of the strict monotonicity of the objective V;.

In the special case of V; = Dy, for an individual agent (that is, u; is the identity function), for

a fixed Q, (3) boils down to

Y; € argmax{V;(Y) — E2[Y]}. (4)
YeC(X)

3 Competitive equilibria with dual utilities

In this section, we study the case of equilibria for dual utilities. Throughout this section, we
impose the following assumption.

Assumption 1. Let V; = Dy, forie N, where gi,...,9n € G, &1,...,6n € X, and X =31 | &.

For the convenience of presentation, we shall refer a market with the above objectives and

endowments as a DU-comonotone market or a DU-complete market.

3.1 Equilibrium allocations and prices

Let
F ={f:R — R|f is absolutely continuous, 0 < f'(2) <1 for 2z € R},



where, for f € F, we use f’ to represent a function that is almost everywhere (a.e.) equal to the
derivative of f.19

In the case of a DU-complete market where the distortion functions are not convex, a UCE
does not necessarily exist; see Embrechts et al. (2018) in the case of quantiles. Let gn1(t) =
max{gi(t),...,gn(t)} for t € [0,1]. If the distortion functions are all convex, then a UCE in a
complete market ((X7,..., X)), Q) exists, and is given by Q(X > z) = gn1(Sx(z)) for all z € R(X)
and X, = f;(X) such that f; € F, and for all z € R(X):

fl(z) =0, if gi(Sx(2)) < Q(X > 2) and Zf;(z) =1.

=1

We refer to Boonen (2015) for the case of a finite state space.
We proceed with studying the DU-comonotone market. For a fixed Q, we first give an explicit

solution to the individual optimization problem (2) based on Lemma 1.

Proposition 1. Suppose that Assumption 1 holds. For a fixred Q and f; € F, the random variable
Y; = fi(X) satisfies (4) if and only if for all z € R(X),

fi(z) =1, if gi(Sx(2)) > QX > 2), and fi(z) =0, if gi(Sx(2)) < QX > 2). (5)

Combining Proposition 1 and Lemma 1, we see that there always exists a maximizer to the
individual optimization problem (2) given by X; =Y; — EQ[Y;] + EQ[¢;].

We continue by characterizing the CCE explicitly. In the following, gy 2(t) is the second-largest
element in {g1(t),...,gn(t)} for t € [0,1].

Theorem 1. In the comonotone market under Assumption 1, the pair (X7,...,X}),Q) is a« CCE
if and only if the following hold
(1) gn2(5x(2)) < QX > 2) < gna(Sx(2)) for z € R(X);
(i) for i € N, X; = fi(X) — EQ[fi(X)] + EQ[&] almost surely where f; satisfies (5) with
>y filX) = X.
If there exists an ¢ € N such that g;(t) = gn1(¢) for all t € [0, 1], then we interpret this agent
(Y) > Dy, (Y) for every risk Y € & and every

other j € N. Therefore, there exists an equilibrium such that agent 7 bears all the aggregate risk in

as the most risk-loving agent since Dy, (Y) > Dy,
equilibrium and the other agents only face deterministic risk allocations (e.g., full insurance in an
insurance setting). If there does not exist a most risk-loving agent, then locally a most-risk loving
agent bears the local aggregate risk. More precisely, the marginal risk of X at z € R(X) is allocated
to the agent(s) in Z(z) = {i € N : gi(Sx(2)) = gn1(Sx(2))} and }_c7( fl(z) =1

From Theorem 1, we get directly the following corollary for the case of identical dual utilities

among agents.

10WWhen speaking of derivatives of functions in F, we do not distinguish two functions that are a.e. equal.
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Corollary 1. In the comonotone market under Assumption 1, if g; = g for alli € N, then the pair
(X7,...,X5),Q) is a CCE if and only if the following hold

(1) QX > 2) = g(Sx(z)) for 2 € R(X);
(i) fori € N, X; = fi(X)—EQ[f;(X)]+EQ[&] almost surely where Z;‘:l fi(X)=X and f; € F.

According to Corollary 1, if all agents use the same DU, then the equilibrium price turns out
to be unique. On the contrary, equilibrium allocations are not unique. In fact, each comonotonic
allocation satisfying the individual budget constraints is an equilibrium allocation. In the theorem

below we analyze existence and uniqueness of the CCE in more details.
Theorem 2. In the comonotone market under Assumption 1, the following hold.

(i) A CCE always exists.

(11) If gn1(t) > gn2(t) for almost everywhere t € [0,1], then the equilibrium (CCE) allocation is

unique up to constant shifts, and the equilibrium price is not unique.

(111) If gn1(t) = gna(t) for almost everywhere t € [0,1], then the equilibrium (CCE) price is

unique, and the equilibrium allocation is not unique.

In (i) of the theorem, we obtain existence of a CCE in a comonotone market. We wish to
point out that existence of a UCE may not hold in expected utility complete markets with an
unbounded commodity space (e.g. Cheng (1991) and Dana and Le Van (2000)). Assumptions in
such markets to obtain existence of equilibria often include that individual agents are risk-averse or
the individually rational utility set is compact. In our DU-comonotone market, such assumptions
are not needed. In (ii) of the theorem, by saying that the equilibrium allocation is unique up to
constant shifts, we mean that, for any two CCEs ((X1,...,X,),Q) and ((Y1,...,Y,),Q), X; — Y;,
i € N are deterministic. Here, the two pricing measures Q and Q may not be the same. In
particular, X; — Y; = EQ[¢; — V;] = EQLX, — &].

By constraining the market by allowing only for comonotonic allocations, the equilibrium price
is typically not unique, and the difference with a complete market can be explained intuitively as
follows. In a complete market, suppose we have Q(X > z) < g1(Sx(2)) for some z and X; € C(X).
Then, we let Agent 1 buy the security §(I;xs.} — Q(X > 2)) for 6 > 0, where 14 is the indicator
function of an event A. Note that the resulting new position X7 = X1 + d(Ij x>,y — Q(X > 2))
has the same price as X1, and it increases the utility of Agent 1 by d(g1(Sx(2)) — Q(X > 2)) > 0.
Infinite profit for Agent 1 follows from letting 6 — oo, making an equilibrium allocation impossible.
On the other hand, in a comonotone market, the feasible choice of ¢ is constrained. Hence, this
strategy with asymptotic profits is not feasible anymore. This fact leads to the sharp qualitative

contrast between the two markets.
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3.2 Pareto optimality and fundamental theorems of welfare economics

In this section we discuss the relation between equilibria and Pareto optimality, and establish
fundamental theorems of welfare economics for the DU-comonotone market. First, we state a simple
fact that for DU agents, Pareto optimality is equivalent to optimality with respect to the sum. This
result is well known (see e.g. Proposition 1 of Embrechts et al. (2018)) in case of the complete

market, and the same argument therein applies to the comonotone market.

Proposition 2. In the comonotone market under Assumption 1, an allocation (Xi,...,X,) €

AS(X) is Pareto-optimal if and only if it is sum-optimal, that is,

zn:v;(x maX{ZV Yl,...,Yn)eAg(X)}. (6)
=1

The value of the right-hand side of (6) can be easily calculated. Indeed, by Proposition 5 of
Embrechts et al. (2018), we have, for any S C N and Y € C(X),

max{Zw(y Y, €C(X), ) Y= Y} Dy, (Y), (7)

€S €S

where D, is the dual utility with distortion function gs1(s) = max{g;(s) : i € S} for s € [0,1].
Hence, from Theorem 1 that for every CCE ((X7,...,X}),Q), we get

ZV gNl(X)7

and
Vi(X}) > E9X[] > Dy 1y, (X)) =max{ Y V(Y)Y € C(X]), Y Y= X;
J#i J#i
Note that Dy, {,-},1(Xz'* ) is the maximum price that all agents, except i, are jointly willing to offer

to bear the risk X
We conclude the section by establishing the fundamental theorems of welfare economics (FTWE)
for the DU-comonotone market. The proof of FTWE relies on the explicit form of CCEs obtained

in Theorem 1 and the relation to sum-optimality in Proposition 2.
Theorem 3. In the comonotone market under Assumption 1, the following hold.
(i) An equilibrium (CCE) allocation is necessarily Pareto-optimal.

(ii) A Pareto-optimal allocation is necessarily an equilibrium (CCE) allocation for some choice of

endowments.
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4 Competitive equilibria with rank-dependent utilities

We proceed to the market with agents using rank-dependent utilities, which is a much more

complicated object to analyze. Throughout this section we make the following assumption.

Assumption 2. Let V; = Ry, 4, for i € N, where gi1,...,9, € G are continuously differentiable,

U, ..., Uy are strictly increasing and strictly concave utility functions, &1,...,&, € X, and X =

2?21 fz

For i € N, write d; = inf{x € R : u;(z) > —oo}, that is, the infimum wealth value on which the
utility of agent ¢ is finite, and assume that w; is continuously differentiable on (d;, 00). We say an
allocation (X1,...,X,) is proper if V;(X;) > —oo for all i € N. Certainly, only proper allocations
are economically interesting. For the convenience of presentation, we shall refer a market with the

above objectives and endowments as an RDU-comonotone market or an RDU-complete market.

4.1 General results

We start with stating equilibrium results in the RDU-complete market. UCE do not need
to exist when distortions are not convex (see Xia and Zhou (2016) and Jin et al. (2019)). For
example, in Xia and Zhou (2016), if the homogeneous distortion function g; = g is not concave, the
assumption that the function ¢/(1—#)u’(VaRx (¢))!! is strictly increasing in ¢ is required to guarantee
the existence of equilibria. Xia and Zhou (2016) consequently show counter-comonotonicity between
the pricing kernel and the market total wealth. Moreover, Jin et al. (2019) show existence of UCE
under a technical condition that implies the counter-comonotonicity between the pricing kernel and
the market total wealth.

We proceed with studying the RDU-comonotone market. In Lemma 1, the individual opti-
mization problem (2) is linked to looking for Y¥; € C'(X) satisfying (3). Our first result shows the

existence of such Y;.

Proposition 3. In the comonotone market under Assumption 2, there exists Y; € C(X) satisfying

(3). Thus, the individual mazimal objectives in (2) are achieved.

We next establish the existence of a CCE, as well as the first and second FTWE in this
market. The proof of the following results hinges on the observation that the preference V; = R, 4,
is continuous and concave on the domain C'(X), and C'(X) is a convex set. Then, one builds on the
existing results of existence and FTWE in discrete models, e.g. Theorem 1 of Werner (1987) and
Propositions 16.D.1 and 16.D.3 of Mas-Colell et al. (1995). The technical difficulties of bridging
discrete and continuous models are overcome by Lemma 2 below which may be of independent
interest. In the presentation of the lemma below, the objectives are fixed as Vi,...,V,, while we

allow the initial endowments to vary.

1 0On top of individual agents, Xia and Zhou (2016) define a representative agent in the market, and w is the utility
of the representative agent.
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Lemma 2. In the comonotone market under Assumption 2, suppose that (&1, ...,&y,) is proper and
& is a continuous function of X on R(X) for eachi € N, {& }72, C X™ converges to & uniformly
fori € N, and for each k € N, &1 + -+ &k > X and ((ka, e ,X;jk),Qk) is a CCE for the
initial endowments (&1, ...,&n k). Then, there exists a subsequence of {((ka, ... ,X;k),Qk)}iozl

which converges to a CCE for the initial endowments (&1, ...,&,). Here, the convergence is uniform
for { X7 372, and weak for {QFy% ..

With the help of Lemma 2, we are able to establish the existence and the FTWE results in

the RDU-comonotone market.
Theorem 4. In the comonotone market under Assumption 2, the following hold.

(i) If (&1,...,&) is proper and &; is a continuous function of X on R(X) for each i € N, then a
CCE exists.

(ii) A proper equilibrium (CCE) allocation is necessarily Pareto-optimal.

(iii) A proper Pareto-optimal allocation is necessarily an equilibrium (CCE) allocation for some

choice of endowments.

4.2 An analytical approach for the competitive equilibria

In general, to find explicit solutions for competitive equilibria in the RDU markets is very
challenging. In this section we derive an approach for explicit CCE under some nice conditions on
the agents’ preferences.

In the following, we shall build a connection from the CCE problem for RDU agents to a UCE
problem for expected utility agents with heterogeneous beliefs. Let Assumption 2 hold. For i € N,
define a probability measure @Q; on (2, B) generated by its value on the events {X > t};cr, specified
as

Qi(X >t)=gioP(X >t), teR, (8)

which is indeed a probability measure since g;(0) = 0, g;(1) = 1, and g; is continuous and increasing.
Since g; is continuously differentiable, we know that @; is absolutely continuous with respect to P,

and the Radon-Nikodym derivative of @; with respect to P is given by'?

dQ;
dP

= gi(Sx (X)), i€N. (9)

For each i € N and Y € C(X),

0

VitY) = Ry, 0, (Y) = / (gi o P(u(Y) > 2) —1)dz + /000 gi o P(u;(Y) > z)dz

—00

0 00
= / (Qi(ui(Y) >2)—1)dz —I—/O Qi(uy(Y) > z)dz = E9 [u; (V)] (10)

—0o0

2Since B is generated by X, (9) holds on (X, B).

14



Note that (10) relies on the useful fact that (Y, X) is comonotonic. Based on (10), in a comonotone

market, the individual optimization problem (2) translates to

EQ [u;(X;)]. 11
xs o gen E i) )

Now, we introduce the following accessory EU problem in the complete market, for i € N,

XiGXmQan(@’&)EQi [us (X)) (12)
Write V/(Y) = E9[u;(Y)] for Y € X and i € N. Since V/ and E? are monotone operators, the
budget constraint in B(Q, ;) will be binding at the optimizers.

Clearly, if a solution to (12) is in C'(X), then it also solves (11), thus (2). Based on the above
observation, we can solve a UCE for the individual objectives V{,... V. If the resulting UCE
is comonotonic, then we arrive at a CCE in the RDU-monotone market as well. Unfortunately,
the resulting equilibrium allocation is not necessarily comonotonic in general, and we need some

conditions for it to be so.

RDU-comonotone market — EU-comonotone market (11)
CCE CCE
T (generally) 1} (if comonotonic)

RDU-complete market EU-complete market (12)
UCE UCE
(relatively well studied)

First, we try to solve UCE for the individual objectives V{,...,V,. Note that V/ is not
necessarily equal to V; on X, although they are equal on C'(X); thus the EU-complete market (12)
is not equivalent to an RDU-complete market. Analytical solutions for such a market are available
for special classes of utility functions; see e.g. Anthropelos and Kardaras (2017). Below we outline
the main steps.

Note that Q1,...,Qn,P,Q must all be equivalent probability measures so that (12) has a
maximizer. For a fixed Q € P, using a Lagrangian method, we obtain a unique solution for (12)
under some mild regularity conditions (see e.g. Section 3.1 of Follmer and Schied (2016) for the

technical conditions), that is,

X; = (u))™" <£Ai) , (13)

where )\; is a positive constant that ensures the binding budget constraint E2[X;] = EQ[¢]. The

market clearing condition then boils down to

zn: (uf) ! <§3)\i> = X, (14)

i=1
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and from this equation one can solve for Q. Note that \; also involves @, making a solution to (14)
possibly implicit.

Note that u; is strictly concave, which guarantees that (u;)_1 is a decreasing function. There-
fore, (X1,...,X,) in (13) is comonotonic if ((%%, cee %) is comonotonic. We summarize our

findings in the following proposition.

Proposition 4. Suppose that ((X1,...,X,),Q) is a UCE for the objective functionals V{,..., V.
If((%%, cee %) is comonotonic, then ((X1,...,Xn),Q) is a CCE in the comonotone market under

Assumption 2.

A key consequence of Proposition 4 is that the pricing kernel n = i% in a CCE is not necessarily

a decreasing function of the total wealth X; recall that counter-comonotonicity of (n, X) is a classic
feature of UCE (see Section 2.2). To show this, note that, by (9), we have
_dQ@ _ dQ d@, _ dQ

"= 1P = 40, dP :dngll(SX(X))' (15)

As a result of (14), the term (%% is a decreasing function of X. However, since ¢} is not necessarily
an increasing function unless g; is convex, ¢} (Sx (X)) is not necessarily a decreasing function of X.
Indeed, if g; is inverse-S-shaped as in Tversky and Kahneman (1992) (see Figure 2 in Section 6),
then g} on [0, 1] is first decreasing and then increasing. As a result, ) as a function of X can be first
decreasing and then increasing. This case is shown in Example 2, and here we plot the obtained
pricing kernel n as a function of X in Figure 1. Our model is able to accommodate the pricing
kernel puzzle (see e.g. Hens and Reichlin (2013)), where empirical evidence suggests that the pricing
kernel is not a decreasing function of the total wealth X, contradicting classic UCE models. Note
that a non-decreasing function 7 implies that the comonotonicity constraints in C'(X) are binding

somewhere in equilibrium; there exists a trade in X\C(X) that a rational agent would prefer and

can afford.
20
15
T 10
5|
0 2 4 6 8 10

Figure 1: The pricing kernel 1 as a non-monotone function of X in Example 2.

In case that any of g1, ..., gp is convex, (15) implies that 7 as a decreasing function of X, and

hence the above non-classic phenomenon disappears.
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We note that Proposition 4 does not tell much if ( a0 ,...,%) is not comonotonic. Thus,

we are only able to partially solve competltlve equilibria for the RDU market under nice conditions

guaranteeing the comonotonicity of ( 0.7 W) A simple example is the case that g; = = Gn,
and this includes the case of expected utlhty agents (i.e. g1, ..., gy are identity functlons). In this
case, Q1 = -+ = @, and obviously ( 10, ,...,%) is comonotonic. In fact, this market is closely

related to a classic market where the individual preferences are characterized by EU (under the
probability measure Q1 = --- = @,) with concave utility functions. In this case, Proposition 4
recovers the result of Borch (1962). See Xia and Zhou (2016) for more recent developments on
RDU equilibria with homogeneous probability distortions.

As hinted by the above example, if g1, . . ., g,, are very similar to each other (“almost identical”),
then it is more likely that (C%%, e %) is comonotonic. In Section 4.3, we formalize this concept

for the case of exponential utility functions.

4.3 The RDU-exponential market

In this section, we focus on the case where the utility functions w1, ..., u, are exponential.
Assumption 3. Let
T
ui(x) = —exp <—0) , r€R,
i

for i € N, where 01,...,0, > 0 are parameters representing risk tolerance.

From (13), the problem (12) has a unique solution

_ o dQ
X; = —6;In (m sz)

To determine the coefficient \; from EQ[¢;] = EQ[X;], we have

B906) = -6, (B9 | 5 | #1060 ) = 61 (Dru(@1Q:) + n(6ix).

i

7

where Dy, (Q|Q;) = EQ [fg} is the Kullback-Leibler divergence from @Q; to Q. Then,

X, =0;1n (‘3%) + 0, Dk (Q[|Q;i) +E2[&] = 6, In <‘3%> + ¢,

for ¢; € R. The market clearing constraint implies that, for each j =1,...,n,

X = zn:Xi :ieiln <dQZ> Jrzcz =0In <§Q> +Ze In (dQZ> + ¢, (16)
=1 i=1
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where = > 0; and €= """, ¢;. Solving the above equation we arrive at

j%zexp{;— <Z€iln<(i§;>+é—)(>}. (17)

Meanwhile,

X—Zn:Xi—iﬁiln<dQl>+Z 1_0111(de>+201 <jgl> 5
i=1 i=1 J

Thus, for the j-th agent, the optimal risk allocation for (12) is

j—g( Zeln(dQJ)—c>+cj:?<¢j<x>—c>+cj, (18)

where

_ — . (dQ
_X—;elln<d%>. (19)

Next, we check if this risk allocation also solves (2), i.e., we check the comonotonicity constraint
X; € C(X). This is equivalent to 3 (X Yoy b ln<dQ’)> € C(X), or ¢j(z) > 0 for all j =
1,...,nand z € R(X). This is a sufﬁment condition for the existence of the solution to Problem
(2). Let gi(z) = % for i = 1,...,n. Then, the condition ¢}(z) > 0 for all j =1,...,n and
x € R(X) is equivalent to

(x) z q ) .
> L =1,...
6t @ g qux )’ forall j=1,...,n and z € R(X),
or
inf inf {9’*1 O §n gqu(x)} > 0. (20)
T€R j=1,...,n ¢(x) = 0 a@)

This result is summarized in the following theorem.

Theorem 5. In the comonotone market under Assumptions 2 and 3, if (20) holds, then a CCE is
given by ((X1,...,X,),Q) in (17)-(18).

Condition (20) has the following intuition. The term Zig; -3 %ngg states the level of
ambiguity aversion for agent j relative to a weighted average of that of other agents, and 6! is a
measure of risk aversion for all agents in the market. Roughly speaking, if the overall risk aversion
is larger than the ambiguity aversion of each agent relative to others, then the complete market
yields also an equilibrium in the comonotone market, similarly to the case of a classic expected

utility market. The case of power utilities is presented in Appendix A.1.
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5 An algorithm to compute the competitive equilibria

Generally, explicit forms of the competitive equilibria for the RDU-comonotone market are
not available except for the special cases studied in Sections 4.2-4.3. In this section, we propose an
algorithm to numerically obtain competitive equilibrium based on discretization, which works for
both the DU-comonotone market and the RDU-comonotone market. Its numerical performance is
reported in Section 6.

We assume the same assumptions as in Theorem 4 to guarantee the existence of a CCE.
Without loss of generality, take R(X) = [0, X], where X < oo, for the purpose of the algorithm.
First, choose m € Z* such that ¢ = X /m is small, and approximate X by a discrete random
variable X which takes value in a finite set R(X) :={xp =ke:k=1,...,m}. Then, we propose
the algorithm of the discretization approach on the discrete probability space (R(X), B(R(X)),P),
where B(R(X)) is the Borel o-algebra of R(X) and P({z}}) = P((k—1)e < X < ke) for k =
1,...,m. The discretized version of the initial endowment for agent i, denoted by éi, satisfies
él(a:k) = &i(wg) for k = 1,...,m. From now on, we work with discrete random variables X and
€1,...,&n, and study this discrete market (R(X), B(R(X)),P) as an approximation to the original
market.

Suppose the algorithm starts with an initial pricing measure Qo = (9ot )k=1,...,m, which is the
initial guess of price g1 := QO(X > z1), and initial allocation functions 1§, i € N such that
(ng(f( ),X — 1/;6()2' )) is comonotonic, ¢ € N. Without prior knowledge, we may choose the initial
values as Qo = P and ¢} (X) = &, assuming (¢1,...,&,) € AS(X).

Remark 1. Our idea is to use a multi-step discrete procedure to mimic the actual one-period
trading (which leads to an equilibrium). In order to make sense of the comonotone market, we have
to assume that the individual endowments are comonotonic at each step of the trading. If the initial
endowments are already comonotonic, then this is not a problem, and we set 1/}6()2' ) = éi, 1 €N
as mentioned above. If (&1,...,&,) & AS(X), i.e. the initial endowments are not comonotonic, then
we need to first transform it into another initial condition in which endowments are comonotonic.
For this purpose, we may use A

_ E%ll ¢

E@0[X]

Y6(X)

as the initial endowment for agent i. This interprets into the situation where each agent liquidates
his or her initial endowment and trade it for portion of the total endowment under the price Qo,

before the actual trading starts.

Due to Lemma 1, for each i € N, we aim to find a non-negative allocation (Y1,...,Y;) € A%(X)
such that V;(Y; — EQ[Y;] + EQ[&;]) is maximized. Therefore, we define a “score function” of agent i
as

vi(Yi; Q) = Vi(Y; — E2[Yi] + E@[&y)),

for Y; € C(X) and Q € P.
Let (5671 =} (x1) and (567,g = b (1) — Y (zp_1) for k=2,...,m. Since (Y}(X), X —p5(X)) is
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comonotonic, we have d , € [0,¢] for k =1,...,m. For any « € [0, X], it holds that

m

= S ulfzzan-
k=1

Our target is to recursively update 56 i and go , simultaneously. After the (j — 1)-th step, j =

1,2,...,m—1, the pricing measure is denoted by Qj 1= (qj 1,k)k=1,...m, and the allocation function

-----

for agent 4, denoted by %i'—p becomes 1/1}_1( = 051 gl{z>z,}- In the j-th step, we want to

replace 6 _1; by 5i . such that the agent’s utility is improved. Denote w;(x) =y 6; Wliz>ae)s
where we keep 5 E= (5 _1 for k # j. Note that W( ) — ;_l(x) = (6§’j - (5}_1,]-)11{902%}. Since €

is small, the dlﬁerence between agent ¢’s utilities for wj_l and wé, assuming the pricing measure is

Qj_l, can be approximated by using a first-order Taylor’s expansion as follows:
v; <¢§‘(X);ijl) - <¢§_1(X); ijl) = E% [Uz (W"(X) - ]EQ”'_I[W(X)] + EQj_l[éi]ﬂ
— B2 [ (i1 (X) - ES- [, ()] + B9 ]|

~ BV [u; (né—l) (H{szj} - qj*Lj)} (5§,j - é—l,j)
= B9 [u} (1)) (rj-1 — gj-15) (975 = &5-1,5): (21)

where
ni_y =¥ 4(X) — B[yl (X)] + B9[], (22)

and

b B [“ (’73'—1> H{Xm}} (23)
j—1 EQ: [u; <77§—1)} |

represents the position change of the allocation function at value z; for

In (21), &%, — 6%,

agent 7 at the ]-th step of the algorithm. Note that if each agent updates 5; i

(21), then Y ", o7 ; = € does not necessarily hold, namely, the market is not cleared. As the agents

1 € N according to

start to adjust their positions, the pricing measure updates simultaneously, so that the market

clearing condition is satisfied, i.e. g¢j_1 ; is replaced by g¢;; in (21) so that > = ¢. To make

=1 JJ
this happen, let Q; = (¢jk)k=1,..m With ¢jr = ¢j_1 for k # j and
1 i i
4ig = 5 (sHrj1} +max{ri_,}), (24)
where s.l{r 1} is the second largest value among r _1, @ € N. Write
3
D5 = B9 [uf (1) (T — i5) | = B [0 (50)] (s = ). (25)
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We shall update 5§7j, i € N such that Dé(éij - 6;_1&) is maximized instead of (21). Clearly, at
most one of D} for ¢ € N is positive, and at least one of them is non-negative. For agent ¢, i € N,
he/she should set &7 ; = ¢ if D} > 0 (or equivalently r;_; —¢;; > 0) and 47 ; = 0 if D} < 0. If
D} = 0 and max;{D}} > 0, then ¢} ; = 0, and if D} = 0 and max;{D}} = 0, then 47 ; could be any

number in [0, ] summing up to . For convenience, and to summarize the above cases, we set

si_ _ “hmaxi(nii=0)
PMO{Di=0,i=1,...,n}

if D} =0,

where #A is the cardinality of the set A. In this way, > ., 5;',3'

condition is satisfied. Indeed, g; ; may be chosen at any value in the interval [sll-{r;_l}, maxi{r;-_l}],

= ¢, and the market clearing

and we choose (24) for convenience.

Now, since we have updated Qj and 1/);'- for all ¢, we can determine the function 77;-, and proceed
to step j + 1. We repeat this procedure m times so that the values of the allocation functions and
the pricing measure at each zx, k = 1,...,m is updated once.

Finally, we set the resulting allocation functions and the pricing measure from the above
procedure as new initial values, and run the algorithm above again, until a satisfactory convergence

is achieved. We summarize the entire algorithm below.

Algorithm.
(1) Set ¢6(X) — & as the initial endowment for agent i for alli = 1,...,n, and Qo = IED(X >

xi), k =1,...,m, as the initial pricing measure.

(2) At the j-th step, j =1,2,...,

(c) Determine D; fori=1,...,n from (25).
(d) Fori=1,...,n, set

€, if D >0,
5;‘,1@ = 5;_1# fork#3j, and 5;,3' =<0, if D; <0, (26)

H{maxi {D; }=0}
CUTi—0 ]
#{D;=0,i=1,...,;n}

if D = 0.
(e) Determine 772-, fori=1,...,n from (22).

(8) Run (2) for j = 1,...,m. After m steps, the wealth allocation function for agent i becomes
@ijn(f() =3, 5%,/!@]1{)22%}? and the pricing probability is Qm = (¢mk)k=1,...m-

(4) Reset the values Qo = O, and YE =t + E@o [éz — wfn(f()] oralli=1,...,n, and repeat the
process (2)-(3) until results converge. The outputs are the final values of ! , i =1,...,n and

Qm-
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Remark 2. The aforementioned flexibility of the choice of g; ; in (2-b) will affect largely the resulting
equilibrium price in cases where the equilibrium price is not unique, for instance, the case of the
DU market, as established in Theorem 1. In cases where the equilibrium price is unique (e.g. the
setting of Theorem 5), this choice has a minor influence on the resulting equilibrium price in our

numerical experiments of Section 6.

Due to technical challenges, for general RDU-markets, convergence and termination conditions
of the algorithm are still unclear. Nevertheless, we can show that in a DU-comonotone market, the
algorithm converges to a CCE. This result is included in Proposition 5 in Appendix A.3 for the

interested reader.

6 Illustration of the algorithm

In this section, we illustrate the algorithm introduced in Section 5 by means of four examples.
In the first three examples, we show that the algorithm works quite well in cases where we know
the equilibrium exactly. Thereafter, we provide another example where the equilibrium solution is
not known exactly.

We use certainty equivalents (CEQ) to assess the quality of our algorithm and to evaluate the
improvement from prior to posterior allocations. For ¢ € N, let CEQY mor and CEQP*" be constants
such that

V;(CEQY"™™) = Vi(&) and V;(CEQY™) = V;(X)),

where (Xi,...,X,) is an equilibrium allocation, either obtained via analytical results or arrived
from our algorithm.

We parameterize the distortion function g as in Tversky and Kahneman (1992) for v € (0,1):

s

87+ (1 —s)7)1/7’

9(si7) = ( s €[0,1]. (27)
Rieger and Wang (2006) show that g(-;) in (27) is increasing and inverse-S shaped for v €
(0.279,1). We display this function in Figure 2 for three choices of 7. For larger parameters
v, we have that the distortion function is closer to the identity function. Therefore, we say that
distortion functions with a smaller « is more distorted.

For illustrative purposes, throughout this section, we assume that € = 0.01, m = 1,000, and P

is the discrete uniform distribution over {ke : k = 1,...,m}. Moreover, we have three agents with
& =3X fori=1,2,3.

Example 1 (Dual utilities). Let N = {1, 2, 3}, and the three agents use dual utilities with distortion
functions g¢;(-) = g(+;7;), where 73 = 0.4, 72 = 0.6, and 3 = 0.8.

Figure 3 plots an equilibrium (CCE) price and allocation obtained from the algorithm. The
equilibrium (CCE) price is reported in terms of Q(X > Sy!(s)), where S3' is the inverse function

of Sx, so that it can be compared with the distortion functions via the relation (8). Since u}(-) =1,
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Figure 2: Three examples of g(-;) in (27), for v = 0.4,0.6,0.8.

the algorithm is unaffected by the initial values, and so it yields the same solution after every loop.
The equilibrium (CCE) price critically depends on our choice to select g;; as in (24).

In Figure 3, we see that the price measure is indeed between gy and gy 2, as shown in
Theorem 1. Also, the allocations are exactly as shown in Proposition 1. The equilibrium (CCE)
allocations exhibit a regime-switching at X ~ 7.3 and X =~ 9.0, which coincide with the crossing
of the distortion functions at s &~ Sx(7.3) = 0.27 and s =~ Sx(9.0) = 0.1. Note that the pricing
kernels, as characterized in Theorem 1, are all not counter-comonotone with X. Therefore, no
UCEs exist in this example.

Table 1 shows the welfare gains. We find that Agents 1 and 2 also gain in a CCE, even though
these agent bear little risk. In particular, Agent 1 mitigates his or her risk substantially, because it

has the most distorted preferences.

CEQP"™ | CEQP®™ (theoretical) | % increase | CEQY®™ (algorithm)
Agent 1 0.99 1.56 58.0 1.56
Agent 2 | 1.44 1.56 8.3 1.56
Agent 3 1.63 1.86 14.7 1.86

Table 1: The certainty equivalents before and after risk sharing, corresponding to Example 1.

Example 2 (Rank-dependent utilities with explicit solution 1). In this example, we want to com-
pare our algorithm with a case where we know an exact solution. Let N = {1,2, 3}, and the three
agents use an exponential utility function with risk tolerance parameters 6; = 3, 5 = 2 and 63 = 1.
Moreover, the agents use the distortion function g;(-) = g(-;7), with v = 0.6.

If the distortions are the same for every agent, the preferences are represented to expected
utilities, but with an alternative probability measure of X. This holds true because we assume that
admissible allocations are comonotonic with the total endowments. Since the CCE is Pareto-optimal

(Theorem 4), and any Pareto-optimal risk allocation with exponential utilities is proportional to X
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(a) Distortion functions and equilibrium price (exact) (b) Distortion functions and equilibrium price (algorithm)
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Figure 3: A CCE corresponding to Example 1. In the top figures, the black line is the price
Q(X > Sy'(s)) (we display Q as @), both exact and obtained from the algorithm. The other lines
are the distortion functions g1, g2 and gs. The bottom figures show the corresponding equilibrium
(CCE) allocations X1, X2 and X3, both exact and obtained from the algorithm.

24



1
087
/T\ 0.6
I
VI
Zoat
&
0.2
0 2 4 6 8 10 0 2 4 6 8 10
z— 2 —
(a) Equilibrium price (exact) (b) Equilibrium price (algorithm)
T
=
1r 1
27 2
3 . . . . 3 . .
0 2 4 6 8 10 0 2 4 6 8 10
X — X —
(c¢) Equilibrium allocation (exact) (d) Equilibrium allocation (algorithm)

Figure 4: The exact and approximated equilibrium (CCE) solution corresponding to Example 2.
The top figures display Q(X < z) (we display Q as @), both exact and obtained from the algorithm.
The bottom figures display the allocation both exact and obtained from the algorithm.

(Wilson (1968)), we find in Figure 4 that the risk allocation in a CCE is proportional to X. The
algorithm selects very closely the equilibrium solution. This CCE is not a UCE in the RDU-complete
market, since the pricing kernel is not counter-comonotone with X.

We find that the allocation for Agent 2, X5, is very close to the initial endowment &. Therefore,
Agent 2 does not benefit significantly in the equilibrium, as confirmed in Table 2. Table 2 also

confirms that the algorithm selects an equilibrium that is close to the theoretical equilibrium.
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Figure 5: Three examples of g; in (28), for § = 0.05 and v = 0.55, 0.6, 0.65.

t . R t .
CEQY™ | CEQY®™ (theoretical) | % increase | CEQY®™ (algorithm)
Agent 1 1.21 1.25 3.6 1.25
Agent 2 1.10 1.10 0.0 1.10
Agent 3 0.86 0.96 11.3 0.96

Table 2: The certainty equivalents before and after risk sharing, corresponding to Example 2.

Example 3 (Rank-dependent utilities with explicit solution 2). Let N = {1,2,3}, and the three
agents use an exponential utility function with parameters #; = 2, #, = 1.5, and 03 = 1. In order
for the condition in Theorem 5 to hold, the derivatives of the distortion functions need to be close

to each other uniformly. Therefore, we choose, for i = 1,2,3 and J > O:

)
ag <1+25’%> +0b, s€[0,1],

where a,b are constants such that g;(0) = 1 — g;(1) = 0. Fix § = 0.05, 71 = 0.55, 72 = 0.6, and
~v3 = 0.65. We display the distortion functions in Figure 5.

gi(s) = (28)

In Figure 6, we find that the algorithm selects again very closely an equilibrium (CCE) solution.
Moreover, in Table 3 we show the welfare gains in the risk allocation, which also shows that the

algorithm performs well in selecting an equilibrium solution.

CEQP"™ | CEQP®™ (theoretical) | % increase | CEQY®™ (algorithm)
Agent 1 1.156 1.167 0.9 1.167
Agent 2 1.138 1.138 0.0 1.138
Agent 3 1.049 1.070 2.0 1.069

Table 3: The certainty equivalents before and after risk sharing, corresponding to Example 3.
Example 4 (General rank-dependent utilities). Let N = {1,2,3}, and the three agents use an
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Figure 6: The exact and approximated equilibrium (CCE) solution corresponding to Example 3.
The top figures display Q(X < z) (we display Q as @), both exact and obtained from the algorithm.

The bottom figures display the allocation both exact and obtained from the algorithm.
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(a) Equilibrium price (algorithm) (b) Equilibrium allocation (algorithm)

Figure 7: The equilibrium (CCE) solution of the algorithm corresponding to Example 4. The left
figure displays the equilibrium price Q(X < z) (we display Q as @), and the right figure displays
the corresponding allocation.

exponential utility function with parameters 81 = 3, 5 = 2 and 63 = 1. Moreover, the agents use
the distortion function g;(-) = g(+;7i), with 73 = 0.4,y = 0.6, and 3 = 0.8. So, Agent 1 (Agent 3)
has the most (least) distorted probability measure, but is least (most) risk averse.

In Figure 7, we show the outcomes of the algorithm of Section 5. We find again that equilibrium
(CCE) price is inverse-S shaped. In particular, we find that including a strictly concave utility
function yields higher equilibrium prices, as the price Q(X < z) is larger than this price in Example
1 for all z. Agent 1 (Agent 3) has the most (least) distorted probability measure. For that reason,
we find in Figure 7 that Agent 1 bears the least risk in the worst and best realizations of the total
endowments X, and in turn, it has a low allocation in case the realizations of X are around the
average. Moreover, we find the opposite pattern for Agent 3. Moreover, the equilibrium (CCE)
allocation for Agent 2 is S-shaped, and thus neither convex or concave. Such S-shaped allocation is
commonly observed in an insurance market, which requires comonotonic contracts as we discussed
in Section 1.1.

In Table 4, we show the certainty equivalents of the equilibrium (CCE) allocations. In particu-
lar, we find that the equilibrium is most attractive for the agent with the most distorted probability

measure (Agent 1) and for the most risk averse agent (Agent 3).

i , :
CEQ™ | CEQP™ (algorithm) | % increase
Agent 1 0.75 0.90 19.3
Agent 2 1.10 1.14 3.0
Agent 3 1.11 1.19 6.8

Table 4: The certainty equivalents before and after risk sharing, corresponding to Example 4.

28



7 Concluding remarks

In this paper, we introduce the novel concept of comonotone markets, and study competitive
equilibria (CCE) in such markets for DU and RDU preferences. The comonotone market is closely
associated with a complete market, in the sense that competitive equilibria in the complete market
are necessarily (but not sufficiently) equilibria in the corresponding comonotone market. Although
these two markets are closely related, many of our findings on the comonotone market are in sharp
contrast to results on the complete market, in terms of existence, uniqueness, closed-form solutions
of the equilibria, and comonotonicity of the pricing kernel. For instance, we show existence of
equilibria in comonotone markets under mild conditions, whereas existence in complete markets is
known to hold only under stronger assumptions - both for DU and RDU preferences. With the help
of the comonotone market, we enhance the understanding of real financial and insurance markets,
which are much more complicated objects.

We also design an algorithm which produces competitive equilibria numerically in the comono-
tone market for DU and RDU agents, and its numerical performance is illustrated to be quite
satisfactory. Due to great technical challenges, theoretical properties of the algorithm, such as
convergence and termination conditions for general RDU markets, are still unclear. We leave these

questions for future study.

Acknowledgements. The authors thank an anonymous referee, the Associate Editor, Mario

Ghossoub, and Jianming Xia for helpful discussions on an earlier version of the paper.

A Appendix

A.1 The RDU-power market

We use the same notation in the RDU markets of Section 4. Furthermore, we assume that all

agents use power (including logarithmic) utility functions, given by

tt=n—1
>0 #£1
ui(t) =< 7 n7 for all t > 0,

In(t), n=1

and u;(t) = —oo if t <0, for i € N. We assume that the parameter 7 is the same for all agents. We
shall refer to this market as the RD U-power-comonotone market. In this market, agents are assumed
to hold non-negative wealth all the time, and thus the equilibrium risk sharing will be conducted

among non-negative random variables. For simplicity, we assume there exists some € > 0 such that
617"‘7571 > €.
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The solution to Problem (12), which is without the comonotonicity constraint, is given by
Xi = (ul‘)il a8 Ai ) = ;i 1 v where A\, /" =
et T \aan) 2

By the market clearing constraint,

dQ; 1/n dP 1/n n ., dQ; 1/n
* = ZX Z( 1ol@) :<d@> Z;(Mﬂ») ’

Q[¢;]

and then

- (Xg( zldQ’>1/n>n. (29)

N1/ A1/
Therefore, X = (@> ! Sy (x\._l dQ?) 777 and, for j=1,...,n,

dQ t dQj
AVnx
o J
X; - o (30)
2ic ()‘i @)
The comonotonicity constraint requires X; € C(X) for all j = 1,...,n. Therefore, a sufficient

condition for the existence of solution to the Problem (2) is

X
1/n
n —-1dQ;
Sy (A48

is comonotonic with X for all j =1,...,n.

zq)/" (x)
q(z;m)

ol (T - (i D = o

guarantee that (X7,...,X}), given by (30) is a solution to the Problem (2).

This result is summarized in the following theorem.

Let q(z;n) = Y0, ()\i_lqi(;r))l/n for z > 0. The condition % < > > 0 or, equivalently,

Theorem 6. In the RDU-power-comonotone market, if (31) holds, then a CCE is uniquely given
A.2 Proofs of theorems, lemmas and propositions

Proof of Proposition 1. We write Y; = f;(X) for f; € F (Denneberg (1994)), and let f; !(y) =
inf {t € R: f;(t) > y} € F be the inverse function of f;. Then, V;(Y;) = f[l(O)—l—fOOO gi(Sx (t)) fl(t)dt+
S (9:(Sx(2)) = 1) f()dt and BR[Y;] = £ (0)+ 57 QX > ) f{ ()t [ (QX > 1) = 1) fi()dt
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Thus, for ¥; = f;(X) € C(X), Vi(V) = EQYi] = [*_ (g:(Sx (£)) — Q(X > 1)) f/(£)dt. Since R(X) is

a closed interval, maximizing this over the set F yields the desired result. O

Proof of Theorem 1. “if” part. Consider functions f/, i € N satisfying (5). For each z € R(X), if
i =min{l € N : g;(Sx(2)) > Q(X > 2)}, then take f;(z) = 1 and f}(2) = 0 for j # i. It follows that
S fl(z) = 1. Write X7 = fi(X) — EQ[f;(X)] + E2[¢;] almost surely where fi(z) = [ f/(t)dt.
Here, we take f;(0) = 0 without loss of generality. It is easy to check that > ", fi(z) = z for
z € R(X). By Lemma 1 and Proposition 1, X/ is the maximizer of (2) for each i € N. Meanwhile,
S XF =30 A(X) =S EQA(X)]+ X EQE] = X. Therefore, the pair (X7, ..., X}),Q)
is a competitive equilibrium.

“only if” part. Write X} = fi(X) where f; € F, i € N. Again this is possible by Denneberg’s
Lemma. Since ((X7,...,X}),Q) is a competitive equilibrium, we have >_"" | f/(t) = 1 for almost

everywhere t € R(X).

(i) Suppose that Q(X > z) > gn1(Sx(z)) for some z € R(X). Since both Q(X > -) and
9(Sx(-)) are decreasing functions, and Q(X > -) is right-continuous, there exists a closed
interval [z,z + ¢] C R(X) on which Q(X > t) > gn1(Sx(t)). Applying Proposition 1, we
get f/(z) = 0 for each ¢ € N on [z,z + ¢]. Noting that [z, z + ¢] has non-zero measure, this
contradicts > ; f/(t) =1 for almost everywhere ¢t € R(X).

(ii) Suppose that Q(X > z) < ¢;(Sx(2)) for some z € R(X) and i € M and M has a cardinality
strictly greater than 1. Since both Q(X > -) and ¢;(Sx(+)) are decreasing and right-continuous
functions, there exists a closed interval [z,z + ¢] C R(X) on which Q(X > z) < ¢:(Sx(2))
for i € M. By Proposition 1, we get f/(z) =1 for i € M on [z, z + €|. Noting that [z, z + €]
has non-zero measure, and each f; is non-negative on the convex range R(X), this contradicts
Yoy fi(t) =1 for almost everywhere ¢t € R(X).

Combining (i) and (ii) completes the proof. O

Proof of Theorem 2. (i) Noting that gn2(Sx(2)) < gn1(Sx(2)), there always exists Q satis-
fying gn2(Sx(2)) < Q(X > 2) < gn,1(Sx(2)). For such Q, it is easy to see that fi,..., fn
satisfying (5) with Y ;" | fi(X) = X also exist. By Theorem 1, a CCE exists.

(ii) Assume gy 1(t) > gn2(t) for a.e. t € [0,1]. In this case, by Theorem 1 (i), Q can be anything
such that gn2(Sx(2)) < Q(X > z) < gn1(Sx(2)), which is not unique. Moreover, for Q
satisfying the above condition, (5) and the condition )" ; f;(X) = X uniquely determine the
functions fi,..., fn.- Therefore, the equilibrium allocation is unique up to the constant term
—EQ[f;(X)] + EQ[&] as specified in Theorem 1 (ii).

(iii) Suppose that gn1(t) = gn2(t) for almost everywhere ¢ € [0,1]. Since Q(X > z) is a right-
continuous function of z, it is uniquely determined by gy 2(Sx(2)) < Q(X > 2) < gn1(Sx(2)).
As B is the set of all events generated by X, Q is uniquely determined by Q(X > z2), z € R(X).
In this case, f1,..., fy satisfying (5) and Y ;" ; fi(X) = X are not unique due to the fact that
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for i,j € N, i # j such that g; = g1 = gn2 = gj, f{ and f] in (5) can be arbitrary as long
as they add up to 1. O

Proof of Theorem 3. (i) It follows from the same proof of Theorem 4 (ii) below.

(ii) Suppose that (Xi,...,X,) € A% (X) is a Pareto-optimal allocation. Write X; = f;(X) where
each f; is in F, ¢ € N. Take Q such that Q(X > z) = gn1(Sx(2)) for z € R(X), where
gn(t) = max{g;(t) : i € N} for t € [0,1]. By Theorem 1, it suffices to show that f satisfies
(5), since we already have > " | f/(z) = 1 for z € R(X) by the definition of an allocation
(X1,...,X,). By direct calculation, we have

D_VilX) =3 /0 " gi(Sx(®) (D). (32)

By Proposition 2 and (7), we have, since (X7, ..., X,) is Pareto-optimal,
n (o)
S Vi) = Doy, (X) = [ gwa(Sx(eat (39
i=1 0

Noting that > 7" ;| f/(z) = 1 almost everywhere for z € R(X), and combining (32) and (33),
we have f/(z) = 0 almost everywhere for g;(Sx(z)) < Q(X > z). Further note that by the
definition of Q we always have g;(Sx(z)) < Q(X > z). Therefore, f/(z) satisfies (5). O

Proof of Proposition 3. Denote M; = supycc(x) Vi (Y — EQ[Y] +EQ[,]), and take a sequence
Yir € O(X), k € Z* such that limy_,oo Vi(Yix — EQ[Y; 1] + EQ[&]) = M;. Write Yy = fir(X),
k € Z* where f;, € F. Without loss of generality, assume f; z(0) = 0, k € Z". Using Lemma
2.3 of Cai et al. (2017), there exists a subsequence of {f;} converges point-wise to some f €
F . For notational simplicity, write f;, — f point-wise, and then f; ,(X) — f*(X) almost
surely. Consequently, limy,_,o, EQ[f,(X)] = EQ[f*(X)]. Denote ¢; = E?[¢] — EQ[f; 1(X)] and
¢ = EQ¢;] — EQ[f#(X)]. By Fatou’s Lemma, for i € N,

M; = klim Vi(Yik + cip) < limsup Vi(fi x(X) + cix) < Vilfi (X) +¢;) < M;
— 00

k—00

which completes the proof. O

Proof of Lemma 2. First note that we can write {; = ¢;(X) for a bounded and continuous
function ¢; defined on R(X), i =1,...,n. Moreover, we have EQk[§¢7k] = EQ" (X} for i € N and
we can write X[ = flk(Xk) for some functions f; € F, ¢ € N, where Xk = Sipt+ o+ &k Itis
clear that {X*}%  converges to X uniformly.

Let B(R(X)) be the Borel g-algebra of R(X). Each measure Q* on B induces a measure Q¥
on B(R(X)) such that Q*(A) = Q¥(X~1(A)) for all subset A € B(R(X)). Since R(X) is a compact

subset of R, every collection of measures on B(R(X)) is tight. Prokhorov’s theorem implies that
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there exists a subsequence of {QF}?°, such that
QM — Q* weakly as | — oo for some measure Q* on B(R(X)). (34)

For notational simplicity, we choose this subsequence as {((X7 ..., X, 1) Q") ¥, in the following.
Define Q*(B) = Q*(X(B)) for B € B. Then, ]EQ &) = [ iz Qk dzx) converges to EQ[¢;] =
[ iz Q* (dx) since the function ¢; is bounded and continuous. Moreover, since {&; 1 }72; converges
to &; uniformly, then for any e > 0, there exists K € N such that |]EQ k] — E@" [&i]] < e for all
k > K. Therefore, we get limy_, o EQ* ikl = EQ[&].

Note that fl,k = fir — f1,1(0) are functions in F with ka(O) = 0, using Lemma 2.3 of Cai
et al. (2017), it has a subsequence fl,k which converges point-wise to some ff € F and f(0) = 0.
Doing this sequentially for ¢ € N, we get a subsequence such that { ﬁkl}fil point-wise converges
to a function f; for all i € N simultaneously. As f; is uniformly bounded and continuous, f;(X*)
converges to f;(X) uniformly. Combining the above results, f;z, (X*) converges to f;(X) uniformly
for all i € N simultaneously. Recall from (34) and the explanation afterward that {Q*}1en is chosen
such that Q¥ — Q* weakly. Therefore, we obtain the joint convergence that fi,kz (X*) converges
to f;"(X ) uniformly and Qkt — Q* weakly as [ — oco. Again, for notational simplicity, we choose
this subsequence as {((X7,... 7X2,k),Q’“)};é";1 in the following. Similarly to the case of &;, one
can show limy oo E9"[fi 1(X)] = EQ[f#(X)]. Using fix(0) = EQ"[¢ 4] — EQ"[fir(X)], we have
limy o0 fir — f7 = ff + f£(0) point-wise, where f#(0) = EQ[¢;] — EQ'[ff(X)]. Let X7 = ff(X)
for i € N. Then X, converges to X uniformly and EQ"[X?] = E¥'[¢;], i.e., the budget constraint

*

for each agent holds for (X, ..., X), which can be easily verified to be an allocation in A°(X).

To show that ((X7,...,X}),Q*) is indeed a competitive equilibrium, it remains to show that
for any Y; € C(X) N B(Q*,&;), it holds that V;(Y;) < Vi(X7), i € N. To this end, we first fix i € N
and take an arbitrary Z; € C(X) N B(Q*, ¢) such that EQ"[Z;] < EQ"[¢;].

Write Z; = 2z;(X) for some function z; € F and let Z; ;, = 2;(X}), k € N. Take ¢ = (EQ[&] —
EQ"[Z,])/3. Using the convergence results analyzed above, there exist K, Ko and K3 such that
IEQ" [Zik] —EQ[Z;4]| < e forall k > Ky, [EQ[Z;x] —EY[Z]| < e for all k > K>, and [EQ[¢;] —
E@" [&ik]| <€ forall k> K3. Taking K = max{K, Ko, K3}, we have, for all k > K,

k * * * k
EC ([ Zik] <EYV([Zi4] +e <EY([Z] +2e = E¥[¢] — e <E[g ).

Therefore, from the optimality of X, as it is in an equilibrium, we have Vj(Z; ;) < Vi(X;x). Note
that X < X" implies Z; < Z; 1, and we have limsup;,_, ., V;(X;x) < Vi(X}) by Fatou’s lemma, as
u;(X;) is bounded above and X, ; — X uniformly as k — oco. It follows that

Vi(Z;) <limsup Vi(Z; ) < limsup Vi(X; 1) < Vi(X)).

= )
k—o0 k—o0

Thus, for all Z; € C(X) such that E¥"[Z,] < EQ'[¢;], we have V;(Z;) < V;(X}).
Next, take ¥; € C(X) N B(Q*,&;). Let Wi, = max{Y;,m} for m € R and r; = sup{y € R :
P(Y; > y) > 0}. If V;(Y;) = —oo0, then there is nothing to show. If 7; > d;, then EQ [V, ,,,] < EQ"[¢]
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for d; < m < r;, and hence V;(W; ) < Vi(X[)). Therefore, V;(Y;) = limppr, Vi(Wim) < Vi(X))
by the continuity of u; on (d;,o0). If r; = d; and V;(Y;) > —oo, then Y; = d; almost surely and
Vi(d;) > —o0. Since &, > d;, we have Vj(X; ) > Vi(d;) > —oo, implying X, , > d; almost surely.
Therefore, X > d; almost surely, and V;(X/) > Vi(d;) = Vi(Y;). Combining all cases, we have
Vi(Y;) < Vi(X)), and hence ((X7,...,X,;),Q*) is a competitive equilibrium. O

Proof of Theorem 4. We will switch between discrete and continuous models in the proof, and

these models are connected by Lemma 2.

(i) First, suppose that the probability space (2, 8,P) is such that € is finite. Note that C'(X)
is non-empty, convex, and bounded, and the preference induced by R,, 4, is continuous and
concave on the admissible set C'(X). The constant ¥ = 1 is a useful commodity bundle
(see Werner (1987) for a definition), because Ry, 4, is monotone. Also, for every Q € P
and i € N, it holds E?[¢;] > infycc(y)EQ[Y] because (; is assumed to be bounded, and
Y = f(X) < X + f(0) implies for f(0) = —oo that infycc(x) EQ[Y] = —co. Moreover, there
exists a pricing measure that admits no arbitrage opportunities for all agents; namely take a
pricing measure that is equivalent to P. Then, existence of a competitive equilibrium follows
from Theorem 1 of Werner (1987).

Next, we show existence for an infinite 2. To this end, we first construct a sequence of
{ X"} en uniformly converging to X and X*, k € N, takes finitely many values. Again, the
existence of equilibrium associated with X}, follows from Theorem 1 of Werner (1987). Then,
Lemma 2 guarantees the limit of equilibria associated with X}, is an equilibrium for the original
model. For k € N, consider a partition {Ij1,..., Iy} of R(X), that is R(X) = UF _ T
and I, N Iy = 0 for m # [, such that each Iy, is an interval with the Lebesgue measure
smaller than w, where ||R(X)|| is the length of R(X). Write ay ,, = sup I ,, and Ay, =
X (Iym) for m = 1,...,k. For each i € N, write & = ¢;(X), where ¢; : R(X) — R is
a bounded and continuous function on a compact interval, making it uniformly continuous.
Define
k k
Gn=_ vilarm)ixer.} = Y iltkm)la,,, i€N, kel
m=1 m=1

Since ¢; is uniformly continuous, it is easy to see that {; ;}72, converges to & uniformly
for i € N. For each k € N, define X* = Y ien ik Note that XF > X for k € N by
construction. By using the existence result of Werner (1987) mentioned above, there exists an
equilibrium (( T ;:k), Q") for the initial endowments (&1, .. .,&n k) in the probability
space generated by o(X*). By Lemma 2 we obtain the existence of a competitive equilibrium

for the original model. '*

(ii) This is a classic market where the non-satiation condition holds, and hence Pareto efficiency

'"*The set of natural numbers with the ordinary order is a directed set, so that ((X7,..., X5 ), QF) form a net.
Lemma 2 shows that this net contains a subnet whose components converge. In Bewley (1972), the author also used
the net-convergence argument to show the existence of an equilibrium for economies whose commodity space has
infinite dimension.
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of competitive equilibria should be expected. For completeness we provide a self-contained
proof. Let ((X1,...,X,),Q) € AS(X) x P be a CCE for this market. Hence

X, e argmax Vi(Y), i€ N. (35)
YeC(X)NB(Q.&)

Suppose, for the purpose of contradiction, that (Xi,...,X,) is not Pareto-optimal. Then,
by definition of Pareto optimality, there exists an allocation (X7,..., X, ) € A%(X) such that
Vi(X]) > Vi(X;) for all i € N and Vj(X}) > V;(X;) for some j € N. If IEQ[XJ‘] < EQ[X;],
then (35) does not hold for ¢ = j, thus a contradiction to the definition of ((X1,...,X,),Q)
being a competitive equilibrium. Therefore, EQ[X > EQ[X,]. Then, since Y 1  EQ[X]] =
EQ[X] = S | EQ[X;], there exists some k € N such that EQ[X;] < E?[X}]. Now, let
X; = X, + EQ[X;] — EQ[X}], which clearly satisfies EQ[X}] = E?[X,], and thus X} €
B(Q,&k). From the definition of Vi where wy is strictly increasing and Vi (Xj) > —oo, we
have Vi,(X}) > Vi(X}) > Vi(Xk). As a consequence, (35) does not hold for i = k, thus a
contradiction to the definition of ((X1,...,X,),Q) being a CCE. In summary, (Xi,...,X,)

is Pareto-optimal.

(iii) Suppose that (Xi,...,X,) is a Pareto-optimal allocation. Since the non-satiation condition
holds, it is clear that (X1, ..., X,,) is proper. As the set of allocations A°(X) is convex, there ex-
ist A1,..., Ap > 0 such that (X,...,X,) maximizes > ; \;Vi(Y;) over (Y1,...,Y,) € A%(X).
Write V(Y1,...,Y,) = Y \Vi(Ys) for (Yr,...,Y,) € A°(X). Note that V is a strictly
concave function on A°(X). We define X* as in part (i) and note that X* > X. Let

(X1k- -+, Xng) be a maximizer of V over A°(X*), and hence it is Pareto-optimal for the
comonotone market with total risk X*. Since V is strictly concave and continuous, and
due to our construction of X*, we can see that (X1k- s Xng) = (X1,...,X,,) uniformly.
By Propositions 16.D.1 and 16.D.3 of Mas-Colell et al. (1995), the Pareto-optimal allo-
cation (Xy,...,Xpn) is also an equilibrium allocation. By Lemma 2, a subsequence of
(X1 k.-, Xnx) converges to an equilibrium allocation, which shows that (X,...,X,) is an
equilibrium allocation. O

A.3 Convergence of the algorithm in a DU-comonotone market

We use the following notation for the convergence result of the algorithm in a DU-comonotone
market. In a DU-comonotone market, for each positive integer m, let ((@D}n(f( )y ,w?n(f( ), Qm)
be the output of the algorithm, where ¢¢ (X) for i € N and Q,, are given in the step (3). Moreover,
as m — oo, denote by f;(z) the point-wise limit of ¢ (z) for i € N, and denote by Q(X > x) the
point-wise limit of Qm(f( > Ty k,,) Where ky, is a sequence such that z,,_1 4,1 < & < Xy, for

all m. We have the following convergence result.

Proposition 5. (X/,..., X}, Q) is a CCE in the original DU-comonotone market, where X} =
fi(X) —EQ[f;(X)] + EQ[&] forie N.
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Proof. Consider R(X) = {ke : k = 1,...,m}, initial wealth allocations 1} (X) for i € N and pricing
measure Q. In step (2-a), 7";'»71 = Q; (X > xj> =Q; (X > (j—1)e) and 7"}71 is independent with

the choice of pricing measures for each j = 1,...,m. After the step (3) in the algorithm, we have
m .
V(@) =Y il gy (), i €N, and Q= (@mk)jey. (36)
k=1
where
‘ 1, if r}:c_l > Gk,
1 ; ; Ok e
Imk = 5 si{ri_i} + max{r;_,}), and —==40, i1 < dmk
€ .
’ ’ max; (v Y=g i} i
#{T2_1:‘Im,kv7;:17---7n}7 ! Tkil o qm7k'
Since r;-, j=0,...,m—1,i € N are independent with the choice of pricing measures and the choice

of initial allocation functions repeating the process (2)-(3) will lead to the same result as (36). Thus,
we get the convergence result ¢!, (z) and Q,, in (36) after the first round of step (2)-(3).

Let Z, be the set of positive integers. To show the convergence to a CCE, we take a sequence
{em = %}mez .- For simplicity, we abuse notation slightly here: for each m € Z, on the discrete
sample space R(Xm) ={zmi = kem = g—f, k=1,...,2™}, the result obtained in the Algorithm
is (4 (Xim)s - 0 (Xin)), Q) where ¢ (@) = 3270, 00 3 Le o 3 (@), Q= (dm) ey, oms
Um e = %(sil{rin’k_l} + maxi{rin’k_l}) and rimk_l =Qi(Xp > ) = Qi(X > (k;l)x)‘

Arbitrarily take zo € (0,X), and take a sequence k,, such that T em—1 < 0 < Tyy

for each m € Z,. First Note that we have either zp k,,-1 = Tmi1kmii—1 OF Tmilkp—1 =
(Tmm—1 + Tmk,,)/2. It follows that z,,, —1 increases to xp, while x,,, decreases to zo as
m — oo. Thus, rjmkm = Q; (X > 2y, 1,,) increases in m and n}gnoo rﬁmkm = Qi(X > zg) fori € N.
Since

1/ . , .
maxq = (Tfn kT Tfn k ) < G k1 < max{ry, ;. },
i#j | 2 ’ o : 7

passing both sides to the limit gives us
1
SHQUX > a0} < 5 (SHQUX > 20)) 4 max(@X > 20)}) £ i g1 < {4 (X > ).

That is sl{g;(P(X > x¢))} < Q(X > x9) < max;{g;(P(X > z¢))}, i.e., condition (i) in Theorem 1
is satisfied. Denote f;(z) = limy, o0 %, (x) for all z € [0, X]. Then,

fi(zo) = klim 2F lim (wfn(xg + 2_k) — 1/1;1(560))

—00 m—0o0

— 1 k 1 1 N (
= fim 2% i (81 B )

If ;(P(X > x0)) > Q(X > z9) = limp—00 ¢m k,n+1, there exists Ay, Ay > 0 such that g;(P(X >
z)) > Q(X > x) + Ay for all o € [z, z0 + A1). Consider cases 2% < Ay only. For each k, when
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m is large enough, we have gy, 1, +1 < rfn ki1 and thus Ot =2 ™ for l=1,..., om—k Tt
follows that f/(xo) = 1. If g;(P(X > z0)) < Q(X > x0) = liMy—00 Gk, +1, We can use similar

argument as above to conclude that d,, 1,47 =0for Il =1,..., 2m—k and thus Jl(zog) = 0. Therefore,
XF = f;(X)—ER[fi(X)]+ER[¢], i € N satisfy Condition (ii) in Theorem 1. According to Theorem
1, ((X/,...,X},Q) is a CCE in the original DU-comonotone market. O
References

Anthropelos, M. and Kardaras, C. (2017). Equilibrium in risk-sharing games. Finance and Stochastics, 21(3),
815-865.

Araujo, A., Chateauneuf, A. and Faro, J. H. (2012). Pricing rules and Arrow-Debreu ambiguous valuation.
Economic Theory, 49, 1-35.

Arrow, K. J. and Debreu, G. (1954). Existence of an equilibrium for a competitive economy. Econometrica,
22(3), 265-290.

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance,
9(3), 203-228.

Barrieu, P. and El Karoui, N. (2005). Inf-convolution of risk measures and optimal risk transfer. Finance and
Stochastics, 9(2), 269-298.

Beissner, P. and Riedel, F. (2019). Equilibria under Knightian price uncertainty. Econometrica, 87(1), 37-64.

Bernard, C., He, X., Yan, J. A. and Zhou, X. Y. (2015). Optimal insurance design under rank-dependent
expected utility. Mathematical Finance, 25, 154—186.

Bewley, T. F. (1972). Existence of equilibria in economics with infinitely many commodities. Journal of
Economic Theory, 4(3), 514-540.

Boonen, T. J. (2015). Competitive equilibria with distortion risk measures. ASTIN Bulletin, 45(3), 703-728.
Boonen, T. J. (2017). Risk redistribution games with dual utilities. ASTIN Bulletin, 47(1), 303-329.
Borch, K. (1962). Equilibrium in a reinsurance market. Econometrica, 30, 424-444.

Cai, J., Lemieux, C. and Liu, F. (2016). Optimal reinsurance from the perspectives of both an insurer and
a reinsurer. ASTIN Bulletin, 46(3), 815-849.

Cai, J., Liu, H. and Wang, R. (2017). Pareto-optimal reinsurance arrangements under general model settings.

Insurance: Mathematics and Economics, 77, 24-37.

Carlier, G. and Dana, R.-A. (2003). Pareto efficient insurance contracts when the insurer’s cost function is

discontinuous. Economic Theory, 21, 871-893.

Chabi-Yo, F. (2012). Pricing kernels with stochastic skewness and volatility risk. Management Science, 58(3),
624-640.

Chateauneuf, A., Dana, R.-A. and Tallon, J.-M. (2000). Optimal risk-sharing rules and equilibria
withChoquet-expected-utility. Journal of Mathematical Economics, 34(2), 191-214.

Cheng, H. H. (1991). Asset market equilibrium in infinite dimensional complete markets. Journal of Mathe-
matical Economics, 20(1), 137-152.

Cheung, K.C., Sung, K. and Yam, S. C. P. (2014). Risk-minimizing reinsurance protection for multivariate
risks. Journal of Risk and Insurance, 81(1), 219-236.

Chew, S. H., Karni, E. and Safra, Z. (1987). Risk aversion in the theory of expected utility with rank
dependent probabilities. Journal of Economic Theory, 42, 370-381.

37



Dana, R.-A. (1993). Existence and uniqueness of equilibria when preferences are additively separable. Econo-
metrica, 61(4), 953-957.

Dana, R.-A. and Le Van, C. (2000). Arbitrage, duality and asset equilibria. Journal of Mathematical Eco-
nomics, 34(3), 397-413.

Dana, R.-A. and Le Van, C. (2010). Overlapping sets of priors and the existence of efficient allocations and
equilibria for risk measures. Mathematical Finance, 20(3), 327-339.

Dana, R.-A. and Riedel, F. (2013). Intertemporal equilibria with Knightian uncertainty. Journal of Economic
Theory, 148, 1582-1605.

De Castro, L. I. and Chateauneuf, A. (2011). Ambiguity aversion and trade. Economic Theory, 48, 243-273.

De Giorgi, E., Hens, T. and Rieger, M. O. (2010). Financial market equilibria with cumulative prospect
theory. Journal of Mathematical Economics, 46(5), 633-651.

Delbaen, F. (2012). Monetary Utility Functions. Osaka University Press, Osaka.
Denneberg, D. (1994). Non-additive Measure and Integral. Springer Science & Business Media.

Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R. (2005). Actuarial Theory for Dependent Risks; Measures,
Orders and Models. John Wiley & Sons.

Dybvig, P. H. (1988). Distributional analysis of portfolio choice. Journal of Business, 61(3), 369-393.

Embrechts, P., Puccetti, G., Riisschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to
Basel 3.5. Risks, 2(1), 25-48.

Embrechts, P., Liu, H. and Wang, R. (2018). Quantile-based risk sharing. Operations Research, 66(4), 936—
949.

Embrechts, P., Liu, H., Mao, T. and Wang, R. (2020). Quantile-based risk sharing with heterogeneous beliefs.
Mathematical Programming, 181(2), 319-347.

Follmer, H. and Schied, A. (2016). Stochastic Finance. An Introduction in Discrete Time. Walter de Gruyter,
Berlin, Fourth Edition.

Heath, D. and Ku, H. (2004). Pareto equilibria with coherent measures of risk. Mathematical Finance, 14(2),
163-172.

Heaton, J. and Lucas, D. J. (1996). Evaluating the effects of incomplete markets on risk sharing and asset
pricing. Journal of Political Economy, 104(3), 443-487.

Hens, T. and Reichlin, C. (2013). Three solutions to the pricing kernel puzzle. Review of Finance, 17,
1065-1098.

Huberman, G., Mayers, D. and Smith Jr., C. W. (1983). Optimal insurance policy indemnity schedules. The
Bell Journal of Economics, 14(2), 415-426.

Jarrow, R. (1980). Heterogeneous expectations, restrictions on short sales, and equilibrium asset prices.
Journal of Finance, 35(5), 1105-1113.

Jin, H., Xia, J. and Zhou, X. Y. (2019). Arrow-Debreu equilibria for rank-dependent utilities with heteroge-
neous probability weighting. Mathematical Finance, 29(3), 898-927.

Jouini, E., Schachermayer, W. and Touzi, N. (2008). Optimal risk sharing for law invariant monetary utility
functions. Mathematical Finance, 18(2), 269-292.

Landsberger, M. and Meilijson, I. (1994). Co-monotone allocations, Bickel-Lehmann dispersion and the

Arrow-Pratt measure of risk aversion. Annals of Operations Research, 52(2), 97-106.

Ludkovski, M. and Riischendorf, L. (2008). On comonotonicity of Pareto optimal risk sharing. Statistics and
Probability Letters, 78(10), 1181-1188.

38



Ludkovski, M. and Young, V.R. (2009). Optimal risk sharing under distorted probabilities. Mathematics and
Financial Economics, 2(2), 87-105.

Mas-Colell, A., Whinston, M. D. and Green, J. R. (1995). Microeconomic Theory. New York: Oxford uni-
versity press.

Moulin, H. (1987). Egalitarian-equivalent cost sharing of a public good. Econometrica, 55(4), 963-976.

Moulin, H. and Shenker, S. (1992). Serial cost sharing. Econometrica, 60(5), 1009-1037.

Miiller, A., Scarsini, M., Tsetlin, I. and Winkler. R. L. (2017). Between first and second-order stochastic
dominance. Management Science, 63(9), 2933-2947.

Nielsen, L. T. (1989). Asset market equilibrium with short-selling. Review of Economic Studies, 56(3), 467-
473.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior € Organization, 3(4),
323-343.
Quiggin, J. (1993). Generalized Expected Utility Theory: The Rank-dependent Model. Kluwer, the Nether-

lands.

Rieger, M. O. and Wang, M. (2006). Cumulative prospect theory and the St. Petersburg paradox. Economic
Theory, 28, 665—679.

Rischendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and
Portfolios. Springer, Heidelberg.

Rigotti, L. and Shannon, C. (2012). Sharing risk and ambiguity. Journal of Economic Theory, 147(5), 2028—
2039.

Schmeidler, D. (1986). Integral representation without additivity. Proceedings of the American Mathematical
Society, 97(2), 255-261.

Schmidt, U. and Zank, H. (2008). Risk aversion in cumulative prospect theory. Management Science, 54,
208-216.

Strzalecki, T. and Werner, J. (2011). Efficient allocations under ambiguity. Journal of Economic Theory,
146(3), 1173-1194.

Tsanakas, A. and Christofides, N. (2006). Risk exchange with distorted probabilities. ASTIN Bulletin, 36(1),
219-243.

Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncer-
tainty. Journal of Risk and Uncertainty, 5(4), 297-323.

Wang, R., Xu, Z. Q. and Zhou, X. Y. (2019). Dual utilities under dependence uncertainty. Finance and
Stochastics, 23(4), 1025-1048.

Wang, S., Young, V. R. and Panjer, H. H. (1997). Axiomatic characterization of insurance prices. Insurance:
Mathematics and Economics, 21(2), 173-183.

Werner, J. (1987). Arbitrage and the existence of competitive equilibrium. Econometrica, 55(6), 1403—-1418.

Wilson, R. (1968). The theory of syndicates. Econometrica, 36, 119-132.

Xia, J. and Zhou, X. Y. (2016). Arrow-Debreu equilibria for rank-dependent utilities. Mathematical Finance,
26(3), 558-588.

Xu, Z. Q., Zhou, X. Y. and Zhuang, S. C. (2019). Optimal insurance under rank-dependent utility and
incentive compatibility. Mathematical Finance, 29(2), 659-692.

Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55(1), 95-115.

39



	Introduction
	Background
	Contribution of the paper
	Related literature

	Notation and preliminaries
	Dual utilities and rank-dependent utilities
	Comonotone market and competitive equilibria
	Individual optimization

	Competitive equilibria with dual utilities 
	Equilibrium allocations and prices
	Pareto optimality and fundamental theorems of welfare economics

	Competitive equilibria with rank-dependent utilities
	General results
	An analytical approach for the competitive equilibria
	The RDU-exponential market

	An algorithm to compute the competitive equilibria
	Illustration of the algorithm
	Concluding remarks
	Appendix
	The RDU-power market
	Proofs of theorems, lemmas and propositions
	Convergence of the algorithm in a DU-comonotone market


