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Abstract

In this paper we provide a general mathematical framework for distributional trans-

forms, which allows for many examples that are used extensively in the literature of finance,

economics and optimization. We put a special focus on the class of probability distortions,

which is a fundamental tool in decision theory. As our main results, we characterize distri-

butional transforms satisfying various properties and this includes a set of conditions which

forces a distributional transform to be a probability distortion. As the first application,

we construct new risk measures using distributional transforms. Sufficient and necessary

conditions are given to ensure the convexity or coherence of the generated risk measures. In

the second application, we introduce a new method for sensitivity analysis of risk measures

based on composition groups of probability distortions. Finally, we construct probability

distortions describing a change of measures with an example in option pricing.
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1 Introduction

Distributional transforms are mappings between sets of distribution functions. They have

been extensively used in finance, risk analysis and economics. For instance, in asset pricing

theory, calculating the no-arbitrage price of the European call/put options requires a change of

measure, which can be viewed as a distributional transform (Section 7). In risk analysis, when it

comes to the sensitivity of risk measures, the first step is to add some shock to the concerned loss

distribution, resulting in a convolutional transform (Example 7); see Tsanakas and Millossovich

(2016) and the reference therein. In economics, the Gini coefficient, the most commonly used

measurement of inequality for wealth distribution, is based on the Lorenz curve (Lorenz (1905)

and Gastwirth (1971); see Example 6). In the expected utility theory, utility functions change

the values of random variables, which is a shape distribution transform (Example 5).

As a special class of distributional transforms, probability distortions have played an im-

portant role in decision theory, finance and risk optimization. In particular, the expected value

of a distorted distribution is known as Yaari’s dual utility (Yaari (1987)) or a distortion risk

measure. Distortion risk measures include the Value-at-Risk (VaR) and the Expected Shortfall

(ES, or CVaR) which are widely used in risk management and operations research (see e.g. Mc-

Neil et al. (2015), Föllmer and Schied (2016), and the references therein). In the rank-dependent

expected utility (Quiggin (1982, 1993)), probability distortions are used to represent individual

perception of unlikely extreme risk outcomes. Cumulative prospect theory (Tversky and Kahne-

man (1992)) is proposed based on the probability distortions representing the attitude towards

relative loss and gain. Expected value of the distorted distribution is also used in calculation of

risk-adjusted premium and option prices (Wang (2000)) and in performance measures (Cherny

and Madan (2009)). Besides, one can find many other examples of probability distortions in

the literature such as tail transform (Example 1) representing tail risk (Liu and Wang (2020)),

and several probability distortions appeared in Wang (1996) describing the premium principle in

insurance. In the above literature, the focus is usually put on the expected value of the distorted

distribution, instead of the probability distortion itself.

These motivate us to develop a systematic theory for the general distributional transforms

in this paper. An exact definition of distributional transforms is given in Section 2. It applies in

particular to the class of probability distortions, and we will also provide several other examples.

We also introduce some properties that are crucial for the characterization of distributional

transforms.

Since general distributional transforms are abstract, they may be difficult to investigate.

One of our main aims is to characterize explicit expression for distributional transforms satisfying

some properties. This has been done in Section 3. With the aid of the properties listed in Section
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2, we find an equivalent set of conditions to ensure that distributional transforms are probability

distortions. This set of conditions includes monotonicity, commutation with shape transforms

and lower-semicontinuity. In addition, we characterize the distributional transforms satisfying

monotonicity and additivity by expressing its quantile through Choquet integrals.

Using distributional transforms, we can define new risk measures generated by a distribu-

tional transform and another risk measure (such as the mean). In Section 5, we find conditions

of distributional transforms (probability distortions) under which the generated risk measures

are convex/coherent provided the original risk measures are convex/coherent.

A new method for sensitivity analysis based on probability distortions is introduced in

Section 6. Instead of an additive shock to the original loss, we apply a composition group of

convex/concave probability distortions (see Cherny and Filipović (2011)) to the loss distribution

to get the sensitivity of risk measure. We obtain the explicit expressions of sensitivity of a class

of risk measures with respect to general composition groups. In particular, we give the exact

expressions for the sensitivity of the Expected Shortfall (ES) and the Value-at-Risk (VaR).

Numerical analysis has also been carried out to the sensitivity analysis of ES and VaR with

respect to three composition groups for Pareto and normal distributions.

Finally, in Section 7, we apply probability distortions to obtain formulas for change of

measures. We construct probability distortions which are mappings from the distributions of

a class of random variables under the original probability measure to the distributions of the

same random variables under a new probability measure. As an example, this result recovers

the Black-Scholes formula in a Black-Scholes market.

2 Distributional transforms and probability distortions

Let (Ω,F ,P) be an atomless probability space. For r ∈ [0,∞], let Mr denote the set of all

distributions of random variables in Lr(Ω,F ,P). We set M as a generic subset of M0.

A distributional transform T is a mapping from M to M0. In the majority of our results,

we focus on distributional transforms from M∞ to M∞ or M0 to M0; However, conceptually,

distributional transforms can be defined on any subset of M0. For simplicity, we identify a

distribution measure in M0 with its cumulative distribution function (cdf), i.e. for F ∈ M0,

F (x) should be interpreted as F ((−∞, x]) for x ∈ R. For a cdf F , we define its (left) quantile as

F−1(t) = inf{x ∈ R : F (x) > t}, t ∈ [0, 1], (1)

and its right quantile as

F−1
+ (t) = inf{x ∈ R : F (x) > t}, t ∈ [0, 1],
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with the convention inf ∅ =∞.

We denote by µ the mean functional; that is, µ(F ) is the mean of F for F ∈ M1. For a

random variable X and a distribution F , we write X ∼ F if the distribution of X is F . The most

important class of distributional transforms in this paper is the class of probability distortions,

defined as follows. Let H0 denote the collection of all increasing and right-continuous functions

g : [0, 1]→ [0, 1] with g(0) = 0 and g(1) = 1.

Definition 1. For g ∈ H0, the probability distortion generated by g, denoted by Tg :M→M0,

is defined as Tg(F ) = g ◦ F .

In all the following examples, we let U be a generic random variable with uniform distri-

bution on [0, 1]. Note that if g ∈ H0 then g ◦ F ∈ M∞ for any F ∈ M∞. Thus, Tg is a well

defined distributional transform on M∞ for any g ∈ H0. However, for F ∈ M0, g ◦ F may not

be inM0, unless we require additionally that g(1−) = 1. For an alternative formulation, we can

take h : (0, 1) → (0, 1] as any increasing function and define T (F ) as the law of F−1(h(U)) for

F ∈M∞. Then it is easy to see that T = Tg for g(x) = P(h(U) 6 x), x ∈ [0, 1]. If additionally

h does not take the value 1, then T defines to a probability transform on all of M0.

We look at two simple examples below.

Example 1 (Tail transform). For p ∈ [0, 1), define T :M0 →M0 via letting

T (F )(x) =
(F (x)− p)+

1− p
, x ∈ R,

which is the distribution of F−1(p + (1 − p)U). If X is continuously distributed, then T (F ) is

also the conditional distribution of X ∼ F given {X > F−1(p)}.

Example 2 (Distorted power transform). For γ > 0, define T :M0 →M0 via letting

T (F )(x) = (F (x))1/γ , x ∈ R,

which is the distribution of F−1(Uγ). If γ = 1, then T (F ) = F .

There are many other commonly used distributional transforms in the literature for different

applications. We will see some of them in the following examples.

Example 3 (Scale-location transform). For a ∈ R+ and b ∈ R, define Ta,b : M0 → M0 by

letting Ta,b(F ) be the distribution of aX + b, where X ∼ F .

Example 4 (Super-quantile transform). For F ∈ M1, its super-quantile transform T (F ) is

defined as the cdf T (F ) = G with quantile function given by

G−1(p) =
1

1− p

∫ 1

p

F−1(t)dt, p ∈ (0, 1).
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Example 5 (Shape transform). For a strictly increasing and continuous function φ on R satis-

fying φ(R) = R, define T [φ] :M→M0 via letting T [φ](F ) = F ◦ φ−1. In other words, T [φ](F )

is the distribution of φ(X), where X ∼ F .

Example 6 (Lorenz curve). Motivated by the Lorenz curve introduced by Lorenz (1905), the

Lorenz transform of F ∈M1 supported on R+ is defined by (see e.g. Gastwirth (1971))

L(F )(p) =

∫ p
0
F−1(t)dt

µ(F )
, p ∈ [0, 1].

In economics, F represents the wealth distribution of the population and L(F )(p) is the percent-

age of total wealth for the poorest 100p% people. The curve L(F ) is used in economics to reflect

the inequality of the wealth distribution. For instance, the Gini coefficient is twice the area of

the difference between the curve L(F ) and the diagonal line on [0, 1]; note that the diagonal line

represents the case of equal wealth.

Example 7 (Convolution transform). For a fixedG ∈M0, the convolution transform of F ∈M0

is given by

T (F )(x) =

∫
F (x− y)G(dy), x ∈ R.

The transform T can be interpreted as a perturbation to a distribution with an independent

noise distributed according to G.

Example 8 (Weighted transform). Let M be the set of distributions with densities and w :

R → [0, 1] be a measurable function (called the weight function). The weighted transform T of

a distribution F ∈M with density f is the distribution T (F ) with density

w(x)f(x)∫
R w(y)f(y)dy

, x ∈ R,

provided that
∫
R w(y)f(y)dy > 0. The weighted transform is commonly used in statistical

forecasting; see Gneiting (2011), Holzmann and Klar (2017), and Lerch et al. (2017).

The above examples will be referred to throughout the paper, and some of them share some

common features, in the sense that they satisfy several technical properties which are natural

in different applications. These properties will help us later to characterize special subclasses of

distributional transforms. Let δx denote the point mass at x for x ∈ R. In what follows, we say

that M is closed under T if T maps M to M. Recall that F ∈ M0 is said to be smaller than

G ∈ M0 in stochastic order, denoted by F 6st G, if for all bounded increasing function f , we

have
∫
R f(x)dF (x) 6

∫
R f(x)dG(x). Note that F 6st G if and only if F (x) > G(x) for all x ∈ R.

Definition 2. For a distributional transform T , we use the following terminologies, where T [φ]

is defined in Example 5. T is monotone if T (F ) 6st T (G) for F 6st G, F,G ∈M; T is constant-

preserving if T (δx) = δx for x ∈ R; T is lower-semicontinuous if T (F ) 6st G ∈ M whenever
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{Fn}n∈N ⊂ M converges weakly to F ∈ M and satisfies T (Fn) 6st G; T is commuting with

shape transforms if T and T [φ] commute, i.e., for all strictly increasing and continuous function

φ satisfying φ(R) = R, T ◦ T [φ] = T [φ] ◦ T and M is closed under all T [φ].

With the exception of the Lorenz transform (Example 6) and the weighted transform (Ex-

ample 8), all distributional transforms defined in Examples 1 through 8 are monotone; Examples

1, 2, and 4 are constant-preserving, while Examples 3, 5, 6 and 7 are generally not (Example

8 is defined only on the set of absolutely continuous distributions); Examples 1-7 are all lower-

semicontinuous, whereas Examples 8 is generally not; Examples 1 and 2 are commuting with

shape transforms, while Examples 3, 4, 5, 6, 7 and 8 are not commuting with shape transforms.

3 Characterization of distributional transforms

In this section we study a characterization of distributional transforms T : M → M

with M = M0 and M = M∞, and this leads to two theorems. First, given the importance

of probability distortions in economics, finance and other fields, we give an equivalent set of

conditions which characterize a probability distortion.

Theorem 1. Let T :M→M where M =M0 or M =M∞. The distributional transform T

is lower-semicontinuous, monotone and commuting with shape transforms if and only if it is a

probability distortion.

Proof. We first prove the “if” part. Let Tg be a probability distortion for some g ∈ H0. It

is obvious that Tg is monotone. To prove that Tg is commuting with shape transforms, note

that for any F ∈ M and for any continuous and strictly increasing function φ : R → R with

φ(R) = R,

Tg ◦ T [φ](F ) = g(F ◦ φ−1) = g(F ) ◦ φ−1 = T [φ] ◦ Tg(F ).

To show the lower-semicontinuity of Tg, let G and {Fn}n∈N be as in Definition 2 for lower-

semicontinuity. If x is a continuous point of F , then

Tg(F )(x) = g(F (x)) > lim sup
n→∞

g(Fn(x)) > G(x).

Hence, by the fact that continuous points of F are dense, and cdfs are right continuous, we have

Tg(F )(x) > G(x), x ∈ R.

Next, we show the “only if” part. For p ∈ (0, 1), let qp : M → R be the p-quantile of

a distribution defined in (1). Further, define qTp : M → R by qTp (F ) = qp(T (F )). For each

p ∈ (0, 1), we claim that the functional qTp satisfies
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(i) qTp (F ) 6 qTp (G) if F 6st G;

(ii) for any strictly increasing and continuous function φ on R satisfying φ(R) = R, we have

qTp (T [φ](F )) = φ(qTp (F )).

Among the above properties, (i) follows directly from the monotonicity of T . (ii) follows from

the fact that T is commuting with shape transforms, and noting that the quantile function (both

left and right) commutes with shape transforms, we have

qTp (T [φ](F )) = qp(T ◦ T [φ](F )) = qp(T
[φ] ◦ T (F )) = φ(qp(T (F ))) = φ(qTp (F )).

We first focus on M = M∞. Theorem 1 of Chambers (2009) (noting also the footnote in

Theorem 1 of Chambers (2009)) states that, with the above properties (i)-(ii), qTp is a (left or

right) quantile of F at a fixed level for all F ∈ M. We denote this level by h(p) ∈ [0, 1]. Hence

for any F ∈M

qTp (F ) =

 F−1(h(p)), p ∈ E,

F−1
+ (h(p)), p ∈ (0, 1) \ E,

(2)

where E ⊂ (0, 1) is independent of F . Note that by definition if h(p) = 1, p ∈ E; if h(p) = 0,

p /∈ E. Clearly, h(p) is an increasing function over (0, 1). We next show that E = (0, 1). To

this end, we assume by way of contradiction that there is p0 ∈ (0, 1) \E. Notice that h(p0) 6= 1.

Let Fn ∼ Bernoulli
(
(1− h(p0))n−1

n

)
and F ∼ Bernoulli(1−h(p0)). It is clear that Fn converges

weakly to F and

g(p) := sup
n>1

qTp (Fn) 6 1, p ∈ (0, 1),

where g(p) is increasing over (0, 1). Let

G(x) = P (g(U) 6 x) , x ∈ R.

The boundness of g indicates that G belongs to M. Hence

T (Fn) 6st G, n > 1.

Lower-semicontinuity leads to

T (F ) 6st G.

Noting that g is a quantile function of G, we have

qTp (F ) 6 G−1(p) 6 g(p) = sup
n>1

qTp (Fn), p ∈ (0, 1). (3)

However, it follows from (2) that

qTp0
(F ) = 1 and sup

n>1
qTp0

(Fn) = 0,

7



which contradicts with (3). Hence, E = (0, 1) and this implies

qTp (F ) = F−1(h(p)), p ∈ (0, 1), (4)

where h : (0, 1)→ (0, 1] is an increasing function. This proves that T is a probability distortion

in the case M =M∞.

We next focus on M =M0. For F ∈ M∞, we have shown (4). We next extend (4) from

M∞ to M0. To this end, we split M0 =M∞ ∪M− ∪M+ ∪M±, where

M− : = {F ∈M0 : the support of F has infinite lower bound and finite upper bound},

M+ : = {F ∈M0 : the support of F has finite lower bound and infinite upper bound},

M± : = {F ∈M0 : the support of F has both infinite lower and upper bounds}.

We first consider F ∈ M−. Let Fn(x) = F (x)1{x>−n}, n > 1. Then Fn ∈ M∞ and F 6st Fn.

Hence we have

qTp (F ) 6 qTp (Fn) = F−1
n (h(p)), p ∈ (0, 1).

Note that h(p) > 0 for p ∈ (0, 1). Taking the limit with respect to n in the above inequality

yields

qTp (F ) 6 lim
n→∞

F−1
n (h(p)) = F−1(h(p)), p ∈ (0, 1). (5)

For any x0 ∈ R, define

φn(x) =

 x0 + x−x0

n , x < x0,

x, x > x0,
n > 1, φ0(x) = x ∧ x0,

Note that limn→∞ φn(x) = φ0(x), x ∈ R. Thus we have F ◦ φ−1
n ∈ M− and F ◦ φ−1

n converges

weakly to F0(x) := F (x)1{x>x0} ∈M∞. By the property (ii), we have

qTp (F ◦ φ−1
n ) = φn(qTp (F )) 6 φ0(qTp (F )), p ∈ (0, 1), n > 1.

By lower-semicontinuity and (4) we obtain for p ∈ (0, 1)

qTp (F0) 6 φ0(qTp (F )), qTp (F0) = F−1
0 (h(p)).

For x0 < qTp (F ),

F−1(h(p)) = F−1
0 (h(p)) = qTp (F0) 6 φ0(qTp (F )) = qTp (F ).

Together with (5) we arrive at

qTp (F ) = F−1(h(p)), p ∈ (0, 1).
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Next, we focus on F ∈ M+. Let Fn(x) = F (x)1{x<n} + 1{x>n}, n > 1. Then Fn ∈ M∞ and

Fn 6st F . Hence we have

qTp (F ) > qTp (Fn) = F−1
n (h(p)), p ∈ (0, 1).

Letting n→∞ in the above inequality yields

qTp (F ) > F−1(h(p)), p ∈ (0, 1). (6)

Note that h(p) < 1 for p ∈ (0, 1). Or else qTp (F ) =∞ for some p ∈ (0, 1). Define

F̂ (x) =


F (x), x 6 0,

F (tanx), 0 < x < π/2,

1, x > π/2.

Moreover, for n ∈ N, let

φ̂n(x) =


x, x 6 0,

tanx, 0 < x 6 π
2 −

1
n+1 ,

x− n+ tan
(
π
2 −

1
n+1

)
, x > n,

and

φ̂0(x) =

 x, x 6 0,

tanx, 0 < x < π
2 .

We note that F̂ ∈M∞, F̂ ◦ φ̂−1
n ∈M∞ and F̂ ◦ φ̂−1

n converges weakly to F. In addition, noting

that qTp (F̂ ) = F̂−1(h(p)) < π/2, p ∈ (0, 1), we have, for large n,

qTp (F̂ ◦ φ̂−1
n ) = φ̂n(qTp (F̂ )) 6 φ̂0(qTp (F̂ )).

Lower-semicontinuity leads to

qTp (F ) 6 φ̂0(qTp (F̂ )) = φ̂0(F̂−1(h(p))) = F−1(h(p)), p ∈ (0, 1).

Together with (6) we arrive at

qTp (F ) = F−1(h(p)), p ∈ (0, 1).

Finally, we focus on F ∈ M±. Let Fn(x) = F (x)1{x<n} + 1{x>n}, n > 1, and Gn =

F (x)1{x>−n}, n > 1. Then Fn ∈M− and Gn ∈M+. Monotonicity indicates

F−1
n (h(p)) = qTp (Fn) 6 qTp (F ) 6 qTp (Gn) = G−1

n (h(p)), p ∈ (0, 1).

Letting n→∞, we obtain

qTp (F ) = F−1(h(p)), p ∈ (0, 1).

9



Therefore, we conclude that there exists an increasing function h : (0, 1) → (0, 1) such that for

any F ∈M0

qTp (F ) = F−1(h(p)), p ∈ (0, 1).

This proves the case M =M0. The proof is complete.

It turns out from the proof of Theorem 1 that lower-semicontinuity plays an important role

in showing that distributional transforms are probability distortions. If we relax the assump-

tion of lower-semicontinuity in Theorem 1, the distributional transforms are not probability

distortions. Below are two examples.

Example 9. 1. For i = 1, 2, 3, 4, take gi ∈ H0 with gi(1−) = 1 such that g1 > g2 > g4 and

g1 > g3 > g4. Define T :M0 →M0 by

T (F ) =



g1 ◦ F, F ∈M−,

g2 ◦ F, F ∈M∞,

g3 ◦ F, F ∈M±,

g4 ◦ F, F ∈M+.

One can check similarly to the proof of Theorem 1 that T satisfies monotonicity and

commutes with shape transforms. However, T is not a probability distortion unless g1 =

g2 = g3 = g4.

2. Define T :M→M with M =M0 or M =M∞ as (T (F ))−1(p) = F−1
+ (1/2), p ∈ (0, 1).

One can easily check that T is monotone and commuting with shape transforms. However,

T is not a probability distortion since it does not satisfy lower-semicontinuity.

The next result characterizes additive and monotone distributional transforms. Let F ⊕G

be the distribution with quantile function F−1 + G−1. A distributional transform T is called

additive if T (F )⊕ T (G) = T (F ⊕G) for any F,G ∈M.

First, we note that all probability distortions Tg are monotone and additive. Indeed, note

that for a.e. p ∈ (0, 1) and all F ∈M,

(Tg(F⊕G))−1(p) = (F−1+G−1)(g−1(p)) = F−1(g−1(p))+G−1(g−1(p)) = (Tg(F )⊕Tg(G))−1(p).

This implies that Tg(F ⊕G) = Tg(F )⊕Tg(G). However, probability distortions are not the only

distributional transforms having these two properties. For instance, the distributional transform

T :M∞ →M∞ given by T (F ) = δµ(F ) is also monotone and additive, but it is not a probability

distortion. As another example, the super-quantile transform in Example 4 is also monotone

and additive.
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To characterize additive distributional transforms, we focus on the case M = M∞ for

technical convenience; see Remark 1 below for the caseM =M0. Let H be the set of increasing

functions h on [0, 1] with h(0) = 0 and h(1) = 1. For h ∈ H, define the Choquet integral

Ih :M→ R as

Ih(F ) =

∫ 0

−∞
(h(1− F (x))− 1)dx+

∫ ∞
0

h(1− F (x))dx. (7)

Theorem 2. A distributional transform T :M∞ →M∞ is monotone, constant-preserving and

additive if and only if it has the following form: there exists a point-wise increasing family of

functions hp ∈ H, p ∈ (0, 1) such that for F ∈M∞, T (F ) is uniquely determined by

(T (F ))−1(p) = Ihp(F ) for a.e. p ∈ (0, 1). (8)

Proof. “⇒”: Note that for p ∈ (0, 1), F 7→ (T (F ))−1(p) is a functional from M∞ to R. Mono-

tonicity and additivity of T imply the monotonicity and additivity of this functional. Moreover,

constant-preservation indicates (T (δ1))−1(p) = 1. By the main result of Schmeidler (1986) (see

e.g. Theorem 1 of Wang et al. (2019) for an exact form), there exists hp ∈ H such that

(T (F ))−1(p) = Ihp(F ).

For 0 < p1 < p2 < 1, we have for any F ∈M∞

Ihp1
(F ) = (T (F ))−1(p1) 6 (T (F ))−1(p2) = Ihp2

(F ).

Taking F (x) = (1− t)1{06x<1} + 1{x>1} for some t ∈ [0, 1] yields that

hp1
(t) = Ihp1

(F ) 6 Ihp2
(F ) = hp2(t), (9)

giving the monotonicity of hp with respect to p.

“⇐”: A direct calculation shows that for F 6st G, F,G ∈M∞,

Ihp(F ) 6 Ihp(G), p ∈ (0, 1).

This implies that

(T (F ))−1(p) 6 (T (G))−1(p), p ∈ (0, 1),

which means that T is monotone. It is well known that the Choquet integral is comonotonically

additive. Hence, for F,G ∈M∞,

Ihp(F ⊕G) = Ihp(F ) + Ihp(G), p ∈ (0, 1).

It follows that

(T (F ⊕G))−1(p) = (T (F ))−1(p) + (T (G))−1(p) = (T (F )⊕ T (G))−1(p), p ∈ (0, 1).
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The additivity of T is obtained. Moreover, a direct calculation shows

(T (δx))−1(p) = Ihp(δx) = x, p ∈ (0, 1),

implying that T (δx) = δx. Hence T is constant-preserving. This completes the proof.

Remark 1. To generalize Theorem 2 to distributional transforms on M0, one needs some ad-

ditional assumptions. This is because the integral in (7) may not be finite or well-defined for

all F ∈ M0. To guarantee the finiteness of (7), we may replace H by the set of all increasing

functions h on [0, 1] for which there exists 0 < ε < 1/2 such that h(x) = 0 for x ∈ [0, ε] and

h(x) = 1 for x ∈ [1 − ε, 1]. In addition, we need to assume that limn→∞ T (Fn) = T (δ0) for

any sequences {Fn}n∈N converging weakly to δ0. Under these additional assumptions, we can

generalize the representation (8) to M =M0.

We shall see in what follows that Theorem 2 is in fact very general including many interesting

examples.

Example 10. (i) If hp(t) = 1{t>1−p}, then

Ihp(F ) =

∫ 0

−∞

(
1{F (x)<p} − 1

)
dx+

∫ ∞
0

1{F (x)<p}dx = F−1(p), p ∈ (0, 1)

and thus T is the identity.

(ii) If hp(t) = t, then Ihp is the mean, and T (F ) = δµ(F ).

(iii) If hp(t) = ( 1
1−p t) ∧ 1, then

Ihp(F ) =
1

1− p

∫ 1

p

F−1(t)dt,

and T is the super-quantile transform in Example 4.

(iv) If hp(t) = 1{t>1−g(p)} for an increasing function g : (0, 1)→ (0, 1], then

Ihp(F ) =

∫ 0

−∞

(
1{F (x)<g(p)} − 1

)
dx+

∫ ∞
0

1{F (x)<g(p)}dx = F−1(g(p)), p ∈ (0, 1)

is the left g(p)-quantile, and T is a probability distortion generated by

G(x) = P (g(U) 6 x) , x ∈ [0, 1].

(v) If hp(t) = 1{t>1−g(p)} for an increasing function g : (0, 1)→ [0, 1), then

Ihp(F ) =

∫ 0

−∞

(
1{F (x)6g(p)} − 1

)
dx+

∫ ∞
0

1{F (x)6g(p)}dx = F−1
+ (g(p)), p ∈ (0, 1)

is the right g(p)-quantile, and

G(F (x)−) 6 T (F )(x) 6 G(F (x)), where G(x) = P (g(U) 6 x) , x ∈ [0, 1].
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4 Further properties

In this section we study several other useful properties for commonly used distributional

transforms, including the examples in Section 2. Recall that F ∈ M1 is smaller than G ∈ M1

in increasing convex order, denoted by F 6icx G, if for all increasing convex function f , we have∫
R f(x)dF (x) 6

∫
R f(x)dG(x).

Definition 3. T is scale-location-invariant if for all a ∈ R+ and b ∈ R, Ta,b ◦ T = T ◦ Ta,b
and M is closed under Ta,b; T is 6icx-monotone if T (F ) 6icx T (G) for any F 6icx G with

F,G ∈M ⊂M1; T is ampliative if T (F ) >st F for all F ∈M.

Among examples in Section 2, Example 1, Example 2 (if γ 6 1), Examples 3 and 4, Example

6 (if µ(F ) = µ(G)) and Example 7 are 6icx-monotone, whereas Examples 5 and 8 (for general

w) are not 6icx-monotone; Examples 1, 2, and 4 are scale-location-invariant, whereas Examples

3, 5, 6, 7 and 8 are not scale-location-invariant; Example 1, Example 2 (if γ 6 1), Example 3 (if

a = 1, b > 0), Example 4 and Example 5 (if φ(x) > x, x ∈ R) are ampliative whereas Example

6, Example 7 (for general G) and Example 8 (for general w) are not ampliative.

Some of the above properties imply other properties used in the paper. For instance, if T

is scale-location-invariant, then T is constant-preserving. Note that T0,x(F ) = δx for all x ∈ R

and F ∈M0. Hence

T (δx) = T ◦ T0,x(δ0) = T0,x ◦ T (δ0) = δx.

On the other hand, if T is constant-preserving and commuting with shape transforms, then T is

scale-location-invariant. To see this, note that Ta,b, a > 0 are shape transforms, which indicates

that T ◦Ta,b = Ta,b◦T, a > 0. Moreover, constant preservation guarantees that T ◦T0,b = T0,b◦T .

The next proposition shows that monotonicity and commutation with shape transform imply

scale-location-invariance and additivity.

Proposition 1. If a distributional transform T : M∞ → M∞ is monotone and commuting

with shape transforms, then it is scale-location-invariant and additive.

Proof. We first show that monotonicity and commutation with shape transforms imply additiv-

ity. To see this, we use (2) to represent T (F ) in the form

(T (F ))−1(p) =

 F−1(g(p)), p ∈ E,

F−1
+ (g(p)), p ∈ (0, 1) \ E,

for some set E ⊂ (0, 1) and an increasing function g : (0, 1) → [0, 1]. It follows from (iv) and

(v) of Example 10 that the right-hand side of above equation can also be represented by the
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Choquet integrals Ihp(F ), where

hp(t) =

 1{t>1−g(p)}, p ∈ E,

1{t>1−g(p)}, p ∈ (0, 1) \ E.

Hence, it follows from Theorem 2 that T is additive.

Now we show that monotonicity and commutation with shape also imply scale-location-

invariance. To see this, let qTp (F ) = (T (F ))−1(p), p ∈ E and we have

q
Ta,b◦T
p (F ) = aqTp (F ) + b = aF−1(h(p)) + b = qTp (Ta,b(F )) = q

T◦Ta,b
p (F ).

For p ∈ (0, 1) \ E, the analogous identity follows by a similar argument. This implies that T is

scale-location-invariant.

Proposition 2. Let Tg :M∞ →M∞ be a probability distortion. We have (i) Tg is ampliative

if and only if g(t) 6 t, t ∈ [0, 1]; (ii) Tg is 6icx-monotone if and only if g is convex.

Proof. (i): Sufficiency is obvious. To show necessity, let F be the uniform distribution on [0, 1].

Then we have

g(x) = g(F (x)) 6 F (x) = x, x ∈ [0, 1].

(ii): By Corollary 2 of Chew et al. (1987), g is convex if and only if for all F 6icx G and all

strictly increasing and convex function u over R, we have∫
R
u(x)dg(F (x)) 6

∫
R
u(x)dg(G(x)).

This proves (ii).

From the proof, it is clear that (i) of Proposition 2 remains valid for Tg :M0 →M0. Let

T be the set of distributional transforms, and TS be the set of monotone and scale-location-

invariant distributional transforms. We define the scale multiplication ⊗ as a ⊗ F = Ta,0(F )

for a ∈ R+ and F ∈ M. Below we give simple algebraic properties of T and M which can be

checked in a straightforward manner.

Proposition 3. (i) (T , ◦) is a monoid with the identity element T1,0;

(ii) (TS , ◦) is a submonoid of (T , ◦);

(iii) (M,⊕) is a monoid with the identity element δ0;

(iv) M equipped with (⊕,⊗) is a convex cone.

Next, we state some forms of additivity of distributional transforms, which will be use-

ful for the study of risk measures generated by distributional transforms in Section 5. For a

distributional transform T :

14



(i) T is 6st-subadditive (resp. 6st-supperadditive) if T (F ⊕G) 6st T (F )⊕ T (G) (resp. T (F ⊕

G) >st T (F )⊕ T (G)) for all F,G ∈M;

(ii) T is 6icx-subadditive (resp. 6icx-supperadditive) if T (F⊕G) 6icx T (F )⊕T (G) (resp. T (F⊕

G) >icx T (F )⊕ T (G)) for all F,G ∈M.

Remark 2. (i) Clearly, additivity implies 6st-subadditivity, which in turn implies 6icx-subadditivity.

(ii) It is easy to see that the following statements are equivalent: T is additive; T is both 6st-

subadditive and 6st-superadditive; T is both 6icx-subadditive and 6icx-superadditive. (iii) Let

Ta,b be the scale-location transform in Example 3. Then, it is easy to verify that T1,a is additive

if and only if a = 0, it is 6st-subadditive if and only if a > 0, and it is 6st-supperadditive if and

only if a 6 0.

5 Distributional transforms and risk measures

5.1 Risk measures

In this section we consider distributional transforms T : M → M with M = M∞ and

its relation to risk measures. A risk measure ρ is a mapping from L∞ to R. We use the sign

convention that a positive value of a random variable X represents a random loss faced by

a financial institution and ρ(X) is the capital charge for bearing the potential loss X. Some

properties of risk measures are listed below; for their interpretations see Föllmer and Schied

(2016).

Definition 4. For a risk measure ρ, we use the following terminologies:

(i) ρ is cash-invariant if ρ(X + c) = ρ(X) + c for c ∈ R and X ∈ L∞;

(ii) ρ is monotone if ρ(X) 6 ρ(Y ) for X,Y ∈ L∞, X 6 Y ;

(iii) ρ is positively homogeneous if ρ(λX) = λρ(X) for λ ∈ (0,∞) and X ∈ L∞;

(iv) ρ is convex if ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ) for X,Y ∈ L∞ and λ ∈ [0, 1];

(v) ρ is subadditive if ρ(X + Y ) 6 ρ(X) + ρ(Y ) for X,Y ∈ L∞;

(vi) ρ is law-invariant if ρ(X) = ρ(Y ) for X,Y ∈ L∞, X
d
= Y ;

(vii) ρ is a monetary risk measure if it is monotone and cash-invariant;

(viii) ρ is a convex risk measure if it is monetary and convex;

(ix) ρ is a coherent risk measure if it is monetary, convex, and positively homogeneous.
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For X ∈ L∞, we denote its distribution by FX . Let Rch and Rcx denote the collections of

all coherent and convex risk measures defined on L∞, respectively. For any law-invariant risk

measure ρ, define ρ̂(F ) = ρ(X), where X ∼ F . For any distributional transform T and X ∈ L∞,

let ρT (X) = ρ̂(T (FX)) and for any probability distortion Tg, denote ρg(X) = ρTg (X). Two

important risk measures are the Value-at-Risk, VaRp, and Expected Shortfall, ESp, p ∈ (0, 1),

which are respectively given by

VaRp(X) = F−1
X (p), and ESp(X) =

1

1− p

∫ 1

p

F−1
X (t)dt.

See, e.g., McNeil et al. (2015) and Föllmer and Schied (2016) for the definitions, properties and

applications of VaR and ES.

5.2 Risk measures generated by distributional transforms

We will use the classic result on convex order (see e.g. Theorem 3.5 of Rüschendorf (2013)),

which says that FX+Y 6icx FX⊕FY for all X,Y ∈ L∞. The following lemma gives the convexity

of ρ̂ for a convex risk measure ρ.

Lemma 1. If ρ is a law-invariant convex risk measure, then ρ̂ is convex on M equipped with

(⊕,⊗), i.e. ρ̂((λ⊗ F )⊕ ((1− λ)⊗G)) 6 λρ̂(F ) + (1− λ)ρ̂(G) for all F,G ∈M and λ ∈ [0, 1].

Proof. Let U be a uniform random variable on [0, 1]. Note that for any F,G ∈ M, F−1(U) +

G−1(U) has the distribution F ⊕G. Therefore, for λ ∈ [0, 1],

ρ̂((λ⊗ F )⊕ ((1− λ)⊗G)) = ρ(λF−1(U) + (1− λ)G−1(U))

6 λρ(F−1(U)) + (1− λ)ρ(G−1(U)) = λρ̂(F ) + (1− λ)ρ̂(G).

Hence ρ̂ is convex.

The main result of this section is the following theorem, which connects distributional

transforms and risk measures.

Theorem 3. For a monotone and scale-location invariant distributional transform T , the fol-

lowing statements are equivalent:

(i) T is 6icx-monotone and 6icx-subadditive;

(ii) ρT ∈ Rcx for all ρ ∈ Rcx;

(iii) ρT ∈ Rch for all ρ ∈ Rch;

(iv) (ESp)T ∈ Rch for all p ∈ (0, 1).
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Proof. (i)⇒(ii): For λ ∈ [0, 1] and X,Y ∈ L∞, note that FλX+(1−λ)Y 6icx FλX ⊕ F(1−λ)Y . Also

note that law-invariant convex risk measures are monotone with respect to 6icx. By the above

facts, the 6icx-monotonicity and the 6icx-subadditivity of T , and Lemma 1, we have

ρT (λX + (1− λ)Y ) = ρ̂(T (FλX+(1−λ)Y ))

6 ρ̂(T (FλX ⊕ F(1−λ)Y ))

6 ρ̂(T (FλX)⊕ T (F(1−λ)Y ))

= ρ̂((T ◦ Tλ,0(FX))⊕ (T ◦ T1−λ,0(FY )))

= ρ̂((Tλ,0 ◦ T (FX))⊕ (T1−λ,0 ◦ T (FY )))

6 λρ̂(T (FX)) + (1− λ)ρ̂(T (FY )) = λρT (X) + (1− λ)ρT (Y ).

Hence, ρT is convex. The other properties are easy to check.

(ii)⇒(iii): From (ii), we know that ρT is convex for ρ ∈ Rch. It suffices to show that ρT is

positively homogeneous, which is implied by the argument that, for λ > 0 and X ∈ L∞,

ρT (λX) = ρ̂(T ◦ Tλ,0(FX)) = ρ̂(Tλ,0 ◦ T (FX)) = λρT (X).

(iii)⇒(iv): Obvious since ESp is a coherent risk measure for all p ∈ (0, 1).

(iv)⇒(i): Let ρ = ESp, p ∈ (0, 1), and U be a uniform random variable on [0, 1]. Since ρT

is a coherent risk measure, we have, for all F,G ∈M,

ρT (F−1(U) +G−1(U)) 6 ρT (F−1(U)) + ρT (G−1(U)).

As a consequence,

ρ̂(T (F ⊕G)) 6 ρ̂(T (F )) + ρ̂(T (G)).

By comonotonic-additivity of ESp, we know that ρ̂ is additive with respect to ⊕, and hence

ρ̂(T (F ⊕G)) 6 ρ̂(T (F )) + ρ̂(T (G)) = ρ̂(T (F )⊕ T (G)).

Since p ∈ (0, 1) is arbitrary, this implies T (F ⊕ G) 6icx T (F ) ⊕ T (G) (e.g. Theorem 3.A.5 of

Shaked and Shanthikumar (2007)).

On the other hand, since ρT is a law-invariant coherent risk measure, it is monotone with

respect to 6icx. For F 6icx G, we have ρ̂T (F ) 6 ρ̂T (G). Since p ∈ (0, 1) is arbitrary, this implies

T (F ) 6icx T (G).

We make the following simple but still interesting observation.

Proposition 4. A mapping ρ : L∞ → R is a law-invariant coherent risk measure if and only

if it is the mean of a distributional transform that is monotone, scale-location-invariant, 6icx-

subadditive and 6icx-monotone.
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Proof. The “if” part is given by Theorem 3. For the “only-if” part, define the distributional

transform T : F 7→ δρ̂(F ). Obviously, µ(T (F )) = ρ̂(F ), and the coherence of ρ implies that T is

monotone and scale-location-invariant. Note that for X,Y ∈ L∞,

T (FX ⊕ FY ) = δρ(X+Y ) 6icx δρ(X)+ρ(Y ) = δρ(X) ⊕ δρ(Y ) = T (FX)⊕ T (FY ).

Hence, T is also 6icx-subadditive. The 6icx-monotonicity is similar.

Remark 3. The above proof shows that the distributional transform T : F 7→ δρ̂(F ) is even

6st-subadditive, a stronger property than 6icx-subadditivity.

Next, we present the relationship between probability distortions and risk measures.

Proposition 5. Suppose Tg is a probability distortion generated by g ∈ H0. Then the following

statements are equivalent:

(i) g is convex;

(ii) ρg ∈ Rcx for all ρ ∈ Rcx;

(iii) ρg ∈ Rch for all ρ ∈ Rch;

(iv) Eg ∈ Rch.

Proof. (i)⇒ (ii) ⇒ (iii) ⇒ (iv) follow by a direct application of Theorem 3 and Proposition 2.

Next we focus on (iv) ⇒ (i). Note that

Eg(X) =

∫ ∞
0

(1− g(FX(x)))dx−
∫ 0

−∞
g(FX(x))dx

=

∫ ∞
0

g̃(1− FX(x))dx+

∫ 0

−∞
(g̃(1− FX(x))− 1)dx,

where g̃(x) = 1 − g(1 − x), x ∈ [0, 1]. Theorem 4.94 and Proposition 4.75 in Föllmer and

Schied (2016) shows that convexity of Eg implies the concavity of g̃, which further indicates the

convexity of g. This completes the proof.

Remark 4. (i) As we can see from Proposition 5, convexity of g is actually a necessary and

sufficient condition for Eg ∈ Rch. For another risk measure instead of E, it is sufficient but

not necessary. For example, let ρ be a distortion risk measure given by

ρ(X) =

∫
R
xdF βX(x)

with distortion function xβ , β > 1. Note that ρ ∈ Rch. Moreover, let g(x) = xα, x ∈ [0, 1]

with α < 1 which is a concave function. Then

ρg(X) =

∫
R
xdFαβX (x)

is coherent if 1/β 6 α < 1.
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(ii) A relevant property for risk measures used in insurance premium pricing is called loaded-

ness. The risk measure ρ is loaded if

ρ(F ) > µ(F ), F ∈M.

See, e.g., Wang (2016) for properties and applications of loadedness. The ampliativity of

Tg in (i) of Proposition 2 coincides with the loadedness of Eg, i.e., for g ∈ H0, the condition

g(t) 6 t, t ∈ [0, 1] is equivalent to

Eg[X] > E[X], X ∈ L∞. (10)

A short proof is as follows. If Tg is ampliative, it is obvious that Eg is loaded. Conversely,

we take X ∼ Bernoulli(p) with 0 < p < 1. Then (10) implies that 1 − g(1 − p) > p for

0 < p < 1. This means ampliativity by Proposition 2.

5.3 Examples

Next we present some risk measures generated by probability distortions. Let Hcx denote

the collection of convex functions in H0.

Example 11. Let u : R→ R be a concave and strictly increasing function. The convex utility-

based shortfall risk measure, introduced by Föllmer and Schied (2002), is given by

ρ(X) = inf{m ∈ R : E [u(−X +m)] > u(0)}, X ∈ L∞.

One can also refer to Weber (2006), Delbaen et al. (2016) and Föllmer and Schied (2016) for

more results on the utility-based shortfall risk measures.

For g ∈ H0, we have

ρg(X) = inf

{
m ∈ R :

∫
R
u(−x+m)dg(FX(x)) > u(0)

}
.

Note that∫
R
u(−x)dg(F−X(x)) =

∫
R
u(x)d(1− g(F−X(−x))) =

∫
R
u(x)dh(FX(x)) := Hu,h(X)

with h(x) = 1 − g(1 − x), x ∈ [0, 1], which is called a rank-dependent expected utility (see

Quiggin (1982, 1993)). Then

ρg(X) = inf{m ∈ R : Hu,h(−X +m) > u(0)}

is a risk measure induced by a rank-dependent expected utility Hu,h. Proposition 5 implies that

ρg ∈ Rcx if g ∈ Hcx.
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Example 12. Let ρ be the coherent distortion risk measure given by

ρ(X) =

∫
R
xdh(FX(x)), X ∈ L∞,

where h ∈ Hcx is a distortion function. For g ∈ H0,

ρg(X) =

∫
R
xdh(g(FX(x)))

is also a distortion risk measure with the distortion function h ◦ g. By Proposition 5, g ∈ Hcx

implies the coherence of ρg.

Example 13. Let h : [0,∞)→ R∪{+∞} be a lower-semicontinuous convex function satisfying

h(1) = 1 and limx→∞
h(x)
x =∞. The divergence risk measure with respect to h has the following

expression (see, e.g., Theorem 4.122 in Föllmer and Schied (2016))

ρ(X) = inf
z∈R

(E[h∗(X − z)] + z) , X ∈ L∞,

where h∗(y) = supx>0(xy − h(x)) is the Fenchel-Legendre transform of h. Note that if h =

∞ · 1(1/λ,∞) with λ > 0 and 1 representing the indicator function, then

ρ(X) = inf
z∈R

(
E
[

(X − z)+

λ

]
+ z

)
is the Expected Shortfall. For g ∈ Hcx, by Proposition 5,

ρg(X) = inf
z∈R

(∫
R
h∗(x− z)dg(FX(x)) + z

)
is a convex risk measure.

6 Sensitivity analysis

In this section we propose a new method for sensitivity analysis using distributional trans-

forms. For this purpose, we consider distributional transforms T : L1 → L1, and we naturally

extend risk measures generated by probability distortions to L1. Let ρ : L1 → R be a law-

invariant risk measure and for g ∈ H0 satisfying g(1−) = 1, define ρg : L1 → R ∪ {∞} by

ρg(X) =

 ρ((g ◦ FX)−1(U)), if (g ◦ FX)−1(U) ∈ L1,

∞, if (g ◦ FX)−1(U) /∈ L1.

Let us first consider a model consisting of three elements:

Y = h(X),

where X ∈ L1 is the input, h : R → R is the model function and Y ∈ L1 is the output. We

typically measure the sensitivity of the output risk to an individual model input by stressing
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that model input with a random shock. Specifically, for Z ∈ L1, the sensitivity of ρ(h(X)) to

the shock Z can be defined as
∂

∂ε
ρ(h(X + εZ))

∣∣∣
ε=0

. (11)

We refer to Tsanakas and Millossovich (2016) and the references therein for the definitions,

results and applications of sensitivity of risk measures.

For the case that h is the identity, the sensitivity of ρ(X) to the shock Z can be reduced to

∂

∂ε
ρ(X + εZ)

∣∣∣
ε=0

.

If we assume that X and Z are independent, then

ρ(X + εZ) = ρTε(X), where Tε ◦ FX(x) =

∫
R
FX(x− y)FεZ(dy).

This means that the sensitivity of risk measures can be derived from a family of risk measures

generated by convolution transforms in Example 7.

Inspired by this fact, we consider the sensitivity of risk measures with respect to distribu-

tional transforms. The main idea here is to replace h(X + εZ) in (11) by Tε(h(X)) where Tε is

a distributional transform arbitrarily close to identity as ε ↓ 0 or ε ↑ 0, and then we evaluate the

limit of
ρ(Tε(h(X)))− ρ(h(X))

ε
as ε→ 0. (12)

This formulation allows for the analysis of sensitivity for more general types of distributional

perturbation, uncertainty, and shocks, not limited to the additive shock in (11). We put a focus

on probability distortions, and study the sensitivity defined in (12),

ρ(Tε(W ))− ρ(W )

ε
as ε→ 0,

where W = h(X) is a generic random variable. To realize the above idea, we need to formally

construct sequences of probability distortions that converge to the identity in a meaningful way.

For this purpose, we borrow from the notion of composition (semi-)groups.

Let {Ψt}t∈R be a composition group of strictly increasing and continuous functions Ψt :

[0, 1]→ [0, 1] such that the following conditions hold:

(i) Ψt(0) = 0 and Ψt(1) = 1, t ∈ R.

(ii) Ψ0(x) = x, x ∈ [0, 1].

(iii) Ψs ◦Ψt = Ψs+t, s, t ∈ R.

(iv) Ψt is convex for any fixed t > 0.
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Note that (iii) indicates the group {Ψt}t∈R is commutative, which is called abelian group.

The study of composition groups or semigroups of analytic or holomorphic functions and their

infinitesimal generators has a long history; see, e.g., Shapiro (1993), Shoikhet (2001) and the

references therein. Here, we will consider composition groups of convex and concave functions

Ψt, where the trivial case Ψt(x) = x for all t ∈ R and all x ∈ [0, 1] is excluded. The group

{Ψt}t∈R admits the infinitesimal generator

G(x) = lim
t→0

x−Ψt(x)

t
, (13)

defined as the pointwise limit for x ∈ [0, 1], where G : [0, 1]→ [0,∞) is concave and positive on

(0, 1). Note that G(0) = 0 and G(1) = 0 by (13). Moreover, Ψt can be recovered from G by

means of the following formula:

Ψt(x) = sup

{
y ∈ [0, 1] :

∫ x

y

1

G(s)
ds = t

}
, t ∈ R, x ∈ (0, 1). (14)

This result follows by applying Theorem 2.1 of Cherny and Filipović (2011) to the associated

composition group Ψ∗t (x) = 1 − Ψt(1 − x), t > 0 of concave functions on [0, 1]. It is clear that

Ψt ∈ H0. Moreover, note that the strict monotonicity and continuity of Ψt indicates∫ 1/2

0

1

G(s)
ds =∞;

∫ 1

1/2

1

G(s)
ds =∞. (15)

Below, we present some examples for convex composition groups that are adapted from Cherny

and Filipović (2011).

Example 14. 1. Ψt(x) = xe
t

, t ∈ R, x ∈ [0, 1] with G(x) = −x lnx, x ∈ (0, 1). A direct

calculation shows that if et is an integer, then

EΨt [X] = E[max{X1, . . . , Xet}],

where X1, . . . , Xet are iid copies of X.

2. Ψt(x) = 1 − (1 − x)e
−t
, t ∈ R, x ∈ [0, 1] with G(x) = −(1 − x) ln(1 − x), x ∈ (0, 1). A

direct calculation gives that if et is an integer, then

EΨ−t [X] = E[min{X1, . . . , Xet}],

where X1, . . . , Xet are iid copies of X.

3. Ψt(x) = Φ(Φ−1(x)− t), t ∈ R, x ∈ [0, 1] with G(x) = 1√
2π
e−

(Φ−1(x))2

2 , x ∈ (0, 1), which is

the convex version of Wang’s transform (Wang (2000)). Here, Φ denotes again the cdf of

the standard normal distribution.
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Remark 5. Suppose that Ψ ∈ H0 is a given convex function. It is an interesting question

whether Ψ can be embedded into a composition group {Ψt}t∈R. That is, whether there exists

a composition group {Ψt}t∈R such that Ψ = Ψ1. According to Smajdor (1975), this holds if Ψ

is strictly increasing, differentiable on (0, 1), and satisfies Ψ′(0+) > 0. Moreover, under these

conditions, the infinitesimal generator G can be defined by means of (13). Finally, the main

result in Smajdor (1975) states that Ψt will be a convex function for each t > 0 if and only if

the infinitesimal generator G is concave.

We will measure the sensitivity of the risk measure ρ with respect to {Ψt}t∈R with generator

G satisfying (15) by means of the following two quantities,

S+
ρ,G(X) = lim

t↓0

ρΨt(X)− ρ(X)

t
, S−ρ,G(X) = lim

t↑0

ρΨt(X)− ρ(X)

t
, X ∈ L1.

If S+
ρ,G(X) = S−ρ,G(X), we say that the sensitivity of ρ with respect to Ψt at X is

Sρ,G(X) = S±ρ,G(X).

Note that if t > 0, as Ψt(x) 6 x for all x ∈ [0, 1], using Proposition 2, we have ρΨt > ρ for all

monotone law-invariant risk measures ρ. Similarly, ρΨt 6 ρ for t < 0. Therefore, S±ρ,G(X) > 0.

Remark 6. In some situations, non-invertible convex or concave functions will only give rise to

composition semigroups rather than groups. For instance,

Ψt(x) = 1− (et(1− x)) ∧ 1, t > 0, x ∈ [0, 1], or Ψt(x) = (e−tx) ∧ 1, t 6 0, x ∈ [0, 1].

In such a situation, the infinitesimal generator G of the semigroup can still be defined analogously

as the right- or left-hand limit. Likewise, either S+
ρ,G or S−ρ,G can still be defined.

In the next result, we consider distortion risk measures, which have the form ρ = Eg with

g ∈ H0 satisfying g(1−) = 1, i.e.,

ρ(X) =

∫
R
xdg(FX(x)) =

∫ ∞
0

(1− g(FX(x)))dx−
∫ 0

−∞
g(FX(x))dx.

The Hölder continuity of g can guarantee the finiteness of ρ(X) for X ∈ L1. For any function g,

denote by g′−(t) its left derivative and g′+(t) its right derivative at t provided that the left and

right derivatives exist.

Proposition 6. Suppose that g ∈ H0 is Hölder continuous on [0, 1] with the left and right

derivatives of g existing on (0, 1), and {Ψt}t∈R is a composition group satisfying (i)-(iv) with its

infinitesimal generator G satisfying (15). For X ∈ L1, if∫
R
|x|dΨt(FX(x)) <∞ and

∫
R

max{G(FX(x)), G(Ψt(FX(x)))}dx <∞ (16)
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for some t > 0, then

S+
ρ,G(X) =

∫
R
g′−(FX(x))G(FX(x))dx.

If (16) holds for some t < 0, then

S−ρ,G(X) =

∫
R
g′+(FX(x))G(FX(x))dx.

Proof. We first consider S+
ρ,G(X). Note that for X ∈ L1, Hölder continuity of g and (16) for

some t > 0 lead to the finiteness of ρ(X) and ρΨt(X) for t > 0 sufficiently small. By definition,

ρΨt(X)− ρ(X)

t
=

∫
R

g(FX(x))− g(Ψt(FX(x)))

t
dx

=

∫ F−1
X (1)

F−1
X+(0)

g(FX(x))− g(Ψt(FX(x)))

t
dx,

where FX+ is the right quantile function of FX . If F−1
X+(0) = F−1

X (1), the claim holds trivially.

We next consider the case F−1
X+(0) < F−1

X (1). Without loss of generality, we assume that

F−1
X+(0) > −∞. Note that if there exists some t > 0 and x ∈ (0, 1) such that Ψt(x) = x, then

Ψt(x) = x for all t ∈ R and for all x ∈ [0, 1], which has been excluded. Hence Ψt(FX(x)) < FX(x)

for all t > 0 and x ∈ (F−1
X+(0), F−1

X (1)), which implies that

lim
t↓0

g(FX(x))− g(Ψt(FX(x)))

t
= g′−(FX(x))G(FX(x)), x ∈ (F−1

X+(0), F−1
X (1)).

Note that (15) implies G(0+) = G(1−) = 0. By the concavity of G, there exists ε ∈ (0, 1/2)

such that G is increasing over (0, ε) and decreasing over (1− ε, 1). Hence, there exists δ ∈ (0, ε)

such that for all x ∈ (0, δ) and t ∈ (0, δ), we have Ψt(x) ∈ (0, ε), and for all x ∈ (1 − δ, 1) and

t ∈ (0, δ), we have Ψt(x) ∈ (1− ε, 1). For x ∈ (0, δ)∪ (1− δ, 1), using (14) and the fact that G(s)

is monotone for s ∈ [Ψt(x), x], we have

0 6
x−Ψt(x)

t
=

x−Ψt(x)∫ x
Ψt(x)

1
G(s)ds

6 max
Ψt(x)<s6x

G(s) 6 max(G(x), G(Ψt(x))).

Consequently, for x > F−1
X+(1− δ),

sup
t∈(0,δ)

∣∣∣∣g(x)− g(Ψt(x))

t

∣∣∣∣ 6 max(G(x), G(Ψt(x))) sup
t∈(0,1)

g′−(t) <∞.

Observe that max(G(x), G(Ψt(x))) is an increasing function with respect to t for x sufficiently

close to 1 and t > 0 sufficiently close to 0, and note that maxs∈(0,1)G(s) < ∞. Hence the

dominated convergence theorem leads to

S+
ρ,G(X) = lim

t↓0

ρΨt(X)− ρ(X)

t
=

∫ F−1
X (1)

F−1
X+(0)

g′−(FX(x))G(FX(x))dx.

We can establish the claim for S−ρ,G using the same approach as above. This completes the

proof.
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The assumptions of Proposition 6 are somewhat complicated and this is partially due to

the unboundedness of X ∈ L1. If we focus on bounded random variables, then the conditions

related to (16) can be removed, as illustrated in the following corollary.

Corollary 1. Under the conditions of Proposition 6, for X ∈ L∞

S+
ρ,G(X) =

∫
R
g′−(FX(x))G(FX(x))dx and S−ρ,G(X) =

∫
R
g′+(FX(x))G(FX(x))dx.

Refining the proof of Proposition 6 for ρ = ESp, we get the sensitivity of ESp with simpler

assumptions.

Corollary 2. Assume that ρ = ESp with p ∈ (0, 1). Under the conditions of Proposition 6, for

X ∈ L1, if ∫
R
|x|dΨt(FX(x)) <∞ (17)

and
∫∞
yp
G(Ψt(FX(x)))dx <∞ for some t > 0, where yp = F−1

X+(p), then

S+
ρ,G(X) =

1

1− p

∫ ∞
yp

G(FX(x))dx;

if (17) holds for some t < 0, then

S−ρ,G(X) =
1

1− p

∫ ∞
zp

G(FX(x))dx, (18)

where zp = F−1
X (p).

Proof. Note that g(x) = (x−p)+

1−p for ρ = ESp. The case of S+
ρ,G follows directly from Proposition

6, noting that for t > 0 sufficiently close to 0 and x sufficiently large

max{G(FX(x)), G(Ψt(FX(x)))} = G(Ψt(FX(x))).

Next we analyze S−ρ,G, which is slightly different. For t < 0 sufficiently close to 0 and x sufficiently

large

max{G(FX(x)), G(Ψt(FX(x)))} = G(FX(x)).

Hence, for t < 0 where |t| is small enough,∫ ∞
zp

max{G(FX(x)), G(Ψt(FX(x)))}dx <∞

is equivalent to ∫ ∞
zp

G(FX(x))dx <∞.

Therefore, if
∫∞
zp
G(FX(x))dx <∞, then Proposition 6 yields (18).
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It remains to verify that S−ρ,G(X) = ∞ whenever 1
1−p

∫∞
zp
G(FX(x))dx = ∞. Note that by

definition,
ρΨt(X)− ρ(X)

t
=

∫
R

g(FX(x))− g(Ψt(FX(x)))

t
dx.

If
∫∞
zp
G(FX(x))dx =∞,

lim
t↑0

ρΨt(X)− ρ(X)

t
> lim
n→∞

lim
t↑0

∫ n

zp

g(FX(x))− g(Ψt(FX(x)))

t
dx

= lim
n→∞

1

1− p

∫ n

zp

G(FX(x))dx =∞.

Hence, (18) holds.

Next we discuss the sensitivity of VaRp, p ∈ (0, 1).

Proposition 7. Assume that ρ = VaRp for some p ∈ (0, 1) and X is a continuous random

variable. If the right derivative of FX at zp = F−1
X (p) exists, then

S+
ρ,G(X) =


G(p)

(FX)′+(zp) , (FX)′+(zp) > 0,

∞, (FX)′+(zp) = 0.

If the left derivative of FX at zp exists, then

S−ρ,G(X) =


G(p)

(FX)′−(zp) , (FX)′−(zp) > 0,

∞, (FX)′−(zp) = 0.

Proof. Using the fact that Ψt is strictly increasing, we have

ρΨt(X) = inf{x ∈ R : Ψt(FX(x)) > p}

= inf{x ∈ R : FX(x) > Ψ−1
t (p)} = VaRΨ−1(p)(X).

Hence

ρΨt(X)− ρ(X)

t
=

VaRΨ−1
t (p)(X)−VaRp(X)

t

=
VaRΨ−1

t (p)(X)−VaRp(X)

Ψ−1
t (p)− p

Ψ−1
t (p)− p

t
.

Noting that Ψ−1(p) > p for t > 0 and by the fact that (FX)′+(zp) > 0, we have

lim
t↓0

VaRΨ−1
t (p)(X)−VaRp(X)

Ψ−1
t (p)− p

=
1

(FX)′+(zp)
.

Moreover, a direct calculation shows

lim
t↓0

Ψ−1
t (p)− p

t
= G(p).
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Consequently,

lim
t↓0

ρΨt(X)− ρ(X)

t
=

G(p)

(FX)′+(zp)
.

For (FX)′+(zp) = 0, we have

lim
t↓0

VaRΨ−1
t (p)(X)−VaRp(X)

Ψ−1
t (p)− p

=∞.

Hence

S+
ρ,G(X) =∞.

Using same approach as above, we can get S−ρ,G(X). This completes the proof.

Next we give a numerical analysis of sensitivity of VaRp and ESp for X ∼ Pareto(1, α), α >

1, and X ∼ N(0, σ2) with composition groups in Example 14. One can easily check that the

assumptions of Corollary 2 are all satisfied for X ∼ Pareto(1, α), α > 1 and X ∼ N(0, σ2) with

composition groups G = −x lnx, G(x) = −(1 − x) ln(1 − x), and G(x) = 1√
2π
e−

(Φ−1(x))2

2 , x ∈

[0, 1].

For ρ = ESp(X) with X ∼ Pareto(1, α), α > 1, it follows from Corollary 2 that

Sρ,G(X) =
1

1− p

∫ ∞
(1−p)−1/α−1

G(1− (1 + x)−α)dx.

For ρ = VaRp(X) with X ∼ Pareto(1, α), by Proposition 7 it follows that

Sρ,G(X) =
G(p)

α(1− p)α+1
α

.

In Tables 1-6, we report the sensitivity of ESp and VaRp for Pareto and normally distributed

X, p = 0.9, 0, 975, 0.99, and three different composition groups in Example 14. Note that ES0.975

is recently proposed to replace VaR0.99 in Basel III/IV (BCBS (2016)), and hence the comparison

between sensitivity of ES0.975 and that of VaR0.99 is the most important. From the numerical

results, we can see that the sensitivity of ES0.975 is very close to that of VaR0.99 in examples

of normal distributions and Pareto distributions with large α, showing that both risk measures

exhibit similar sensitivity to model uncertainty and random perturbation in these cases. On

the other hand, for X ∼ Pareto(1, 2) or X ∼ Pareto(1, 4), the sensitivity of ES0.975 is visibly

higher than that of VaR0.99. This observation is in line with the conclusion of Cont et al. (2010)

regarding the comparison on the robustness of ES and VaR.

7 Change of measures

In this section we discuss distributional transforms arising from a change of measures. Let

(Ω,F ,P) be an atomless probability space as before. For illustration, let Q denote another
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α

Sρ,G(X) ρ ESp VaRp

p = 0.9 p = 0.975 p = 0.99 p = 0.9 p = 0.975 p = 0.99

2 3.108479 6.298070 9.983300 1.499306 3.122416 4.974916

4 0.579778 0.833774 1.051829 0.421561 0.620791 0.786603

10 0.136493 0.159724 0.175681 0.119377 0.142790 0.157694

20 0.057582 0.062905 0.066097 0.053197 0.059370 0.062630

Table 1: G(x) = −x lnx, X ∼ Pareto(1, α)

α

Sρ,G(X) ρ ESp VaRp

p = 0.9 p = 0.975 p = 0.99 p = 0.9 p = 0.975 p = 0.99

2 13.60597 35.97963 66.05170 3.640707 11.66526 23.02585

4 2.155226 4.210065 6.259732 1.023660 2.319260 3.640707

10 0.477510 0.771265 1.006633 0.289878 0.533458 0.729870

20 0.198138 0.300100 0.374882 0.129177 0.221803 0.289878

Table 2: G(x) = −(1− x) ln(1− x), X ∼ Pareto(1, α)

α

Sρ,G(X) ρ ESp VaRp

p = 0.9 p = 0.975 p = 0.99 p = 0.9 p = 0.975 p = 0.99

2 7.894700 18.77852 32.46422 2.774872 7.392782 13.32607

4 1.351766 2.329875 3.235342 0.780213 1.469816 2.107037

10 0.308187 0.435825 0.529572 0.220939 0.338076 0.422408

20 0.128877 0.170534 0.198156 0.098456 0.140566 0.167765

Table 3: G(x) = 1√
2π
e−

(Φ−1(x))2

2 , X ∼ Pareto(1, α)

σ

Sρ,G(X) ρ ESp VaRp

p = 0.9 p = 0.975 p = 0.99 p = 0.9 p = 0.975 p = 0.99

1 0.460335 0.375330 0.337978 0.540316 0.422360 0.373322

5 2.301676 1.876651 1.689887 2.701577 2.111800 1.866610

10 4.603352 3.753303 3.379775 5.403155 4.223601 3.733221

20 9.206705 7.506606 6.759550 10.80631 8.447201 7.466441

Table 4: G(x) = −x lnx, X ∼ N(0, σ2)

probability defined on (Ω,F) satisfying Q � P and denote its Radon-Nikodym derivative by

dQ
dP . Write F P

X and FQ
X as the distributions of X ∈ L0 under P and Q respectively. As the main
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σ

Sρ,G(X) ρ ESp VaRp

p = 0.9 p = 0.975 p = 0.99 p = 0.9 p = 0.975 p = 0.99

1 1.498554 1.734090 1.870863 1.312027 1.577926 1.727880

5 7.492768 8.670451 9.354314 6.560134 7.889629 8.639400

10 14.98554 17.34090 18.70863 13.12027 15.77926 17.27880

20 29.97107 34.68180 37.41725 26.24054 31.55852 34.55760

Table 5: G(x) = −(1− x) ln(1− x), X ∼ N(0, σ2)

σ

Sρ,G(X) ρ ESp VaRp

p = 0.9 p = 0.975 p = 0.99 p = 0.9 p = 0.975 p = 0.99

1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

5 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000

10 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000

20 20.00000 20.00000 20.00000 20.00000 20.00000 20.00000

Table 6: G(x) = 1√
2π
e−

(Φ−1(x))2

2 , X ∼ N(0, σ2)

result of this section, we identify two probability distortions, which transform F P
X to FQ

X , given

that the risk is a monotone function of dQ/dP.

Proposition 8. Denote by X = f
(

dQ
dP
)

for some f : R→ R.

(i) If f is increasing,

FQ
X = g1 ◦ F P

X , with g1(x) =

∫ x

0

(F P
dQ
dP

)−1(t)dt, x ∈ [0, 1];

(ii) If f is decreasing,

FQ
X = g2 ◦ F P

X , with g2(x) =

∫ x

0

(F P
dQ
dP

)−1(1− t)dt, x ∈ [0, 1].

Proof. (i): We denote η = dQ
dP . A direct calculation gives

FQ
X(x) = Q (f(η) 6 x) = EP [1{f(η)6x}η

]
.

Noting that (F P
η )−1(U) has the same distribution as η under P with U being a standard uniform

random variable under P, we have

FQ
X(x) = EP

[
1{f((F P

η)−1(U))6x}(F
P
η )−1(U)

]
=

∫ 1

0

1{f((F P
η)−1(t))6x}(F

P
η )−1(t)dt.
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Since f is increasing, f((F P
η )−1(t)) = (F P

X)−1(t), for a.e. t ∈ (0, 1). Hence

FQ
X(x) =

∫ 1

0

1{(F P
X)−1(t)6x}(F

P
η )−1(t)dt

=

∫ F P
X(x)

0

(F P
η )−1(t)dt = g1(F P

X(x)).

Observe that g1 ∈ H0 is continuous and convex. Part (ii) follows from a similar argument as in

the proof of (i).

Let us now see a special case, where dQ
dP has a lognormal distribution. Let {Bt}t>0 be a

standard Brownian motion on (Ω,F ,P), t0 > 0 be a time horizon and

dQ
dP

= ewBt0−
w2

2 t0 , w ∈ R. (19)

The quantile of dQ
dP under P can be expressed as

(F P
dQ
dP

)−1(p) = e−
w2t0

2 +|w|
√
t0Φ−1(p), p ∈ (0, 1).

Hence

g1(x) =

∫ x

0

e−
w2t0

2 +|w|
√
t0Φ−1(t)dt = Φ(Φ−1(x)− |w|

√
t0),

g2(x) =

∫ x

0

e−
w2t0

2 +|w|
√
t0Φ−1(1−t)dt = Φ(Φ−1(x) + |w|

√
t0),

where Φ is the standard normal distribution. Next we apply the above result to option pricing

in a simplest model: the Black-Scholes market model. Recall that in a Black-Scholes market

model, the stochastic process

St = S0e
σBt+(µ−σ2

2 )t, t > 0

represents the price of an underlying asset with volatility σ > 0 and average rate of return

µ > 0. The discounted payoffs of European call and put options with underlying stock St with

no dividends, strike K > 0 and expiry date t0 > 0 are

(St0 −K)+e−rt0 and (K − St0)+e−rt0

respectively, where r > 0 is the risk-free interest rate. We denote their distributions under P by

Fc and Fp respectively. Define a probability Q on (Ω,F) by its Radon-Nikodym derivative (19).

Corollary 3. Under the above assumptions, we have, for x ∈ R,

Q
(
(St0 −K)+e−rt0 6 x

)
= Φ(Φ−1(Fc(x))− |w|

√
t0),

and

Q
(
(K − St0)+e−rt0 6 x

)
= Φ(Φ−1(Fp(x)) + |w|

√
t0).
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If we take w = r−µ
σ , then Q is the risk-neutral probability measure in the Black-Scholes

market. This gives the price of European call and put options,

EQ [(St0 −K)+e−rt0
]

=

∫
R
xdΦ(Φ−1(Fc(x))− σ−1|r − µ|

√
t0),

EQ [(K − St0)+e−rt0
]

=

∫
R
xdΦ(Φ−1(Fp(x)) + σ−1|r − µ|

√
t0),

which coincide with the Black-Scholes formula.

In Proposition 8, probability distortions are used to describe the distribution changes for

a class of random variables under different probability measures. It can be applied to other

problems related to changes of measures, as long as they are monotone functions of the Radon-

Nikodym derivative.

8 Concluding remarks

In this paper, we formally introduce the mathematical framework of distributional trans-

forms. Via several technical properties, we characterize probability distortions and the class of

distributional transforms generated by Choquet integrals. The power of distributional transforms

is illustrated by means of three applications: risk measures, sensitivity analysis, and change of

measures. In view of the fact that distributional transforms have appeared in many different ar-

eas such as finance, economics, risk analysis and optimization, our work serves as a (theoretical)

building block for their future applications. Our approach is based on quantile techniques and

is thus genuinely one-dimensional. Moreover, the notion of a probability distortion as used in

this paper is limited to probability measures on R. An analysis of distributional transforms for

multivariate probability distributions will be developed in future research.
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