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Abstract

The notion of “tail risk” has been a crucial consideration in modern risk management and

financial regulation, as very well documented in the recent regulatory documents. To achieve a

comprehensive understanding of the tail risk, we carry out an axiomatic study for risk measures

which quantify the tail risk, that is, the behavior of a risk beyond a certain quantile. Such risk

measures are referred to as tail risk measures in this paper. The two popular classes of regulatory

risk measures in banking and insurance, the Value-at-Risk (VaR) and the Expected Shortfall

(ES), are prominent, yet elementary, examples of tail risk measures. We establish a connection

between a tail risk measure and a corresponding law-invariant risk measure, called its generator,

and investigate their joint properties. A tail risk measure inherits many properties from its

generator, but not subadditivity or convexity; nevertheless, a tail risk measure is coherent if and

only if its generator is coherent. We explore further relevant issues on tail risk measures, such

as bounds, distortion risk measures, risk aggregation, elicitability, and dual representations. In

particular, there is no elicitable, tail convex risk measure rather than the essential supremum,

and under a continuity condition, the only elicitable and positively homogeneous monetary tail

risk measures are the VaRs.
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1 Introduction

In the past few decades, tail-based risk measures have become the standard metrics for the

assessment of risks and regulatory capital calculation in the regulatory frameworks for banking and

insurance sectors, such as Basel III and Solvency II (see, for instance, Sandström [50], Cannata and

Quagliariello [11] and BCBS [5]). Such risk measures look into the “tail” or “shortfall” of a risk,

that is, the behaviour of the risk at or beyond a certain, typically high-level, quantile.

The most popular measures used in banking and insurance practice are the Value-at-Risk

(VaR) and the Expected Shortfall (ES, also known as Tail-Value-at-Risk). The risk measures VaR

at confidence level p ∈ (0, 1) refer to the left and right p-quantiles of a risk (random variable) X,

denoted by VaRL
p (X) and VaRR

p (X), respectively. The level p here is close to 1 in practice (for

instance, typically p = 0.975 or p = 0.99 in Basel III and Solvency II), thus representing a “tail

risk”. The risk measure ES is defined as

ESp(X) =
1

1− p

∫ 1

p
VaRR

q (X) dq, (1)

which, roughly speaking, is the mean of the risk X beyond its p-quantile. Formal definitions are

given in Section 2. Below we quote the Basel Committee on Banking Supervision, Page 1 of BCBS

[5], Executive Summary:

“... A shift from Value-at-Risk (VaR) to an Expected Shortfall (ES) measure of risk under stress.

Use of ES will help to ensure a more prudent capture of “tail risk” and capital adequacy during

periods of significant financial market stress.”

It is clear from the above quote that the ability of a risk measure to capture “tail risk” is a crucial

concern for financial regulation, and this issue is closely related to capital adequacy under financial

market stress. Prudent assessment of risks in adverse economic scenarios (“financial market stress”)

has been an important trend of research in modern risk management; see, for instance, Acharya

et. al. [1, 2] and McNeil et al. [42]. For more recent discussions on the recent issues with VaR and

ES in regulation, we refer to Embrechts et al. [20] and Föllmer and Weber [25].

As the “tail risk” appears prominent in modern risk management, a systematic study of mea-

sures of tail risk is thereby the focus of this paper. The first thing to set straight is the definition

of a tail risk. Noting that both VaR and ES are calculated from the tail-part distribution of risks,

our definition of measures of tail risk follows naturally. In the sequel, we refer to a risk measure

determined solely by the distribution of a random variable beyond its p-quantile as a p-tail risk

measure.

There are various reasons to develop a theory for tail risk measures which are not limited to VaR

and ES. First, for the stability of the financial system, the focal scenario of concern to a regulator

is the tail part of a risk which represents big financial losses, instead of the body part of the risk,
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which typically represents the profit of a financial institution1. In light of this, a general theory for

tail risk measures is in demand for the purpose of regulation. Second, as the risk measures VaRL
p

and VaRR
p are p-quantiles and ESp is the average loss beyond its p-quantile, they merely report

simple statistics of the tail risk. None of them captures other important features of the tail risk,

such as its variability or distributional shape. Therefore, some other risk measures may be more

suitable for the (internal) management of tail risks in specific situations. Third, from a regulatory

perspective, as VaR and ES are the standard for solvency capital calculation in the banking and

insurance industries, other tail risk measures provide informational support for the regulator to

better comprehend the tail risk. This is analogous to using the variance or the skewness of a risk

in addition to its mean or median for decision making, albeit now we are looking at the tail risks.

Some possible choices of tail risk measures, such as the Gini Shortfall (see Furman et al. [28]), are

given in Section 6. Fourth, through the study of other tail risk measures, we understand better the

fundamental roles which VaR and ES play among all such risk measures. From a mathematical

perspective, tail risk measures exhibit some rather surprising and nice analytical properties, as we

shall see from the main results in this paper.

The main feature of p-tail risk measures is that they focus on partial distributional information

of the risk. Such a technique is found useful in other applications than regulatory risk assessment.

For instance, in a recent study, Dai et al. [14] discuss the relationship between the Gini coefficient

and top incomes shares, and propose the top incomes truncated inequality measure via an axiomatic

approach, which uses a particular quantile range of the income distribution. We refer to Dai et al.

[14] and the reference therein for more examples of measures using partial information.

Below we describe the structure and the main contributions of the paper. The first natural

question is how to generate tail risk measures. For a fixed probability level p, it is straightforward

that one can always obtain a tail risk measure ρ by applying a law-invariant risk measure ρ∗ (which

we call a generator) to the tail distribution of a risk. Moreover, we show that the relationship

between a tail risk measure and its generator is one-to-one on the set of random variables bounded

from below.

It is however not a trivial task to identify properties of a tail risk measure based on the

corresponding properties of its generator. To illustrate this, let us look at the benchmark tail risk

measure ESp. Its generator is the expectation E[·]. It is well known that E[·] is linear and elicitabile

(see Section 5 for definition), but ESp is neither linear nor elicitable. That is, some properties are

not passed on to the tail risk measure from its generator.

In Section 3, we show that monotonicity, translation-invariance, positive homogeneity and

comonotonic additivity are passed on from a generator ρ∗ to the corresponding tail risk measure ρ.

1A different approach to address this concern loss part of a risk is through a surplus-invariant risk measures; see

Cont et al. [12], Staum [52] and Koch-Medina et al. [37]. The latter class of risk measures rules out the important

regulatory risk measure ES.
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However, subadditivity, convexity, ≺cx-monotonicity and elicitability cannot be passed on from ρ∗

to ρ in general. Nevertheless, based on a result in risk aggregation, we show that ρ is a coherent

risk measure if and only if ρ∗ is a coherent risk measure. Thus, subadditivity and convexity can be

passed on to ρ when accompanied by other properties (in particular, monotonicity). Another quite

interesting finding is that any monetary p-tail risk measure dominates VaRp, and a coherent tail

risk measure always dominates ESp. In other words, VaR and ES serve as benchmarks for tail risk

measures, and in fact they are the smallest tail risk measures with a given probability level p.

We proceed to discuss a few other questions on measures of tail risk. A particularly relevant

issue is risk aggregation for tail risk measures under dependence uncertainty, that is, the aggregation

of several risks with known marginal distributions and unknown dependence structure; for a stream

of research in this direction, we refer to Embrechts et al. [19, 21], Bernard et al. [8] and the references

therein. In Section 4, we show that, for monotone risk measures, the worst-case aggregation of a

tail risk measure for some given marginal distributions is equivalent to the worst-case aggregation

of its generator for the corresponding tail distributions. This result generalizes the existing result

in Bernard et al. [8] for VaR and will be useful in showing some important properties of tail risk

measures.

Elicitability has drawn an increasing attention in the recent few years due to its connection

to statistical backtests and forecasts for risk measures; see Gneiting [30] and the references therein.

Existing results in Ziegel [60], Bellini and Bignozzi [6], Delbaen et al. [16] and Kou and Peng

[36] suggest that among all convex risk measures, shortfall risk measures are the only elicitable

ones, and among all distortion risk measures, VaRs and the expectation are the only elicitable

ones. In Section 5, we identify tail shortfall risk measures, all of which turn out to be surplus-

invariant (see Koch-Medina et al. [37]). Furthermore, all elicitable monetary tail risk measures with

a continuity assumption are characterized. We find that the only elicitable, positively homogeneous

and monetary tail risk measures are again the VaRs (thus, a new axiomatic characterization of the

VaRs), and there are no elicitable tail convex or coherent risk measures except for the essential

supremum. Several examples of tail risk measures are presented in Section 6, and some concluding

remarks are put in Section 7. Proofs and some related results on tail distortion risk measures and

dual representations are put in the appendices.

2 Preliminaries

We work with an atomless probability space (Ω,F ,P). Let Lq be the set of all random variables

in (Ω,F ,P) with finite q-th moment, q ∈ [0,∞), and let L∞ be the set of essentially bounded random

variables. A positive (resp. negative) value of X ∈ L0 represents a financial loss (resp. profit)

in this paper. Throughout, for any X ∈ L0, FX represents the distribution function of X and

F−1
X (p) = inf{x ∈ R : FX(x) > p}, p ∈ (0, 1). Let UX be a uniform random variable on [0, 1] such
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that F−1
X (UX) = X almost surely for any X; its existence is given, for instance, in Lemma A.28

of Föllmer and Schied [24]. The mappings ess-inf(·) and ess-sup(·) on L0 stand for the essential

infimum and the essential supremum of a random variable, respectively. We denote by X
d
= Y if

the random variables X and Y have the same distribution under P. For any set A ⊆ Ω, denoted by

1A the corresponding indicator function. For x ∈ R, write (x)+ = max{x, 0} and denote by δx the

point-mass probability distribution at x.

Let X be a convex cone of random variables containing L∞. Although X is unspecific in our

discussion, it does not hurt to think of X = L∞ to better comprehend the main ideas. A risk

measure ρ is a functional that maps X to (−∞,∞] with ρ(X) <∞ for X ∈ L∞. Whenever a risk

measure appears in this paper, its domain is X unless otherwise specified. In Appendix A, we list

several standard properties for general risk measures in the literature. In particular, law-invariance

(see Appendix A for its definition) is satisfied by all risk measures of this paper, and we shall

therefore not mention it specifically.

The two most popular classes of risk measures used in banking and insurance practice are the

Value-at-Risk (VaR) and the Expected Shortfall (ES). The VaR at confidence level p ∈ (0, 1) has

two versions, the right p-quantile of X at p, defined as

VaRR
p (X) = inf{x ∈ R : FX(x) > p} = F−1

X (p+), X ∈ L0,

and the left p-quantile of X, defined as

VaRL
p (X) = inf{x ∈ R : FX(x) > p} = F−1

X (p), X ∈ L0.

In risk management practice, one often does not distinguish between VaRR
p and VaRL

p as they are

identical for random variables with an inverse distribution function continuous at p. Both VaRR
p

and VaRL
p will be referred to as VaRs in this paper. The ES at confidence level p ∈ (0, 1) is defined

as

ESp(X) =
1

1− p

∫ 1

p
VaRR

q (X) dq, X ∈ L0.

Note that ESp(X) may be infinite if X is not integrable. In addition, we also write

ES1(X) = VaRR
1 (X) = VaRL

1 (X) = ess-sup(X) = inf{x ∈ R : FX(x) = 1}.

3 Measures of tail risk

We first give a precise definition of a “tail risk”. Intuitively, a tail risk is the behaviour of

a risk X at or beyond a certain threshold. In view of this, for any random variable X ∈ X and

p ∈ (0, 1), we let Xp be the tail risk of X beyond its p-quantile, that is,

Xp = F−1
X (p+ (1− p)UX).
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One can easily check

P(Xp 6 x) = P(X 6 x|UX > p) =
(P(X 6 x)− p)+

1− p
, x ∈ R. (2)

Clearly, if F−1
X is strictly increasing at p, then Xp follows the conditional distribution of X given

X > VaRR
p (X). The distribution of Xp is called the p-tail distribution of X in Rockafellar and

Uryasev [48].

We shall throughout assume that X ∈ X implies Xp ∈ X . This assumption holds for common

choices of X , such as X = Lq, q ∈ [0,∞]. Now we are ready to define a measure of tail risk.

Definition 1. For p ∈ (0, 1), a risk measure ρ is a p-tail risk measure if ρ(X) = ρ(Y ) for all

X,Y ∈ X satisfying Xp
d
= Yp. A risk measure ρ is tail-relevant if it is a p-tail risk measure for some

p ∈ (0, 1); we will simply call it a tail risk measure.

In other words, the value of a p-tail risk measure for a risk X is solely determined by the

distribution of X beyond its p-quantile. It is immediate from Definition 1 that VaRs and ES in

Section 2 are all tail risk measures, whereas the expectation is not a tail risk measure. The value p

here should be chosen according to the specific application or context, similarly to the specification

of the confidence level p in using a VaR or ES in banking or insurance regulation. In view of this,

p can be close to 1 in risk management practice, nevertheless all results in this paper hold for all

p ∈ (0, 1).

Remark 1. Regulators specifically emphasize the importance of “capturing tail risk” in several Basel

documents over the past several years (e.g. BCBS [4, 5]). This strongly motivates us to look for a

precise definition of risk measures that specifically account for tail risk. Definition 1 seems to be the

most natural choice for such a property. Arguably, a risk measure in Definition 1 only takes into

account the tail risk, and hence it is not only “capturing the tail risk” but also “solely capturing

the tail risk”. The feature of a p-tail risk measure is that, in plain words, “for a risky position X,

we do not care about how much profit it makes in a good day, but only how much loss it causes

in a bad day (the worst outcome with probability 1 − p).” This feature is consistent with modern

quantitative risk management (see e.g. McNeil et al. [42]) and the practical choices of risk measures

in regulation. As we shall see below, the regulatory risk measures VaR and ES play important roles

in the family of tail risk measures.

Remark 2. The feature of a measure that only uses partial information of the underlying distri-

bution finds applications in other fields. For instance, Dai et al. [14] proposed and characterized

the top incomes truncated inequality measure which excludes top income groups to capture the

essential incomes inequality information in a society, and provided an axiomatic framework based

on nonlinear expected utility theory. The top incomes truncated inequality measures in Dai et al.

[14] and the p-tail risk measures in Definition 1 share similar considerations in the sense that they

utilize partial information from a particular quantile range of the underlying distribution.
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Obviously, any tail risk measure is law-invariant. From the definition, for 0 < q < p < 1,

a p-tail risk measure is also a q-tail risk measure, as the latter is less restrictive. For p ∈ (0, 1),

the risk measures VaRR
p and ESp are p-tail risk measures, and VaRL

q is a p-tail risk measure for

q ∈ (p, 1]. One may immediately notice the simple relations

VaRR
p (X) = ess-inf(Xp) and ESp(X) = E[Xp], X ∈ X .

Indeed, for any law-invariant risk measure ρ∗ on X , we may define its corresponding p-tail risk

measure, for p ∈ (0, 1), via

ρ(X) = ρ∗(Xp), X ∈ X . (3)

If (3) holds, we say that ρ is the p-tail risk measure generated by ρ∗ and ρ∗ is a p-generator of ρ.

The relation (3) is denoted by an operator Tp : R(X )→ R(X ) as ρ = Tp[ρ∗], where R(X ) is the set

of risk measures on X .

Conversely, in the following we shall see, for any p-tail risk measure, that we can find a p-

generator; thus, a risk measure is a p-tail risk measure if and only if it is generated by another risk

measure. Denote by X ∗ the set of random variables in X with a finite essential infimum, that is

X ∗ = {X ∈ X : ess-inf(X) > −∞}.

Note that if we take X = L∞, then X ∗ coincides with X . For any X ∈ X ∗ and p ∈ (0, 1), let X(p)

be a random variable with distribution function

P(X(p) 6 x) = p1{x>ess-inf(X)} + (1− p)P(X 6 x), x ∈ R.

Equivalently, X(p) is identically distributed as ess-inf(X)B +X(1−B) where the random variable

B ∼ Bern(p) is independent ofX. Here and in the sequel a Bern(p) distribution means P(B = 1) = p

and P(B = 0) = 1− p. The next proposition gives the uniqueness of the p-generator. We omit its

proof since it is straightforward from a simple fact: for X ∈ X ∗, (X(p))p
d
= X (see Lemma B.1 in

the Appendix).

Proposition 1. The p-generator ρ∗ of a p-tail risk measure ρ is unique on X ∗, and is given by

ρ∗(X) = ρ(X(p)), X ∈ X ∗. (4)

Remark 3. The reason why ρ∗ is only unique on X ∗ is because Xp for p ∈ (0, 1) is always bounded

from below (thus in X ∗); as a consequence ρ∗ in (3) can be arbitrary for random variables with

infinite essential infimum. If we further assume that ρ∗ is continuous from above in the sense that,

for X,X1, X2, · · · ∈ X , as n → ∞, Xn ↓ X a.s. implies ρ∗(Xn) → ρ∗(X), then ρ∗ is uniquely

determined on X .

From now on we can treat (ρ, ρ∗) in (3) as a pair of risk measures, and study their joint

properties.
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Definition 2. For p ∈ (0, 1), a pair of risk measures (ρ, ρ∗) is called a p-tail pair if ρ∗ is law-invariant

and ρ = Tp[ρ∗].

The domain of ρ∗, X or X ∗, does not affect the relation ρ = Tp[ρ∗]. As such, we do not

distinguish between whether ρ∗ is defined on X or X ∗. The two distribution-wise transformations

X 7→ Xp, X ∈ X and X 7→ X(p), X ∈ X ∗

will repeatedly appear throughout the rest of the paper.

Some simple relations for the p-tail pair (ρ, ρ∗) and the operators Tp : R(X )→ R(X ) are briefly

listed below, which can be verified in a straightforward manner. First, from (3) and Lemma B.1,

we have ρ(c) = ρ∗(c) for all c ∈ R, and ρ(X) > ρ∗(X) for all X ∈ X ∗ if ρ∗ is monotone. Second, the

class of operators T· : R(X )→ R(X ) satisfies a composition property: Tp◦Tq = Tq ◦Tp = Tp+q−pq for

p, q ∈ (0, 1). In particular, the representative classes of tail risk measures VaRs and ES for different

probability levels are connected via (i) Tp[ESq] = Tq[ESp] = ESp+q−pq; (ii) Tp[VaRR
q ] = Tq[VaRR

p ] =

VaRR
p+q−pq; (iii) Tp[VaRL

q ] = Tq[VaRL
p ] = VaRL

p+q−pq.

Next, we study which classic properties are preserved or lost in the transform from ρ∗ to ρ for

a p-tail pair of risk measures (ρ, ρ∗). Here, we follow the standard terminologies in the risk measure

literature; for precise definitions, see properties (A1)-(A7) listed in Appendix A. Before approaching

a general result, we first look at a counter example where convexity (A3), subadditivity (A5) and

≺cx-monotonicity (A7) are not inherited by ρ from ρ∗.

Example 1 (Tail standard deviation). The class of standard deviation risk measures is defined as,

for β > 0,

SDβ(X) = E[X] + β
√

var(X), X ∈ L2. (5)

It is well known that SDβ is translation-invariant, convex, positively homogeneous, subadditive and

≺cx-monotone, but it is not monotone or comonotonically additive (for its mathematical properties,

see Section 5.3 of Kaas et al. [34]). Take p ∈ (0, 1) and let ρ be the p-tail risk measure generated

by SDβ, that is,

ρ(X) = E[Xp] + β
√

var(Xp), X ∈ L2.

See Furman and Landsman [27] for more on ρ, called the tail standard deviation. Now, take

independent and identically distributed (iid) random variables X and Y such that P(X = −1) = p

and P(X = 0) = 1−p, and write Z = X+Y . Note that Zp is not a constant as P(Z = 0) = (1−p)2

implies P(Zp = 0) = 1 − p. It follows that var(Zp) > 0. Therefore, by taking β large enough, we

have

ρ(X + Y ) = E[Zp] + β
√

var(Zp) > 0.

On the other hand, noting that Xp = Yp = 0 almost surely, we have ρ(X) = ρ(Y ) = 0. Thus,

ρ(X + Y ) > ρ(X) + ρ(Y ), and ρ is not subadditive (and therefore not convex). Moreover, ρ is not
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≺cx-monotone either, which can be seen from X + Y ≺cx 2X (see, for instance, Theorem 3.5 of

Rüschendorf [49]) and ρ(X + Y ) > ρ(2X).

The following theorem identifies individual properties that can be passed on to a tail risk

measure ρ from its generator ρ∗ and the other way around.

Theorem 1. Suppose that p ∈ (0, 1) and (ρ, ρ∗) is a p-tail pair of risk measures on X and X ∗. The

following statements hold.

(i) ρ is monotone (translation-invariant, positively homogeneous, comonotonically additive) if and

only if so is ρ∗.

(ii) If ρ is subadditive (convex, ≺cx-monotone) then so is ρ∗.

(iii) ρ is a coherent (convex, monetary) risk measure if and only if so is ρ∗.

The converse statement of (ii) in Theorem 1 does not hold in general. Indeed, Example 1

shows that ρ is not necessarily subadditive, convex or ≺cx-monotone, even if ρ∗ is subadditive,

convex and ≺cx-monotone. Although these three properties may not be passed on from ρ∗ to ρ,

we can see in Theorem 1 (iii) that the whole set of properties for coherent risk measures as well

as for convex risk measures can be passed on to ρ. In the proof of Theorem 1 (iii), we show the

fact that ρ∗ is a coherent (convex) risk measure implies ρ is coherent (convex). The implication of

this fact is arguably the most important of all, as it would allow us to generate coherent (convex)

tail risk measures by freely choosing generic coherent (convex) risk measures. To establish such a

mechanism is one of the initial motivations for the study of tail risk measures. A proof of Theorem

1 relies on a new result on worst-case risk aggregation (Theorem 3) which we present in Section 4.

We conclude this section by establishing the essential importance of VaRs and ES as bench-

marks for tail risk measures.

Theorem 2. Let p ∈ (0, 1). If ρ is a monetary p-tail risk measure with ρ(0) = 0, then ρ > VaRR
p

on X , and if ρ is a coherent p-tail risk measure, then ρ > ESp on L∞.

The converse statements to Theorem 2 are not true in general. For instance, take ρ(X) =

max{E[X],VaRR
p (X)}, X ∈ X . Then ρ > VaRR

p on X but ρ is not a p-tail risk measure by

definition.

4 Risk aggregation

In the presence of model uncertainty, a popular approach risk management is to evaluate the

worst-case value of a risk measure over plausible models; see e.g. Natarajan et al. [43] and Zhu and

Fukushima [61]. In this section, we study a particular type of model uncertainty in risk aggregation,

which has been an active topic recently. A typical question on risk aggregation is to determine the
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worst-case value of a risk measure for the aggregation of risks with given marginal distributions,

due to statistical uncertainty arising from estimating a dependence structure (see Embrechts et al.

[20] and the references therein). More precisely, for given univariate distributions F1, . . . , Fn, one

calculates

sup{ρ(S) : S ∈ Sn(F1, . . . , Fn)}, (6)

where Sn(F1, . . . , Fn) is the aggregation set defined as

Sn(F1, . . . , Fn) = {X1 + · · ·+Xn : Xi ∈ X , Xi ∼ Fi, i = 1, . . . , n}.

The worst-case value in (6) represents the risk value assuming that the portfolio is non-diversifiable,

which is a conservative scenario considered by BCBS [5]; see Remark 5.

All distributions mentioned in this section are assumed to be compatible with random variables

in X . A particularly relevant case of (6) is ρ = VaRL
p or ρ = VaRR

p for some p ∈ (0, 1). This case

is extensively studied recently in, for instance, Embrechts et al. [19, 21], and Wang et al. [56]; see

also Bernard et al. [9] for the case of partial dependence information, and Wang et al. [55] and Cai

et al. [10] for the case of general risk measures. For non-convex risk measures such as the VaRs, an

analytical evaluation of (6) is generally unavailable.

For p ∈ (0, 1) and any distribution F , we denote by F [p] its p-tail distribution, that is, the

distribution of F−1(Up) where Up is a uniform random variable on [p, 1]. In other words, for X ∈ L0,

F
[p]
X is the distribution of Xp. The following theorem gives the convenient result that the worst-case

value of a monotone p-tail risk measure over Sn(F1, . . . , Fn) is equal to the worst-case value of its

p-generator over Sn(F
[p]
1 , . . . , F

[p]
n ). In other words, one may freely translate the risk aggregation

problem of a tail risk measure to its generator. This result gives an essential step that completes

the proof of Theorem 1 in Section 3.

Theorem 3. Let p ∈ (0, 1) and (ρ, ρ∗) be a p-tail pair of monotone risk measures. For any

univariate distributions F1, . . . , Fn, we have

sup{ρ(S) : S ∈ Sn(F1, . . . , Fn)} = sup{ρ∗(T ) : T ∈ Sn(F
[p]
1 , . . . , F [p]

n )}. (7)

Remark 4. For the cases of VaR and ES, Theorem 3 reduces to some classic results.

(i) If we take ρ = VaRR
p in (7), then

sup{VaRR
p (S) : S ∈ Sn(F1, . . . , Fn)} = sup{ess-inf(T ) : T ∈ Sn(F

[p]
1 , . . . , F [p]

n )}.

which is Lemma 4.3 of Bernard et al. [8]; see also Proposition 3 of Embrechts et al. [20].

(ii) If we take ρ = ESp in (7), then, for any X1, . . . , Xn ∈ L1 with respective distributions

F1, . . . , Fn,

ESp(X1 + · · ·+Xn) 6 sup{E[T ] : T ∈ Sn(F
[p]
1 , . . . , F [p]

n )} =
n∑
i=1

E[(Xi)p] =
n∑
i=1

ESp(Xi),

which gives the classic subadditivity of ESp.
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By Theorem 3, to investigate its worst-case value of a monotone p-tail risk measure in risk

aggregation, it suffices to consider the tail risk of each marginal distribution. This conclusion is

arguably rather intuitive; however the statement is not true for non-monotone risk measures, as

illustrated in the following example.

Example 2 (Example 1 continued). Take p ∈ (0, 1), X,Y ∈ L2, β > 0 and ρ = Tp[SDβ] as in

Example 1. We have already seen that ρ(X + Y ) > 0 and Xp = Yp = 0 almost surely. Therefore,

we have

sup
{

SDβ(T ) : T ∈ S2(F
[p]
X , F

[p]
Y )
}

= SDβ(0 + 0) = 0 < ρ(X + Y ),

thus (7) fails to hold.

Remark 5. The main application of the worst-case risk aggregation is to obtain conservative risk

value under the assumption of no diversification (i.e. worst-case dependence), which is a practical

approach in banking. In the Fundamental Review of the Trading Book of the Basel Committee,

firms are required to use a weighted average of an internally modelled risk value and the non-

diversifiable risk value in (6) for the ES; see p.63 of BCBS [5]. In case of ES, the worst-case value is

precisely the summation of individual ES values, due to subadditivity and comonotonic additivity

of ES; this is not the case for generic risk measures such as the VaRs. We refer to Embrechts et al.

[20] for more discussions on this issue.

5 Tail shortfall risk measures and elicitability

The notion of elicitability has drawn an increasing interest in risk management recently, due to

its connection to comparative backtests and forecasts; see for instance Lambert et al. [40], Gneiting

[30], Fissler and Ziegel [22] and Kou and Peng [36]. It is shown in Ziegel [60] and Delbaen et al.

[16] that, among all convex risk measures, only shortfall risk measures are elicitable, and among all

coherent risk measures, only expectiles (including the mean; see Remark 8) are elicitable. On the

other hand, Kou and Peng [36] showed that among all distortion risk measures, only the mean and

the quantiles are elicitable; see also Wang and Ziegel [57]. This leaves us wondering: Are there tail

risk measures, other than the quantiles, which are elicitable? Note that for the p-tail pair (ESp,E),

ESp is not elicitable but its generator is elicitable, and hence elicitability cannot be translated to a

tail risk measure from its generator.

Elicitability is closely related to the notion of shortfall risk measures that we shall investigate in

the sequel. Our findings can be summarized as follows. First, the only tail shortfall risk measures

are the ones with a flat loss function on the negative real line. From there, with an additional

continuity condition in Weber [58], they are also the only monetary tail risk measures that are

elicitable. Further, no tail convex risk measures can be elicitable except for the essential supremum,

and the only elicitable and positively homogeneous monetary tail risk measures are the VaRs.
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We fix X = L∞ in this section, with the exception in Theorem 6 that we generalize our VaR

characterization to larger spaces than L∞.

5.1 Tail shortfall risk measures

A function ` : R → R is called a loss function if it is non-decreasing and infx∈R `(x) < 0 <

supx∈R `(x). For a loss function `, define a risk measure

ρ`(X) = inf{m ∈ R : E[`(X −m)] 6 0}, X ∈ X . (8)

The risk measure in (8) is called a shortfall risk measure induced by ` in the literature. ρ` is a

monetary risk measure, and it is convex if and only if ` is convex; see Föllmer and Schied [24,

Section 4.9] for more on shortfall risk measures. Note that if `∗ is the left-continuous version of `,

then ρ`∗ = ρ` (one may verify that they have the same acceptance set). Hence, we may conveniently

take ` to be left-continuous. Moreover, it suffices to study ρ with ρ(0) = 0, as one can always write

¯̀(x) = `(x− ρ(0)), x ∈ R, so that ρ¯̀(0) = 0.

For p ∈ (0, 1), we say that a risk measure is a p-tail shortfall (resp. convex) risk measure if it

is both a shortfall (resp. convex) risk measure and a p-tail risk measure. Immediate examples of

tail shortfall risk measures are the left-quantiles. For p ∈ (0, 1), let

`(x) = 1{x>0} − (1− p), x ∈ R. (9)

Then one can verify that ρ` = VaRL
p . For the case of the right quantile VaRR

p one needs to modify

(8) slightly; see Remark 7. As characterized in the following theorem, the class of tail shortfall risk

measures includes more than just the quantiles.

Theorem 4. For p ∈ (0, 1), a shortfall risk measure ρ induced by ` with ρ(0) = 0 is a p-tail risk

measure if and only if

`(x) = `(−1) for all x < 0 and p`(−1) + (1− p)`(y) > 0 for all y > 0. (10)

Remark 6. In the case ρ` = VaRL
p where p ∈ (0, 1), the loss function ` given in (9) satisfies

`(x) = `(−1) = −(1− p), x < 0 and p`(−1) + (1− p)`(y) = 0, y > 0.

For q < p, it holds q`(−1) + (1− q)`(y) > 0, y > 0. From there, Theorem 4 confirms that VaRL
p is

a q-tail risk measure for q ∈ (0, p), a fact we already know.

To interpret Theorem 4, note that a loss function ` satisfying (10) can be written as

`(x) = (`(x)− `(−1))1{x>0} + `(−1) = `∗(x)1{x>0} − c, x ∈ R,

where c = −`(−1) > 0 and `∗(x) = `(x) + c > 0, x ∈ R. Noting again that ` may always be taken

as its left-continuous version, the acceptance set of ρ` satisfies

Aρ` = {X ∈ X : E[`(X)] 6 0} = {X ∈ X : E[`∗(X+)] 6 c}.
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If ρ` is used as a regulatory capital principle, then the regulator accepts a position according to

whether E[`∗(X+)] exceeds a given number c > 0. In order to protect liability holders, only the

potential loss (positive part of X) should be a concern to the regulator instead of the potential

profit (negative part of X); see related arguments in Cont et al. [12] and Staum [52]. This property

is called surplus-invariance in Koch-Medina et al. [37] and He and Peng [31]. Thus, by Theorem 4,

a tail shortfall risk measure is always surplus-invariant. The fact that all tail shortfall risk measures

are surplus-invariant is indeed surprising, as the definition of a tail risk measure is not directly

related to surplus-invariance; for instance, ESp is a tail risk measure which is not surplus-invariant.

Remark 7. One may replace the non-strict inequality in (8) with a strict one, and define a risk

measure

ρ+
` (X) = inf{m ∈ R : E[`(X −m)] < 0}, X ∈ X . (11)

For ` in (9), we have ρ+
` (X) = VaRR

p . One can similarly show that, for p ∈ (0, 1), ρ+
` is a p-tail risk

measure if and only if the strict inequality in (10) is replaced by a non-strict one, that is,

`(x) = `(−1) for all x < 0 and p`(−1) + (1− p)`(y) > 0 for all y > 0.

Other results for risk measures in (11) can be obtained analogously.

Remark 8. Another notable class of risk measures related to the tail risk is the class of expectiles

(see Newey and Powell [44] and Bellini et al. [7]). Expectiles are shortfall risk measures with loss

function ` : x 7→ ax+ − bx−, where a, b > 0. Although an expectile with a > b arguably emphasizes

the tail part of the risk, its value is not determined solely by the tail distribution (roughly speaking,

an expectile is determined by a balance between expected profit and expected loss from a risk), and

therefore is not a tail risk measure in our terminology. Expectiles are not used as a regulatory risk

measure in practice even though they are the only coherent and elicitable risk measures. The fact

that expectiles are not tail risk measures may be accounted as a reason to explain this observation.

5.2 Elicitability and convex level sets

In statistics, a set-valued functional φ mapping distributions to subsets of R is said to be P-

elicitable for a set P of distributions, if it can be written as the set of minimizers for the expectation

of a score function S : R2 → R. In rigorous terms, there exists a score function S such that

φ : P → 2R, φ(F ) = arg min
x∈R

∫
R
S(x, y) dF (y).

The score function S may be required to satisfy some specific conditions in different applications.

Typical choices of S : R2 → R include S(x, y) = (x − y)2, S(x, y) = |x − y| and S(x, y) =

p(x− y)+ + (1− p)(y− x)+, p ∈ (0, 1), and these choices of S correspond to φ being the sets of the

mean, the medians and the p-quantiles, respectively. For a recent treatment on the application of

elicitability and co-elicitability to backtesting and forecasting in risk management, see Nolde and
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Ziegel [45]. In this paper, all tail risk measures discussed map a distribution to a single value rather

than a set of values. Therefore, instead of using P-elicitability, we adopt the definition in Kou and

Peng [36] to define elicitability on single-valued functionals.

Definition 3. A law-invariant risk measure ρ : X → R is elicitable if there exists a function

S : R2 → R such that

ρ(X) = min

{
arg min
x∈R

E[S(x,X)]

}
, X ∈ X . (12)

To distinguish from statistical functionals, the notion in Definition 3 is referred to as general

elicitability in Kou and Peng [36]. Note that the choice of min in (12) is rather artificial; one may

choose, for instance, max or mid-point.

Shortfall risk measures play a natural role in the study of elicitability. First, for a shortfall

risk measure ρ` induced by `, by writing

S(x, y) =

∫ 0

x
`(y − z) dz, x, y ∈ R,

we have

arg min
x∈R

E[S(x,X)] = arg min
x∈R

∫ 0

x
E[`(X − z)] dz

= [inf{z ∈ R : E[`(X − z)] 6 0}, inf{z ∈ R : E[`(X − z)] < 0}] .

Therefore,

ρ`(X) = inf{z ∈ R : E[`(X − z)] 6 0} = min

{
arg min
x∈R

E[S(x,X)]

}
, X ∈ X .

Thus all shortfall risk measures are elicitable.

On the other hand, one can easily check (see e.g. Osband [46]) that a necessary condition for

elicitability is the convex level sets (CxLS) property defined below. A law-invariant risk measure ρ

is said to have CxLS, if for any λ ∈ [0, 1] and X,Y ∈ X ,

ρ(X) = ρ(Y ) implies ρ (Zλ) = ρ(X),

where Zλ ∈ X is a random variable with distribution λFX + (1− λ)FY .

Under some continuity assumptions, Weber [58] showed that monetary risk measures satisfying

the CxLS property are indeed shortfall risk measures. See Bellini and Bignozzi [6] and Delbaen et

al. [16] for more on the CxLS property. Thus, by characterizing tail risk measures that are shortfall

risk measures, we can identify all elicitable tail risk measures under the continuity assumption in

Weber [58].

For convex risk measures, Theorem 3.10 of Delbaen et al. [16] shows that a convex risk measure

with CxLS is either a shortfall risk measure or VaRL
1 . By Proposition D.2, a tail shortfall risk
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measure cannot be convex, and hence, for any p ∈ (0, 1), the only elicitable p-tail convex risk measure

is VaRL
1 , the essential supremum, which is elicitable with the score function S(x, y) = 1{x<y}.

For non-convex risk measures, we impose a simple semi-continuity condition. A risk measure

is said to be distribution-wise lower-semi-continuous (DLC), if it satisfies lim inf
n→∞

ρ(Xn) > ρ(X) for

X,X1, X2, · · · ∈ X with Xn → X in distribution as n → ∞. In our context, this condition is

equivalent to the continuity condition in Weber [58]; see Remark 10. The next theorem shows that

a monetary, elicitable, positively homogeneous and DLC p-tail risk measure has to be VaRL
q for

some q ∈ (p, 1].

Theorem 5. For p ∈ (0, 1), a monetary and positively homogeneous p-tail risk measure ρ satisfying

DLC is elicitable if and only if ρ = VaRL
q for some q ∈ (p, 1].

Remark 9. To arrive at a symmetric result with VaRR
p replacing VaRL

p in Theorem 5, one needs to

replace the min in (12) by a max and replace the lower-semi-continuity in DLC by an upper-semi-

continuity. See also Remark 7.

Without specifying the value of p, Theorem 5 immediately implies a new characterization of

the family of VaR within the class of tail risk measures. We also note that, since the properties

elicitability and DLC get stronger as the set X enlarges, the characterization in Theorem 5 holds

for risk measures on any set of random variables containing L∞. We summarize the above two

observations in the following theorem.

Theorem 6. Suppose that X is a convex cone containing L∞. A monetary and positively homo-

geneous tail risk measure ρ on X satisfying DLC is elicitable if and only if ρ = VaRL
q for some

q ∈ (0, 1].

Some comparison between existing results on elicitable risk measures are drawn below. There

are three main results which characterize a one-parameter family of elicitable and positively ho-

mogenous monetary risk measures.

(i) Ziegel [60] additionally assumed convexity (hence coherence), and arrived at expectiles.

(ii) Kou and Peng [36] additionally assumed comonotonic additivity (hence distortion), and arrived

at VaRs and the mean.

(iii) We additionally assumed tail-relevance with DLC, and arrived at VaRs.

In addition to the characterizations of VaR given in Theorem 6 and Kou and Peng [36], He and

Peng [31] characterized VaRs from surplus-invariance, numéraire-invariance, and truncation-closed

acceptance set. To compare the axioms, such as tail-relevance and elicitability in Theorem 6, and

the comonotonic independence in Kou and Peng [36], the surplus invariance and the numéraire

invariance in He and Peng [31], we illustrate with the following examples.
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(i) A tail standard deviation (Example 1) is a tail risk measure, whereas it does not satisfy

comonotonic independence in Kou and Peng [36]. The tail standard deviation is quite popular

in the insurance literature (e.g. Furman and Landsman [27]);

(ii) An ES is a tail risk measure, whereas it does not satisfy surplus invariance or numéraire

invariance in He and Peng [31].

(iii) An expectile (see Remark 8) is elicitable, whereas it does not satisfy surplus invariance or

numéraire invariance in He and Peng [31].

Theorem 6, Kou and Peng [36] and He and Peng [31] characterize the class of VaRs by using

different sets of conditions, which may represent different practical concerns. Overall, it depends

on the specific application which axiom is more convincing. In view of the Fundamental Review

of the Trading Book by the Basel Committee which we quote in the Introduction, tail-relevance is

one of the main reasons that the Basel Committee chooses VaR and ES as their risk measures, al-

though comonotonic independence, surplus invariance and numéraire invariance are also practically

important considerations.

Remark 10. To obtain the characterization in Theorem 5, one may assume instead of DLC that Nρ
is ψ-weakly closed for some gauge function ψ as in Weber [58, Theorem 3.1]. For general functionals,

the DLC property is stronger than the ψ-weakly closedness property. Nevertheless, note that any

p-tail shortfall risk measure satisfies DLC; therefore the DLC property is equivalent to the ψ-weakly

closedness property in Weber [58] for p-tail risk measures with CxLS.

Remark 11. Via the same arguments used to show Theorem 5, we also conclude, that for p ∈ (0, 1),

a monetary p-tail risk measure ρ satisfying DLC, (18) and ρ(0) = 0 is elicitable if and only if ρ is a

shortfall risk measure induced by ` satisfying (10).

6 Examples of tail risk measures

In this section we present several examples of tail risk measures and relate them to various

classes of risk or economic functionals in the literature. Throughout this section, p ∈ (0, 1) is a

fixed number and (ρ, ρ∗) is a p-tail pair of risk measures on X and X ∗ respectively.

Example 3 (Median Shortfall). Let X = L0 and ρ∗ be the left-median, that is ρ∗ = VaRL
1/2. Then

ρ(X) = VaRL
1/2(Xp) = VaRL

(1+p)/2(X), X ∈ L0.

The risk measure ρ is called a Median Shortfall in Kou et al. [35]. It is clear that, ρ is monetary,

positively homogeneous, elicitable and comonotonically additive, but not convex or subadditive.

Example 4 (Gini Shortfall). Let X = L1 and ρ∗ be a Gini principle in Denneberg [17], defined as

ρ∗(X) = E[X] + βE[|X ′ −X ′′|], X ∈ L1,
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where β > 0 and X ′ and X ′′ are iid copies of X. Then,

ρ(X) = ESp(X) + βE[|X ′p −X ′′p |], X ∈ L1,

where X ′p and X ′′p are iid copies of Xp. The risk measure ρ is called a Gini Shortfall in Furman et

al. [28]. It is shown in the latter paper that ρ is comonotonically additive, and it is coherent if and

only if β 6 1/2.

Example 5 (Range-VaR). The family of Range-Value-at-Risk (RVaR) is introduced by Cont et al.

[13]. For X ∈ L1, a RVaR at level (p, q) ∈ [0, 1)2 with p < q is defined as

ρ(X) = RVaRα,β(X) =
1

q − p

∫ q

p
VaRR

r (X) dr, X ∈ L1.

We can easily see that RVaRp,q is a p-tail risk measure, and its generator is RVaR0,(q−p)/(1−p). The

family of RVaR includes VaR and ES as its limiting cases, and it has various advantages as compared

to VaR and ES. In particular, an RVaR is a robust risk measure (see Cont et al. [13] and Kou et al.

[35]), and the class of RVaR is the closure of inf-convolutions of VaR and ES (Embrechts et al. [18]).

RVaR is also known as “Spread-VaR” in insurance practice as a simple kernel smoothing method

to calculating capital allocations; see for instance Johnson [32]. We refer to Embrechts et al. [18]

for more properties of RVaR and its economic implications.

7 Concluding remarks

In this paper, we develop a theory for measures of tail risk. Our main contributions can be

summarized as follows. First, we propose a precise definition of measures of tail risk, and discover

many of their properties. Second, we establish a simple way to generate tail risk measures with

flexible desirable properties from existing non-tail risk measures. Third, we study risk aggregation

with dependence uncertainty for tail risk measures, generalizing recent results on risk aggregation.

Fourth, we connect tail risk measures with elicitability, and show that a positively homogenous

and monetary tail risk measure is elicitable if and only if it is a VaR, leading to a new axiomatic

characterization of the VaRs. There is a growing interest on tail risks and extremal events in

finance and insurance from both academia and industry. The theory and tools developed in this

paper hopefully provide valuable support to a prudent measurement of tail risk, and in particular,

the results obtained complement the extensive use of VaR and ES in current regulation and risk

assessment.

We believe that the novel concept of tail risk measures will inspire many questions for future

research. Replacing a generic risk measure by its tail counterpart is philosophically analogous

to replacing the expectation by an ES; many challenges arise in different problems of practical

relevance. Some areas of potential applications are portfolio selection, market equilibrium, statistical

inference, decision analysis, and optimization.
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The economic motivation of a tail risk measure finds some similarity to that of the loss-based

(or excess-invariant) risk measures and surplus-invariant risk measures in Cont et al. [12], Koch-

Medina et al. [37, 38] and He and Peng [31], but they are essentially different concepts. A tail

risk measure looks into the tail distribution of a risk, whereas a loss-based or surplus-invariant risk

measure is determined by the loss part of a risk. For instance, an ES is a tail risk measure but not

a loss-based or surplus-invariant risk measure.

A Classic properties of risk measures

The following properties have been standard in the theory of coherent risk measures since their

introduction by Artzner et al. [3] and Föllmer and Schied [23]. For economic interpretations of these

properties one may consult Föllmer and Schied [24] and Delbaen [15]. For representation results of

law-invariant risk measures, see Kusuoka [39] and Frittelli and Rossaza Gianin [26].

(A0) Law-invariance: if X ∈ X and X
d
= Y , then Y ∈ X and ρ(X) = ρ(Y ).

(A1) Monotonicity : ρ(X) 6 ρ(Y ) if X 6 Y a.s, X,Y ∈ X .

(A2) Translation-invariance: ρ(X −m) = ρ(X)−m for any m ∈ R and X ∈ X .

(A3) Convexity : ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ) for all λ ∈ [0, 1] and X,Y ∈ X .

(A4) Positive homogeneity : ρ(λX) = λρ(X) for any λ > 0 and X ∈ X .

(A5) Subadditivity : ρ(X + Y ) 6 ρ(X) + ρ(Y ) for X,Y ∈ X .

(A6) Comonotonic additivity : ρ(X + Y ) = ρ(X) + ρ(Y ) if X,Y ∈ X are comonotonic. Here, two

random variables X and Y are comonotonic if there exists Ω0 ∈ F with P(Ω0) = 1 and

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0 for all ω, ω′ ∈ Ω0.

Definition A.1. A monetary risk measure is a functional satisfying (A1) and (A2), a convex risk

measure is a functional satisfying (A1), (A2) and (A3), and a coherent risk measure is a functional

satisfying (A1), (A2), (A3) and (A4). For a monetary risk measure ρ, its acceptance set is defined

as Aρ = {X ∈ X : ρ(X) 6 0}.

The last two risk measures properties that we introduce are monotonicity with respect to two

classic notions of stochastic order.

Definition A.2. For X,Y ∈ L0 (resp. L1), we say that X is smaller than Y in stochastic order

(resp. convex order), denoted as X ≺st Y (resp. X ≺cx Y ), if E[f(X)] 6 E[f(Y )] for all increasing

(resp. convex) functions f , provided that both expectations exist.

The corresponding risk measure properties are listed below.
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(A1’) ≺st-monotonicity : ρ(X) 6 ρ(Y ), if X ≺st Y , X,Y ∈ X .

(A7) ≺cx-monotonicity : ρ(X) 6 ρ(Y ), if X ≺cx Y , X,Y ∈ X .

The combination of monotonicity (A1) and law-invariance (A0) is equivalent to (A1’), and this

simple equivalence is used in this paper. We refer to Shaked and Shanthikumar [51] for more

details on stochastic orders, and Mao and Wang [41] for characterization of ≺cx-monotone risk

measures.

VaRs and ES belong to the family of distortion risk measures, defined as

ρh(X) =

∫ ∞
0

(1− h(FX(x))) dx−
∫ 0

−∞
h(FX(x)) dx, X ∈ X , (13)

where h : [0, 1] → [0, 1] is a distortion function, that is, h is non-decreasing and h(0) = 0 and

h(1) = 1. The domain X of ρh is such that (13) is properly defined for all X ∈ X ; in general, ρh

is always well defined on L∞. See Yaari [59] and Föllmer and Schied [24, Section 4.7] for more on

distortion risk measures.

B Proofs in Section 3

In the proofs, for convenience we always assume that we can find a non-constant random

variable independent of a given random vector whenever we need. No generality is lost here as we

are interested in properties based solely on distributions of random variables.

The following lemma summarizes some simply and useful relations between X, Xp and X(p).

The proof is an elementary exercise and is omitted here.

Lemma B.1. Suppose p ∈ (0, 1).

(i) For X ∈ X ∗, (X(p))p
d
= X.

(ii) For X,Y ∈ X , if X ≺st Y , then Xp ≺st Yp. For X,Y ∈ X ∗, if X ≺st Y , then X(p) ≺st Y
(p).

(iii) For X ∈ X , X ≺st Xp.

Proof of Theorem 1. We repeatedly make use of (3) and (4), that is,

ρ(X) = ρ∗(Xp), X ∈ X , and ρ∗(X) = ρ(X(p)), X ∈ X ∗.

(i) (a) (Monotonicity) We use the equivalence between monotonicity and ≺st-monotonicity. As-

sume ρ∗ is ≺st-monotone and X ≺st Y , X,Y ∈ X . By Lemma B.1 we have Xp ≺st Yp,

implying ρ∗(Xp) 6 ρ∗(Xp) and hence ρ is ≺st-monotone. The converse is analogous.

(b) (Translation-invariance) It suffices to notice that (X + c)p
d
= Xp + c for c ∈ R and X ∈ X ,

and (Y + c)(p) d
= Y (p) + c for c ∈ R and Y ∈ X ∗.
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(c) (Positive homogeneity) It suffices to notice that (λX)p
d
= λXp for λ > 0 and X ∈ X , and

(λY )(p) d
= λY (p) for λ > 0 and Y ∈ X ∗.

(d) (Comonotonic additivity) Assume ρ∗ is comonotonically additive and X,Y ∈ X are

comonotonic. Then X + Y
d
= F−1

X (U) + F−1
Y (U) where U ∼ U[0, 1], and (X + Y )p

d
=

F−1
X (Up) + F−1

Y (Up). It follows that

ρ(X + Y ) = ρ∗((X + Y )p) = ρ∗(F−1
X (Up) + F−1

Y (Up)) = ρ∗(Xp) + ρ∗(Yp) = ρ(X) + ρ(Y ).

For the converse, assume ρ is comonotonically additive and X,Y ∈ X ∗ are comonotonic.

Let B ∼ Bern(p) be independent of X and Y , and write x = ess-inf(X) and y = ess-inf(Y ).

Then

(X + Y )(p) d
= ess-inf(X + Y )B + (X + Y )(1−B) = xB +X(1−B) + yB + Y (1−B).

Note that xB +X(1−B) and yB + Y (1−B) are comonotonic. Therefore,

ρ∗(X + Y ) = ρ((X + Y )(p)) = ρ(xB +X(1−B) + yB + Y (1−B))

= ρ(xB +X(1−B)) + ρ(yB + Y (1−B))

= ρ(X(p)) + ρ(Y (p)) = ρ∗(X) + ρ∗(Y ).

Hence ρ∗ is comonotonically additive.

(ii) For X,Y ∈ X ∗, let B ∼ Bern(p) be independent of X and Y , and write x = ess-inf(X),

y = ess-inf(Y ), z = ess-inf(X + Y ) and w = min{x, y}. We first note that for any Z ∈ X ∗

independent of B and t 6 ess-inf(Z),

(tB + Z(1−B))p
d
= (ess-inf(Z)B + Z(1−B))p

d
= Z. (14)

(a) (Subadditivity) Assume ρ is subadditive. By (14) and noting that z > x+ y, we have

ρ∗(X + Y ) = ρ(zB +X(1−B) + Y (1−B))

= ρ((x+ y)B +X(1−B) + Y (1−B))

6 ρ(xB +X(1−B)) + ρ(yB + Y (1−B)) = ρ∗(X) + ρ∗(Y ).

Hence, ρ∗ is subadditive.

(b) (Convexity) The proof is analogous to (a).

(c) (≺cx-monotonicity) Assume ρ is ≺cx-monotone and X ≺cx Y . By (14) and noting that

wB +X(1−B) ≺cx wB + Y (1−B), we have

ρ∗(X) = ρ(xB +X(1−B)) = ρ(wB +X(1−B))

6 ρ(wB + Y (1−B)) 6 ρ(yB + Y (1−B)) = ρ∗(Y ).

Hence, ρ∗ is ≺cx-monotone.
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(iii) From (i)-(ii), we know that ρ∗ is monetary if and only if ρ is monetary, and ρ is a coherent

(convex, monetary) risk measure implies ρ∗ is coherent (convex, monetary). Thus, it remains

to show that ρ∗ is a coherent (convex) risk measure implies ρ is coherent (convex). To this

end, we need to use some further result in Theorem 3 on risk aggregation for tail risk measures

to show that the convexity of ρ∗ implies the convexity of ρ, assuming that ρ∗ is monetary. For

any X,Y ∈ X and λ ∈ [0, 1], by Theorem 3, we have

ρ(λX + (1− λ)Y ) 6 sup{ρ∗(λZ + (1− λ)W ) : Z,W ∈ X , Z ∼ F [p]
X , W ∼ F [p]

Y }

6 sup{λρ∗(Z) + (1− λ)ρ∗(W ) : Z,W ∈ X , Z ∼ F [p]
X , W ∼ F [p]

Y }

= λρ∗(Xp) + (1− λ)ρ∗(Yp)

= λρ(X) + (1− λ)ρ(Y ).

That is, ρ is convex, and this completes the proof.

Proof of Theorem 2. Suppose ρ is a monetary p-tail risk measure with ρ(0) = 0, then ρ∗ is a

monetary risk measure on X ∗ with ρ∗(0) = 0 by using Theorem 1. It follows that for any X ∈ X

ρ(X) = ρ∗(Xp) > ess-inf(Xp) = VaRR
p (X).

For the second assertion, by Theorem 9 of Kusuoka [39], any law-invariant coherent risk measure ρ

which dominates VaRR
p also dominates ESp on L∞.

C Proof in Section 4

Proof of Theorem 3. We first assume F−1
i (p) > 0, i = 1, . . . , n.

(i) We first show the “6” sign in (7). Take any S ∈ Sn(F1, . . . , Fn) and write S = X1 + · · ·+Xn

where Xi ∼ Fi, i = 1, . . . , n. Then S = F−1
1 (UX1) + · · · + F−1

n (UXn) almost surely. For

i = 1, . . . , n, denote by fi the conditional distribution function of UXi given US > p, that is,

fi(t) = P(UXi 6 t|US > p), t ∈ [0, 1]. It follows that P(fi(UXi) 6 x|US > p) = x for x ∈ [0, 1],

and thus fi(UXi) conditionally on US > p is uniformly distributed over [0, 1].

Let Vi = p+ (1− p)fi(UXi), i = 1, . . . , n. Note that for t ∈ [0, 1],

p+ (1− p)fi(t) = p+ P(UXi 6 t, US > p) > p+ (1− (1− t)− p) = t.

Therefore, Vi > UXi , and Vi is uniformly distributed over [p, 1] conditionally on US > p,

i = 1, . . . , n. Write S′ = (F−1
1 (V1) + · · · + F−1

n (Vn))1{US>p}. As F−1
i (p) > 0 and Vi > p for

i = 1, . . . , n, P(S′ > 0) = P(US > p) = 1 − p. Therefore, 1{US>p} = 1{US′>p} a.s. We have

S′1{US′>p} > S1{US>p}, which implies ρ(S′) > ρ(S) since ρ is a p-tail risk measure.
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Finally, let V̂1, . . . , V̂n be uniform random variables on [p, 1] such that (V̂1, . . . , V̂n) has joint

distribution identical to the conditional distribution of (V1, . . . , Vn) on {US > p}. It follows

that for x > 0,

P(S′p 6 x) = P

(
n∑
i=1

F−1
i (Vi)1{US>p} 6 x

∣∣∣US > p

)
= P

(
n∑
i=1

F−1
i (V̂i) 6 x

)
.

Write T =
∑n

i=1 F
−1
i (V̂i). As V̂i is uniformly distributed over [p, 1], F−1

i (V̂i) ∼ F
[p]
i , i =

1, . . . , n. Hence, T ∈ Sn(F
[p]
1 , . . . , F

[p]
n ). Finally, we have ρ(S) 6 ρ(S′) = ρ∗(S′p) = ρ∗(T ),

therefore the “6” sign in (7) holds.

(ii) We proceed to show the “>” sign in (7). Take any T ∈ Sn(F
[p]
1 , . . . , F

[p]
n ) and write T = Y1 +

· · ·+ Yn where Yi ∼ F [p]
i , i = 1, . . . , n. Let V be a uniform [0, 1] random variable independent

of Y1, . . . , Yn. Write Xi = 1{V >p}Yi + 1{V 6p}F
−1
i (V ), i = 1, . . . , n and S = X1 + · · · + Xn.

Then we have Sp
d
= T and ρ(S) = ρ∗(Sp) = ρ∗(T ), thus the “>” sign in (7) holds.

Now we consider the general case in which F−1
1 (p), . . . , F−1

n (p) may not be positive. For i = 1, . . . , n,

take Xi ∼ Fi, and let Gi be the distribution of Xi − F−1
i (p) + 1. Clearly G−1

i (p) = 1 > 0. Let

τ(X) = ρ(X +
∑n

i=1 Fi
−1(p)− n) and τ∗ = ρ∗(X +

∑n
i=1 Fi

−1(p)− n), X ∈ X . Then (τ, τ∗) is also

a pair of tail risk measure and the corresponding generator. From the results in (i) and (ii) we have

sup{τ(S) : S ∈ Sn(G1, . . . , Gn)} = sup{τ∗(T ) : T ∈ Sn(G
[p]
1 , . . . , G

[p]
n )}. (15)

Note that S ∈ Sn(F1, . . . , Fn) is equivalent to S −
∑n

i=1 Fi
−1(p) + n ∈ Sn(G1, . . . , Gn). Therefore,

(15) is equivalent to

sup{ρ(S) : S ∈ Sn(F1, . . . , Fn)} = sup{ρ∗(T ) : T ∈ Sn(F
[p]
1 , . . . , F [p]

n )},

and the proof is complete.

D Proofs in Section 5

We first present a lemma on the acceptance set of a monetary tail risk measure.

Lemma D.1. For p ∈ (0, 1), a monetary risk measure ρ is a p-tail risk measure if and only if its

acceptance set Aρ satisfies that, for X ∈ Aρ and Y ∈ X , Xp
d
= Yp implies Y ∈ Aρ.

Proof. Proof of Lemma D.1. The implication “⇒” is trivial by definition. To show “⇐”, for

X,Y ∈ X such that Xp
d
= Yp, notice that (X − ρ(X))p

d
= (Y − ρ(X))p and X − ρ(X) ∈ Aρ.

Therefore, ρ(Y − ρ(X)) 6 0, which means ρ(Y ) 6 ρ(X). By symmetry, ρ(X) = ρ(Y ).

Proof of Theorem 4. Note that both ρ` and (10) stay the same if ` is replaced by its left-continuous

version; thereby we safely assume that ` is left-continuous. First, the left-continuity of ` implies

that for X ∈ X , ρ(X) 6 0 ⇔ E[`(X)] 6 0; this fact will be used frequently below. From ρ(0) = 0

it is easy to verify that `(x) 6 0 if x < 0, and `(x) > 0 if x > 0.
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⇒: For x, y ∈ R, let Zx,y be a random variable with the bi-atomic distribution pδx + (1− p)δy.

For x 6 y, noting that (Zx,y)p
d
= y, one has ρ(Zx,y) = ρ(y) = y as ρ is a p-tail risk measure.

In particular, for any x < 0 < y, ρ(Zx,y) = y > 0 and hence

E [`(Zx,y)] = p`(x) + (1− p)`(y) > 0. (16)

Now suppose `(x) < `(z) for some x < z < 0 and take 0 < y. It follows that p`(x)+(1−p)`(z) <
`(z) 6 0. Together with (16), there exists λ ∈ (0, 1) such that

0 = p`(x) + (1− p)(λ`(z) + (1− λ)`(y)) < p`(z) + (1− p)(λ`(z) + (1− λ)`(y)).

For s, t, w ∈ R, let Zs,t,w be a random variable with distribution pδs+(1−p)λδt+(1−p)(1−λ)δw.

Then E[`(Zx,z,y)] = 0 and E[`(Zz,z,y)] > 0 imply ρ(Zx,z,y) 6 0 and ρ(Zz,z,y) > 0 respectively,

leading to a contradiction to the fact that (Zx,z,y)p = (Zz,z,y)p. Therefore, `(x) = `(z) = `(−1)

for all x < z < 0.

⇐: Now we assume that a risk measure ρ is induced by a loss function ` satisfying condition (10).

Let c = `(−1). For any X ∈ X , if F−1
X (p+) > 0, then we have ρ(X) > 0 because

E[`(X)] =

∫ p

0
`(F−1

X (t)) dt+

∫ 1

p
`(F−1

X (t)) dt >
1

1− p

∫ 1

p

(
pc+ (1− p)`(F−1

X (t))
)

dt > 0;

if F−1
X (p+) 6 0, we have

E[`(X)] =

∫ p

0
`(F−1

X (t)) dt+

∫ 1

p
`(F−1

X (t)) dt = pc+

∫ 1

p
`(F−1

X (t)) dt.

To combine both cases, for all X ∈ X , ρ(X) 6 0 if and only if

pc+

∫ 1

p
`(F−1

X (t)) dt 6 0. (17)

Therefore, by Lemma D.1, ρ is a p-tail risk measure.

Some consequences of Theorem 4 are summarized in the following lemma. In summary, there

is no convex tail shortfall risk measure, and all positively homogeneous tail shortfall risk measures

are the left-quantiles.

Lemma D.2. Suppose p ∈ (0, 1) and ρ is a p-tail shortfall risk measure induced by `. Then

(i) `(ρ(0)−) < 0 < `(ρ(0)+).

(ii) ρ is not convex.

(iii) If ρ is positively homogeneous, then ρ = VaRL
q for some q ∈ (p, 1).

23



Proof of Lemma D.2. By Theorem 4, if ρ(0) = 0, then the loss function ` satisfies (10). Write

c = `(−1).

(i) Assume ρ(0) = 0, and other cases can be obtained via a shift in the argument. By definition

of a loss function, infx∈R `(x) < 0. Therefore, `(0−) = c = infx∈R `(x) < 0. On the other

hand, since pc+ (1− p)`(y) > 0 for all y > 0, taking y → 0+ we have `(0+) > 0.

(ii) From (i), ` is discontinuous at ρ(0), hence it is not convex on R, and in turn ρ is not a convex

risk measure.

(iii) We have ρ(0) = 0 from positive homogeneity. Without loss of generality we assume ` is left-

continuous. For x < 0 < y, take Zx,y ∼ qδx + (1 − q)δy where q = `(y)/(`(y) − c) ∈ (p, 1).

Then E[`(Zx,y)] = qc+(1−q)`(y) = 0, and hence ρ(Zx,y) 6 0. From the positive homogeneity

of ρ, we have ρ(λZx,y) 6 0 for all λ > 0, and hence qc+(1−q)`(λy) 6 0 implying `(λy) 6 `(y)

for all λ > 0. Noting that ` is non-decreasing, we have `(z) = `(y) for all z > y. This means

`(y) = `(1) for all y > 0. Therefore, the loss function ` satisfies

`(x) = (`(1)− c)1{x>0} + c = (`(1)− c)
(
1{x>0} − (1− q)

)
.

Comparing with (9), ρ and VaRL
q have the same acceptance set, thus ρ = VaRL

q .

Proof of Theorem 5. ⇒: Write Nρ = {FX : X ∈ Aρ}. First, we assume

there exists x ∈ R such that for all y ∈ R, (1− λ)δx + λδy ∈ Nρ for some λ > 0. (18)

Condition (18) implies the assumption in Theorem 3.1 of Weber [58], which states

there exists x ∈ R with δx ∈ Nρ such that for y ∈ R and δy ∈ N c
ρ ,

(1− α)δx + αδy ∈ Nρ for sufficiently small α > 0.
(19)

To see that (18) implies (19), we simply need to verify that x in (18) also satisfies (19). First,

taking y = x in (18) gives δx ∈ Nρ. Note that ρ is a monetary and law-invariant risk measure,

and hence it is ≺st-monotone as in property (A1’). For y ∈ R with δy ∈ N c
ρ , it is clear that

y < x by ≺st-monotonicity of ρ and δx ∈ Nρ. If (1 − λ)δx + λδy ∈ Nρ for some λ > 0,

using ≺st-monotonicity of ρ again, and noting that y < x, we have (1 − α)δx + αδy ∈ Nρ for

α ∈ (0, λ). Therefore, x in (18) also satisfies (19).

From DLC, Nρ is closed with respect to weak convergence. Note that the CxLS property is

equivalent to Nρ and N c
ρ both being convex. By Theorem 3.1 of Weber [58], the monetary risk

measure ρ satisfying DLC, CxLS and condition (18) is necessarily a shortfall risk measure.

Finally, by Lemma D.2 (iii), a positive homogeneous p-tail shortfall risk measure is necessarily

VaRL
q for some q ∈ (p, 1).

Next we assume (18) does not hold. By positive homogeneity, we have ρ(0) = 0. Let Zy,λ ∼
λδ0 + (1 − λ)δy for y ∈ R and λ ∈ (0, 1). From the opposite of (18), there exists y0 > 0 such
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that ρ(Zy0,λ) > 0 for all λ ∈ (0, 1), and by positive homogeneity again, we have ρ(Zy,λ) > 0

for all λ ∈ (0, 1) and all y > 0.

Arbitrarily take y > 0 and let kλ = ρ(Zy,λ). Note that 0 6 kλ 6 y. For λ ∈ (0, p], since

(Zy,λ)p
d
= y, we have kλ = y. Now, take λ ∈ (p, 1), and write α = p/λ and λ0 = 1− α(1− λ).

Let X ∼ (1 − α)δ0 + α(λδ−kλ + (1 − λ)δy−kλ). Then ρ(X) = ρ(Zy,λ − kλ) = ρ(0) = 0 by

the CxLS property. Moreover, Xp
d
= (Zy−kλ,λ0)p implies ρ(Zy−kλ,λ0) = ρ(X) = 0. Since

ρ(Zy−kλ,λ) > 0 for all λ ∈ (0, 1) and all y − kλ > 0, then kλ = y0. Noting that both λ and y

are arbitrary here, thus ρ(Zy,λ) = y for all λ ∈ (0, 1) and y > 0.

For any random variable Z taking values in a finite set {a1, . . . , an} ⊂ R, we have Z ∼∑n
i=1 βi(λiδai + (1 − λi)δess-sup(Z)), where βi > 0 and

∑n
i=1 βi = 1 and λi ∈ (0, 1). Let

Zi ∼ λiδai + (1− λi)δess-sup(Z), i = 1, . . . , n. It follows that ρ(Zi − ai) = ess-sup(Z)− ai and

hence ρ(Zi) = ess-sup(Z), i = 1, . . . , n. By CxLS, we have ρ(Z) = ess-sup(Z).

For a general random variable Z ∈ X with Z > 0, write M = ess-sup(Z) and let Zn =

M
∑2n−1

i=0
i

2n1{Z∈( i
2n
, i+1
2n

]}, n ∈ N. Then Zn ↑ Z, and hence ρ(Z) > ρ(Zn) = ess-sup(Zn) =

M 2n−1
2n . Therefore, ρ(Z) > M , and together with ρ(Z) 6 M , we have ρ(Z) = M . Finally,

since ρ is monetary, we have ρ(Z) = ess-sup(Z) for all Z ∈ X .

In summary, ρ = VaRL
q for some q ∈ (p, 1].

⇐: One can directly verify that for q ∈ (p, 1], ρ = VaRL
q is an elicitable, monetary and positively

homogeneous p-tail risk measure satisfying DLC.

Proof of Theorem 6. The “if” part is straightforward to check and below we show the “only-if”

part. Note that the properties of ρ are also satisfied on L∞. Take p ∈ (0, 1) such that ρ is a p-tail

risk measure. By Theorem 5, ρ = VaRL
q on L∞ for some q ∈ (p, 1]. For X ∈ X and X 6∈ L∞, let

Y = max{X,VaRL
p (X)}. Clearly, Xp

d
= Yp and hence ρ(X) = ρ(Y ). Let Yn = min{Y, n} for n ∈ N.

Then Yn ∈ L∞, and we have ρ(Yn) = VaRL
q (Yn). Note that for q ∈ (p, 1],

lim
n→∞

VaRL
q (Yn) = VaRL

q (Y ) = VaRL
q (X).

By DLC, ρ(Y ) 6 limn→∞VaRL
q (Yn). On the other hand, since Yn 6 Y and ρ is monotone, we have

ρ(Y ) > limn→∞VaRL
q (Yn). Combining the above two inequalities, we have

ρ(X) = ρ(Y ) = lim
n→∞

VaRL
q (Yn) = VaRL

q (X).

Thus, ρ = VaRq on X .
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E Some other examples of tail risk measures

Example E.1 (Tail entropic risk measure). Let X = L∞ and ρ∗ be an entropic risk measure in

Föllmer and Schied [23] (called an exponential principle in Gerber [29]), defined as

ρ∗(X) =
1

β
logE[eβX ], X ∈ L∞,

where β > 0. Then, we have

ρ(X) =
1

β
logE[eβXp ] =

1

β
ESp(e

βX), X ∈ L∞.

As ρ∗ is a convex risk measure, ρ is also a convex risk measure by Theorem 1. Based on discussions

in Section 5, ρ∗ is elicitable but ρ is not. The tail entropic risk measure ρ belongs to the class of

distortion-exponential risk measures in Tsanakas [54].

Example E.2 (Tail distortion risk measure). Let h : [0, 1]→ [0, 1] be a distortion function, and X
be a set of random variables such that the distortion risk measure ρh in (13) is well-defined on X .

Take ρ∗ = ρh. Then p-tail risk measure ρ generated by ρ∗ can be expressed as

ρ(X) = VaRR
p (X) +

∫ ∞
VaRRp (X)

(
1− h

(
FX(x)− p

1− p

))
dx = ρhp(X), X ∈ X . (20)

where hp : [0, 1]→ [0, 1] is a distortion function given by

hp(t) = h

(
t− p
1− p

)
1{t>p}, t ∈ [0, 1].

That is, ρ is a distortion risk measure with distortion function hp which takes value 0 on [0, p]. Note

that FX(x) > p for x > VaRR
p (X), and thus the right quantile VaRR

p (X) in (20) cannot be replaced

by VaRL
p (X). For a distortion risk measure ρh, subadditivity is equivalent to the convexity of h.

Note that hp is convex if and only if h is, and therefore ρ is coherent if and only if so is ρ∗, a result

also implied by Theorem 1.

Example E.3 (Tail risk measures generated by shortfall risk measures). Let X = L∞ and ρ∗ be a

shortfall risk measure induced by a loss function `, defined in Section 5 as,

ρ∗(X) = inf{m ∈ R : E[`(X −m)] 6 0}, X ∈ L∞. (21)

The special case of `(x) = exp(βx)− 1, x ∈ R for some β > 0 reduces to Example E.1. With ρ∗ in

(21), we have

ρ(X) = inf{m ∈ R : ESp[`(X −m)] 6 0}, X ∈ L∞, (22)

Note that ρ is a risk measure induced by the rank-dependent utility (RDU; see Quiggin [47])

functional X 7→ ESp(`(X)) via (22). Clearly, ρ is also monetary, and by Theorem 1, the following

are equivalent: (i) ρ∗ is convex; (ii) ρ is convex; (iii) ` is convex.
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F p-tail distortion risk measures

In Theorem 2 of the paper, we establish the essential importance of VaRs and ES as benchmarks

for tail risk measures by showing that VaRR
p serves as the smallest monetary p-tail risk measure,

and ESp serves as the smallest coherent p-tail risk measure. For a distortion risk measure defined

in (13) dominating the corresponding VaR is equivalent to tail-relevance.

Theorem F.1. Let p ∈ (0, 1). If ρ is a distortion risk measure, then the following are equivalent.

(a) ρ is a p-tail risk measure.

(b) The distortion function of ρ takes value 0 on [0, p].

(c) ρ > VaRR
p on X .

Moreover, if ρ is coherent, then (a)-(c) are equivalent to

(d) ρ > ESp on X .

Proof of Theorem F.1. The implication (a)⇒(c) is implied by Theorem 2.

(c)⇒(b): Let ρh be a distortion risk measure with distortion function h such that ρh(X) >

VaRR
p (X) for any X ∈ X . Let X ∈ X be a Bern(1 − p) random variable. From the definition in

(13), we have

VaRR
p (X) 6 ρh(X) =

∫ ∞
0

(1− h (FX(x))) dx = 1− h(p) = VaRR
p (X)− h(p).

Therefore, h(p) = 0, and as h is non-decreasing, we have h(t) = 0 for t ∈ [0, p].

(b)⇒(a): Let ρh be a distortion risk measure with distortion function h and h(t) = 0 for any

t ∈ [0, p]. It follows that, for X,Y ∈ X satisfying Xp
d
= Yp,

ρh(X) =

∫ ∞
VaRRp (X)

(1− h (FX(x))) dx+ VaRR
p (X)−

∫ VaRRp (X)

−∞
h (FX(x)) dx

=

∫ ∞
VaRRp (X)

(1− h (FX(x))) dx+ VaRR
p (X)

=

∫ ∞
VaRRp (Y )

(1− h (FY (x))) dx+ VaRR
p (Y ) = ρh(Y ).

That is, ρh is a p-tail risk measure.

Next we assume ρ is coherent. (d)⇒(c) is straightforward.

(b)⇒(d): ESp is a distortion risk measure with distortion function

hp(t) =
t− p
1− p

1{t>p}, t ∈ [0, 1].

Note that h is convex on [0, 1] because ρh is coherent. As h(p) = hp(p) = 0, hp is linear on [p, 1] and

h is convex on [p, 1], we have h(t) 6 hp(t) for all t ∈ [0, 1], and as a consequence ESp(X) 6 ρh(X)

for all X ∈ X by its definition (13).
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As a by-product, Theorem F.1 characterizes all p-tail risk measures which belong to the class

of distortion risk measures, equivalently, the class of all comonotonically additive and monetary

p-tail risk measures.

G Dual representations

We present dual representation results for tail risk measures, assuming some further functional

properties. The following representation results (i)-(iii) are based on the Kusuoka representation for

coherent risk measures in Kusuoka [39] and Frittelli and Rossaza Gianin [26]. (iv) is based on the

representation for monetary and ≺cx-monotone risk measures in Mao and Wang [41]. The details

of the proof are put in the appendix. To make the illustration concise, we assume X = L∞ in this

section. The case for risk measures on larger spaces is analogous albeit some continuity has to be

assumed; see Remark G.1.

Theorem G.1. Suppose p ∈ (0, 1), Dp is the set of distributions functions on [p, 1] and ρ is a

functional mapping X = L∞ to R.

(i) ρ is a comonotonically additive and coherent p-tail risk measure if and only if there exists

g ∈ Dp such that ρ(X) =
∫ 1
p ESq(X) dg(q), X ∈ X .

(ii) ρ is a coherent p-tail risk measure if and only if there exists a set G ⊂ Dp such that ρ(X) =

supg∈G
∫ 1
p ESq(X) dg(q), X ∈ X .

(iii) ρ is a convex and monetary p-tail risk measure if and only if there exists a function v : Dp → R
such that ρ(X) = supg∈Dp{

∫ 1
p ESq(X) dg(q)− v(g)}, X ∈ X .

(iv) ρ is a ≺cx-monotone and monetary p-tail risk measure if and only if there exists a set H of

functions mapping [p, 1] to R such that ρ(X) = infα∈H supq∈[p,1]{ESq(X)− α(q)}, X ∈ X .

Remark G.1. If X = Lp for p ∈ [1,∞), the representation results (i)-(iii) in Theorem G.1 hold

if one assumes that ρ is finite and satisfies the Fatou property (or lower semi-continuity), namely,

lim inf
n→∞

ρ(Xn) > ρ(X) if X,X1, X2, · · · ∈ X = Lp and Xn
p−→ X as n → ∞. The proof is the same

as above by noting that the Fatou property guarantees the corresponding representation results;

see Lemma 2.14 of Svindland [53]. For the representation result (iv) to hold, the Fatou property is

not necessary, see Theorem B.2 and Example B.1 of Mao and Wang [41].

Proof of Theorem G.1. The “if” statements are all straightforward to verify. We only show the

“only-if” statements of the theorem. First, note that all law-invariant convex risk measures ρ on

L∞ have the so-called Fatou property (Theorem 30 of Delbaen [15]; cf. Jouini et al. [33]). This

property is used to validate the representation results in (i)-(iii).
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(i) From Theorem 1, ρ∗ is a comonotonically additive, coherent and law-invariant risk measure.

By Theorem 7 of Kusuoka [39], it has a representation

ρ∗(X) =

∫ 1

0
ESq(X) dh(q), X ∈ X ,

where h is a distribution function on [0, 1]. Note that, as seen in Section 3,

ESq(Xp) = ESp+q−pq(X), X ∈ X .

It follows that,∫ 1

0
ESq(Xp) dh(q) =

∫ 1

0
ESp+q−pq(X) dh(q) =

∫ 1

p
ESr(X) dg(r), X ∈ X , (23)

where g(r) = h ((r − p)/(1− p)), r ∈ [p, 1], and thus g ∈ Dp. Therefore, ρ(X) = ρ∗(Xp) =∫ 1
p ESq(X) dg(q), X ∈ X .

(ii) From Theorem 1, ρ∗ is a coherent and law-invariant risk measure, and by Theorem 4 of

Kusuoka [39], it has a representation

ρ∗(X) = sup
h∈G0

∫ 1

0
ESq(X) dh(q), X ∈ X ,

where G0 is a set of distribution functions on [0, 1]. The rest of the proof is straightforward

by using (23).

(iii) From Theorem 1, ρ∗ is a law-invariant convex risk measure, and by Theorem 7 of Frittelli and

Rossaza Gianin [26], it has a representation

ρ∗(X) = sup
h∈D0

{∫ 1

0
ESq(X) dh(q)− u(h)

}
, X ∈ X ,

where u : D0 → R is a function. The rest of the proof is straightforward by using (23).

(iv) Since ρ is a ≺cx-monotone and monetary risk measure, and by Theorem 3.1 of Mao and Wang

[41], it has a representation

ρ(X) = inf
β∈H0

sup
q∈[0,1]

{ESq(X)− β(q)}, X ∈ X .

where H0 is a set of functions mapping [0, 1] to (−∞,∞]. Fix X ∈ X . For m > 0, write

X [m] = X1{UX>p} + (X −m)1{UX<p}.

It is obvious that (X [m])p
d
= Xp, and hence ρ(X [m]) = ρ(X) for all m > 0. Moreover, for

q ∈ [0, p),

ESq(X)− ESq(X
[m]) =

1

1− q

∫ p

q
m dt =

m(p− q)
1− q

.
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Therefore,

ρ(X) = ρ(X [m]) = inf
β∈H0

sup
q∈[0,1]

{
ESq(X)− β(q)− m(p− q)

1− q
1{q∈[0,p)}

}
. (24)

Write

ε = ρ(X)− inf
β∈H0

sup
q∈[p,1]

{ESq(X)− β(q)} .

Suppose, for the purpose of contradiction, that ε > 0. There exists β0 ∈ H0 such that

sup
q∈[p,1]

{ESq(X)− β0(q)} < inf
β∈H0

sup
q∈[p,1]

{ESq(X)− β(q)} − ε

2

On the other hand, by (24), for any m > 0,

sup
q∈[0,1]

{
ESq(X)− β0(q)− m(p− q)

1− q
1{q∈[0,p)}

}
> ρ(X) = ε+ inf

β∈H0

sup
q∈[p,1]

{ESq(X)− β(q)} .

By the choice of β0, this leads to

sup
q∈[0,1]

{
ESq(X)− β0(q)− m(p− q)

1− q
1{q∈[0,p)}

}
− sup
q∈[p,1]

{ESq(X)− β0(q)} > ε

2
.

Letting m→∞, we arrive at a contradiction. Therefore, ε = 0, and

ρ(X) = inf
β∈H0

sup
q∈[p,1]

{ESq(X)− β(q)} ,

thus the desired result.
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