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Abstract

We incorporate a notion of risk aversion favoring prudent decisions from financial institutions into

regulatory capital calculation principles. In the context of Basel III, IV as well as Solvency II, regulatory

capital calculation is carried out through the tools of monetary risk measures. The notion of risk aver-

sion that we focus on has four equivalent formulations: through consistency with second-order stochastic

dominance, or with conditional expectations, or with portfolio diversification, and finally through ex-

pected social impact. The class of monetary risk measures representing this notion of risk aversion is

referred to as consistent risk measures. We characterize the class of consistent risk measures by estab-

lishing an Expected Shortfall-based representation, and as a by-product, we obtain new results on the

representation of convex risk measures. We present several examples where consistent risk measures

naturally appear. Using the obtained representation results, we study risk sharing and optimal investment

problems and find several new analytical solutions.

Key-words: regulatory capital, risk measures, risk aversion, risk sharing, stochastic dominance.

1 Introduction

1.1 Risk aversion in regulatory capital calculation

In modern frameworks for financial regulation such as Basel III, IV as well as Solvency II, financial

institutions are regulated to maintain a certain level of capital to prepare for potential future losses. In this

paper, we take the perspective of a regulator who designs a regulatory capital principle to calculate the

amount of capital required for financial institutions bearing risks. Such a principle is described by a risk

measure: For a risk (random loss/profit) X borne by a financial institution over a fixed time period, a risk

measure ρ assigns a number ρ(X) quantifying today the future (end of time period) riskiness of X; a precise
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definition is in Section 2.1. When ρ(X) interprets into the amount of regulatory capital required for bearing

a risk X , ρ is referred to as a regulatory risk measure.1

The two most popular regulatory risk measures in use throughout the financial industry are the Value-at-

Risk (VaR) and the Expected Shortfall (ES). For a random loss/profitX , VaR at a confidence level α ∈ [0, 1]

is defined as

qα(X) = inf{x : P(X 6 x) > α}, α ∈ (0, 1]; q0(X) = inf{x : P(X 6 x) > 0}, (1.1)

and ES at level α ∈ [0, 1] is defined as

ψα(X) =
1

1− α

∫ 1

α
qt(X)dt, α ∈ [0, 1); ψ1(X) = q1(X). (1.2)

For a summary on the use of risk measures in risk management, see McNeil et al. (2015); Bénéplanc and

Rochet (2011) contains a more economically oriented discussion.

In Bénéplanc and Rochet (2011, Section 1.1), the goals of risk management for a corporation are listed

as four decisions varying from how much risk to take, or to retain/insure, or how big a capital buffer needs to

be, to liquidity considerations. A financial regulator needs to balance these corporate goals and decisions by a

prudent framework which allows for a healthy and transparent economic environment for business activities

to thrive, and at the same time, protects the society at large from the danger of systemic risk (especially in the

case of banking) or secures a high level of protection for policyholders in the case of the insurance industry.

Especially concerning the former (banking regulation), in the wake of Basel II and as a consequence of the

2007 - 2009 crisis, global regulatory systems (as well as the regulatory risk measures in use) were found

wanting; see for instance Acharya (2009). In our opinion, the purely analytical ansatz of regulatory risk

measures needed a widening taking decision theory into account. This precisely is the focus of our paper.

The standpoint of a regulator and that of a financial institution are essentially different. The former,

through its governmental mandate, is responsible to taxpayers and policyholders in the society whereas the

latter is logically mainly responsible to its shareholders. Although a financial institution may not necessar-

ily take decisions favoured by the regulator, the latter can influence decisions of the financial institution,

through a regulatory risk measure which assigns higher regulatory capital to a more socially dangerous risk.

More precisely, suppose that ρ is the regulatory risk measure chosen by the regulator, and X and Y are any

two risks the financial institution has to choose between. If ρ(X) < ρ(Y ), that is, the regulatory capital

of X is smaller than that of Y , then the financial institution has an incentive to choose X over Y , and by

doing so it reduces its regulatory capital. As such, ρ serves as an objective disutility functional for financial

1Risk measures as a tool for capital calculation was the original motivation in Artzner et al. (1999). Although regulatory capital

is the primary interpretation of risk measures in this paper, the mathematical results are not limited to such an interpretation.
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institutions to make decisions, and the regulator should thereby design a risk measure which encourages

well-understood prudent decisions over (less understood) risky ones. Therefore, a regulatory risk measure

serves dual purposes. First, by imposing an appropriate risk measure, a financial institution is encouraged

to take responsible financial decisions and it is penalized through regulatory capital charges for taking risky

decisions; second, the risk measure determines an appropriate level of regulatory capital for financial insti-

tutions to protect the society from possible consequences of insolvency. The latter requires more capital for

risks with higher potential damage to society.

To fulfill both the purposes above, a regulatory risk measure should reflect desirable preferences over

risks, or, in other words, notions of risk aversion.2 As such, the main question that we address is the

following:

What are appropriate notions of risk aversion for regulatory risk measures, and

how do we characterize a risk measure that is consistent with such notions of risk aversion?

Including the classic notion of second-order stochastically dominance (SSD), four closely related for-

mulations of risk aversion with different interpretations are considered in this paper, some from the perspec-

tive of decision principles for financial institution and some from the perspective of expected impact on the

society. For monetary risk measures, the four formulations of risk aversion are shown to be mathematically

equivalent. A monetary risk measure which respects the above risk aversion (in particular, consistent with

SSD) is referred to as a consistent risk measure. The paper is dedicated to an axiomatic study of consistent

risk measures, its properties and relations to other risk measures, and its applications.

1.2 Contribution and structure of the paper

In Section 2, consistent risk measures are formally defined, and four formulations of risk aversion

are shown to be equivalent in this setting. For risk measures used in regulatory practice, this consistency

distinguishes VaR (non-consistent) from ES (consistent).3

In Section 3, we characterize the class of consistent risk measures by showing that a monetary risk

measure ρ on the set of bounded random variables X is consistent if and only if it has a representation

ρ(X) = min
g∈G

sup
α∈[0,1]

{ψα(X)− g(α)}, X ∈ X ,

2Here, we mainly speak of risk aversion from the regulator’s side. More precisely, regulators would naturally like to see more

risk aversion from the risk managers. It might be unrealistic to expect individual risk managers to be risk-averse without any

regulatory enforcement.
3It is well known that VaR and ES are also distinguished by convexity.
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where ψα is defined in (1.2) and the adjustment set G is a set of measurable functions mapping [0, 1] to

R. In a general sense, a risk-averse regulator or risk manager is essentially using a collection of Expected

Shortfalls up to some adjustments. The large class of consistent risk measures contains, but is not limited

to, law-invariant coherent as well as convex risk measures in the mathematical finance literature. With the

results in this paper, we arrive at a grand summary of representations for various classes of law-invariant risk

measures in Section 3.4.

Two applications highlighting consistent risk measures as a powerful tool are the risk sharing prob-

lem and the optimal investment problem. In Section 4, it is shown that for a total risk X shared by n

agents using consistent risk measures ρ1, . . . , ρn with adjustment sets G1, . . . ,Gn, respectively, an allocation

(X1, . . . , Xn) of X is Pareto-optimal if and only if
n∑
i=1

ρi(Xi) = min
g∈G1+···+Gn

sup
α∈[0,1]

{ψα(X)− g(α)}.

Throughout the paper, the sum of two sets G and H is defined as G +H = {g + h : g ∈ G, h ∈ H}. We

continue in Section 5 by solving optimal investment problems for consistent risk measures. It turns out that,

due to its ES-based representation, many optimal investment problems can be solved analytically, even if the

consistent risk measure itself is not convex, a surprisingly nice feature.

Some relevant discussions on consistent risk measures are provided in Section 6. Technical proofs are

put in Appendix A. In the main text, we focus our study on bounded risks; the generalization of our results

to unbounded risks is provided in Appendix B.

2 Putting risk aversion into risk measures

2.1 Monetary risk measures and acceptance sets

Throughout this paper, we work with an atomless probability space (Ω,A,P). A risk measure ρ is a

functional ρ : X → R, where X is the space of all bounded random variables in (Ω,A,P).4 The extension

of X to more general spaces (such as the space of integrable random variables) is discussed in Appendix

B. Throughout the paper, positive values of risks in X represent (discounted) losses and negative values

represent surpluses. We write X d
= Y if two random variables X and Y have the same law.

A monetary risk measure is a risk measure ρ on X satisfying the following two properties:

(M) Monotonicity: ρ(X) 6 ρ(Y ) for X,Y ∈ X , X 6 Y almost surely (a.s.);

(TI) Translation-invariance: ρ(X −m) = ρ(X)−m for all m ∈ R and X ∈ X .

4In this paper, almost surely equal random variables (under P) are treated as identical. Technically speaking, a bounded random

variable in this paper is an essentially bounded random variable under P.
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The property (M) is self-explanatory and is common in the literature on decision theory and risk measures.

(TI) reflects the interpretation that ρ(X) is the least amount of capital required to be injected to X so

that X − ρ(X) is an acceptable position, and hence injecting a cash flow of m units would reduce the

capital requirement by an amount of m. VaR and ES, defined via (1.1) and (1.2), satisfy (M) and (TI).5 In

decision theory, (TI) appears as a special case of the risk independence condition in Jia and Dyer (1996)

or the constant absolute risk aversion in Zank (2001). (M) and (TI) are widely assumed in the research of

regulatory risk measures; the reader is referred to Föllmer and Schied (2011, Chapter 4) and Delbaen (2012)

for a comprehensive treatment.

For any monetary risk measure ρ, its acceptance set is defined as Aρ = {X ∈ X : ρ(X) 6 0}, which

represents all risks acceptable (without requiring further capital) to a regulator using ρ to calculate regulatory

capital.

2.2 Risk aversion for decisions of financial institutions

We focus on three notions of risk aversion with different interpretations; they are later shown to be

equivalent. The first notion of risk aversion is described via second-order stochastic dominance (SSD). We

first recall the definition of SSD and the related concept of mean-preserving spread (MPS).6

Definition 2.1. For X,Y ∈ X , we say that X is second-order stochastically dominated by Y , denoted

as X ≺sd Y , if E[f(X)] 6 E[f(Y )] for all increasing convex functions f : R → R provided that both

expectations exist. If, in addition, E[X] = E[Y ], then we say that Y is a mean-preserving spread (MPS) of

X , denoted as X ≺mps Y .

The consistency with respect to SSD for risk measures is defined below.

(SC) SSD-consistency: ρ(X) 6 ρ(Y ) if X ≺sd Y , X,Y ∈ X .

(SC) is often termed strong risk aversion in economic decision theory. By using a risk measure satis-

fying (SC), a financial institution makes decisions consistent with the common notion of risk aversion, and

in particular, favours a risk with small variability over one with a large variability.

A closely related property is the consistency with respect to mean-preserving spread. It is not difficult

to show that for monetary risk measures, (SC) is equivalent to the following property (MC).

5(TI) is also called cash-additivity. The justification for (TI) may fail if there is randomness in the interest rate; see El Karoui

and Ravanelli (2009) and Cerreia-Vioglio et al. (2011) for cash-subadditive risk measures which also have a decision theoretic

foundation.
6Second-order stochastic dominance is also known as increasing convex order in probability theory and stop-loss order in

actuarial science. Mean-preserving spread is also known as convex order in probability theory.
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(MC) MPS-consistency: ρ(X) 6 ρ(Y ) if X ≺mps Y , X,Y ∈ X .

The second notion of risk aversion that we consider is described via conditional expectations. In the

context of coherent risk measures (see Section 3.2), it is under the name dilatation monotonicity in Leitner

(2004) and Cherny and Grigoriev (2007).

(DM) Dilatation monotonicity: ρ(X) 6 ρ(Y ) if (X,Y ) ∈ X 2 such that X = E[Y |X].

The property (DM) also describes a preference on the variability of a risk. If (X,Y ) is a martingale, then X

is more “predictable” than Y , leading to less variability; as such, it is natural to require that ρ(X) 6 ρ(Y )

for any risk measure ρ that penalizes more risky behaviour. (DM) can also be interpreted as a preference

about the maturity of financial investments with zero risk premium. For instance, let {Xt : t ∈ [0, T ]} be

the discounted price process of a security in an arbitrage-free financial market where {Xt : t ∈ [0, T ]} is a

martingale under P. Then (DM) implies that ρ(Xs) 6 ρ(Xt) for 0 6 s 6 t 6 T , i.e. the time-t price (far

future) is less preferable than the time-s price (near future) of the same security.

The third notion of risk aversion that we consider is related to portfolio diversification. We first recall

the definition of comonotonicity.

Definition 2.2. A random vector (X1, . . . , Xn) is called comonotonic if there exists a random variable Z

and non-decreasing functions f1, . . . , fn, such that Xi = fi(Z) almost surely for i = 1, . . . , n.

See Puccetti and Wang (2015) for more on comonotonicity and related properties. Comonotonic risks

represent risks that are not diversified. For instance, a portfolio consisting of a call option and a long position

of the underlying asset is not diversified at all (the call option price and the asset price are comonotonic in

standard models), and hence is not favourable. The following property encourages diversification of risks in

this sense.

(DC) Diversification consistency: ρ(X + Y ) 6 ρ(Xc + Y c) if X,Y,Xc, Y c ∈ X , X d
= Xc, Y d

= Y c, and

(Xc, Y c) is comonotonic.

(DC) is a natural requirement: putting two comonotonic (absolutely not diversified) risks Xc and Y c in a

portfolio results in a larger capital requirement compared to a portfolio consisting of risks X and Y , equal

to Xc and Y c in distribution, respectively, but not comonotonic. To the best of our knowledge, (DC) is not

explicitly formulated in the previous literature as a property of risk measures.

2.3 Risk aversion for expected impact on the society

The main purpose of regulatory capital is to reduce the negative impact on the economy of the society

when there is loss from financial institutions. Let X be the one-period risk taken by a financial institution
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and C is the amount of risk capital reserved for this risk. In a simplified way, loss to the society occurs when

the financial institution is insolvent, and the amount of loss is (X−C)+ := max{X−C, 0}. Typically, there

are multiple financial institutions in an economy with risks X1, . . . , Xn and respective capitals C1, . . . , Cn.

A regulator may then be interested in the total expected loss to the society,

E

[
n∑
i=1

(Xi − Ci)+

]
=

n∑
i=1

E [(Xi − Ci)+] . (2.1)

Thus, regulating towards a small total expected loss in (2.1) reduces to regulating towards small individual

expected losses of each institution.

(i) Loss from a single institution: Suppose that X and Y are two risks that a financial institution has to

decide between, and they satisfy E[(X−K)+] 6 E[(Y −K)+] for all K ∈ R. That is, no matter what

level of capital K this company holds, taking the risk Y always results in a larger expected loss than

taking the risk X . If C is an adequate amount of regulatory capital for a company taking risk X , then

the regulator has to require equal or more capital for taking the risk Y , in order to maintain the same

standard of solvency and to control impact on the society.

(ii) Fairness among institutions: Suppose that E[(X1 −K)+] > E[(X2 −K)+] for all K ∈ R, that is, the

first institution always has a worse expected impact on the society compared to the second institution,

if they were required to hold the same amount of capital. In view of fairness, it is then natural to require

more regulatory capital for the first institution.7

From both considerations (i) and (ii) and their social implications, it is important for the regulator to employ

(EI) Consistency with expected impact on the society: for X,Y ∈ X , ρ(X) 6 ρ(Y ) if E[(X −K)+] 6

E[(Y −K)+] for all K ∈ R.

Mathematically, (EI) is equivalent to (SC) (for instance, Shaked and Shanthikumar (2007, Theorem 4.A.3)

and Müller and Stoyan (2002, Theorem 1.5.7)); yet it further motivates us to consider the desirability of (SC)

for a regulator. Second order stochastic dominance can also be characterized in terms of ψα, α ∈ [0, 1], that

is, for X,Y ∈ X ,

X ≺sd Y ⇔ ψα(X) 6 ψα(Y ) for all α ∈ [0, 1]. (2.2)

See Theorem 4.A.3 of Shaked and Shanthikumar (2007).

7This consideration finds its similarity with the arguments for systemic expected shortfall in Acharya (2009), where individual

contribution to the total loss of the society is measured as regulatory capital. In this paper, we focus on regulatory risk measures for

individual companies at the micro level, albeit some arguments are consistent with the literature of systemic risk.
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2.4 Consistent risk measures

One may argue that each of (SC), (MC), (DM), (DC) and (EI) results in a natural property of a risk

measure that reflects a notion of risk aversion in financial regulation. Fortunately, for monetary risk measures

on X , the above properties are equivalent, and each of them implies the following property (LD).

(LD) Law-invariance: ρ(X) = ρ(Y ) if X,Y ∈ X and X d
= Y .

Theorem 2.1. For a monetary risk measure ρ on X , the properties (SC), (MC), (DM), (DC) and (EI) are all

equivalent. In turn, they imply that ρ satisfies (LD).

Some of the above equivalences can be easily seen from classic results in the literature of stochastic

orders, and others need a technical proof (see Appendix A.1). As the above properties are equivalent for

monetary risk measures onX , we concentrate on (SC) for this paper, and define the class of (SSD-)consistent

risk measures.

Definition 2.3. A consistent risk measure is a risk measure that satisfies (TI) and (SC).

Note that (SC) implies (M) by definition and hence a consistent risk measure is monetary. The first

example of consistent risk measures is the Expected Shortfall ψα, α ∈ [0, 1] defined in (1.2). This is a classic

result in the theory of stochastic orders; see for instance, Theorem 4.A.3 of Shaked and Shanthikumar (2007).

On the other hand, it is well known that the Value-at-Risk qα, α ∈ [0, 1) defined in (1.1) is not consistent.

The rest of this paper is dedicated to a comprehensive study of consistent risk measures.

3 Characterization of consistent risk measures

3.1 Representation of consistent risk measures via Expected Shortfalls

In this section we establish a representation of consistent risk measures based on Expected Shortfalls

ψα, α ∈ [0, 1] defined in (1.2).

Theorem 3.1. A risk measure ρ on X is a consistent risk measure if and only if it has the following repre-

sentation

ρ(X) = inf
g∈G

sup
α∈[0,1]

{ψα(X)− g(α)} , X ∈ X , (3.1)

where G is a set of measurable functions mapping [0, 1] to (−∞,∞]. Moreover, G in (3.1) can be chosen as

G = {gY : [0, 1]→ R, α 7→ ψα(Y ) | Y ∈ Aρ} , (3.2)

where Aρ is the acceptance set of ρ, and with this choice the infimum in (3.1) is attained as a minimum.
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Definition 3.1. The set G in (3.2) is called the adjustment set of a consistent risk measure ρ.

The main idea in the proof of Theorem 3.1 (in Appendix A.2) is to write the acceptance set of ρ as the

union of lower sets generated by each of the acceptable positions.

A few interesting observations can be made from Theorem 3.1. First, the Expected Shortfalls ψα,

α ∈ [0, 1] are the basis of any consistent risk measure. Second, by using a consistent risk measure, a

regulator or risk manager is essentially basing decisions on a collection of Expected Shortfalls ψα suitably

adjusted by functions from a set G. That is why we call G in (3.2) an adjustment set. Third, for a riskX ∈ X ,

ρ(X) 6 0 (that is, no further capital required) if and only if there exists g ∈ G such that ψα(X) 6 g(α) for

all α ∈ [0, 1]. Thus, a risk X is accepted by a regulator using ρ if and only if all of its Expected Shortfalls

do not exceed one of the pre-designed benchmarks g ∈ G. Note that g(α) may take the value ∞, making

ψα(X) 6 g(α) automatic. In this case, it is sufficient to check whether ψα(X) 6 g(α) for α ∈ [0, 1] such

that g(α) <∞, for instance, α = p1, . . . , pn and α = p in Examples 3.1 and 3.2 below, respectively.

Example 3.1 (Discrete version of the representation). For some numbers gi,j ∈ R and distinct numbers

pi ∈ [0, 1], i = 1, . . . , n, j = 1, . . . ,m, let G = {g1, . . . , gm} where for j = 1, . . . ,m,

gj(pi) = gi,j , i = 1, . . . , n and gj(α) =∞, α ∈ [0, 1] \ {p1, . . . , pn}.

A discrete version of (3.1) is obtained as

ρ(X) = min
g∈G

sup
α∈[0,1]

{ψα(X)− g(α)} = min
j=1,...,m

max
i=1,...,n

{ψpi(X)− gi,j}, X ∈ X . (3.3)

The formula (3.3) may be used to generate simple consistent risk measures by choosing the numbers pi and

gi,j , i = 1, . . . , n, j = 1, . . . ,m.

Example 3.2 (Expected Shortfall). For p ∈ [0, 1], the Expected Shortfall ψp itself has a representation in

Theorem 3.1. The natural choice of G is a singleton G = {gp} where

gp(p) = 0 and gp(α) =∞, α ∈ [0, 1] \ {p}.

To interpret G as the set of pre-designed benchmarks, a regulator decides whether a risk X is acceptable by

checking whether ψp(X) 6 0, the only criterion imposed by G. Note that the set G in (3.1) is not unique in

general. For the risk measure ψp, its adjustment set is given by (implied by Lemma 5.1 in Section 5),

G = {g : [0, 1]→ R | g(p) 6 0, g is increasing, continuous, and α 7→ (1− α)g(α) is concave},

which is different from {gp} above.
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3.2 Relation to other risk measures

In this section, we connect the consistent risk measures to the classic notions of coherent and convex

risk measures in Artzner et al. (1999), Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002).

We first review some classic properties of risk measures considered in the literature. For a risk measure ρ,

the following properties are relevant:

(PH) Positive homogeneity: ρ(λX) = λρ(X) for all λ ∈ (0,∞) and X ∈ X ;

(SA) Subadditivity: ρ(X + Y ) 6 ρ(X) + ρ(Y ) for all X,Y ∈ X ;

(CX) Convexity: ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ) for all λ ∈ [0, 1] and X,Y ∈ X .

Definition 3.2. A risk measure is called a convex risk measure if it satisfies (M), (TI) and (CX). A risk

measure is called a coherent risk measure if it satisfies (M), (TI), (PH) and (CX).

For α ∈ [0, 1], the Value-at-Risk qα defined in (1.1) satisfies (M), (TI), (LD) and (PH) and the Expected

Shortfall ψα defined in (1.2) further satisfies (CX) and (SA). (CX) and (SA), which favour diversification

of risks, are sometimes argued as properties respecting risk aversion. Indeed, as implied by Proposition 3.2

below, any law-invariant convex risk measure on X is consistent.8

Proposition 3.2. A law-invariant convex risk measure on X is consistent, and so is the maximum, the

minimum or any convex combination of law-invariant convex risk measures.

In view of Proposition 3.2, a consistent risk measure can be interpreted naturally from two different

perspectives:

(i) In connection to law-invariant convex risk measures: the convexity (CX) is weakened to (SC); all other

properties are preserved.

(ii) In connection to risk-averse expected utility functions: it adds the translation-invariance (TI) but it

does not assume the independence axiom (along with the continuity axiom) as in the von Neumann-

Morgenstern expected utility theory.

8The proof of this proposition is straightforward and essentially known: By Föllmer and Schied (2011, Corollary 4.65), a law-

invariant convex risk measure with the Fatou property on the space of random variables with finite p-th moment, p ∈ [1,∞],

is consistent; see also Bäuerle and Müller (2006, Theorem 4.2). From Jouini et al. (2006) and Delbaen (2009, 2012), the Fatou

property can be dropped for law-invariant convex risk measures on X . It is then clear from Section 3.1 that the maximum, the

minimum or a convex combination of law-invariant convex risk measures is also consistent.
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From Theorem 3.1 and Proposition 3.2, we obtain the following characterization of consistent risk

measures via convex risk measures.

Theorem 3.3. A risk measure ρ on X is a consistent (resp. positively homogeneous consistent) risk measure

if and only if it has the following representation

ρ(X) = min
τ∈C

τ(X), X ∈ X , (3.4)

where C is a set of law-invariant convex (resp. coherent) risk measures on X .

Remark 3.1. It was mentioned in Section 7 of Bäuerle and Müller (2006) that the characterization of risk

measures with convexity replaced by consistency is an open question, which is answered by our Theorems

3.1 and 3.3.

The acceptance set of ρ in (3.4) is the union of the acceptance sets of τ ∈ C. The reason why a

consistent risk measure is not necessarily convex is also revealed by the acceptance sets: the union of convex

sets need not be convex; see Example 3.3 below for an explicit construction.

Example 3.3 (A non-convex consistent risk measure). For X ∈ X , let

ρ1(X) =
1

2
q1(X) +

1

2
E[X], ρ2(X) = ψ1/2(X), and ρ(X) = min{ρ1(X), ρ2(X)}.

From Proposition 3.2, ρ is a consistent risk measure. To see that ρ is not convex, take X ∼ Bernoulli(1/2),

Y ∼ Bernoulli(1/6) such that (X,Y ) is comonotonic. We can calculate

ρ1(2X) =
3

2
, ρ1(2Y ) =

7

6
, ρ2(2X) = 2, ρ2(2Y ) =

2

3
and ρ1(X + Y ) = ρ2(X + Y ) =

4

3
.

Hence, 2ρ(X + Y ) = 8/3 > 13/6 = ρ(2X) + ρ(2Y ), implying that ρ is not convex.

Finally, as both law-invariant convex as well as coherent risk measures are consistent, they can be char-

acterized via their adjustment sets. This yields a new representation for law-invariant convex and coherent

risk measures which we could not trace in the literature.

Proposition 3.4. A law-invariant risk measure ρ on X is a convex (resp. coherent) risk measure if and only

if it has a representation

ρ(X) = min
g∈G

sup
α∈[0,1]

{ψα(X)− g(α)} , X ∈ X , (3.5)

in which G is a convex set (resp. convex cone) of measurable functions mapping [0, 1] to (−∞,∞].

Remark 3.2. It is straightforward to see that the statements in Theorems 3.1 and 3.3 and Proposition 3.4 hold

true if the minimum in (3.4) or (3.5) is replaced by an infimum, like in (3.1). In that case, the sets G and C

can always be conveniently chosen as countable sets. A proof of this statement is given in Appendix A.2.
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In the next two examples, we illustrate situations where the representation (3.4) appears naturally.

Example 3.4 (Order statistics of risk assessments). Since any order statistic of finitely many objects can be

written as a minimax,9 the infimum in (3.4) can be interpreted as any order statistic of convex risk measures,

which does not need to be the smallest one. For a concrete example, suppose that there are 10 experts

evaluating a risk, each using a convex risk measure ρi, i ∈ I = {1, . . . , 10}. Taking the largest of all

evaluations, one arrives at a convex risk measure ρ[1] = maxi∈I ρi. Taking the second largest, one arrives

in a consistent risk measure, which may not be convex. Indeed, by noting that the maximum of convex risk

measures is still convex, the second-largest value of ρi, i ∈ I can be written in the form of (3.4) as

ρ[2](X) = min
j∈I

max
i∈I\{j}

ρi(X), X ∈ X .

Certainly, ρ[2] may not be as conservative as ρ[1]; the disadvantage of ρ[1] is that it may be overly conservative

or not robust. In many applications, not necessarily in finance, the largest value of several assessments is

discarded (for a non-financial example, the Olympics judges for diving). This shows that the use of consistent

risk measures offers a great flexibility from very conservative to moderately conservative risk assessment.

Example 3.5 (Competition). This example shows that (3.4) appears naturally in the presence of competition

for risk evaluations. Suppose that several insurance companies offer insurance coverage for a certain type

of loss, and each of them uses a law-invariant convex risk measure to price the contract. An individual

who seeks insurance coverage naturally compares the prices offered by different insurance companies, and

choose the one that is the most favourable, given all other conditions fixed. Therefore, the effective pricing

risk measure is the minimum of the risk measures of each company, which belongs to the form of (3.4). As a

related observation, convexity of the effective risk measure is often lost in the presence of risk minimization;

see Müller et al. (2017) for a similar observation in the context of utility maximization.

Remark 3.3. In the following remarks we discuss the closely related concepts of convexity and consistency.

1. In case convexity is not satisfied (e.g. Examples 3.4-3.5), consistency helps to understand alternative

requirements for a reasonable risk measure and its properties. As illustrated by the main results in

our paper, many nice properties of a convex risk measure remain if it is replaced by a consistent

one. Moreover, we obtain new representation for convex risk measures, which are useful in some

optimization problems (see the portfolio problem in Section 5).

9Generally, the j-th order statistic of n objects a1, . . . , an can be written as a[j] = minkmaxi∈Ik ai where Ik, k =

1, . . . ,
(

n
n−j+1

)
are all sets of n − j + 1 indices. Also note that, by Proposition 3.2, any order statistic (smallest, largest, second-

largest, median, etc.) of finitely many convex risk measures, or a convex combination of them, is a consistent risk measure.
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2. Convexity (or quasi-convexity) means that pooling any losses together should not increase the total

risk. We can compare this requirement with consistency, especially its equivalent formulation (DC)

which addresses the issue of diversification. Recall that (DC) corresponds to pooling losses with

any dependence together should not be worse than pooling comonotonic ones. Hence, consistent

risk measures satisfy a weaker form of rewarding diversification, compared to convex risk measures.

Note also that (DC) is always more flexible and easier to justify than (CX) because it is a weaker

requirement.

3. From the perspective of decision making, convexity (CX) does not directly compare the riskiness of

two random losses.10 On the other hand, all the five equivalent properties described for consistent

risk measures in Section 2 refer to direct comparisons of risks satisfying some conditions. Hence,

consistent risk measures can be seen as a most natural form of risk measures based on direct risk

comparison.

To summarize, if for some reason convexity is dropped, then the classic interpretation that putting any losses

together reduces the total risk is lost. The advantages of studying consistent risk measures, on the other hand,

are the flexibility to include many other examples, an axiom that is easier to justify, and new representation

results of (possibly convex) risk measures (Theorem 3.1 and Proposition 3.4). It should be clear, however,

that it is not our intention to suggest dropping convexity in regulation.

3.3 The Fatou property of consistent risk measures

In this section, we show that a consistent risk measure necessarily satisfies the following Fatou property.

(FP) Fatou property: lim inf
n→∞

ρ(Xn) > ρ(X) if {Xn}n∈N is a bounded sequence in X , and Xn → X ∈ X

a.s. as n→∞.

It is well known (e.g. p.40 of Delbaen (2012)) that, for monotone risk measures, the Fatou property is

equivalent to continuity from below, that is,

(CB) Continuity from below: lim
n→∞

ρ(Xn) = ρ(X) if {Xn}n∈N ⊂ X , and Xn ↗ X ∈ X a.s. as n→∞.

The Fatou property is essential to the robust representation of convex risk measures; see e.g. Section

4.2 of Föllmer and Schied (2011). On the set X of bounded random variables, a law-invariant convex risk

measure always satisfies the Fatou property; see Theorem 2.1 of Jouini et al. (2006) for a standard probability

10Note that convexity cannot be mathematically described via direct comparison between risks, since consistency with any partial

order is preserved by taking a minimum, but convexity is not.
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space and Theorem 30 of Delbaen (2012) for a general probability space. In the next result, we show that a

consistent risk measure also enjoys this property.

Theorem 3.5. A consistent risk measure on X always satisfies the Fatou property.

Since law-invariant convex risk measures are consistent, Theorem 3.5 implies that law-invariant convex

risk measures satisfies the Fatou property, as shown in the literature mentioned above. The proof of Theorem

3.5 relies on the ES-based representation in Theorem 3.1, and in particular, we use the convenient fact that

the infimum in (3.1) can be attained. Another ingredient of the proof is the following simple lemma, which

we present here as it may be of independent interest. It might be interesting to note that the proof of Theorem

3.5 does not need to use the aforementioned fact that law-invariant convex risk measures always satisfy (FP).

Lemma 3.6. For {Xn}n∈N ⊂ X and X ∈ X , if Xn ↗ X ∈ X a.s. as n → ∞, then ψα(Xn) → ψα(X)

uniformly in α ∈ [0, 1].

3.4 Representation results for law-invariant risk measures

In the axiomatic theory of law-invariant risk measures, one of the most elegant results is the Kusuoka

representation based on duality, established in Kusuoka (2001) for coherent risk measures and generalized

in Frittelli and Rosazza Gianin (2005) for convex risk measures. Consistent risk measures have a similar

representation, although not based on duality, and this is already reflected in Theorems 3.1 and 3.3. A key

property for the Kusuoka representation is comonotonic additivity.

(CA) Comonotonic additivity: ρ(X + Y ) = ρ(X) + ρ(Y ) if (X,Y ) ∈ X 2 is comonotonic.

In the following, ρ is a law-invariant risk measure on X . Below, (i)-(iii) are existing representations of risk

measures on X , whereas (iv) is new and it is straightforward from Theorem 3.3.

(i) ρ is a comonotonic additive and coherent risk measure if and only if it has a representation (Theorem

7 of Kusuoka (2001)):

ρ =

∫ 1

0
ψαdµ(α), (3.6)

where µ is a probability measure on [0, 1]. ρ in (3.6) is called a spectral risk measure.

(ii) ρ is a coherent risk measure if and only if it has a representation (Theorem 4 of Kusuoka (2001)):

ρ = sup
µ∈Q

{∫ 1

0
ψαdµ(α)

}
, (3.7)

where Q is a set of probability measures on [0, 1].

14



(iii) ρ is a convex risk measure if and only if it has a representation (Theorem 7 of Frittelli and Rosazza

Gianin (2005)):

ρ = sup
µ∈P

{∫ 1

0
ψαdµ(α)− v(µ)

}
, (3.8)

where P is the set of all probability measures on [0, 1], and v : P → R ∪ {+∞} is a function.

(iv) ρ is a consistent risk measure if and only if it has a representation:

ρ = inf
v∈V

sup
µ∈P

{∫ 1

0
ψαdµ(α)− v(µ)

}
, (3.9)

where P is the set of all probability measures on [0, 1], and V is a set of functions mapping P to

R ∪ {+∞}.

We make the following observations about the new representation (iv).

(a) The representation (3.9) is not based on duality and hence it does not belong to the class of robust

representations in the sense of Föllmer and Schied (2011). The representation (3.1) in Theorem 3.1 is a

special form of (3.9), implying that (3.9) can be simplified via replacing the set P of measures on [0, 1]

by point-masses on α ∈ [0, 1].

(b) V in (3.9) can be chosen as

V =

{
vX : P → R ∪ {+∞}, µ 7→

∫ 1

0
ψα(X)dµ(α)− ρ(X), X ∈ X

}
. (3.10)

(c) A consistent risk measure ρ is convex if and only if it has a representation (3.9) in which V is a convex

set. The proof is similar to that of Proposition 3.4. Note that for a law-invariant convex risk measure ρ,

v in (3.8) can be chosen as (Frittelli and Rosazza Gianin, 2005)

v(µ) = sup
X∈X

{∫ 1

0
ψp(X)dµ(p)− ρ(X)

}
= sup

v̄∈V
v̄(µ) with V as in (3.10).

That is, the infimum and the supremum in (3.9) can be exchanged.

The relationships among these law-invariant risk measures (RM) on X are summarized below.

(TI)+(SC) = consistent RM
+(CX)−→ convex RM

+(PH)−→ coherent RM
+(CA)−→ spectral RM.

Note that (CA) alone is sufficient for a consistent RM to be a spectral RM, that is,

consistent RM
+(CA)−→ spectral RM,
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and this was implicitly established in Yaari (1987) in the context of choice under risk. The corresponding

representations are summarized below.

(TI)+(SC) = inf
v∈V

sup
µ∈P

{∫ 1

0
ψαdµ(α)− v(µ)

}
+(CX)−→ sup

µ∈P

{∫ 1

0
ψαdµ(α)− v(µ)

}
+(PH)−→ sup

µ∈Q

{∫ 1

0
ψαdµ(α)

}
+(CA)−→

∫ 1

0
ψαdµ(α),

where µ, V , Q and P are some functions and sets described through (3.6)-(3.9) in (i)-(iv).

4 Risk sharing via consistent risk measures

In this section, we investigate risk sharing problems for n agents whose preferences are described by

minimizing n different risk measures. Most of the literature on risk sharing focuses on concave utilities or

convex risk measures. We are interested in a setting under which risk measures are not necessarily convex,

but are consistent.

For X ∈ X , let An(X) = {(X1, . . . , Xn) ∈ X n : X1 + · · · + Xn = X}, that is, An(X) is the

set of all allocations of a risk X to n agents. As in Barrieu and El Karoui (2005) and Delbaen (2012), the

inf-convolution of risk measures ρ1, . . . , ρn is defined as

�ni=1ρi(X) = inf

{
n∑
i=1

ρi(Yi) : (Y1, . . . , Yn) ∈ An(X)

}
, X ∈ X . (4.1)

It is immediate to check that �ni=1ρi is a monetary risk measure given that ρ1, . . . , ρn are monetary risk

measures and �ni=1ρi is finite-valued. Let ρ∗(X) = �ni=1ρi(X), X ∈ X . For monetary risk measures

ρ1, . . . , ρn and X ∈ X , an allocation (X1, . . . , Xn) ∈ An(X) is optimal, if
∑n

i=1 ρi(Xi) = ρ∗(X). This

notion is equivalent to Pareto-optimal for monetary risk measures; see Jouini et al. (2008).

We summarize the relevant results in Barrieu and El Karoui (2005), Jouini et al. (2008), Filipović and

Svindland (2008) and Delbaen (2012) below. If ρ1, . . . , ρn are law-invariant convex risk measures on X ,

then (a) there exists an optimal allocation (X1, . . . , Xn) ∈ An(X) which is comonotonic; (b) ρ∗ is a law-

invariant convex risk measure, and (c) the penalty function (the Fenchel transformation, as in Föllmer and

Schied (2002)) of ρ∗ is the sum of the penalty functions of ρ1, . . . , ρn. The above results (a)-(c) can be

generalized to consistent risk measures. Most importantly, the adjustment sets satisfy property (c), namely,

the adjustment set of ρ∗ is the sum of those of ρ1, . . . , ρn.

Theorem 4.1. Suppose that ρ1, . . . , ρn are consistent risk measures on X .
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(i) For X ∈ X , let Acn(X) = {(X1, . . . , Xn) ∈ An(X) : (X1, . . . , Xn) is comonotonic}. Then

ρ∗(X) = inf

{
n∑
i=1

ρi(Yi) : (Y1, . . . , Yn) ∈ Acn(X)

}
, X ∈ X .

(ii) ρ∗ is finite-valued, and for X ∈ X , there exists a comonotonic optimal allocation in An(X).

(iii) ρ∗ is a consistent risk measure with acceptance set
∑n

i=1Ai, where Ai is the acceptance set of ρi,

i = 1, . . . , n.

(iv) The adjustment set of ρ∗ is
∑n

i=1 Gi, where Gi is the adjustment set of ρi, i = 1, . . . , n. This implies

ρ∗(X) = min
g∈G1+···+Gn

sup
α∈[0,1]

{ψα(X)− g(α)} , X ∈ X . (4.2)

Theorem 4.1 shows that the representation in Theorem 3.1 is powerful in the context of risk sharing.

Similarly to the case of convex risk measures (Barrieu and El Karoui, 2005 and Jouini et al., 2008), it is gen-

erally not easy to find explicitly the optimal allocation, although it is shown to exist in Acn(X). Nonetheless,

for an optimal allocation (X1, . . . , Xn) ∈ An(X), ρ1(X1) + · · ·+ ρn(Xn) is equal to ρ∗(X), which can be

calculated using (4.2). This can be used to check the optimality of a specific allocation in An(X) without

solving for an optimal allocation.

5 Optimal investment via consistent risk measures

In this section, we consider the problem of minimizing a consistent risk measure in the context of

optimal investment. More precisely, we consider the problem

to minimize: ρ(X) over X ∈ X subject to EQ[X] > x0, (5.1)

where x0 is a constant, Q� P, and ρ is a consistent risk measure.

Remark 5.1. It is well known that Problem (5.1) is equivalent to a problem of optimal portfolio investment

in a complete financial market. We briefly explain this connection. Let (Ω, {Ft}t∈[0,T ],P) be a filtered

probability space, F0 is P-trivial (i.e. either P(A) = 0 or P(A) = 1 for all A ∈ F0), Q ∼ P be the

unique martingale measure in the financial market, and XT (x) be the set of value processes of bounded self-

financing portfolios on [0, T ] with initial value at most x ∈ R. Without loss of generality we assume the risk-

free interest rate is zero. A classic optimal investment problem is to minimize ρ(−YT ) over Y ∈ XT (y0) for

some initial budget y0 of the investor. Via the martingale approach (e.g. Föllmer et al. (2009)), this problem

can be translated to (5.1) where x0 = −y0 and X is the set of all bounded FT -measurable random variables.
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Problem (5.1) and its variants for convex, coherent, or distortion risk measures has been studied in the

literature; see e.g. Schied (2004), He and Zhou (2011), Föllmer and Schied (2011) and Embrechts et al.

(2018). Analytical solutions to Problem (5.1) for generic non-convex risk measures are rarely available as

it involves non-convex optimization. With the help of Theorem 3.1, we are able to solve Problem (5.1) for

consistent risk measures, which include many non-convex risk measures.

We first look at the basic ingredients in the representation of Theorem 3.1. Let G∗ be the set of increas-

ing continuous functions g : [0, 1]→ R such that the function ĝ : [0, 1]→ R, α 7→ (1− α)g(α) is concave.

Throughout the section, we write Lg as the left-derivative of ĝ, implying Lg(α) = (1− α)g′(α)− g(α) for

α ∈ [0, 1] a.e., noting that g is a.e. differentiable. For g ∈ G∗, we define a risk measure ρg by

ρg(X) = sup
α∈[0,1]

{ψα(X)− g(α)}, X ∈ X .

Note that ρg is convex, and it is finite-valued on X because E[X]− g(0) 6 ρg(X) 6 ess-sup(X)− g(0).

Lemma 5.1. For any g ∈ G∗ and any uniform random variable U on [0, 1], the random variable Y =

−Lg(U) satisfies ψα(Y ) = g(α) for α ∈ [0, 1].

As a consequence of Lemma 5.1, for a function g on [0, 1], g ∈ G∗ if and only if there exists a bounded

random variable Y such that ψα(Y ) = g(α) for α ∈ [0, 1]. Hence, the adjustment set in (3.2) of any

consistent risk measure is a subset of G∗.

Below we show that Problem (5.1) admits explicit solutions for the risk measure ρg. For this, we first

fix some notation. Let U be a uniform random variable on [0, 1] such that (U,dQ/dP) is comonotonic. Such

a random variable U always exists in an atomless probability space (see Lemma A.28 of Föllmer and Schied

(2011)) and U is a.s. unique if dQ/dP is continuously distributed. Define two measures ν and µ on B([0, 1])

by, for t ∈ [0, 1], ν([0, t]) = qt(dQ/dP) and dµ
dν (t) = 1− t. Via integration by parts, one can check

µ([0, 1]) =

∫ 1

0
(1− α)dqα(dQ/dP) + q0(dQ/dP) =

∫ 1

0
qα(dQ/dP)dα = EQ[1] = 1, (5.2)

and hence µ is a probability measure on B([0, 1]). Note that for any bounded measurable function g on [0, 1],∫ 1

0
g(α)dµ(α) =

∫ 1

0
g(α)(1− α)dν(α) = g(0)q0(dQ/dP) +

∫ 1

0
g(α)(1− α)dqα(dQ/dP). (5.3)

Proposition 5.2. For g ∈ G∗, the problem

to minimize: ρg(X) over X ∈ X subject to EQ[X] > x0, (5.4)

admits a solution

X∗ = −Lg(U) + x0 −
∫ 1

0
g(α)dµ(α),
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and Problem (5.4) has a minimal value ρg(X∗) = x0−
∫ 1

0 g(α)dµ(α). Moreover, if dQ/dP is continuously

distributed, then X∗ is the a.s. unique solution to Problem (5.4).

With the help of Proposition 5.2, we can establish the solution to Problem (5.1) for consistent risk mea-

sures. Recall that, by Theorem 3.1 and Lemma 5.1, a consistent risk measure ρ always has a representation

ρ = ming∈G ρg for some G ⊂ G∗.

Theorem 5.3. Suppose that ρ is a consistent risk measure with representation ρ = ming∈G ρg where G ⊂ G∗.

(i) Problem (5.1) has an infimum value given by

inf{ρ(X) : X ∈ X , EQ[X] > x0} = x0 − sup
g∈G

∫ 1

0
g(α)dµ(α).

(ii) Problem (5.1) admits a solution if and only if arg maxg∈G
∫ 1

0 g(α)dµ(α) 6= ∅.

(iii) If g∗ ∈ arg maxg∈G
∫ 1

0 g(α)dµ(α), then a solution to Problem (5.1) is given by

X∗ = −Lg∗(U) + x0 −
∫ 1

0
g∗(α)dµ(α). (5.5)

(iv) If dQ/dP is continuously distributed, then any solution to Problem (5.1) has the form (5.5) a.s. for

some g∗ ∈ arg maxg∈G
∫ 1

0 g(α)dµ(α).

Below present two examples of Theorem 5.3, one addressing the case of an Expected Shortfall, and the

other regarding non-existence of solutions to Problem 5.1.

Example 5.1 (Optimal investment for Expected Shortfall). Suppose that ρ = ψp for some p ∈ (0, 1) and

for simplicity, we write qα = qα(dQ/dP) for α ∈ [0, 1]. Problem (5.1) has a constant solution X∗ = x0

if q1 6 1
1−p and it has no solution if q1 >

1
1−p . This result is known in Proposition 6 of Embrechts et al.

(2018) based on a probabilistic approach. Below we show this statement using Theorem 5.3. Recall that

ψp = ming∈G ρg where G = {g ∈ G∗ : g(p) 6 0} from Example 3.2.

(i) q1 6 1
1−p . For g ∈ G, g(p) 6 0 implies ĝ(p) 6 0. Together with the fact that ĝ is concave and

ĝ(0) = 0, we conclude that ĝ is increasing on [0, p]. Note that∫ 1

0
g(α)dµ(α) =

∫ 1

0
g(α)(1− α)dν(α) =

∫ 1

0
ĝ(α)dν(α). (5.6)

Recall that ν([0, 1]) = q1, and (5.2) implies
∫ 1

0 αdν(α) =
∫ 1

0 dν(α) −
∫ 1

0 (1 − α)dν(α) = q1 − 1.

Since ĝ is concave, by Jensen’s inequality and, we have∫ 1

0

1

q1
ĝ(α)dν(α) 6 ĝ

(∫ 1

0

1

q1
αdν(α)

)
= ĝ

(
1

q1
(q1 − 1)

)
= ĝ

(
1− 1

q1

)
. (5.7)
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Noting that 1− 1
q1
6 1− (1− p) = p and ĝ is increasing on [0, p], (5.6) and (5.7) give∫ 1

0
g(α)dµ(α) =

∫ 1

0
ĝ(α)dν(α) 6 q1ĝ

(
1− 1

q1

)
6 q1ĝ(p) 6 0.

Therefore, the constant function g∗ = 0 maximizes
∫ 1

0 g(α)dµ(α) over g ∈ G. By Theorem 5.3 (iii),

X∗ = x0 is a solution to Problem (5.1).

(ii) q1 >
1

1−p . For n ∈ N, take gn(α) = nmin
{

1
1−α , n

}
− n

1−p , α ∈ [0, 1]. Clearly, gn is an increasing

function and ĝn is concave. Hence, gn ∈ G. We can calculate

1

n

∫ 1

0
gn(α)dµ(α) =

∫ 1

0
min{1, n(1− α)}dν(α)− 1

1− p
.

Therefore, by the Bounded Convergence Theorem,

lim
n→∞

1

n

∫ 1

0
gn(α)dµ(α) = q1 −

1

1− p
> 0.

As a consequence,

sup
g∈G

∫ 1

0
g(α)dµ(α) > lim

n→∞

∫ 1

0
gn(α)dµ(α) =∞.

By Theorem 5.3 (ii), Problem (5.1) has no solution.

Example 5.2 (Non-existence of solutions). Problem (5.1) obviously does not have a solution if inf{ρg(X) :

X ∈ X , EQ[X] > 0} = −∞. In addition, it may not have a solution even if inf{ρg(X) : X ∈ X , EQ[X] >

0} > −∞, as we shall see from this example. Assume that x0 = 0, dQ/dP = 2U where U is a uniform

random variable on [0, 1], and for n ∈ N, let gn(α) = min{ 1
1−α , n}, α ∈ [0, 1]. Define ρ = infn∈N ρgn .

Using Theorem 5.3, we can calculate inf{ρg(X) : X ∈ X , EQ[X] > 0} > −2. On the other hand, the

above infimum turns out to be not attainable, and hence Problem (5.1) does not have a solution. Details of

this example are provided in Appendix A.4.

Remark 5.2. Generally, for a set G of measurable functions on [0, 1], the formula ρ = ming∈G ρg always

defines a consistent risk measure given that ρ is finite-valued (see Theorem 3.1), even if G is not a subset of

G∗. In this case, Proposition 5.2 and Theorem 5.3 may not be directly applied, since the construction of X∗

in Proposition 5.2 relies on the fact that G ⊂ G∗ so that ψα(−Lg(U)) = g(α) for all α ∈ [0, 1]. Hence, in

order to apply Theorem 5.3, one needs to first write ρ as the minimum of ρg for g in a subset of G∗, which is

always possible as a consequence of Theorem 3.1 and Lemma 5.1.

6 Discussion

There are extensive recent debates on the desirability of VaR and ES as the standard regulatory risk

measure in both banking and insurance; see Embrechts et al. (2014), BCBS (2016) and IAIS (2014). The
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criterion for a desirable risk measure used in banking and insurance regulation may vary, depending on

particular considerations and circumstances. One may need to consider mathematical simplicity, statistical

and computational tractability, aggregation and systemic effects, model uncertainty, optimization properties,

capital allocation and consistency of risk ranking. To this discussion we add that a suitable risk measure

applied in regulatory practice should encourage socially responsible financial decisions, and this can be

reflected in consistency with respect to certain risk ordering principles, among which the equivalent notions

of risk aversion in this paper serve as a natural candidate. We illustrate with our main results that this

requirement is weaker and more flexible than convexity, typically assumed in the literature. For some recent

academic discussions on the desirability of VaR, ES and other risk measures in regulation, we refer to Cont

et al. (2010), Kou and Peng (2016), Fissler and Ziegel (2016), Embrechts et al. (2018) and the references

therein.
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A Proofs of theorems, lemmas and propositions

A.1 Proofs in Section 2

Proof of Theorem 2.1. (i) We first show that each of (SC), (DM) and (DC) implies (LD).

1. (SC)⇒(LD): if X,Y ∈ X satisfy X d
= Y , then X ≺sd Y and Y ≺sd X . Hence ρ(X) = ρ(Y ).

2. (DM)+(M)+(TI)⇒(LD): by Cherny and Grigoriev (2007, Theorem 1.1), a dilatation monotone and

‖ · ‖∞-continuous (that is, limn→∞ ρ(Xn) = ρ(X) for any sequence Xn ∈ X satisfying ‖Xn −

X‖∞ := ess-sup|Xn − X| → 0 as n → ∞) function on X is law-invariant, and we note that a

monetary risk measure is always ‖ · ‖∞-continuous.

3. (DC)⇒(LD): take X,Y ∈ X and X d
= Y . Since (Y, 0) is comonotonic, (DC) implies that ρ(X +

0) 6 ρ(Y + 0), and thus ρ(X) 6 ρ(Y ). By symmetry, ρ(Y ) 6 ρ(X). This shows that ρ satisfies
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(LD).

(ii) (MC)⇔(SC): (M) and (MC) are equivalent to (SC) by the Separation Theorem in Shaked and Shan-

thikumar (2007, Theorem 4.A.6).

(iii) (SC)⇔(EI): (SC) and (EI) are equivalent by Shaked and Shanthikumar (2007, Theorem 4.A.3).

(iv) (MC)⇔(DM): It suffices to show that (MC) is equivalent to (DM)+(LD), which follows from the

martingale representation of convex order in Shaked and Shanthikumar (2007, Theorem 3.A.4).

(v) (SC)⇔(DC): It is easy to verify (SC)⇒(DC) since X+Y ≺mps X
c+Y c for all (X,Y,Xc, Y c) ∈ X 4

such that X d
= Xc, Y d

= Y c, and (Xc, Y c) is comonotonic; see Dhaene et al. (2002). To show

(DC)⇒(SC), let X, Y ∈ X be two random variables such that X ≺mps Y . We shall show ρ(X) 6

ρ(Y ) for the following three cases.

Case 1. Assume that X and Y take values in finite sets and satisfy

Y = X − δ11A1 + δ21A2 , (A.1)

where δ1, δ2 > 0 are constants, X takes respective constant values x1 and x2 in A1 and A2

such that x1 6 x2, and A1, A2 ∈ F are two disjoint sets such that X ≺mps Y , i.e., δ1P(A1) =

δ2P(A2). In this case, Y is called a simple mean-preserving spread ofX (see Müller and Scarsini,

2001).

(1a) If δ1 = δ2 =: δ, i.e., P(A1) = P(A2), denote A0 = {X 6 x2} ∩ Ac1 ∩ Ac2, A3 = {x2 <

X 6 x2 + δ}, A4 = {X > x2 + δ}, and define random variables W1, W2, W c
1 and W c

2 as

W1 = W c
1 = (X + δ)1A0 + x11A1 + (x2 + δ)1A2∪A3 +X1A4 ,

W2 = −δ1A0∪A2 + (X − x2 − δ)1A3 , W
c
2 = −δ1A0∪A1 + (X − x2 − δ)1A3 .

It is easy to see X = W1 +W2, Y = W c
1 +W c

2 a.s., Wi
d
= W c

i , i = 1, 2 from P(A1) = P(A2).

Also, notice that ∪4
i=0Ai = Ω, and

[W c
1 |A0 ∪A1] 6 x2 + δ = [W c

1 |A2 ∪A3] 6 [W c
1 |A4], a.s.,

[W c
2 |A0 ∪A1] = −δ 6 [W c

2 |A3] 6 0 = [W c
2 |A2 ∪A4], a.s.

It follows that W c
1 and W c

2 are comonotonic. Hence, we have

ρ(X) = ρ(W1 +W2) 6 ρ(W c
1 +W c

2 ) = ρ(Y ).

22



(1b) If δ1 6= δ2, letA11 ⊂ A1 andA21 ⊂ A2 such that P(A11) = P(A21) = min{P(A1),P(A2)},

and define X1 as

X1 = X −min{δ1, δ2}1A11 + min{δ1, δ2}1A21 .

That is, if δ1 < δ2, then A21 = A2, X1(ω) = x1 − δ1 = y1 = Y (ω), ω ∈ A11, and

Y = X1 − δ11A1\A11
+ (δ2 − δ1)1A21 , (A.2)

while if δ1 > δ2, then A11 = A1 and X1(ω) = x2 + δ2 = y2 = Y (ω), ω ∈ A21, and

Y = X1 − (δ1 − δ2)1A11 + δ21A2\A21
. (A.3)

It is obvious that in both cases Y is still a mean-preserving spread of X1 (either (A.2) or (A.3)

holds, both having the same form as (A.1)) such that the difference between X1 and Y is strictly

smaller than that between X and Y . Specifically, we have that one value difference (|δ1 − δ2|)

becomes smaller while the other one set difference (A2 \ A21 or A1 \ A11) becomes smaller.

Repeating the above procedure, we recursively define the random variable Xn, n ∈ N such that

the sequence {Xn, n ∈ N} satisfies

Xn+1 = Xn − βn1A1n + βn1A2n , n ∈ N,

where A1n ⊂ A1 \ (∪n−1
i=1 A1i) and A2n ⊂ A2 \ (∪n−1

i=1 A2i) are two measurable sets such that

P(A1n) = P(A2n) = min{P(A1 \ (∪n−1
i=1 A1i)),P(A2 \ (∪n−1

i=1 A2i))}, and βn > 0 is the biggest

constant such that Y is still a mean-preserving spread of Xn+1. From the construction of Xn,

n ∈ N, we know

lim
n→∞

||Xn − Y ||∞ 6 lim
mn→∞

1

mn
(δ1 ∨ δ2) = 0,

where {mn, n ∈ N} is some sequence which converges to infinity as n→∞. Hence, from (1a),

we have

ρ(X) 6 ρ(X1) 6 . . . 6 ρ(Xn) 6 ρ(Y ) + ρ(||Xn − Y ||∞).

Since ρ is a monetary risk measure, which is continuous with respect to ‖ · ‖∞, this implies

ρ(X) 6 ρ(Y ) by letting n→∞ in the above inequality.

Case 2. Assume that X and Y take values in finite sets. By Theorem 6.2 of Müller and Scarsini (2001)

(see also Rothschild and Stiglitz (1970)), there exist Zk, k = 0, . . . ,m, such that X = Z0,

Y = Zm, and Zk+1 is a simple mean-preserving spread of Zk, k = 0, . . . ,m− 1. From Case 1,

we have

ρ(X) 6 ρ(Z1) 6 . . . 6 ρ(Zm) = ρ(Y ).
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Case 3. For general random variables X,Y ∈ X , there exist two sequences of random variables X∗n, n ∈

N and Y ∗n , n ∈ N with finite outcomes such that X∗n ≺mps Y
∗
n for n ∈ N and ‖X∗n −X‖∞ → 0

and ‖Y ∗n − Y ‖∞ → 0 as n → ∞ (for this assertion, see the proof of Theorem 3.1 of Mao and

Hu (2015)). Since ρ is ‖ · ‖∞-continuous, and by the result in Case 2, we have ρ(X) 6 ρ(Y ).

Combining the above three cases, we conclude that ρ preserves MPS.

A.2 Proofs in Section 3

Proof of Theorem 3.1. First it is easy to verify that a risk measure ρ defined by (3.1) satisfies (TI) and (SC)

by noting that the risk measures ψα− g(α), α ∈ [0, 1], g ∈ G satisfies (TI) and (SC). For the other direction,

suppose that ρ is a consistent risk measure and denote its acceptance set by Aρ, that is, Aρ = {X ∈ X :

ρ(X) 6 0}. Since ρ satisfies (SC), we have that if X ∈ Aρ, Y ∈ X and Y ≺sd X , then Y ∈ Aρ. As a

consequence,

Aρ =
⋃

X∈Aρ

{X} =
⋃

X∈Aρ

{Y ∈ X : Y ≺sd X}. (A.4)

By the definition of the acceptance set, (A.4) is equivalent to

ρ(Z) = inf

x ∈ R : Z − x ∈
⋃

X∈Aρ

{Y ∈ X : Y ≺sd X}


= inf

X∈Aρ
inf{x ∈ R : Z − x ≺sd X}, Z ∈ X . (A.5)

Note that second order stochastic dominance can be characterized in terms of ψα, α ∈ [0, 1] as in (2.2).

Then it follows from (A.5) that

ρ(X) = inf
Y ∈Aρ

inf
{
x ∈ R : ψα(X)− x 6 ψα(Y ) for all α ∈ [0, 1]

}
= inf

Y ∈Aρ
sup
α∈[0,1]

{ψα(X)− ψα(Y )}.

Finally, for any X ∈ X , we take Z = X − ρ(X). Clearly, Z ∈ Aρ, and

ρ(X) = sup
α∈[0,1]

{ψα(X)− ψα(Z)} = min
Y ∈Aρ

sup
α∈[0,1]

{ψα(X)− ψα(Y )}.

Thus, we obtain (3.1) and (3.2).

Proof of Proposition 3.4. We show the conclusion for convex risk measures. The case for coherent risk

measures is similar.

⇒: Suppose that ρ is a law-invariant convex risk measure. From Theorem 3.1, ρ has representation (3.5) and

we can choose G as in (3.2). It suffices to show that G is a convex set. Write gY : [0, 1] → R, α 7→ ψα(Y )
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for Y ∈ X . For Y1, Y2 ∈ Aρ, let Y ∗2 be such that Y ∗2
d
= Y2 and (Y1, Y

∗
2 ) is comonotonic. For α, λ ∈ [0, 1],

we have

λgY1(α) + (1− λ)gY2(α) = λψα(Y1) + (1− λ)ψα(Y2)

= λψα(Y1) + (1− λ)ψα(Y ∗2 )

= ψα(λY1 + (1− λ)Y ∗2 ),

where the last equality is due to the comonotonic additivity of ψα. Note that Y ∗2 ∈ Aρ as ρ is law-invariant.

Since ρ is convex,Aρ is a convex set, and therefore λY1 + (1−λ)Y ∗2 ∈ Aρ. As a consequence, λgY1 + (1−

λ)gY2 = gλY1+(1−λ)Y ∗2
∈ G and G is a convex set.

⇐: Suppose that a risk measure ρ has representation (3.5) in which G is convex. It suffices to show that Aρ

is a convex set. Let

A∗ =
⋃
g∈G

{
X ∈ X : sup

α∈[0,1]
{ψα(X)− g(α)} 6 0

}
.

From (3.5), we have that Aρ = A∗ where A denotes the X -closure of a set A. To show that Aρ is a convex

set, it suffices to show that A∗ is a convex set. For any X1, X2 ∈ A∗, there exist g1, g2 ∈ G such that

ψα(Xi) 6 gi(α), for all α ∈ [0, 1], i = 1, 2.

It follows that for all α, λ ∈ [0, 1],

ψα(λX1 + (1− λ)X2) 6 λψα(X1) + (1− λ)ψα(X2) 6 λg1(α) + (1− λ)g2(α) =: g∗(α).

Note that g∗ ∈ G since G is convex. This shows λX1 + (1− λ)X2 ∈ A∗, that is, A∗ is convex.

Proof of the statement in Remark 3.2. We only show that G in (3.1) can be taken as a countable set. The

cases of (3.4) and (3.5) are similar. Let HQ denote a set of simple non-decreasing and bounded functions

mapping [0, 1] to the set of rational numbers Q, specifically,

HQ =
⋃
n∈N
Hn,Q

with

Hn,Q =

{
h : [0, 1]→ Q : h(x) =

2n∑
i=1

ai
2n

1{ i−1
2n

<x6 i
2n
}, ai ∈ N, |ai| 6 n2n, ai−1 < ai, i = 2, . . . , 2n

}
.

It can be verified thatHQ is a countable set sinceHn,Q is a finite set for each n ∈ N. Denote

GQ = {h ∈ HQ : h 6 g for some g ∈ G}
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where G is defined by (3.2). By Theorem 3.1 (i), it is easy to see

ρ(X) 6 inf
h∈GQ

sup
α∈[0,1]

{ψα(X)− h(α)} =: ρQ(X), X ∈ X .

For the other direction, for X ∈ X and any ε > 0, there exists g ∈ G and α ∈ [0, 1] such that

ρ(X) + ε > ψα(X)− g(α).

For such g, which is a bounded function, there exists h ∈ GQ such that g < h + ε. Hence, ρ(X) + ε >

ψα(X) − g(α) > ψα(X) − h(α) − ε > ρQ(X) − ε. Letting ε ↓ 0 yields ρ(X) > ρQ(X). Therefore, we

conclude ρ(X) = ρQ(X); thus, G in (3.1) can be chosen as GQ.

Proof of Theorem 3.5. Suppose that {Xn}n∈N ⊂ X and X ∈ X satisfy Xn ↗ X ∈ X a.s. as n → ∞.

Using Lemma 3.6 and Theorem 3.1, we have, writing G as the adjustment set of ρ,

|ρ(Xn)− ρ(X)| =

∣∣∣∣∣min
g∈G

sup
α∈[0,1]

{ψα(Xn)− g(α)} −min
g∈G

sup
α∈[0,1]

{ψα(X)− g(α)}

∣∣∣∣∣
6 sup

g∈G
sup
α∈[0,1]

|ψα(Xn)− ψα(X)|

= sup
α∈[0,1]

|ψα(Xn)− ψα(X)| → 0 as n→∞.

This shows that ρ satisfies (CB), and hence (FP).

Proof of Lemma 3.6. It is obvious that ψα(Xn), n ∈ N and ψα(X) are continuous and increasing function

in α ∈ [0, 1]. It is well known that if a sequence of continuous and increasing functions converges to a

continuous function point-wise on a compact set, then the convergence is uniform. It suffices to show that

ψα(Xn) → ψα(X) point-wise. One can easily check that ψα for each α ∈ [0, 1] satisfies (CB) (or, directly

use Theorem 30 of Delbaen (2012)). Therefore, ψα(Xn) → ψα(X) point-wise, which implies uniform

convergence as mentioned above.

A.3 Proofs in Section 4

Proof of Theorem 4.1. (i) It is obvious that ρ∗(X) > inf {
∑n

i=1 ρi(Yi) : (Y1, . . . , Yn) ∈ Acn(X)}. We

only need to show the opposite direction of the inequality. For any (X1, . . . , Xn) ∈ An(X), by

the comonotone improvement in the form of Filipović and Svindland (2008, Proposition 5.1) and

Ludkovski and Rüschendorf (2008, Theorem 2), there exists (Y1, . . . , Yn) ∈ Acn(X) such that Yi ≺mps

Xi, i = 1, . . . , n. This implies ρi(Yi) 6 ρi(Xi) since ρi is consistent, i = 1, . . . , n. Taking infimums
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on both sides yields

inf

{
n∑
i=1

ρi(Yi) : (Y1, . . . , Yn) ∈ Acn(X)

}
6 inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}

= ρ∗(X).

(ii) To show that ρ∗ is finite-valued, note that, using (SC) and (TI), for (X1, . . . , Xn) ∈ An(X),

n∑
i=1

ρi(Xi) >
n∑
i=1

ρi(E[Xi]) =

n∑
i=1

ρi(0) + E[X].

Therefore, ρ∗(X) >
∑n

i=1 ρi(0)+E[X] > −∞. To show the existence of an optimal allocation, based

on part (i) and the fact that ρ∗(X) is finite, it suffices to show that every sequence in the set Acn(X) has

a subsequence which converges to an element of Acn(X) in L∞-norm. This result is given in the proof

of Theorem 3.2 of Jouini et al. (2008).

(iii) It is easy to verify that ρ∗ is a monetary risk measure. To show that ρ∗ is consistent, from Theorem

2.1, it suffices to show that ρ∗ satisfies (DM). Let X, Y ∈ X be two random variables such that

X = E[Y |X]. For any (Y1, . . . , Yn) ∈ An(Y ), let Xi = E[Yi|X], i = 1, . . . , n. It is obvious that

(X1, . . . , Xn) ∈ An(X). For each i = 1, . . . , n, since ρi satisfies (DM) and (Xi, Yi) is a martingale,

we have ρi(Xi) 6 ρi(Yi). This shows

ρ∗(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}

6 inf

{
n∑
i=1

ρi(Yi) : (Y1, . . . , Yn) ∈ An(Y )

}
= ρ∗(Y ).

That is, ρ∗ satisfies (DM).

Denote by A∗ the acceptance set of ρ∗ and it remains to show A∗ =
∑n

i=1Ai. For any Xi ∈ Ai, that

is, ρi(Xi) 6 0, i = 1, . . . , n, we have that for X = X1 + · · ·+Xn

�ni=1ρi(X) = inf

{
n∑
i=1

ρi(Yi) : (Y1, . . . , Yn) ∈ An(X)

}
6

n∑
i=1

ρi(Xi) 6 0.

We have X ∈ A∗, and thus
∑n

i=1Ai ⊂ A∗. For the other direction, let X ∈ A∗, i.e., �ni=1ρi(X) 6 0.

By (ii), there exists (X1, . . . , Xn) ∈ Acn(X) such that

ρ1(X1) + · · ·+ ρn(Xn) = �ni=1ρi(X) 6 0.

By (TI) of ρi, i = 1, . . . , n, we can safely take ρi(Xi) 6 0, i = 1, . . . , n. Hence, we have that

X =
∑n

i=1Xi ∈
∑n

i=1Ai. It follows that A∗ ⊂
∑n

i=1Ai, and in summary, A∗ =
∑n

i=1Ai.
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(iv) We only show the case n = 2; for n > 3 the proof is similar. First, we introduce the functions gY ,

gY1,Y2 and ĝY1,Y2 . For Y ∈ X , let gY : [0, 1] → R, α 7→ ψα(Y ) and for (Y1, Y2) ∈ (X )2, let

gY1,Y2 : [0, 1]→ R, α 7→ ψα(Y1 + Y2) and ĝY1,Y2 : [0, 1]→ R, α 7→ ψα(Y1) + ψα(Y2). Note that by

the comonotonic additivity of ψα, gY1,Y2 = ĝY1,Y2 if (Y1, Y2) is comonotonic.

LetAi be the acceptance set of ρi, i = 1, 2. By (iii), we know that the acceptance set of ρ∗ isA1 +A2.

From (iii) and Theorem 3.1, ρ∗ has an adjustment set

G = {gY : Y ∈ A1 +A2} = {gY1,Y2 : (Y1, Y2) ∈ A1 ×A2}.

On the other hand, by definition of the adjustment sets G1 and G2,

G1 + G2 = {gY1 : Y1 ∈ A1}+ {gY2 : Y ∈ A2} = {ĝY1,Y2 : (Y1, Y2) ∈ A1 ×A2}.

Since ρ1 and ρ2 are law-invariant, for any (Y1, Y2) ∈ A1 ×A2 we can find (Y c
1 , Y

c
2 ) ∈ A1 ×A2 such

that Y c
i

d
= Yi, i = 1, 2 and (Y c

1 , Y
c

2 ) is comonotonic. Then ĝY1,Y2 = ĝY c1 ,Y c2 = gY c1 ,Y c2 ∈ G. This shows

G1 + G2 ⊂ G.

For the other direction of the inclusion, by using the comonotone improvement again, for any (Y1, Y2) ∈

A1 × A2, there exists (Z1, Z2) ∈ Ac2(Y1 + Y2) such that Zi ≺mps Yi, i = 1, 2. Since ρ1 and ρ2 are

consistent, (Z1, Z2) ∈ A1 × A2. It follows that gY1,Y2 = gZ1,Z2 = ĝZ1,Z2 ∈ G1 + G2. This shows

G ⊂ G1 + G2. Now we can conclude that G = G1 + G2.

A.4 Proofs in Section 5

Proof of Lemma 5.1. Note that −Lg is an increasing function. It is easy to check, for α ∈ (0, 1),

ψα(Y ) = ψα(−Lg(U)) =
1

1− α

∫ 1

α
(−Lg(u))du =

1

1− α
(ĝ(α)− ĝ(1)) = g(α).

Further, by continuity of ψα(Y ) and ĝ(α) for α ∈ [0, 1], we know ψα(Y ) = g(α) for all α ∈ [0, 1].

Proof of Proposition 5.2. By Lemma 5.1 and translation-invariance of ψα, we have, for α ∈ [0, 1],

ψα(X∗) = ψα(−Lg(U)) + x0 −
∫ 1

0
g(α)dµ(α) = g(α) + x0 −

∫ 1

0
g(α)dµ(α). (A.6)

Therefore,

ρg(X
∗) = sup

α∈[0,1]
{ψα(X∗)− g(α)} = x0 −

∫ 1

0
g(α)dµ(α).

Take X ∈ X be such that EQ[X] > x0. By the Hardy-Littlewood inequality (e.g. Remark 3.25 of

Rüschendorf (2013)), we have

E
[

dQ
dP

X

]
6
∫ 1

0
qα

(
dQ
dP

)
qα(X)dα. (A.7)
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Integration by parts leads to∫ 1

0
qα

(
dQ
dP

)
qα(X)dα =

∫ 1

0
qα

(
dQ
dP

)
d (−(1− α)ψα(X))

= ψ0(X)q0

(
dQ
dP

)
+

∫ 1

0
(1− α)ψα(X)dqα

(
dQ
dP

)
=

∫ 1

0
ψα(X)dµ(α). (A.8)

Putting (A.7) and (A.8) together, we obtain

x0 6 EQ[X] = E
[

dQ
dP

X

]
6
∫ 1

0
qα

(
dQ
dP

)
qα(X)dα =

∫ 1

0
ψα(X)dµ(α).

On the other hand,

ρg(X) = sup
α∈[0,1]

{ψα(X)− g(α)}

>
∫ 1

0
(ψα(X)− g(α))dµ(α) (A.9)

=

∫ 1

0
ψα(X)dµ(α)−

∫ 1

0
g(α)dµ(α) > x0 −

∫ 1

0
g(α)dµ(α) = ρ(X∗). (A.10)

This shows the optimality of X∗ as well as the corresponding minimal value of Problem (5.4).

Next we show uniqueness of the solution. IfX is a solution to Problem (5.4), then all inequalities above

are equalities. First, the inequality in (A.7) is an equality if and only if (X,dQ/dP) is comonotonic. Second,

the inequality in (A.9) is an equality if and only if ψα(X)−g(α) is a constant c for µ-a.s. α ∈ [0, 1]. Note that

qt(dQ/dP) is strictly increasing for t ∈ [0, 1] since dQ/dP is continuously distributed. As a consequence,

µ([0, t]) is strictly increasing for t ∈ [0, 1]. Therefore, ψα(X) − g(α) = c holds µ-a.s. means it holds for

a.e. α ∈ [0, 1], hence for all α ∈ [0, 1] due to continuity. Finally, the inequality in (A.10) is an equality if

and only if c = x0 −
∫ 1

0 g(α)dµ(α). Summarizing the above three statements, any solution X to Problem

(5.4) is an increasing function of dQ/dP, and it satisfies

ψα(X) = g(α) + x0 −
∫ 1

0
g(α)dµ(α), α ∈ [0, 1].

Together with (A.6), we know that X is identically distributed as X∗. Since both of them are increasing

functions of the continuously distributed random variable dQ/dP, we conclude that X = X∗ a.s.

Proof of Theorem 5.3. Write X0 = {X ∈ X : EQ[X] > x0}.
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(i) By Proposition 5.2 and exchanging the order of two infima, we have

inf
X∈X0

ρ(X) = inf
X∈X0

min
g∈G

ρg(X)

= inf
g∈G

inf
X∈X0

ρg(X)

= inf
g∈G

{
x0 −

∫ 1

0
g(α)dµ(α)

}
= x0 − sup

g∈G

∫ 1

0
g(α)dµ(α).

(ii) Suppose that Y is a solution to Problem (5.1). Because ρ(Y ) = ming∈G ρg(Y ), there exists g∗ ∈ G

such that ρ(Y ) = ρg∗(Y ). By part (i), we have

ρg∗(Y ) = ρ(Y ) = x0 − sup
g∈G

∫ 1

0
g(α)dµ(α).

By Proposition 5.2,

ρg∗(Y ) > x0 −
∫ 1

0
g∗(α)dµ(α) > x0 − sup

g∈G

∫ 1

0
g(α)dµ(α).

Therefore,
∫ 1

0 g
∗(α)dµ(α) = supg∈G

∫ 1
0 g(α)dµ(α), and hence g∗ maximizes

∫ 1
0 g(α)dµ(α) over

g ∈ G. The other direction of the statement is implied by (iii).

(iii) Using Proposition 5.2 and part (i), we have

ρg∗(X
∗) = x0 −

∫ 1

0
g∗(α)dµ(α) = x0 − sup

g∈G

∫ 1

0
g(α)dµ(α) = inf

X∈X0

ρ(X).

Hence, X∗ is a solution to Problem (5.1).

(iv) Let X∗ be a solution to Problem (5.1). Using the same argument as in part (ii), we know that there

exists g∗ ∈ G such that

ρg∗(X
∗) = x0 −

∫ 1

0
g∗(α)dµ(α).

Therefore, by Proportion 5.2 again, we know that X has the form (5.5) a.s.

Details in Example 5.2. Using Proposition 5.2, we have

min{ρgn(X) : X ∈ X , EQ[X] > 0} = −
∫ 1

0
gn(α)dµ(α)

= −
∫ 1

0
min

{
1

1− α
, n

}
2(1− α)dα =

1

n
− 2.

Therefore,

inf{ρg(X) : X ∈ X , EQ[X] > 0} = inf
n∈N

min{ρgn(X) : X ∈ X , EQ[X] > 0} = −2.
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We shall see that this infimum value is not attainable. Suppose, for the purpose of contradiction, that there

exists X ∈ X such that EQ[X] > 0 and ρg(X) = −2. Note that

ρg(X) = inf
n∈N

sup
α∈[0,1]

{
ψα(X)−min

{
1

1− α
, n

}}
> sup

α∈[0,1]

{
ψα(X)− 1

1− α

}
.

This gives ψα(X) 6 1
1−α − 2 for all α ∈ [0, 1]. On the other hand, by (A.8),

0 6 EQ[X] 6
∫ 1

0
ψα(X)dµ(α) 6

∫ 1

0

(
1

1− α
− 2

)
2(1− α)dα = 0.

As a consequence, it must be ψα(X) = 1
1−α − 2 because ψα(X) is continuous in α. This leads to a

contradiction, since limα→1(1− α)ψα(Y ) = 0 for any integrable random variable Y .

B Generalization of the main results to X = Lp, p ∈ [1,∞)

In this part of the Appendix, we discuss our main results in the more general framework of unbounded

random variables. Let Lp denote the space of random variables in (Ω,A,P) with finite p-th moment, p ∈

[0,∞), and L∞ the space of essentially bounded random variables. X = L∞ corresponds to the setting used

throughout the main text. For regulatory purposes, considering the sets Lp of risks is indeed necessary since

for finance and insurance one often encounters models with unbounded risks.

As discussed by Filipović and Svindland (2012), the canonical space of convex risk measures is L1,

and as such we consider X = Lp, p ∈ [1,∞) in the following. A risk measure on Lp is a functional mapping

Lp to (−∞,∞] with ρ(c) <∞ for c ∈ R. Recall that a consistent risk measure satisfies (TI) and (SC).

B.1 Results in Section 3 for X = Lp

We first generalize the representation results in Section 3 to Lp. When X = Lp, p ∈ [1,∞), we need

the Lp-Fatou property for a convex risk measure to be consistent:

(FP) Lp-Fatou property: lim inf
n→∞

ρ(Xn) > ρ(X) if X,X1, X2, · · · ∈ X = Lp and Xn
Lp−→ X as n→∞.

Similarly to the case of X = L∞, the Fatou property is necessary and sufficient for the Kusuoka

representation of convex risk measures in Section 3.4 to hold in Lp; see Kaina and Rüschendorf (2009),

Delbaen (2009) and Filipović and Svindland (2012). A real-valued convex risk measure always satisfies the

Fatou property (in fact, it is always Lp-continuous); see e.g. Rüschendorf (2013).

Proposition B.1. A law-invariant convex risk measure on Lp, p ∈ [1,∞) with the Fatou property (FP) is

a consistent risk measure, and so is the maximum, the minimum or a convex combination of law-invariant

convex risk measures with (FP).
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Proposition B.1 is the Lp-version of Proposition 3.2; it is a direct result of the Kusuoka representation

in Lp; see Filipović and Svindland (2012).

Theorem B.2. For a risk measure ρ on X = Lp, p ∈ [1,∞), the following are equivalent:

(i) ρ is a consistent risk measure;

(ii) ρ has the following representation

ρ(X) = min
g∈G

sup
α∈[0,1)

{ψα(X)− g(α)} , X ∈ X , (B.1)

where G is a set of measurable functions mapping [0, 1) to (−∞,∞];

(iii) ρ has the following representation

ρ(X) = min
τ∈C

τ(X), X ∈ X , (B.2)

where C is a set of law-invariant convex risk measures on X with the Fatou property.

Theorem B.2 is the Lp-version of Theorem 3.1 and Theorem 3.3. The implication (i)⇒(ii) shares a

similar proof to that of Theorem 3.1; the only difference is that α ∈ [0, 1] is replaced by α ∈ [0, 1) to avoid

∞ − ∞. The implication (ii)⇒(iii) holds by noting that ψα − g(α) for each α ∈ [0, 1] is a convex risk

measure with the Fatou property. The implication (iii)⇒(i) follows from Proposition B.1.

Although a consistent risk measure ρ can be represented by the infimum of convex risk measures on

Lp with the Fatou property, ρ itself does not necessarily have the Fatou property, which can be illustrated by

the following example. This is in contrast to the case of X = L∞ in Theorem 3.5.

Example B.1. Suppose that p ∈ [1,∞) and (Ω,F ,P) = ((0, 1),B(0, 1), λ) where B(0, 1) is the set of all

Borel sets on (0, 1) and λ is the Lebesgue measure. Define the random variableX asX(ω) = ω−1/(2p), ω ∈

(0, 1) and a sequence of random variables {Xn, n ∈ N} with Xn(ω) = n1/(2p)1{ω61/n} + X(ω)1{ω>1/n},

ω ∈ (0, 1). It is obvious that Xn → X a.s. as n → ∞ and |Xn| 6 X ∈ Lp. It follows that Xn
Lp→ X as

n→∞. Define the risk measure ρ as

ρ(Y ) = inf
n>1

ρn(Y ), Y ∈ Lp,

where ρn(Y ) = inf{m ∈ R : Y −m ≺sd Xn}, n ∈ N. It is easy to verify that ρ is a consistent risk measure.

Note that for any n ∈ N and x ∈ R, X − x ≺sd Xn does not hold. It follows that ρXn(X) = ∞ for all

n ∈ N, which further implies ρ(X) = ∞. However, ρ(Xn) 6 0 for all n ∈ N, implying ρ does not satisfy

the Fatou property.
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B.2 Results in Section 2 for X = Lp

Below we generalize Theorem 2.1 to the space Lp. To show this result, we require the Fatou property,

which is typical in the literature of risk measures on Lp. Note that the most technical part of the following

Theorem, (DC) implying (MC), has a proof that is completely different from the case of bounded random

variables. These two proofs cannot be combined, since the proof for X = L∞ relies on the norm continuity

of ρ and a construction leading to L∞ convergence, which is not possible for Lp, and the proof for X = Lp

relies on the Fatou property of ρ and a different construction leading to Lp convergence, which is not useful

for L∞.

Theorem B.3. For a monetary risk measure ρ on Lp, p ∈ [1,∞) with the Fatou property, the properties

(SC), (MC), (DM), (DC) and (EI) are all equivalent. In turn, they imply that ρ satisfies (LD).

Proof. By Theorem 2.1 and Remark 2.2 of Svindland (2014), (DM) implies (LD) on Lp, p ∈ [1,∞).

Following the same proof as in Theorem 2.1, (MC), (SC) and (EI) are equivalent, (MC) implies both (DC)

and (DM), and (DM)+(LD) implies (MC). It remains to show that (DC) implies (MC).

Note that (DC) implies (LD) based on the same proof as in Theorem 2.1. Let X and Y be two random

variables in Lp such that X ≺mps Y . We aim to show ρ(X) 6 ρ(Y ). Via the martingale representation of

convex order in Shaked and Shanthikumar (2007, Theorem 3.A.4), we can assume X = E[Y |X]. For each

n ∈ N, define

Xn = x
(n)
−n2−1

1{X<−n} +
n2−1∑
i=−n2

x
(n)
i 1{ i

n
6X< i+1

n
} + x

(n)
n2 1{X>n} =:

n2∑
i=−n2−1

x
(n)
i 1

A
(n)
i

, n ∈ N,

where x(n)
−n2−1

= E[X|X < −n], x(n)
i = E[X| in 6 X < i+1

n ], i = −n2, . . . , n2 − 1, and x(n)
n2 = E[X|X >

n]. It is easy to check that Xn → X a.s. as n → ∞ and {|Xn|p}n∈N is uniformly integrable because

Jensen’s inequality gives E[|Xn|p] 6 E[|X|p] for each n ∈ N. Hence, Xn converges to X in Lp as n→∞.

By the Fatou property of ρ, we have

ρ(X) 6 lim inf
n→∞

ρ(Xn). (B.3)

For A(n)
−n2−1

, . . . , A
(n)
n2 defined above, we have

Y =
n2∑

i=−n2−1

Y 1
A

(n)
i

d
=

n2∑
i=−n2−1

Y
(n)
i 1

A
(n)
i

,

where Y (n)
−n2−1

, . . . , Y
(n)
n2 are 2n2+1 independent random variables, independent of the setsA(n)

−n2−1
, . . . , A

(n)
n2

and satisfying Y (n)
i

d
= [Y |A(n)

i ] for i = −n2 − 1, . . . , n2. For k ∈ N, let (Y
(n)
−n2−1,j

, . . . , Y
(n)
n2,j

), j =
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1, . . . , 2k, be 2k iid random vectors identically distributed as (Y
(n)
−n2−1

, . . . , Y
(n)
n2 ). For k ∈ N, we define

Y (n,j) =
n2∑

i=−n2−1

Y
(n)
i,j 1

A
(n)
i

, j = 1, . . . , 2k.

It is easy to see that Y (n,1), . . . , Y (n,2k) are identically distributed such that Y (n,j) d
= Y , j = 1, . . . , 2k,

and Y (n,1) + · · · + Y (n,2k−1) d
= Y (n,2k−1+1) + · · · + Y (n,2k) by symmetry. By (DC), we know for any

two identically distributed random variables X1 and X2, ρ((X1 + X2)/2) 6 ρ(X1). Using this relation

repeatedly, we have

ρ

 1

2k

2k∑
j=1

Y (n,j)

 6 ρ
 1

2k−1

2k−1∑
j=1

Y (n,j)

 6 . . . 6 ρ(Y (n,1)) = ρ(Y ), (B.4)

where the last equality is due to (LD). On the other hand, note that

Zn,k :=
1

2k

2k∑
j=1

Y (n,j) =
n2∑

i=−n2−1

1
A

(n)
i

 1

2k

2k∑
j=1

Y
(n)
i,j

 .

By the Law of Large Numbers, we have 1
2k

∑2k

j=1 Y
(n)
i,j converges to x(n)

i = E[Y |A(n)
i ] a.s. as k → ∞ for

i = −n2 − 1, . . . , n2. This implies that Zn,k converges to Xn a.s. as k →∞. Also, by the Cr-inequality,

E[|Zn,k|p] =
n2∑

i=−n2−1

P(A
(n)
i )E

∣∣∣∣∣∣ 1

2k

2k∑
j=1

Y
(n)
i,j

∣∣∣∣∣∣
p 6 n2∑

i=−n2−1

P(A
(n)
i )E

[∣∣∣Y (n)
i

∣∣∣p] = E[|Y |p],

showing that |Zn,k|p is uniformly integrable. It then follows that Zn,k converges to Xn in Lp as k → ∞.

Then by the Fatou property and (B.4), we have

ρ(Xn) 6 lim inf
k→∞

ρ(Zn,k) 6 ρ(Y ).

Combined with (B.3), we have ρ(X) 6 ρ(Y ). This completes the proof.

B.3 Results in Sections 4 and 5 for X = Lp

We claim that theorem 4.1 (i)-(iv) hold when ρ1, . . . , ρn are consistent risk measures on X = Lp.

The proofs of (i) and (iv) are essentially the same. To generalize (ii) to the case of Lp, one can use the

same arguments in the proof of Theorem 2.5 of Filipović and Svindland (2008). To generalize (iii), it

suffices to show that ρ∗ is law-invariant so that (DM) is equivalent to (SC). For any X, Y ∈ Lp such

that X d
= Y and any (X1, . . . , Xn) ∈ Acn(X), by Denneberg’s Lemma (Denneberg, 1994) we can write

(X1, . . . , Xn) = f(X) for a component-wise non-decreasing function f : R → Rn. Then, f(Y ) ∈ Acn(Y )

and (X1, . . . , Xn)
d
= f(Y ). From (i), we have ρ∗(X) = ρ∗(Y ), that is, ρ∗ is law-invariant.

To extend the results in Section 5 to Lp, it suffices to assume EQ[X] < ∞ for all X ∈ Lp, or equiva-

lently, dQ/dP ∈ Lq where 1/p + 1/q = 1, and to modify the definition of G∗ by allowing g(1) = ∞ and

requiring ĝ(1) = 0 for g ∈ G∗. All results follow from the same proof.
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