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Abstract

The class of distortion riskmetrics is defined through signed Choquet integrals, and it includes

many classic risk measures, deviation measures, and other functionals in the literature of finance

and actuarial science. We obtain characterization, finiteness, convexity, and continuity results

on general model spaces, extending various results in the existing literature on distortion risk

measures and signed Choquet integrals. This paper offers a comprehensive toolkit of theoretical

results on distortion riskmetrics which are ready for use in applications.
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1 Introduction

In this paper we study distortion riskmetrics on general model spaces. A distortion riskmetric

is a real-valued functional ρ with the following form

ρ(X) =

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx, (1)

where h is a function of bounded variation on [0, 1] with h(0) = 0 and X is a random variable in

the domain of ρ; a precise definition is given in Definition 1 below.

Let us first explain our somewhat unusual choice of terminology, “distortion riskmetrics”.

Clearly, the term “distortion” addresses the dominating role played by the (not necessarily mono-

tone) distortion function h in (1), whereas the term “riskmetrics” is chosen to distinguish ρ from
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the classic notions of risk measures and deviation measures. For instance, risk measures are often

required to be monotone and translation-invariant in the sense of Artzner et al. (1999), and devi-

ation measures are required to be convex in the sense of Rockafellar et al. (2006). Insurance risk

measures and premium principles are typically assumed to be monotone with some other properties

as in e.g., Gerber (1974) or Wang et al. (1997). Our notion of distortion riskmetrics does not require

monotonicity, translation-invariance or convexity, and it unifies risk measures, deviation measures,

and many other functionals in the literature of finance and insurance.

This paper is not the first to study functionals in (1) in risk management. Historically, such

functionals, assuming monotonicity, were studied by Yaari (1987) in the economic literature and

by Denneberg (1994) and Wang et al. (1997) in the actuarial literature. More recently, for non-

monotone h, Wang et al. (2020) called the functional in (1) a signed Choquet integral on the space

L∞ of bounded random variables. To be precise, a signed Choquet integral refers to the right-hand

side of (1). We note that a signed Choquet integral should be interpreted as an “integral”, thus

a mathematical operation, and not a functional. Mathematically, signed Choquet integrals can be

formulated for any random variable, leading to a finite, infinite or undefined value in (1), whereas

a distortion riskmetric is defined on a domain of financial relevance. The difference is negligible

if the study is confined to L∞, but it becomes delicate in the case of a larger space such as an

Lp-space; see Section 2. Moreover, the term “distortion riskmetric” better describes the practical

purpose of these functionals in risk management. For the above reasons, we decided to invent the

term “distortion riskmetrics”, which will hopefully be the standard term for the object in (1) in the

future.

As hinted above, monotone (increasing) distortion riskmetrics have been studied for decades

under different names: the L-functionals (Huber and Ronchetti (2009)) in statistics, Yaari’s dual

utilities (Yaari (1987)) in decision theory, distorted premium principles (Denneberg (1994), Wang

et al. (1997) and Denuit et al. (2005)) in insurance, and distortion risk measures (Kusuoka (2001)

and Acerbi (2002)) in finance. Some specific examples of distortion risk measures include the

Value-at-Risk (VaR), the Expected Shortfall (ES, or TVaR/CVaR), the performance measures in

Cherny and Madan (2009), the GlueVaR in Belles-Sampera et al. (2014), and the economic risk

measures in Kou and Peng (2016). Non-monotone examples of signed Choquet integrals include the

mean-median deviation, the Gini deviation, the inter-quantile range, some deviation measures of

Rockafellar et al. (2006), and the Gini Shortfall of Furman et al. (2017). We collect some examples

of one-dimensional distortion riskmetrics in Table 1.
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name
formula for X ∈ X and parameters

distortion function for t ∈ [0, 1]

(notation) domain X convex? monotone?

mean
E[X]

t

(E) L1 yes yes

Value-at-Risk
F−1X (α), α ∈ (0, 1)

1{t>1−α}

(VaRα) L0 no yes

ES/TVaR/CVaR 1

1− α

∫ 1

α

F−1X (t) dt, α ∈ (0, 1)

t
1−α ∧ 1

(ESα) L0,1 yes yes

Gini deviation
1

2
E[|X∗ −X∗∗|]

t− t2

L1 yes no

mean-median
min
x∈R

E[|X − x|]
t ∧ (1− t)

deviation L1 yes no

essential supremum
F−1X (1)

1{0<t≤1}

(ess sup) L0,∞ yes yes

essential infimum
F−1+X (0)

1{t=1}

(ess inf) L∞,0 no yes

range F−1X (1)− F−1+X (0)
1{0<t<1}

L∞ yes no

inter-quantile range
F−1+X (α)− F−1X (1− α), α ∈ [1/2, 1)

1{1−α≤t≤α}

(IQRα) L0 no no

inter-ES range
ESα(X) + ESα(−X), α ∈ (0, 1)

t
1−α ∧ 1 + α−t

1−α ∧ 0

(IERα) L1 yes no

Range Value-at-Risk 1

β − α

∫ β

α

F−1X (t) dt, 0 < α < β < 1

(t−1+β)+
β−α ∧ 1

(RVaRα,β) L0 no yes

Gini Shortfall ESα(X) + λE[|X∗α −X∗∗α |] t
1−α ∧ 1 + 2λt(1−t−α)+

(1−α)2

(GSλα) α ∈ (0, 1), λ ≥ 0 L0,1 λ ≤ 1/2 λ ≤ 1/2

proportional hazard 1

α

∫ 1

0

(1− t)(1−α)/αF−1X (t) dt, α ≥ 1
t1/α

principle/MAXVAR ∪p>αL1,p ⊂ X yes yes

dual power
α

∫ 1

0

tα−1F−1X (t) dt, α ≥ 1
1− (1− t)α

principle/MINVAR ∪q>1/αL
q,1 ⊂ X yes yes

GlueVaR ω1ESα(X) + ω2ESβ(X) + ω3VaRα(X) ω1( t
1−α ∧ 1) + ω2( t

1−β ∧ 1) + ω31{t>1−α}

(GlueVaRω1,ω2

β,α ) 0 < α ≤ β < 1, (ω1, ω2, ω3) ∈ ∆3 L0,1 no yes

Table 1: Some examples of one-dimensional distortion riskmetrics

Notation. F−1
X (α) = inf{x ∈ R : P(X ≤ x) ≥ α} for α ∈ (0, 1] and F−1+

X (α) = inf{x ∈ R : P(X ≤ x) > α} for α ∈ [0, 1).

Lp,q = {X ∈ L0 : X− ∈ Lp, X+ ∈ Lq} for p, q ≥ 0. ∆n = {(x1, . . . , xn) ∈ (0, 1)n : x1 + · · ·+ xn = 1} is the interior of the

standard n-simplex. X∗, X∗∗ are iid copies of X and X∗α, X
∗∗
α are iid copies of F−1

X (Uα) where Uα ∼ U[α, 1].
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Moreover, distortion riskmetrics serve as the building block of law-invariant convex risk func-

tionals in the sense that any law-invariant convex risk functional can be written as a supremum of

signed Choquet integrals plus constants (Liu et al. (2020)) and this includes all law-invariant convex

risk measures in Föllmer and Schied (2016) and all law-invariant deviation measures in Grechuk et

al. (2009), as well as the classic mean-variance and mean-standard deviation principles in insurance.

We already mentioned that characterization and various properties of distortion riskmetrics

are studied on L∞ by Wang et al. (2020). As a follow-up of the previous work, the main purpose

of this paper is to extend the domain of distortion riskmetrics to more general spaces, including

Lp-spaces for p ∈ [1,∞). In many applications, risk measures such as the industry standard VaR

and ES are defined on spaces beyond L∞ to include unbounded loss distributions, e.g., normal,

Pareto or t-distributions. Furthermore, for many convex risk measures, their natural domains on

which key properties are preserved are Banach spaces much larger than L∞; see e.g., Filipović and

Svindland (2012), Pichler (2013) and Liebrich and Svindland (2017). Indeed, there is an extensive

literature on risk measures defined on general spaces (e.g., Delbaen (2002), Föllmer and Schied

(2002) and Ruszczyński and Shapiro (2006)) and in particular on Lp-spaces (Frittelli and Rosazza

Gianin (2002)) or Orlicz spaces (Cheridito and Li (2009)). Different from the previous literature,

we consider many functionals that are not necessarily monotone or convex. Notably, as a special

example, the inter-quantile range (see Table 1) is not monotone, convex, or Lp-continuous, but it

is a popular measure of dispersion in statistics, and it belongs to the class of distortion riskmetrics.

Finally, we extend distortion riskmetrics to a multi-dimensional setting, where the concepts of

elicitability and convex level sets has been popular recently; see Fissler and Ziegel (2016), Frongillo

and Kash (2018) and Wang and Wei (2020).

Most results in this paper are similar to those in the literature in terms of both statements

and proofs, and our findings that these results hold on general spaces are not surprising. However,

most of the results in previous literature on L∞, especially those in Wang et al. (2020), may not

be convenient to directly use in practice where most applications require results on more general

spaces of random variables. As such, more general results are in need, and this paper can be viewed

as a convenient toolkit for future studies and applications of distortion riskmetrics. Nevertheless,

there are several additions to the existing literature. The similarity of this paper with Wang et al.

(2020) and the new results of this paper are summarized in Table 2.

Below we briefly explain the new results. First, an ES-based representation of convex distortion

riskmetric ρ in Theorem 5 is new to the literature. Four other new results, all requiring the
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corresponding results new results

this paper Wang et al. (2020) this paper

(on general spaces) (on L∞) (on general spaces)

Theorem 1 ←→ Theorem 1 Proposition 1

Theorem 2 ←→ Theorem 2 Proposition 3

Proposition 2 ←→ Lemmas 2 and 3 Theorem 4

Theorem 3 ←→ Theorem 3 Theorem 5

Theorem 6 ←→ Theorem 4 Proposition 4

Table 2: Comparison with results in Wang et al. (2020)

considered domain to be larger than L∞, are the finiteness condition in Proposition 1, the domain

of convex distortion riskmetrics in Proposition 3, the existence of dominating convex functionals

in Theorem 4, and the Lp-continuity in Proposition 4. Moreover, the condition in Theorem 6 is

slightly weakened compared to a similar result on L∞ in Wang et al. (2020).

The paper is organized as follows. In Section 2, we collect basic definitions needed for our paper,

and present a functional characterization of distortion riskmetrics. In Section 3, results related to

convexity, convex order consistency, and mixture concavity are presented. Section 4 contains results

on continuity properties of distortion riskmetrics and and Section 5 extends the discussions to the

multi-dimensional setting. To facilitate the main purpose of the paper as a toolkit, most proofs are

self-contained and are relegated to the appendix.

2 Distortion riskmetrics and their characterization

2.1 Notation and definition

Throughout the paper, let (Ω,A,P) be an atomless probability space. Two random variables

X and Y have the same distribution under P is denoted by X
d
= Y . For x, y ∈ R, we write

x ∨ y = max{x, y}, x ∧ y = min{x, y}, x+ = x ∨ 0 and x− = (−x) ∨ 0. For p ∈ [1,∞), Lp is the

space of random variables with finite p-th moment, and L∞ is that of essentially bounded random

variables. Throughout, the set X ⊃ L∞ is a law-invariant convex cone, that is, for all random

variables X and Y ,

(i) if X ∈ X and X
d
= Y , then Y ∈ X ;

(ii) if X ∈ X , then λX ∈ X for all λ > 0;
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(iii) if X,Y ∈ X , then X + Y ∈ X .

Let M be the set of distribution functions of random variables in X . For F ∈ M, X ∼ F means

that X ∈ X has distribution F . Denote by FX the distribution function of the random variable X.

We define the left-continuous generalized inverse of F (left-quantile) as

F−1(t) = inf{x ∈ R : F (x) ≥ t}, t ∈ (0, 1],

while the right-continuous generalized inverse of F (right-quantile) is defined as

F−1+(t) = inf{x ∈ R : F (x) > t}, t ∈ [0, 1).

For simplicity, we also let F−1(0) = F−1+(0) and F−1+(1) = F−1(1).

Next, we define the distortion riskmetric using the signed Choquet integral (Choquet (1954))

on a general space. Denote by

H = {h : h maps [0, 1] to R, h is of bounded variation, h(0) = 0}.

Definition 1. A functional ρh : X → R, whose domain X ⊃ L∞ is a law-invariant convex cone, is

a distortion riskmetric if there exists h ∈ H such that ρh(X) =
∫
X dh ◦ P, where

∫
X dh ◦ P is a

signed Choquet integral defined by∫
X dh ◦ P =

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx. (2)

The function h is called the distortion function of ρh.

Generally, the two integrals in (2) may not be finite, and hence
∫
X dh ◦ P may be infinite or

even not well-defined (i.e., ∞−∞). We emphasize that according to our definition, a distortion

riskmetric ρh : X → R is only defined when
∫
X dh ◦ P is finite (i.e., both integrals are finite),

and hence the two terms “distortion riskmetrics” and “signed Choquet integrals” are no longer

interchangeable, in contrast to the case of L∞ studied by Wang et al. (2020). In other words,

X and h have to be compatible, making (2) finite. In Section 2.2 below we will give a sufficient

condition for (2) to be finite. The notion of a distortion function h we use in this paper is broader

than the classical sense in which h is assumed increasing with h(1) = 1.

For a given distortion riskmetric ρh : X → R, the distortion function h ∈ H is unique. To see

this, suppose that ρh1(X) = ρh2(X) for all X ∈ X . Choose a random variable X ∼ Bernoulli(p)

with a fixed p ∈ [0, 1]. It follows that

ρhi(X) = hi(p) +

∫ ∞
1

hi(0) dx = hi(p), i = 1, 2.

Since p is arbitrary, we get h1 = h2 on [0, 1].
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Remark 1. A distortion riskmetric ρh can be equivalently expressed as

ρh(X) =

∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞
0

h(P(X > x)) dx. (3)

Indeed, since P(X > x) = P(X ≥ x) almost everywhere on R, we know h(P(X > x)) = h(P(X ≥ x))

almost everywhere on R.

2.2 Quantile representation and finiteness of signed Choquet integrals

The quantile representation of signed Choquet integrals is obtained in Lemma 3 of Wang et al.

(2020) on L∞ and Theorems 4 and 6 of Dhaene et al. (2012) for increasing h. Combining the above

results, we have the following quantile representation of signed Choquet integrals on a general space

with distortion functions not necessarily increasing.

Lemma 1. For h ∈ H and X ∈ L0 such that
∫
X dh ◦ P is well-defined (it may take values ±∞),

(i) if h is right-continuous, then
∫
X dh ◦ P =

∫ 1
0 F

−1+
X (1− t) dh(t);

(ii) if h is left-continuous, then
∫
X dh ◦ P =

∫ 1
0 F

−1
X (1− t) dh(t);

(iii) if F−1
X is continuous on (0, 1), then

∫
X dh ◦ P =

∫ 1
0 F

−1
X (1− t) dh(t) =

∫ 1
0 F

−1+
X (1− t) dh(t).

Now we focus on Lp-spaces for p ∈ [1,∞]. Define a set of distortion functions H1 as

H1 = {h ∈ H : h is absolutely continuous on [0, ε) ∪ (1− ε, 1] for some ε ∈ (0, 1)}.

Note that H1 excludes only special examples such as the essential supremum, the essential infimum,

and the range in Table 1. Moreover, noticing that h is differentiable almost everywhere on [0, 1]

due to bounded variation, we let

Hq =
{
h ∈ H1 : h′ ∈ Lq((0, ε) ∪ (1− ε, 1)) for some ε ∈ (0, 1)

}
,

where h′ is (in a.e. sense) the derivative of h and q is the conjugate of p ∈ [1,∞] (i.e., 1/p+1/q = 1).

Next, we give a sufficient condition for ρh to be well defined, which is almost necessary in case that

h is concave.

Proposition 1. For p ∈ [1,∞), q being its conjugate,

(i)
∫
X dh ◦ P is finite for all X ∈ Lp if h ∈ Hq;

(ii) if h ∈ H is concave and
∫
X dh ◦ P is finite for all X ∈ Lp, then h ∈ Hr for all r < q.

As a consequence of Proposition 1, if h ∈ H is absolutely continuous and
∫ 1

0 |h
′(t)|q dt < ∞,

then
∫
X dh ◦P is finite for all X ∈ Lp. In particular, the case p = q = 2 gives a sufficient condition

for the finiteness of
∫
X dh ◦ P for X ∈ L2.
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2.3 Characterization and basic properties

Before we further characterize distortion riskmetrics, we list some terminology and properties

for random variables and functionals. Recall that random variables X and Y are comonotonic if

there exists Ω0 ∈ A with P(Ω0) = 1 such that for each ω, ω′ ∈ Ω0,

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0.

A functional ρ : X → R may satisfy the following properties, where the statements hold for all

random variables X,Y ∈ X .

(a) Law-invariance: ρ(X) = ρ(Y ) for X
d
= Y .

(b) Comonotonic-additivity : ρ(X + Y ) = ρ(X) + ρ(Y ) if X and Y are comonotonic.

(c) Continuity at infinity : limM→∞ ρ((X ∧M) ∨ (−M)) = ρ(X).

(d) Uniform sup-continuity: For any ε > 0, there exists δ > 0, such that |ρ(X)−ρ(Y )| < ε whenever

ess sup |X − Y | < δ, where ess sup(·) is the essential supremum in Table 1.

The above four properties are satisfied by distortion riskmetrics, and moreover, they indeed char-

acterize distortion riskmetrics, similarly to the case of bounded random variables studied by Wang

et al. (2020) and the case of increasing Choquet integrals in Wang et al. (1997) and Kou and Peng

(2016), all based on a classic result of Schmeidler (1986).

Theorem 1. A functional ρ : X → R is law-invariant, comonotonic-additive, continuous at infinity

and uniformly sup-continuous if and only if ρ is a distortion riskmetric.

Remark 2. From the proof of necessity part of Theorem 1 in Appendix A, we can see a distortion

riskmetric ρh : X → R is, in fact, Lipschitz-continuous with respect to L∞-norm with Lipschitz

constant TVh, the total variation of h on [0, 1]. This continuity is stronger than uniform sup-

continuity. This point will be further developed in Section 4.

Below we present some basic properties of distortion riskmetrics which are useful in later

sections. They are well-established for random variables in L∞ and h ∈ H. In what follows, a

functional ρ is said to be increasing (or decreasing) if X ≤ Y almost surely implies ρ(X) ≤ ρ(Y )

(or ρ(X) ≥ ρ(Y ), respectively).1

1The terms “increasing” and “decreasing” in this paper are always in the non-strict sense.
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Proposition 2. For h, h1, h2 ∈ H,

(i) if h1(1) = h2(1), then h1 ≤ h2 on [0, 1]⇔ ρh1 ≤ ρh2 on X . In particular, h1 = h2 on [0, 1] ⇔

ρh1 = ρh2 on X ;

(ii) ρh is increasing (resp. decreasing) if and only if h is increasing (resp. decreasing);

(iii) for all c ∈ R and X ∈ X , ρh(X + c) = ρh(X) + ch(1);

(iv) for all λ > 0 and X ∈ X , ρh(λX) = λρh(X);

(v) for all X ∈ X , ρh(−X) = ρĥ(X), where ĥ : [0, 1]→ R is given by ĥ(x) = h(1− x)− h(1) for

all x ∈ [0, 1].

3 Convexity, convex order consistency and mixture concavity

In this section, we study the important class of convex distortion riskmetrics and their related

properties. A functional ρ : X → R is convex if ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for all

X,Y ∈ X and λ ∈ [0, 1]. As shown in Theorem 3 of Wang et al. (2020), the following properties:

convexity, convex order consistency, and mixture concavity, on L∞, are equivalent to concavity of

the distortion function. We establish a similar result on general spaces, as well as a few new results

on convex distortion riskmetrics.

We first justify that for a convex distortion riskmetric, if its domain X is a linear space, then

it is contained in L1; hence, it makes sense to confine our study to subsets of L1. Note also that L1

is the canonical space for law-invariant convex risk measures (e.g., Filipović and Svindland (2012)).

Proposition 3. Suppose that X is a linear space and ρh : X → R is a convex distortion riskmetric.

Then X ⊂ L1 unless ρh = 0 on X .

The assumption that X is a linear space in Proposition 3 is not dispensable. An important

example is the Expected Shortfall (ES) in Table 1 at level α ∈ (0, 1), defined as

ESα(X) =
1

1− α

∫ 1

α
F−1
X (t) dt, X ∈ X , (4)

where its domain X can be chosen as {X ∈ L0 : X+ ∈ L1}, which is larger than L1. In addition,

we let ES0 = E which is finite on L1 and ES1 be the essential supremum which is finite on the set

of random variables bounded from above. For α ∈ [0, 1], ESα is a convex distortion riskmetric with

distortion function h given by

h(t) =
t

1− α
∧ 1, t ∈ [0, 1], α ∈ [0, 1)
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and h(t) = 1{t>0} if α = 1. These facts will be useful later.

Next, we fix some terminology. A random variable X is said to be smaller than a random

variable Y in convex order, denoted by X ≤cx Y , if E[φ(X)] ≤ E[φ(Y )] for all convex φ : R → R,

provided that both expectations exist. For a functional ρ : X → R and all random variables

X,Y ∈ X , ρ is quasi-convex if ρ(λX + (1− λ)Y ) ≤ ρ(X) ∨ ρ(Y ) for all λ ∈ [0, 1]; ρ is convex order

consistent if ρ(X) ≤ ρ(Y ) for X ≤cx Y . For a law-invariant functional ρ, define ρ̃ : M → R such

that ρ̃(F ) = ρ(X) where X ∼ F , and ρ is concave on mixtures if ρ̃ is concave. The following result

characterizes convex order using distortion riskmetrics. For a version of this result for increasing h,

see Theorem 5.2.1 of Dhaene et al. (2006).

Theorem 2. For all random variables X,Y ∈ L1, X ≤cx Y if and only if ρh(X) ≤ ρh(Y ) for all

concave functions h ∈ H such that X and Y are in the domain of ρh.

In the following theorem, we present six equivalent conditions about convexity of a distortion

riskmetric on a general space, similar to Theorem 3 of Wang et al. (2020). Recall that X is a

law-invariant convex cone containing L∞. In the following result, we further assume X ⊂ L1 as

discussed above.

Theorem 3. For a distortion riskmetric ρh : X → R where X ⊂ L1, the following are equivalent:

(i) h is concave; (ii) ρh is convex order consistent; (iii) ρh is subadditive; (iv) ρh is convex; (v) ρh

is quasi-convex; (vi) ρh is concave on mixtures.

A few well-known characterization results in risk management can be directly obtained from

Theorem 1 and 3. For a history of these results, see Föllmer and Schied (2016). Following the

terminology of Föllmer and Schied (2016), we say a functional ρ : X → R is cash-invariant if

ρ(X + c) = ρ(X) + c for all X ∈ X and c ∈ R. A coherent risk measure is a functional that is

increasing, cash-invariant, positively homogeneous, and convex.

Corollary 1. Suppose that X ⊂ L1. A functional ρ : X → R is law-invariant, increasing, cash-

invariant, continuous at infinity, and comonotonic-additive if and only if ρ is a distortion riskmetric

ρh for an increasing h with h(1) = 1. In addition, ρ satisfies any of the properties (ii)-(vi) in

Theorem 3 if and only if h is concave, and in that case ρ is a coherent risk measure.

Note that in Corollary 1 we do not assume uniform sup-continuity as it is implied by mono-

tonicity and cash-invariance. In case X = L∞, continuity at infinity can also be removed from the

statement. In Corollary 1, ρ = ρh is a distortion risk measure or a dual utility (Yaari (1987)). If h
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is concave, then ρ = ρh is commonly known as a spectral risk measure; see Acerbi (2002) where h

is additionally assumed to be continuous at 0.

In the next result, we consider the relationship between a distortion riskmetric ρh and a convex

one dominating ρh. For this purpose, we introduce the concave envelope h∗ : [0, 1] → R of h ∈ H,

defined as

h∗(t) = inf {g(t) : g ∈ H, g ≥ h, g is concave on [0, 1]} .

One can check that h∗ is concave, h∗(0) = 0 and h∗(1) = h(1); see Wang et al. (2020) for a simple

justification. Theorem 3 yields that ρh∗ : X → R is a convex distortion riskmetric if X ⊂ L1. We also

know that ρh∗ ≥ ρh on their common domain due to Proposition 2. The next theorem shows that

ρh∗ is actually the smallest law-invariant, convex and continuous-at-infinity functional dominating

ρh; note that it is not obvious whether such a functional exists and whether it is a distortion

riskmetric. Below, we say that ρh∗ is finite on X , if the signed Choquet integral
∫
X dh∗ ◦P is finite

for all X ∈ X .

Theorem 4. For a distortion riskmetric ρh : X → R where X ⊂ L1, if ρh∗ is finite on X , then

ρh∗ is the smallest law-invariant, convex and continuous-at-infinity functional dominating ρh. If

ρh∗ is not finite on X , then there is no real-valued law-invariant, convex and continuous-at-infinity

functional dominating ρh.

Theorem 4 implies in particular that ESα in (4) is the smallest law-invariant and continuous-

at-infinity convex functional dominating VaRα (Table 1); see Theorem 9 of Kusuoka (2001) and

Theorem 4.67 of Föllmer and Schied (2016) for this statement on the set of bounded random

variables.

In the next result, we establish a new ES-based representation of convex distortion riskmetrics,

which covers the classic ES-based representation of coherent distortion risk measures in Theorem

4.93 of Föllmer and Schied (2016) on L∞. As far as we are aware of, the representation (5) is new

to the literature.

Theorem 5. A functional ρ : X → R where X ⊂ L1 is a convex distortion riskmetric if and only

if there exist finite Borel measures µ, ν on [0, 1] such that

ρ(X) =

∫ 1

0
ESα(X) dµ(α) +

∫ 1

0
ESα(−X) dν(α). (5)

Moreover, if ρ is increasing, then we can take ν = 0.
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Remark 3. In case ν in (5) satisfies β :=
∫ 1

0
1

1−α dν(α) <∞, using the equality

ESα(−X) =
1

1− α
(αES1−α(X)− E[X]), X ∈ L1,

we can rewrite (5) as

ρ(X) =

∫ 1

0
ESα(X) dµ̂(α)− βE[X], X ∈ X , (6)

where µ̂ is another finite Borel measure on [0, 1]. Note that the condition β <∞ is not automatically

satisfied for a general convex distortion riskmetric ρ. An example of a convex distortion riskmetric

that does not admit the form in (6) is ρ : L∞ → R, X 7→ −F−1
X (0). Note that ρ admits the form

in (5) with µ = 0 and ν = δ1, where δ1 is the point-mass at 1; of course, β =∞ in this case.

Finally, we mention the related concept of the convex level sets (CxLS) property. A functional

ρ has CxLS if the level set {F ∈ M : ρ̃(F ) = x} of ρ̃ is convex for each x ∈ R. The CxLS

property is a necessary condition for the notions of elicitability, identifiability and backtestability;

see Wang and Wei (2020, Section 6) for an explanation. The above three concepts, referring to the

quality and validity of risk forecasts, are notably popular in current banking regulation and model

risk management. We refer to Gneiting (2011), Fissler and Ziegel (2016) and Acerbi and Szekely

(2017) for more discussions on these concepts. Theorem 1 of Wang and Wei (2020) characterizes a

signed Choquet integral with CxLS on a convex set M that contains all three-point distributions,

which naturally applies to our distortion riskmetrics on general spaces. In short, up to a constant

multiplier, distortion riskmetrics with CxLS only have three forms: the mean, a mixture of left and

right α-quantiles, α ∈ (0, 1), and a mixture of the essential supremum and the essential infimum.

4 Continuity of distortion riskmetrics

In this section, we examine continuity of distortion riskmetrics. It is already shown in Remark

2 that a distortion riskmetric is Lipschitz-continuous with respect to L∞-norm. Namely, for h ∈ H

and X,Y ∈ X ,

|ρh(X)− ρh(Y )| ≤ ess sup |X − Y | · TVh,

where TVh is the total variation of h on [0, 1].

We are then interested in continuity of a distortion riskmetric with respect to convergence in

distribution, or equivalently, weak convergence in the set of distributionsM. This is closely related

to robustness of a risk functional in risk management; see Krätschmer et al. (2014). Before stating
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the result of such continuity, we write the following relevant definition of h-uniform integrability.

Given a convex cone X and h ∈ H, a set D ⊂ X is called h-uniformly integrable if

lim
k↓0

sup
X∈D

∫ k

0
|F−1
X (1− t)| dh(t) = 0

and

lim
k↑1

sup
X∈D

∫ 1

k
|F−1
X (1− t)| dh(t) = 0.

Note that h-uniform integrability reduces to the usual uniform integrability when h ∈ H is linear

and nonconstant in some neighborhoods of 0 and 1. We give the following result for continuity of

distortion riskmetrics with respect to convergence in distribution.

Theorem 6. For h ∈ H and X,X1, X2, · · · ∈ X , suppose that Xn → X in distribution as n → ∞

and the set {X,X1, X2, . . . } is h-uniformly integrable. If for all t ∈ (0, 1), either s 7→ h(s) or

s 7→ F−1
X (1− s) is continuous at t, then ρh(Xn)→ ρh(X) as n→∞.

Next, we consider the Lp-continuity of distortion riskmetrics (i.e., continuity with respect to the

Lp-norm, defined as ||X||p = (E[|X|p])1/p, X ∈ Lp). We give a sufficient condition for a distortion

riskmetric to be Lp-continuous without assuming convexity of the functional, as is typically done

in the literature.

Proposition 4. For p ∈ [1,∞) and continuous h ∈ H, a distortion riskmetric ρh : Lp → R is

Lp-continuous if h ∈ Hq where q is the conjugate of p.

We remark that all convex distortion riskmetrics (i.e., the ones with concave h by Theorem

3) on Lp are Lp-continuous; see Rüschendorf (2013, Corollary 7.10) for the Lp-continuity of the

finite-valued convex risk measures on Lp.

5 Multi-dimensional distortion riskmetrics

In this section, we discuss distortion riskmetrics in a multi-dimensional setting. The importance

of multi-dimensional riskmetrics arises in a statistical context, where multi-dimensional forecasting

and elicitation of statistical quantities (jointly) has become a popular topic; see Lambert et al.

(2008), Fissler and Ziegel (2016) and Frongillo and Kash (2018). Here, multi-dimensionality refers

to the range, rather than the domain, of the riskmetrics; in other words, our riskmetrics map X to

Rd for some d ≥ 2. This formulation is motivated by the statistical applications mentioned above,
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and in particular, estimating, forecasting, and testing multiple quantities depending on a random

object.

In this section, we simply extend the results in Section 2 to multi-dimensional distortion

riskmetrics. There is essentially nothing new; nevertheless, in view of the importance of multi-

dimensional riskmetrics and their applications, we collect some basic results. The distortion risk-

metrics of dimension d ≥ 2 are defined as follows.

Definition 2. A d-dimensional distortion riskmetric ρh : X → Rd is defined as

ρh(X) = (ρh1(X), . . . , ρhd(X)),

where h = (h1, . . . , hd) ∈ Hd. Obviously, each ρhi for i = 1, . . . , d is a one-dimensional distortion

riskmetric on X .

Properties (a)-(d) in Section 2.3 can be equivalently formulated for d-dimensional distortion

riskmetrics. More precisely, ρh : X → Rd with h = (h1, . . . , hd) satisfies some of the properties (a)-

(d) in Section 2.3 if and only if each one-dimensional distortion riskmetric ρhi , i = 1, . . . , d, satisfies

the respective properties. We can now provide the characterization result for multi-dimensional

distortion riskmetrics. The same representation on L∞ is given by Proposition 5 of Wang and Wei

(2020).

Proposition 5. A functional ρ : X → Rd is law-invariant, comonotonic-additive, continuous at

infinity and uniformly sup-continuous if and only if ρ is a d-dimensional distortion riskmetric.

Similarly to Theorem 6, the continuity of multi-dimensional distortion riskmetrics with respect

to weak convergence is summarized below.

Proposition 6. Let h = (h1, . . . , hd) with hi ∈ H, i = 1, . . . , d. For X,X1, X2, · · · ∈ X , suppose

that Xn → X in distribution as n→∞ and the set {X,X1, X2, . . . } is hi-uniformly integrable for all

i = 1, . . . , d. If for any given i = 1, . . . , d and for all t ∈ (0, 1), either s 7→ hi(s) or s 7→ F−1
X (1− s)

is continuous at t, then ρh(Xn)→ ρh(X) as n→∞.

Convexity and concavity cannot be naturally formulated for multi-dimensional functionals

due to the lack of complete order in Rd. On the other hand, the CxLS property can be naturally

defined for multi-dimensional functionals. Similarly to Section 3, a multi-dimensional functional ρ

has CxLS if the level set {F ∈M : ρ̃(F ) = x} is convex for each x ∈ Rd. As in the case of dimension

one, multi-dimensional CxLS serves as a necessary condition for multi-dimensional elicitability, and

hence it is important in the recent study of statistical elicitation.
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Unlike the other properties in this section, which do not need new mathematical treatment for

multi-dimensional distortion riskmetrics, the multi-dimensional CxLS is highly non-trivial to study

or characterize. For instance, one-dimensional distortion riskmetrics with CxLS are characterized by

Theorem 1 of Wang and Wei (2020), whereas a full characterization of multi-dimensional distortion

riskmetrics with CxLS is a well-known difficult open question; see Fissler and Ziegel (2016) and

Kou and Peng (2016). As far as we are aware of, the only existing characterization result on multi-

dimensional distortion riskmetrics is given in Theorem 2 of Wang and Wei (2020), which identifies

the form of ρh such that (ρh,VaRα) has CxLS; note that (ρh,VaRα) is a two-dimensional distortion

riskmetric.

Remark 4. Another direction of multi-dimensional generalization of riskmetrics is to consider

mappings from X d to Rm where m is a positive integer, usually equal to d or 1. This relates to the

study of measures of multivariate risks; see e.g., Embrechts and Puccetti (2006). Our formulation

in this section should not be confused with the above one. We stick to the domain X for the main

reason that probability distortion is usually defined and well-understood in dimension one; see the

recent work Liu et al. (2020) for a characterization of probability distortion in dimension one.
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A Proofs of all results

Proof of Lemma 1. (i) and (ii) can be obtained by combining the results of Lemma 3 in Wang et

al. (2020) and Theorems 4 and 6 of Dhaene et al. (2012). We only prove (iii). We first suppose that

h is right-continuous. Since F−1
X is continuous on (0, 1), we have

F−1
X (1− t) = F−1+

X (1− t), for all t ∈ [0, 1].

It then follows from (i) that∫
X dh ◦ P =

∫ 1

0
F−1+
X (1− t) dh(t) =

∫ 1

0
F−1
X (1− t) dh(t).
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Then suppose that h is left-continuous. According to (ii), it is straightforward that∫
X dh ◦ P =

∫ 1

0
F−1
X (1− t) dh(t).

Then consider a general h. Since h is of bounded variation, it has countably many points of

discontinuity. Then we can always decompose h = hr + hl, where hr and hl are right-continuous

and left-continuous parts of h, respectively. From (2), it is obvious that∫
X d(ah1 + bh2) ◦ P = a

∫
X dh1 ◦ P + b

∫
X dh2 ◦ P

for all h1, h2 ∈ H and a, b ∈ R. According to the above discussion,∫
X dh ◦ P =

∫
X dhr ◦ P +

∫
X dhl ◦ P

=

∫ 1

0
F−1
X (1− t) dhr(t) +

∫ 1

0
F−1
X (1− t) dhl(t) =

∫ 1

0
F−1
X (1− t) dh(t).

The other equality is similar.

Proof of Proposition 1. (i) Recall the quantile representation of the integral
∫
X dh ◦ P,∫

X dh ◦ P =

∫ 1

0
F−1+
X (1− t) dhr(t) +

∫ 1

0
F−1
X (1− t) dhl(t). (7)

We show finiteness of the first term in (7) and finiteness of the second term follows similarly.

For any ε ∈ (0, 1) such that h is absolutely continuous in [0, ε) ∪ (1− ε, 1] and

h′ ∈ Lq((0, ε) ∪ (1− ε, 1)),

we have |F−1+
X (1− t)| <∞ for all t ∈ [ε, 1− ε]. It follows that∣∣∣∣∫ 1−ε

ε
F−1+
X (1− t) dhr(t)

∣∣∣∣ <∞
since h is of bounded variation. It then suffices to show that∣∣∣∣∣

∫
[0,ε)∪(1−ε,1]

F−1+
X (1− t) dhr(t)

∣∣∣∣∣ =

∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
F−1+
X (1− t)h′r(t) dt

∣∣∣∣∣ <∞.
Since X ∈ Lp, the right-quantile F−1+

X ∈ Lp([0, 1]). Note that h′r ∈ Lq((0, ε) ∪ (1− ε, 1)) and

1/p+ 1/q = 1. By Hölder’s inequality,∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
F−1+
X (1− t)h′r(t) dt

∣∣∣∣∣
≤
∫

[0,ε)∪(1−ε,1]
|F−1+
X (1− t)| · |h′r(t)|dt

≤

(∫
[0,ε)∪(1−ε,1]

|F−1+(1− t)|p dt

) 1
p
(∫

[0,ε)∪(1−ε,1]
|h′r(t)|q dt

) 1
q

<∞.
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We then conclude that ∣∣∣∣∫ 1

0
F−1+
X (1− t) dhr(t)

∣∣∣∣ <∞.
By similar arguments, |

∫ 1
0 F

−1
X (1 − t) dhl(t)| < ∞ holds naturally. Therefore,

∫
X dh ◦ P is

finite.

(ii) Concavity of h implies that h is absolutely continuous on (0, 1). Suppose that h is not con-

tinuous at 0. Take X0 ∼ N(0, 1) and X = X
1/p
0 . It follows that F−1

X (1) = ∞. By Lemma 1

(iii), ∣∣∣∣∫ X dh ◦ P
∣∣∣∣ =

∣∣∣∣∫ 1

0
F−1
X (1− t) dh(t)

∣∣∣∣ =∞,

which leads to a contradiction. Therefore, h is continuous at 0. Continuity of h at 1 holds

analogously. h is thus absolutely continuous on [0, 1]. Since h is of bounded variation, we can

always use Jordan decomposition h = h+ − h−, where h+ and h− are increasing functions.

Moreover, h can always be decomposed into h = hr +hl. It then suffices to prove the property

for all increasing and right-continuous h.

Since h is concave, we have h′ ∈ L1([0, 1]). Let

q′ = sup{r ≥ 1 : h′ ∈ Lr((0, ε) ∪ (1− ε, 1)) for some ε ∈ (0, 1)}

and suppose for the purpose of contradiction that q′ < q. Note that we have q′/(q′ − 1) > p.

Hence, there exists δ > 0 such that

q′ + δ < q and
q′

q′ + δ − 1
> p.

Let q∗ = q′ + δ and p∗ = q∗/(q∗ − 1) > p. Note that q∗p/p∗ = (q′ + δ − 1)p < q′. Construct a

random variable X such that ∣∣F−1
X (1− t)

∣∣ = |h′(t)|
q∗
p∗ ,

for almost everywhere t ∈ [0, 1]. This is always possible due to concavity of h, which implies

that h′ is decreasing and h′ has countably many discontinuity points. Since q∗p/p∗ < q′,

we have h′ ∈ L(q∗p/p∗)((0, ε) ∪ (1 − ε, 1)) for some ε > 0, and hence X ∈ Lp. Noting that

h′ 6∈ Lq∗((0, ε) ∪ (1− ε, 1)), we have∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
F−1
X (1− t)h′(t) dt

∣∣∣∣∣ =

∫
[0,ε)∪(1−ε,1]

|h′(t)|
q∗
p∗+1

dt =

∫
[0,ε)∪(1−ε,1]

|h′(t)|q∗ dt =∞,

which leads to a contradiction. Therefore, q′ ≥ q.

17



Proof of Theorem 1. (i) “⇒”: For all X ∈ X , we define a random variable

XM = X1{|X|≤M} +M1{X>M} −M1{X<−M}, M ≥ 0.

Since ρ is continuous at infinity, we have ρ(XM )→ ρ(X). Note that XM ∈ L∞ for any M ≥ 0.

It follows from Theorem 1 of Wang et al. (2020) that on L∞, the law-invariant, comonotonic-

additive and uniformly sup-continuous functional ρ can be represented by a signed Choquet

integral

ρ(XM ) =

∫ 0

−∞
(h(P(XM ≥ x))− h(1)) dx+

∫ ∞
0

h(P(XM ≥ x)) dx

=

∫ 0

−M
(h(P(X ≥ x))− h(1)) dx+

∫ M

0
h(P(X ≥ x)) dx, (8)

where h ∈ H. Specifically, h(t) = ρ(1{U<t}) < ∞ for t ∈ [0, 1], where U is a uniform random

variable on [0, 1]. Letting M →∞, we have

ρ(X) =

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx.

(ii) “⇐”: Law-invariance is straightforward. Comonotonic-additivity follows from (7), since the

left- and right-quantiles are well-known to be comonotonic-additive (see Proposition 7.20 of

McNeil et al. (2015) for the case of left-quantile). Continuity at infinity holds simply by

ρh(XM ) =

∫ 0

−∞
(h(P(XM ≥ x))− h(1)) dx+

∫ ∞
0

h(P(XM ≥ x)) dx

=

∫ 0

−M
(h(P(X ≥ x))− h(1)) dx+

∫ M

0
h(P(X ≥ x)) dx

M→∞−−−−→ ρh(X).

To see the uniform sup-continuity, we take any two random variables X,Y ∈ X . By represen-

tation (7), we have

|ρh(X)− ρh(Y )|

≤
∣∣∣∣∫ 1

0

(
F−1+
X (1− t)− F−1+

Y (1− t)
)

dhr(t)

∣∣∣∣+

∣∣∣∣∫ 1

0

(
F−1
X (1− t)− F−1

Y (1− t)
)

dhl(t)

∣∣∣∣
≤ ess sup |X − Y | · TVh,

where TVh is the total variation of the function h on [0, 1].

Proof of Proposition 2. (i) Sufficiency is straightforward from the definition of distortion risk-

metrics. Necessity can be checked by Bernoulli random variables.
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(ii) “⇒”: We take X = 1{U≤t1} and Y = 1{U≤t2} for all t1, t2 ∈ [0, 1] such that t1 ≤ t2, where

U ∼ U[0, 1]. Then we have X ≤ Y . Suppose that ρh is increasing (resp. decreasing). We have

h(t1) = ρh(X) ≤ ρh(Y ) = h(t2) (resp. h(t1) = ρh(X) ≥ ρh(Y ) = h(t2)). Thus h is increasing

(resp. decreasing).

“⇐”: For any random variables X,Y ∈ X such that X ≤ Y , we have P(X ≥ x) ≤ P(Y ≥ x)

for all x ∈ R. If h is increasing (resp. decreasing), then h(P(X ≥ x)) ≤ h(P(Y ≥ x))

(resp. h(P(X ≥ x)) ≥ h(P(Y ≥ x))) for all x ∈ R. It implies that ρh(X) ≤ ρh(Y )

(resp. ρh(X) ≥ ρh(Y )).

(iii) For all c ∈ R, we first calculate

ρh(c) =

∫ 0

−∞
(h(P(c ≥ x))− h(1)) dx+

∫ ∞
0

h(P(c ≥ x)) dx

=

∫ 0

0∧c
(−h(1)) dx+

∫ 0∨c

0
h(1) dx = ch(1).

Note that any random variable X ∈ X and c are comonotonic. By comonotonic-additivity of

ρh, we have ρh(X + c) = ρh(X) + ρh(c) = ρh(X) + ch(1).

(iv) For all λ > 0 and all X ∈ X ,

ρh(λX) =

∫ 0

−∞
(h(P(λX ≥ x))− h(1)) dx+

∫ ∞
0

h(P(λX ≥ x)) dx

=

∫ 0

−∞
(h(P(X ≥ 1

λ
x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ 1

λ
x)) dx

= λ

∫ 0

−∞
(h(P(X ≥ u))− h(1)) du+ λ

∫ ∞
0

h(P(X ≥ u)) du = λρh(X).

(v) This property is already shown in the proof of Lemma 1 (ii).

Proof of Proposition 3. Since ρh is convex on X , we know that it is convex on L∞, which implies

that h is concave by Theorem 3 of Wang et al. (2020).

Suppose that there exists X ∈ X such that E[|X|] =∞. Note that E[|X|] =∞ implies either

E[X+] = ∞ or E[X−] = ∞. If E[X+] = ∞, then Y = −X ∈ X since X is a linear space, and

E[Y−] = ∞. Similarly, if E[X−] = ∞, then E[Y+] = ∞. Therefore, we know that there exist

X,Y ∈ X such that E[X+] = E[Y−] =∞.

Take X ∈ X with E[X+] =∞. Since

ρh(X) =

∫ 0

−∞
(h(P(X ≥ x))− h(1)) dx+

∫ ∞
0

h(P(X ≥ x)) dx ∈ R,
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both
∫ 0
−∞ (h(P(X ≥ x))− h(1)) dx and

∫∞
0 h(P(X ≥ x)) dx have to be finite. Since X is unbounded

from above, this implies that h is continuous at 0. Similarly, take Y ∈ X with E[Y−] =∞, and we

obtain h is continuous at 1. Further by concavity, h is continuous on [0, 1]. Using Lemma 1, we get

ρh(X) =

∫ 1

0
F−1
X (1− t) dh(t).

There exists δ > 0 such that F−1
X (1− ε) > 0 for all ε ∈ (0, δ). Moreover,

ε

∫ ε

0
F−1
X (1− t) dt =∞

for all ε ∈ (0, δ). Let h′(t) be the right-derivative of h at t ∈ [0, 1). Assume that h′(0) > 0. Since h

is concave and continuous, there exists ε > 0 such that h′(t) > ε for t ∈ [0, ε]. It follows that∫ ε

0
F−1
X (1− t) dh(t) ≥ ε

∫ ε

0
F−1
X (1− t) dt =∞,

contradicting the fact that ρh(X) is finite. Therefore, h′(0) ≤ 0. Using similar arguments as above

for Y , we obtain h′(1) ≥ 0 where h′(1) is the left derivative of h at 1. Since h is concave, these two

conditions imply that h = 0 on [0, 1], and hence ρh = 0 on X .

Proof of Theorem 2. (i) “⇒”: Suppose that X ≤cx Y . We first consider the case where h ∈ H

is increasing. For an increasing concave function h ∈ H, it is well-known (e.g., Theorem 1 of

Williamson (1956)) that there exists some finite Borel measure µ on [0, 1], such that

h(t) =

∫ 1

0

1

u
hu(t) dµ(u), t ∈ [0, 1], (9)

where hu(t) = t ∧ u for t, u ∈ [0, 1] and we use the convention hu(t)/u = 1{t>0} if u = 0. By

the quantile representation of a distortion riskmetric,

ρhu(X) =

∫ u

0
F−1
X (1− t) dt =

∫ 1

1−u
F−1
X (u) du ≤

∫ 1

1−u
F−1
Y (u) du = ρhu(Y ),

where the third inequality holds by Theorem 3.A.5 of Shaked and Shanthikumar (2007). It

follows that

ρh(X) =

∫ 1

0

1

u
ρhu(X) dµ(u) ≤

∫ 1

0

1

u
ρhu(Y ) dµ(u) = ρh(Y ).

When h ∈ H is decreasing, similar to (9), we have

h(t) =

∫ 1

0

1

1− u
(hu(t)− t) dν(u), t ∈ [0, 1]

for some finite Borel measure ν on [0, 1] where the convention is (hu(t)− t)/(1−u) = −1{t=1}

if u = 1. By definition of X ≤cx Y , it implies that E[X] = E[Y ]. It then follows that

ρh(X) =

∫ 1

0

1

1− u
(ρhu(X)− E[X]) dν(u) ≤

∫ 1

0

1

1− u
(ρhu(Y )− E[Y ]) dν(u) = ρh(Y ).
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For any concave function h on [0, 1], there always exists x̂ ∈ [0, 1], such that h(x̂) ≥ h(x) for

all x ∈ [0, 1]. Then h can always be decomposed by h = h↑ + h↓, where

h↑(x) = h(x)1{0≤x<x̂} + h(x̂)1{x̂≤x≤1} and h↓(x) = [h(x)− h(x̂)]1{x̂≤x≤1}.

Notice that h↑ and h↓ are increasing and decreasing concave functions, respectively, with

h↑(0) = h↓(0) = 0.

According to the above arguments, we have

ρh(X) = ρh↑(X) + ρh↓(X) ≤ ρh↑(Y ) + ρh↓(Y ) = ρh(Y ).

(ii) “⇐”: Suppose that ρh(X) ≤ ρh(Y ) for all concave functions h ∈ H. For all t, u ∈ [0, 1], choose

a concave h ∈ H such that h(t) = hu(t) = t ∧ u. Then for all u ∈ [0, 1],

ρh(X) =

∫ 1

1−u
F−1
X (u) du and ρh(Y ) =

∫ 1

1−u
F−1
Y (u) du.

It follows that ∫ 1

1−u
F−1
X (u) du ≤

∫ 1

1−u
F−1
Y (u) du for all u ∈ [0, 1],

which is equivalent to X ≤cx Y by Theorem 3.A.5 of Shaked and Shanthikumar (2007).

Proof of Theorem 3. (i) ⇒ (ii) is shown by Theorem 2. We proceed in the order (ii) ⇒ (iii) ⇒

(iv)⇒ (v)⇒ (vi)⇒ (i), and the arguments are based on Theorem 3 of Wang et al. (2020).

(ii)⇒ (iii): Take random variables X,Y,Xc, Y c ∈ X , such that X
d
= Xc, Y

d
= Y c and Xc and

Y c are comonotonic. By Theorem 3.5 of Rüschendorf (2013), we have X + Y ≤cx X
c + Y c. It then

follows from law-invariance, comonotonic-additivity and convex order consistency of ρh that

ρh(X + Y ) ≤ ρh(Xc + Y c) = ρh(Xc) + ρh(Y c) = ρh(X) + ρh(Y ).

(iii)⇒ (iv): As ρh is positively homogeneous, subadditivity is equivalent to convexity.

(iv)⇒ (v): Directly from the definition of convexity and quasi-convexity.

(v) ⇒ (vi): Theorem 3 of Wang et al. (2020) gives that quasi-convexity of Ih on L∞ implies

that h is concave. Concavity on mixtures follows directly from the concavity of h by the definition

of a distortion riskmetric.

(vi)⇒ (i): Theorem 3 of Wang et al. (2020) gives that mixture-concavity of Ih on L∞ implies

that h is concave.
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Proof of Theorem 4. Suppose that ρ : X → (−∞,∞] is a law-invariant, convex and continuous-at-

infinity functional dominating ρh. Using Theorem 5 of Wang et al. (2020), we know that, on L∞,

ρh∗ is the smallest law-invariant convex functional dominating ρh. Therefore, ρ ≥ ρh∗ on L∞. If

ρh∗ is finite on X , then both ρ and ρh∗ are continuous at infinity on X , and hence ρ ≥ ρh∗ on X . If

ρh∗ is not finite on X , then we know that
∫
X dh∗ ◦ P =∞ (but not −∞ since ρh∗ ≥ ρh) for some

X ∈ X . Let

XM = X1{|X|≤M} +M1{X>M} −M1{X<−M}, M ≥ 0.

Using (8), ρ = ρh∗ on L∞ and
∫
X dh∗ ◦ P =∞, we have, as M →∞,

ρ(XM ) = ρh∗(XM ) =

∫ 0

−M
(h∗(P(X ≥ x))− h(1)) dx+

∫ M

0
h∗(P(X ≥ x)) dx→∞.

The continuity at infinity of ρ implies ρ(X) =∞, and hence ρ cannot be real-valued on X .

Proof of Theorem 5. Note that X 7→ ESα(X) and X 7→ ESα(−X) are convex distortion riskmetrics

for all α ∈ [0, 1]. As a mixture of X 7→ ESα(X) and X 7→ ESα(−X), ρ defined by (5) satisfies

convexity, comonotonic-additivity, law-invariance, continuity at infinity, and uniform sup-continuity.

Hence, ρ is a convex distortion riskmetric. Next we show the “only-if” statement. Denote by h the

distortion function of ρ, which by Theorem 3 is a concave function. Following the same argument

in the proof of Theorem 2, we can write for some finite Borel measures γ, ν on [0, 1],

h(t) =

∫ 1

0

1

α
hα(t) dγ(α) +

∫ 1

0

1

1− α
(hα(t)− t) dν(α), t ∈ [0, 1], (10)

where hα(t) = t ∧ α. Note that 1
αhα is the distortion function of ES1−α. By Proposition 2, the

distortion function of X 7→ ESα(−X) is given by

gα(t) =
1− t
1− α

∧ 1− 1 =
(α− t) ∧ 0

1− α
=

1

1− α
(hα(t)− t), t ∈ [0, 1].

Therefore, (10) gives

ρ(X) =

∫ 1

0
ES1−α(X) dγ(α) +

∫ 1

0
ESα(−X) dν(α), X ∈ X .

Thus (5) holds with dµ(α) = dγ(1− α).

Proof of Theorem 6. Since h ∈ H is of bounded variation, it can be decomposed into h = h+ − h−

where h+ and h− are increasing functions. It then suffices to prove the result for all increasing

function h. We denote the distribution function of Xn by Fn for n ∈ N.
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(i) If h is left-continuous and increasing, it induces a Borel measure µ on [0, 1] such that h(t) =

µ([0, t)), t ∈ [0, 1]. By quantile representation of a distortion riskmetric,

ρh(Xn) =

∫ 1

0
F−1
n (1− t) dh(t) and ρh(X) =

∫ 1

0
F−1
X (1− t) dh(t).

Since Xn → X in distribution, F−1
n → F−1

X almost everywhere on [0, 1], where F−1
X is contin-

uous. Let

A = {t ∈ (0, 1) : s 7→ F−1
X (1− s) is not continuous at t}.

According to the assumption, h must be continuous on the set A, which implies µ has no

point mass on A and µ(A) = 0. It remains to consider the points 0 and 1. Notice that

h-uniform integrability implies that when µ({0}) > 0, F−1
n (1) → F−1

X (1) as n → ∞ since

F−1
n (1) = F−1

X (1) = 0 for all n ∈ N. Similarly, when µ({1}) > 0, F−1
n (0) → F−1

X (0) = 0

as n → ∞. Therefore, F−1
n → F−1

X µ-almost surely. In addition, h-uniform integrability

of {X1, X2, . . . } is equivalent to uniform integrability of {F−1
1 , F−1

2 , . . . } with respect to the

measure µ. It then follows from Vitali’s Convergence Theorem (Rudin (1987, p. 133)) that

ρh(Xn)→ ρh(X) as n→∞.

(ii) If h is right-continuous, we define the Borel measure ν on [0, 1] by ν([0, t]) = h(t), t ∈ [0, 1].

We write the distortion riskmetrics as

ρh(Xn) =

∫ 1

0
F−1+
n (1− t) dh(t) and ρh(X) =

∫ 1

0
F−1+
X (1− t) dh(t).

Note that the set

B = {t ∈ (0, 1) : s 7→ F−1+
X (1− s) is not continuous at t}

= {t ∈ (0, 1) : s 7→ F−1
X (1− s) is not continuous at t}.

This implies ν(B) = 0. By similar argument as (i), we get F−1+
n → F−1+

X ν-almost surely and

ρh(Xn)→ ρh(X) as n→∞.

(iii) For a general h, we can write ρh by (7), where hr and hl are taken such that the collection of

discontinuity points of hr and hl coincides with that of h. To see that it is always possible,

we define countable sets

C = {t ∈ [0, 1] : s 7→ h(s) is not continuous at t},

C+ = {t ∈ C : s 7→ h(s) is right-continuous at t} and C− = C \ C+.
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Take

hr(x) =
∑
t∈C+

[h(t+)− h(t−)]1{x>t} + h(x)1{x/∈C} and hl(x) =
∑
t∈C−

[h(t+)− h(t−)]1{x≥t}

for x ∈ [0, 1]. Thus hr and hl are as desired. It follows that

|ρh(Xn)− ρh(X)| ≤ |ρhr(Xn)− ρhr(X)|+ |ρhl(Xn)− ρhl(X)| → 0

as n→∞. This implies ρh(Xn)→ ρh(X) as n→∞ in general.

Proof of Proposition 4. Suppose that we have random variables X1, X2, · · · ∈ Lp such that Xn → X

in Lp as n → ∞. Let Fn be the distribution function of Xn for n ∈ N. Since h ∈ Hq, there exists

ε ∈ (0, 1) such that h′ ∈ Lq((0, ε) ∪ (1− ε, 1)). Then we have

|ρh(Xn)− ρh(X)| ≤

∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣
+

∣∣∣∣∣
∫

[ε,1−ε]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣ . (11)

By Hölder’s inequality, the first term of (11) satisfies∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣
≤
∫

[0,ε)∪(1−ε,1]

∣∣F−1
n (1− t)− F−1

X (1− t)
∣∣ · |h′(t)| dt

≤

(∫
[0,ε)∪(1−ε,1]

∣∣F−1
n (1− t)− F−1

X (1− t)
∣∣p dt

) 1
p
(∫

[0,ε)∪(1−ε,1]
|h′(t)|q dt

) 1
q
n→∞−−−→ 0.

It remains to show the second term of (11) converges to zero. Note that∣∣∣∣∣
∫

[ε,1−ε]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣ =

∣∣∣∣∫ 1

0
(F−1

n (1− t)− F−1
X (1− t)) dh̃(t)

∣∣∣∣
= |ρh̃(Xn)− ρh̃(X)|,

where

h̃(t) =


0 t ∈ [0, ε),

h(t)− h(ε) t ∈ [ε, 1− ε],

h(1− ε)− h(ε) t ∈ (1− ε, 1].

Clearly, {X,X1, X2, . . . } is uniformly h̃-integrable since h̃ stays constant in some neighborhood of

0 and 1. Also, Xn → X in Lp implies Xn → X in distribution and h̃ is continuous due to h being

continuous. It then follows from Theorem 6 that

|ρh̃(Xn)− ρh̃(X)| → 0 as n→∞.
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Therefore, the second term of (11) also converges to zero. We conclude that ρh(Xn) → ρh(X) as

n→∞, which proves the proposition.

Proof of Proposition 5. The proposition follows by applying Theorem 2 to each dimension of ρ.

Proof of Proposition 6. The proposition follows by applying Theorem 6 to each dimension of ρ.
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