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Abstract

Unlike classic risk sharing problems based on expected utilities or convex risk measures,

quantile-based risk sharing problems exhibit two special features. First, quantile-based risk

measures (such as the Value-at-Risk) are often not convex, and second, they ignore some part

of the distribution of the risk. These features create technical challenges in establishing a full

characterization of optimal allocations, a question left unanswered in the literature. In this paper,

we address the issues on the existence and the characterization of (Pareto-)optimal allocations in

risk sharing problems for the Range-Value-at-Risk family. It turns out that negative dependence,

mutual exclusivity in particular, plays an important role in the optimal allocations, in contrast

to positive dependence appearing in classic risk sharing problems. As a by-product of our

main finding, we obtain some results on the optimization of the Value-at-Risk (VaR) and the

Expected Shortfall, as well as a new result on the inf-convolution of VaR and a general distortion

risk measure.

Keywords: Risk sharing, Value-at-Risk, Expected Shortfall, non-convexity, Pareto optimality

1 Introduction

Quantile-based risk sharing problems, as studied by Embrechts et al. (2018), have recently

drawn considerable interest in the literature of risk management, due to the popularity of quantile-

based risk measures such as the Value-at-Risk (VaR) and the Expected Shortfall (ES) in current

banking and insurance regulation (see, for instance, McNeil et al. (2015)). The key feature of

these risk sharing problems is that each agent’s preference is modelled by a quantile-based risk

measure (more precisely, an RVaR), and these risk measures are often not convex; see Section 2 for
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more details. This feature distinguishes quantile-based risk sharing problems from the classic ones

based on utility functions or convex risk measures. The non-convexity of the preferences brings

substantial challenges for studying risk sharing problems, as well as interesting mathematical and

economic observations. For recent results and financial implications of quantile-based risk sharing,

we refer to Embrechts et al. (2018) and the references therein. Weber (2018) contains results and

discussions on quantile-based optimal risk sharing problem in the context of Solvency II.

The existing literature on this topic focuses on finding the minimum possible aggregate risk

value and giving some optimal risk allocations, whereas existence and characterization issues are

left partially or completely unaddressed. Embrechts et al. (2018) obtained some Pareto-optimal

allocations and Weber (2018) generalized the underlying risk measures from the RVaR family to

the so-called VaR-type distortion risk measures with concave active parts (see Section 5). The case

of heterogeneous beliefs is analyzed by Embrechts et al. (2019). These papers give some solutions,

but do not characterize the whole family of the optimal allocations.

In this paper, we provide a complete answer to the questions of the existence and the char-

acterization of Pareto-optimal allocations in quantile-based risk sharing problems within the RVaR

family. As noted by Embrechts et al. (2018), Pareto-optimal allocations (which we shall simply

refer to as optimal allocations) are often equivalent to sum-optimal allocations. As we shall see

from the main results, the characterization of all optimal allocations is highly non-trivial, since the

quantile-based risk measures often ignore part of the distribution of the risk, creating a consid-

erable amount of probabilistic freedom. A further complication arises when the total risk is not

continuously distributed, leading to various issues with non-uniqueness of the quantile. Our results

show that an optimal allocation exhibits a strong negative dependence, in sharp contrast to the

classic risk sharing problems where an optimal allocation is always strongly positively dependent

(see Section 6). Along our exploration, we obtain some technical lemmas on the optimizations of

VaR and ES, which may be of interest in a different context.

This paper builds on the main results of Embrechts et al. (2018) on quantile-based risk shar-

ing. As mentioned before, techniques in this framework are different from the classic risk sharing

problems with convex risk measures or expected utilities; for the latter, we refer to Barrieu and El

Karoui (2005), Acciaio (2007), Filipović and Svindland (2008), Anthropelos and Kardaras (2017)

and the references therein. See also Tsanakas (2009) for the risk sharing problem in the context of

capital allocation. The RVaR family of risk measures are introduced by Cont et al. (2010) featuring

its robustness properties, and Li et al. (2018) and Embrechts et al. (2018) contain more discussions

on its properties and financial applications. In this paper, the term “risk sharing problem” refers
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to the search for Pareto-optimal allocations. The study on competitive equilibria is beyond the

scope of the current paper, and we refer to Xia and Zhou (2016), Boonen et al. (2018) and Em-

brechts et al. (2018, 2019) for recent related results. As a first attempt to characterize the forms

of optimal allocations, the risk sharing problems that we consider are formulated in a static setting

with homogeneous beliefs, as opposed to the more sophisticated settings of dynamic equilibrium

(see e.g. Beissner and Riedel (2018)) or heterogeneous beliefs (see e.g. Embrechts et al. (2019)).

Our paper is a technical one in nature, and as such we concentrate our discussions on mathem-

atical results. For a comprehensive economic discussion on the optimal allocations in quantile-based

risk sharing problems as well as their practical implications, we refer the reader to Embrechts et al.

(2018, 2019) in the context of banking capital sharing and Weber (2018) in the context of insurance

regulation.

The rest of the paper is organized as follows. In Section 2 we present preliminaries on quantile-

based risk sharing, as well as some existing results. In Section 3, we address the existence issue of

optimal allocations by showing that optimal allocations exist in exactly four cases (Theorem 3.6).

Section 4 contains characterization results of optimal allocations as well as some technical lemmas.

In particular, Propositions 4.10 and 4.11 characterize the optimal allocations for RVaR agents based

on explicit results in the cases of VaR agents (Theorem 4.2), ES agents (Theorem 4.4), and one VaR

plus one ES agents (Theorem 4.8). In Section 5, we generalize our main results to the risk sharing

problem for the class of VaR-type risk measures, which goes beyond the RVaR family, and obtain

an explicit formula for the inf-convolution of a VaR and a general distortion risk measure (Theorem

5.3). Section 6 concludes the paper by presenting a representative class of optimal allocations.

2 Preliminaries

2.1 Risk measures

Let (Ω,F ,P) be an atomless probability space, and X be the set of real integrable random

variables (i.e. random variables with finite means) defined on (Ω,F ,P). We treat almost surely

equal random variables as identical in this paper; equalities, inequalities and set inclusions should

always be understood in the almost sure sense (e.g., B ⊂ A almost surely if P(B \ A) = 0). A risk

measure is a functional ρ : X → [−∞,∞].

The Value-at-Risk (VaR) of X ∈ X at level α ∈ R+ := [0,∞) is defined as the 100(1 − α)%

left quantile of X,

VaRα(X) = inf{x ∈ [−∞,∞] : P(X 6 x) > 1− α}. (2.1)
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The corresponding right quantile is denoted by VaR+
α , namely,

VaR+
α (X) = inf{x ∈ [−∞,∞] : P(X 6 x) > 1− α}. (2.2)

In (2.1)-(2.2), we use the convention inf(∅) = ∞. Note that in (2.1), for α > 1, VaRα(X) = −∞

for all X ∈ X . Certainly, only the case α ∈ [0, 1) is relevant in risk management; in particular,

practical values of α are close to 0 in banking and insurance regulation.

For X ∈ X , the Range-Value-at-Risk (RVaR) at level (α, β) ∈ R2
+ is defined as

RVaRα,β(X) =

 1
β

∫ α+β
α VaRγ(X)dγ if β > 0,

VaRα(X) if β = 0.
(2.3)

More intuitively, RVaRα,β is defined as the average of quantiles between levels 1−α− β and 1−α.

For mathematical rigor, we set RVaRα,β(X) = −∞ for X ∈ X and α+β > 1. Besides VaR, another

special case of RVaR is the Expected Shortfall (ES), defined as

ESβ(X) = RVaR0,β(X) =
1

β

∫ β

0
VaRγ(X)dγ, β > 0.

Different from RVaR and VaR, an ES is subadditive.

Remark 2.1 (Terminological remark). There are several different conventions used in the literature

of risk measures. Some papers use the convention VaR1 = limα→1 VaRα, which corresponds to our

VaR+
1 . The convention VaR1 = −∞ used in this paper and Embrechts et al. (2018) unifies the

notation in several technical results when some parameters exceed 1. In different contexts, ES

has various alternative names, such as AVaR (Föllmer and Schied (2016)), CVaR (Rockafellar and

Uryasev (2000)) and TVaR (Denuit et al. (2005)).

A useful optimization property linking VaR and ES obtained by Rockafellar and Uryasev (2000,

2002) is, for β ∈ (0, 1),

ESβ(X) = min

{
1

β
E[(X − x)+] + x : x ∈ R

}
, (2.4)

and

[VaRβ(X),VaR+
β (X)] = arg min

{
1

β
E[(X − x)+] + x : x ∈ R

}
. (2.5)

The second parameter β in RVaRα,β is referred to as the tolerance parameter ; see the discussions in

Embrechts et al. (2018) after Theorem 2. RVaR was first introduced by Cont et al. (2010) featuring

its robustness properties (see Embrechts et al. (2018) for more details on the family of RVaR).

The RVaR family of risk measures provide a flexible and tractable framework for the study of risk
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sharing, including the two most practical risk measures as special cases. Following the setup of

Embrechts et al. (2018), we shall focus on the RVaR family of risk measures in this paper. As far

as we know, there are very few results on risk sharing problems with other non-convex distortion

risk measures; see Weber (2018) for some available results.

2.2 Risk sharing and inf-convolution

Similarly to Embrechts et al. (2018), we refer to a participant in the risk sharing transactions

as an agent, which may represent an affiliate, a firm, an insured, an insurer, or an investor in various

specific contexts. Let n be a positive integer which represents the number of agents. Given random

variable X ∈ X , we define the set of allocations of X as

An(X) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = X

}
. (2.6)

For i = 1, . . . , n, agent i is equipped with a risk measure ρi : X → R, which is the agent’s objective

to minimize. In this paper, we consider Pareto-optimal allocations defined below.

Definition 2.2 (Pareto-optimal allocations). Fix any risk measures ρ1, . . . , ρn and the total risk

X ∈ X . An allocation (X1, . . . , Xn) ∈ An(X) is Pareto-optimal with respect to (ρ1, . . . , ρn) if for

any allocation (Y1, . . . , Yn) ∈ An(X), ρi(Yi) 6 ρi(Xi) for all i = 1, . . . , n implies ρi(Yi) = ρi(Xi) for

all i = 1, . . . , n. Throughout, we shall simply call a Pareto-optimal allocation an optimal allocation.

To study risk sharing problems for risk measures, define the inf-convolution of risk measures

(see e.g. Delbaen (2012) and Rüschendorf (2013)) as

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, · · · , Xn) ∈ An(X)

}
, X ∈ X . (2.7)

Our choices of ρ1, . . . , ρn in this paper do not take the value −∞ on X and hence the infimum in

(2.7) is well posed. It is well-known that for monetary risk measures (Föllmer and Schied (2016))

including the RVaR family, Pareto optimality is equivalent to optimality with respect to the sum

(Proposition 1 of Embrechts et al. (2018)). More precisely, assuming that each of ρi(Xi), i = 1, . . . , n

is finite, (X1, . . . , Xn) is a Pareto-optimal allocation of X if and only if

n∑
i=1

ρi(Xi) =
n
�
i=1

ρi(X). (2.8)

In general, there is a one-to-one connection between Pareto optimality and (weighted) convolution

for objectives other than monetary risk measures; see e.g., Mas-Colell et al. (1995, Chapter 10). Inf-

convolutions are also closely related to the Riesz-Kantorovich transform in Banach lattice theory;

see e.g., Aliprantis and Border (2006, Chapter 8).
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In the sequel, an allocation (X1, . . . , Xn) satisfying (2.8) is called a sum-optimal allocation.

We will omit “with respect to (ρ1, . . . , ρn)” in most cases as long as the underlying risk measures

are clear. As mentioned above, unless �ni=1 ρi(X) is infinite, optimal allocations and sum-optimal

ones are equivalent; Lemma 3.1 and Remark 3.2 below contain more discussions on the subtle cases

�ni=1 ρi(X) = ±∞.

2.3 Existing results on optimal allocations

We first specify agents’ preferences in the risk sharing problems in this paper. As these prefer-

ences will be used throughout the paper, we emphasize it in the following assumption. Throughout,

for any constants β1, . . . , βn ∈ R, write
∨n
i=1 βi = max{β1, . . . , βn} and

∧n
i=1 βi = min{β1, . . . , βn}.

Global Assumption. Unless otherwise specified, all optimal allocations are with respect to the

risk measures (RVaRα1,β1 , . . . ,RVaRαn,βn), where αi ∈ [0, 1), βi ∈ [0, 1] and αi+βi 6 1, i = 1, . . . , n.

We will always denote by α =
∑n

i=1 αi and β =
∨n
i=1 βi. The above specification of parameters

guarantees RVaRαi,βi(X) > −∞ for all X ∈ X . If the assumption is not satisfied (i.e. αi + βi > 1

or αi = 1), then RVaRαi,βi(X) = −∞ for all X ∈ X , leading to a trivial case.

Below we summarize the main results from Embrechts et al. (2018) on optimal allocations. Let

UX be a uniform random variable on [0, 1] such that F−1(UX) = X almost surely where F is the

distribution function of the random variable X and F−1(p) = inf{x ∈ R : F (x) > p}, p ∈ (0, 1). If

X is continuously distributed, then UX = F (X). For a general random variable X, the existence

of UX is guaranteed; see, for instance, Lemma A.32 of Föllmer and Schied (2016).

Theorem 2.3 (Theorem 2 of Embrechts et al. (2018)). We have

n
�
i=1

RVaRαi,βi(X) = RVaRα,β(X), X ∈ X . (2.9)

Moreover, if p := α + β < 1, then, assuming (without loss of generality) βn = β, a sum-optimal

allocation (X1, . . . , Xn) of X ∈ X is given by

Xi = (X −m)1{1−
∑i
k=1 αk<UX61−

∑i−1
k=1 αk}

, i = 1, . . . , n− 1, (2.10)

Xn = (X −m)1{UX61−
∑n−1
k=1 αk}

+m, (2.11)

where m ∈ (−∞,VaRp(X)] is a constant.

Theorem 2.3 implies the following useful inequality, which is given in Theorem 1 of Embrechts

et al. (2018). For all α1, . . . , αn, β1, . . . , βn > 0 and X1, . . . , Xn ∈ X , we have

n∑
i=1

RVaRαi,βi(Xi) > RVaRα,β

(
n∑
i=1

Xi

)
. (2.12)
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Theorem 2.3 and (2.12) will be used repeatedly in this paper. It is clear that the above results do

not fully address the issue of existence, and no results on the unique forms of optimal allocations

are provided. In particular, the following questions are unanswered:

(i) Theorem 2.3 implies that a sum-optimal allocation exists if α + β < 1, and it does not exist

if α+ β > 1. Under what conditions does a Pareto-optimal allocation exist?

(ii) When an optimal allocation exists, is it possible to identify all possible optimal allocations

(unique form up to certain freedom)?

This paper is dedicated to complete answers to both questions above.

3 Existence of the optimal allocations

In this section, we analyze the existence of optimal allocations in a quantile-based risk sharing

problem. The main results are that Pareto-optimal and sum-optimality are equivalent for RVaR,

unless α = β = 0, and the existence of a Pareto-optimal allocation can be characterized in four

cases (A1)-(A4) below depending on the parameters α1, . . . , αn, β1, . . . , βn and the total risk X.

In the sequel, for X ∈ X , we say that X is bounded from below (resp. above) if VaR+
1 (X) >

−∞ (resp. VaR0(X) < ∞). The following lemma clarifies the subtle difference between optimal

allocations and sum-optimal ones.

Lemma 3.1. For X ∈ X , the following hold.

(i) If RVaRα,β(X) = ∞, there does not exist an optimal allocation, whereas all allocations are

sum-optimal.

(ii) If −∞ < RVaRα,β(X) <∞, an allocation is optimal if and only if it is sum-optimal.

(iii) If RVaRα,β(X) = −∞, there does not exist an optimal allocation or a sum-optimal allocation.

Proof. (i) Suppose that (X1, . . . , Xn) is an optimal allocation. As RVaRα,β(X) 6
∑n

i=1 RVaRαi,βi(Xi),

at least one of RVaRαi,βi(Xi), i = 1, . . . , n is equal to ∞. Without loss of generality, as-

sume RVaRα1,β1(X1) = ∞. If RVaRα2,β2(X2) = ∞, then we take an allocation (X1 +

X2, 0, X3 . . . , Xn) ∈ An(X). It is clear that RVaRα1,β1(X1 + X2) 6 ∞ = RVaRα1,β1(X1)

and RVaRα2,β2(0) < ∞ = RVaRα2,β2(X2). Hence, (X1, . . . , Xn) is not Pareto-optimal. If

RVaRα2,β2(X2) < ∞, then we take an allocation (X1 + c,X2 − c,X3, . . . , Xn) ∈ An(X) for

some c > 0. It is clear that RVaRα1,β1(X1+c) =∞ = RVaRα1,β1(X1) and RVaRα2,β2(X2−c) <

RVaRα2,β2(X2). Hence, (X1, . . . , Xn) is not Pareto-optimal.
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On the other hand, as RVaRα,β(X) = �ni=1 RVaRαi,βi(X) =∞, any choice of (X1, . . . , Xn) ∈

An(X) satisfies
∑n

i=1 RVaRαi,βi(Xi) =∞, and hence it is a sum-optimal allocation.

(ii) This is due to Proposition 1 of Embrechts et al. (2018).

(iii) Note that for our choices of parameters, RVaRαi,βi does not take the value −∞. Sup-

pose that (Y1, · · · , Yn) is an optimal allocation. Since RVaRα,β(X) = −∞, there exists

(X1, · · · , Xn) ∈ An(X) such that
∑n

i=1 RVaRαi,βi(Xi) <
∑n

i=1 RVaRαi,βi(Yi). Then at least

one RVaRαi,βi(Xi) < RVaRαi,βi(Yi). Without loss of generality, assume RVaRα1,β1(X1) <

RVaRα1,β1(Y1). Let ci = RVaRαi,βi(Xi)−RVaRαi,βi(Yi) for i = 2, . . . , n. Clearly RVaRαi,βi(Xi−

ci) = RVaRαi,βi(Yi), i = 2, . . . , n. Moreover,

RVaRα1,β1

(
X1 +

n∑
i=2

ci

)
=

n∑
i=1

RVaRαi,βi(Xi)−
n∑
i=1

RVaRαi,βi(Yi) + RVaRα1,β1(Y1)

< RVaRα1,β1(Y1).

This means that (X1+
∑n

i=2 ci, X2−c2, · · · , Xn−cn) ∈ An(X) strictly dominates (Y1, · · · , Yn),

and the latter is not Pareto-optimal.

On the other hand, since for i = 1, . . . , n, RVaRαi,βi does not take the value −∞, one al-

ways have, for any (X1, . . . , Xn) ∈ An(X),
∑n

i=1 RVaRαi,βi(Xi) > −∞ = �ni=1 RVaRαi,βi(X).

Therefore, no sum-optimal allocations exist.

Remark 3.2. The only possible difference between an optimal allocation and a sum-optimal one

is case (i) in Lemma 3.1. More precisely, it corresponds to α = β = 0 (implying α1 = · · · = αn =

β1 = · · · = βn = 0) and VaR0(X) =∞. As any allocation (X1, . . . , Xn) ∈ An(X) is sum-optimal in

this case and no Pareto-optimal allocation exists, it is not interesting for further study.

Lemma 3.1 implies that, unless α = β = 0 and X is unbounded from above, there is no differ-

ence between optimal allocations and sum-optimal ones. By (2.8) and Theorem 2.3, an allocation

(X1, . . . , Xn) is optimal if and only if

n∑
i=1

RVaRαi,βi(Xi) = RVaRα,β(X) and RVaRα,β(X) <∞.

Below we illustrate four cases where an optimal allocation can be explicitly formulated:

(A1) α = β = 0 and X is bounded from above;

(A2) 0 < α+ β < 1;
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(A3) α+ β = 1, β > 0 and X is bounded from below;

(A4) α+ β = 1, β > 0 and there exists i ∈ {1, . . . , n} such that αi = α and βi = β.

To describe the corresponding optimal allocations under (A1)-(A4), assume, without loss of gener-

ality, βn = β, i.e. βn is the largest among β1, . . . , βn.

Case (A1): A sum-optimal allocation is provided by (2.10) and (2.11) in Theorem 2.3, which is

optimal by Lemma 3.1 (ii) due to −∞ < RVaRα,β(X) <∞.

Case (A2): Same as Case (A1).

Case (A3): Let (X1, . . . , Xn) be given by (2.10) and (2.11), where m = VaR+
1 (X). One can check

that RVaRαi,βi(Xi) = 0 for i = 1, . . . , n − 1 and RVaRαn,βn(Xn) = RVaRα,β(X), and

hence
∑n

i=1 RVaRαi,βi(Xi) = RVaRα,β(X), i.e. (X1, . . . , Xn) is a sum-optimal allocation.

Case (A4): Let Xi = X and Xj = 0 for j 6= i. Recall that our specification of (αi, βi) guarantees αi+

βi 6 1 and αi < 1; thus RVaRαi,βi(X) > −∞. We can easily see
∑n

i=1 RVaRαi,βi(Xi) =

RVaRα,β(X), and hence (X1, . . . , Xn) is a sum-optimal allocation.

In all four cases, since RVaRα,β(X) <∞, sum-optimal allocations are optimal.

We briefly explain the economic meaning of the four cases (A1)-(A4) below. In (A1), all agents

are using the essential supremum as their risk measure, and thus they are all extremely risk-averse

and not willing to take any risk. (A2) covers the most practical situations where agents have non-

zero but small parameters so that the aggregated parameter α+β is less than 1; this would include

the important situation where each of the (several or dozens of) financial institutions is regulated

by VaR0.01, ES0.02 or ES0.025, as specified by Basel II, III, Solvency II or the Swiss Solvency Test.

(A3) and (A4) are special cases where the parameter α + β happens to hit the boundary value 1,

and the inf-convolution RVaRα,1−α becomes a superadditive risk measure (see Remark 3.5). (A3)

further requires the risk X to be bounded from below. (A4) requires αj = 0 for j 6= i, and in fact

all other agents except for agent i are essentially not participating in the risk sharing transactions,

because they have very conservative risk attitude (each of them uses an ES with a smaller tolerance

parameter βj compared to βi). Obviously, both cases (A3) and (A4) are quite special and not

very practically relevant; nevertheless, as the boundary cases, they do offer delicate mathematical

features.

Next, we shall show that (A1)-(A4) are precisely the only possible cases where an optimal

allocation may exist. We first present a lemma on the sum of a VaR and an ES, which may be of

independent interest.
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Lemma 3.3. For α ∈ (0, 1) and X,Y ∈ X such that X + Y is unbounded from below, we have

VaRα(X) + ES1−α(Y ) > RVaRα,1−α(X + Y ). (3.1)

Proof. Since one can freely replace X by X + c for any constant c ∈ R in (3.1), without loss of

generality we assume VaRα(X) = 0. It suffices to show ES1−α(Z − X) > RVaRα,1−α(Z) for all

X,Z ∈ X such that Z is unbounded from below and VaRα(X) = 0. Note that ES1−α(Z − X) >

ES1−α(Z − X+), and VaRα(X) = 0 can be loosened to VaRα(X) > 0, which is equivalent to

P(X > 0) 6 α. Therefore, to prove the lemma, it suffices to show

ES1−α(Z −X) > RVaRα,1−α(Z) (3.2)

for all X,Z ∈ X such that X > 0, P(X > 0) 6 α and Z is unbounded from below.

Fix arbitrary X,Z ∈ X satisfying the above conditions. Write Y = Z − X and note that

P(Z = Y ) > 1 − α. As a consequence, for all x ∈ R, P(Y 6 x) − P(Z 6 x) 6 α. Using the above

relation and the definition of VaR, for γ 6 1− α, we have VaRγ(Y ) > VaRγ+α(Z). Also note that

VaRγ(Y ) > VaR1−α(Y ). Therefore, we have

ES1−α(Y ) =
1

1− α

∫ 1−α

0
VaRγ(Y )dγ

>
1

1− α

∫ 1−α

0
(VaRγ+α(Z) ∨VaR1−α(Y ))dγ

=
1

1− α

∫ 1

α
(VaRγ(Z) ∨VaR1−α(Y ))dγ

>
1

1− α

∫ 1

α
VaRγ(Z)dγ = RVaRα,1−α(Z), (3.3)

where the last inequality is due to the fact that Z is unbounded from below and VaR1−α(Y ) is a

constant. Therefore, (3.2) holds and the proof is complete.

Remark 3.4. The condition that X + Y is unbounded from below is essential to the statement of

Lemma 3.3. In fact, from the proof of Lemma 3.3 we can see that, if Z is bounded from below,

then one can choose X such that VaR1−α(Y ) is small enough so that the last inequality in (3.3) is

an equality, leading to VaRα(X) + ES1−α(Y ) > RVaRα,1−α(X +Y ), a special case of the inequality

(2.12).

Remark 3.5. Obtained from the definition of RVaR, for any random variable Z, one has

RVaRα,1−α(Z) = −ES1−α(−Z).

Therefore, Lemma 3.3 is equivalent to the following statement: For any α ∈ (0, 1) and (X,Y, Z) ∈

A3(0) with Z unbounded from above,

VaRα(X) + ES1−α(Y ) + ES1−α(−Z) > 0.
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With the help of Lemma 3.3, we are ready to give a full characterization of the existence of an

optimal allocation. Recall that all optimal allocations, if not specified otherwise, are with respect

to the RVaR risk measures specified in the Global Assumption in Section 2.3.

Theorem 3.6. For X ∈ X , an optimal allocation exists if and only if one of (A1)-(A4) holds.

Proof. As explicitly constructed above, under each of the conditions (A1)-(A4), an optimal alloca-

tion exists. We only need to show that no optimal allocation exists when none of (A1)-(A4) holds.

First, note that if α+β > 1, α = 1, or RVaRα,β(X) =∞, no optimal allocation may exist according

to Lemma 3.1. Hence, we only need to consider the case where α+ β = 1 and β ∈ (0, 1). As (A3)

does not hold, X is unbounded from below. Furthermore, α + β = 1 and (A4) does not hold, we

have αi + βi < 1 for each i = 1, . . . , n.

Take an arbitrary (X1, . . . , Xn) ∈ An(X). For i = 1, . . . , n, we assert that there exists (Yi, Zi) ∈

A2(Xi) such that

VaRαi(Yi) + ESβi(Zi) = RVaRαi,βi(Xi).

This assertion is shown by noticing the fact that, for the risk sharing problem of two agents with

VaRαi and ESβi as their preferences, an optimal allocation always exists, because either βi = 0

in which (Yi, Zi) = (Xi, 0) gives the equality, or condition (A2) is satisfied for this problem (since

0 < αi + βi < 1) and Theorem 2.3 gives the explicit construction. Write Y =
∑n

i=1 Yi and

Z =
∑n

i=1 Zi. We have

n∑
i=1

RVaRαi,βi(Xi) =
n∑
i=1

VaRαi(Yi) +
n∑
i=1

ESβi(Zi) > VaRα(Y ) + ESβ(Z) > RVaRα,β(X),

where the first inequality is an application of (2.12) and the second inequality is due to Lemma 3.3

by noting that X is unbounded from below, Y + Z = X, and α + β = 1. Therefore, no optimal

allocation exists if none of (A1)-(A4) holds.

Note that the cases (A1)-(A3) are mutually exclusive, but (A4) may overlap with (A3). To

obtain mutually exclusive cases, one can replace (A4) by

(A4’) α + β = 1, β > 0, X is unbounded from below, and there exists i ∈ {1, . . . , n} such that

αi = α and βi = β.

With this modification, Theorem 3.6 reads as, for X ∈ X , an optimal allocation exists if and only

if precisely one of (A1)-(A3) and (A4’) holds.
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4 Characterizing optimal allocations

4.1 An overview

In this section, we characterize all optimal allocations in a quantile-based risk sharing problem.

We first make an intuitive statement. Due to the fact that each risk measure in the RVaR family

ignores part of the distribution, one might naturally expect that the class of optimal allocations

has a lot of freedom. As we shall see in this section, this is indeed the case.

We outline the key ideas behind our main results. In order to characterize optimal allocations

for RVaR agents, we note the following relationship from Theorem 2 of Embrechts et al. (2018),

n
�
i=1

RVaRαi,βi = RVaRα,β = VaRα�ESβ =

(
n
�
i=1

VaRαi

)
�

(
n
�
i=1

ESβi

)
. (4.1)

Intuitively, a risk sharing problem for RVaR agents may be decomposed into two steps: first,

allocate X to (Y,Z) ∈ A2(X) such that RVaRα,β(X) = VaRα(Y ) + ESβ(Z), and second, allocate

Y and Z to (Y1, . . . , Yn) ∈ An(Y ) and (Z1, . . . , Zn) ∈ An(Z) such that
∑n

i=1 VaRαi(Yi) = VaRα(Y )

and
∑n

i=1 ESαi(Zi) = ESβ(Z). If all of the above allocations exist, then by letting Xi = Yi + Zi,

i = 1, . . . , n, we obtain an optimal allocation for the RVaR agents. Note that the above allocations

are optimal with respect to the corresponding risk sharing problems, namely, the case of one VaR

and one ES agent, the case of n VaR agents, and the case of n ES agents.

Following the above plan, we analyze the special case α = β = 0 in Section 4.2, the case of n

VaR agents (β = 0) in Section 4.3 and the case of n ES agents (α = 0) in Section 4.4. In Section

4.5, we study the case of one VaR agent and one ES agent. Finally, in Propositions 4.10 and 4.11

in Section 4.6, we characterize optimal allocations for RVaR agents based on the above two-step

decomposition and the results obtained in Sections 4.2-4.5.

The following notation will be useful in this section. For a set A ∈ F , let πn(A) be the set of

n-partitions of A in Fn, namely,

πn(A) =

{
(A1, . . . , An) ∈ Fn :

n⋃
i=1

Ai = A, and A1, . . . , An are mutually disjoint

}
.

Let A+
n (X) (resp. A−n (X)) be the set of non-negative (resp. non-positive) allocations of a random

variable X, namely,

A+
n (X) = {(X1, . . . , Xn) ∈ An(X) : Xi > 0, i = 1, . . . , n}, X > 0,

and

A−n (X) = {(X1, . . . , Xn) ∈ An(X) : Xi 6 0, i = 1, . . . , n}, X 6 0.
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For a constant x, let Acn(x) be the set of constant allocations, namely,

Acn(x) = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = x}, x ∈ R.

To simplify the notation, for a specified X, we always write yα = VaRα(X) and y+α = VaR+
α (X) for

α ∈ [0, 1]. For given α1, . . . , αn > 0, write α = (α1, . . . , αn). If yα ∈ R, let

Zα
n =

{
(Z1, . . . , Zn) ∈ X n : Zi > 0, P(Zi > 0) 6 αi, i = 1, . . . , n and

n∑
i=1

Zi > (X − yα)+

}
.

We can verify that Zα
n is non-empty since P((X − yα)+ > 0) 6 α.

The set Zα
n can be explained as follows. For the sake of illustration, we assume P(X >

yα) = α, which is satisfied by all X with a continuous distribution function. In this case, for any

(Z1, . . . , Zn) ∈ Zα
n , we can write

Zi = Z1Ai a.s., i = 1, . . . , n

for some Z > (X − yα)+, (A1, . . . , An) ∈ πn({X > yα}) with P(Ai) = αi, i = 1, . . . , n. Note that

the random vector (Z1, . . . , Zn) is mutually exclusive (or pair-wise countermonotonic; see Section

3.2 of Puccetti and Wang (2015)), showing a strongest form of negative dependence. Therefore,

an intuitive explanation of the set Zα
n is that each vector in Zα

n is strongly negatively dependent

with non-negative components, and their sum covers the excess loss (X−yα)+. This interpretation

explains the negative dependence structure in an optimal allocation for VaR agents; see Remark

4.3.

4.2 The special case of essential supremum agents

We first consider the special case where α1 = · · · = αn = β1 = · · · = βn = 0, corresponding to

Case (A1) in Section 3. In this case an optimal allocation exists if and only if y0 < ∞, according

to Theorem 3.6. This special case is obviously the simplest, and it is treated separately since its

solution form is different from any of the later, more complicated, cases.

Proposition 4.1. Suppose that α = β = 0, X ∈ X , and y0 <∞. (X1, . . . , Xn) ∈ X n is an optimal

allocation of X if and only if

Xi = Yi + ci, i = 1, . . . , n (4.2)

for some (Y1, . . . , Yn) ∈ A−n (X − y0) and (c1, . . . , cn) ∈ Acn(y0).

Proof. Recall that by Theorem 2.3, (X1, . . . , Xn) ∈ An(X) is optimal if and only if
∑n

i=1 VaR0(Xi) =

VaR0(X) = y0. It is easy to see that (4.2) defines an optimal allocation since
∑n

i=1 VaR0(Xi) 6∑n
i=1 VaR0(ci) = y0. It remains to show that any optimal allocation (X1, . . . , Xn) admits the form
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(4.2). Note that
∑n

i=1 VaR0(Xi) = y0 < ∞ implies VaR0(Xi) < ∞ for each i = 1, . . . , n. Take

ci = VaR0(Xi), i = 1, . . . , n. It is clear that
∑n

i=1(Xi − ci) = X − y0 and hence (4.2) holds by

taking Yi = Xi − ci, i = 1, . . . , n.

The allocation in (4.2) is quite intuitive. First, as in any other cases, the constants c1, . . . , cn

are not relevant since our risk measures are all cash-invariant, meaning that shifting constants

among components of an allocation does not affect its optimality. We will omit discussing c1, . . . , cn

here and in all cases below. Omitting the constants c1, . . . , cn, the requirement that (Y1, . . . , Yn) ∈

A−n (X − y0) means that each agent takes a portion of the non-positive excess loss X − y0 and this

portion should not be positive, which is naturally a reasonable way to allocate a non-positive loss.

We remark that a non-positive loss here means a surplus mathematically. Since our problem is

invariant under constant shifts, for simplicity we call each component in a risk allocation a loss,

regardless of it being positive or negative.

4.3 VaR agents

We consider the case where β1 = · · · = βn = 0 and α ∈ (0, 1), that is, the objective of each

agent is a VaR. In this case, by Theorem 3.6, an optimal allocation exists if and only if α =
∑n

i=1 αi

is less than 1, i.e. (A2) holds. We introduce the following class of allocations. Let (X1, . . . , Xn) be

given by

Xi = Zi + Yi + ci, i = 1, . . . , n,

where (Z1, . . . , Zn) ∈ Zα
n , (Y1, . . . , Yn) ∈ A−n (X − yα −

∑n
i=1 Zi) and (c1, . . . , cn) ∈ Acn(yα).

(4.3)

We assert that (4.3) gives a properly defined allocation of X by verifying a few facts:

1. As we have seen above, Zα
n is non-empty.

2. Since
∑n

i=1 Zi > (X−yα)+, we have X−yα−
∑n

i=1 Zi 6 0, and hence A−n (X−yα−
∑n

i=1 Zi)

is non-empty.

3. It is easy to see
∑n

i=1Xi = X for all choices of (Z1, . . . , Zn), (Y1, . . . , Yn) and (c1, . . . , cn) in

(4.3).

To interpret (4.3), omitting the constants c1, . . . , cn, each agent i is allocated two pieces of losses:

Zi, which covers part of the excess loss (X − yα)+, and Yi, which covers part of the non-positive

loss X − yα −
∑n

i=1 Zi. Since each agent is a VaR agent, the loss Zi with a small probability does

not contribute to the calculation of the corresponding VaR; that is, VaRαi(Zi) = 0.

Below we show the optimality of (4.3) and that any optimal allocation of X has the form (4.3).
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Theorem 4.2. Assume β = 0 and α ∈ (0, 1). For X ∈ X , (X1, . . . , Xn) ∈ X n is an optimal

allocation of X if and only if it has the form (4.3).

Proof. We first show the “if” part. For i = 1, . . . , n, we have

VaRαi(Xi) = VaRαi(Zi + Yi + ci) 6 VaRαi(Zi + ci) 6 ci.

Therefore,
n∑
i=1

VaRαi(Xi) 6
n∑
i=1

ci = yα = VaRα(X).

Using Theorem 2.3, we have

n∑
i=1

VaRαi(Xi) 6 VaRα(X) =
n
�
i=1

VaRαi(X) 6
n∑
i=1

VaRαi(Xi).

Noting that sum-optimality is equivalent to Pareto-optimality, we conclude that (X1, . . . , Xn) is

optimal.

Next we show the “only-if” part in two steps.

(i) Let Y ∈ X be such that VaRα(Y ) = 0 and (X1, . . . , Xn) be an optimal allocation of Y such

that VaRαi(Xi) = 0 for i = 1, . . . , n. Write

Xi = 1{Xi>0}Xi + 1{Xi60}Xi, i = 1, . . . , n.

Write Zi = Xi1{Xi>0}, i = 1, . . . , n. Note that P(Zi > 0) = P(Xi > 0) 6 αi since VaRαi(Xi) =

0, i = 1, . . . , n. We have

Y+ =

(
n∑
i=1

Xi

)
+

6

(
n∑
i=1

Zi

)
+

=

n∑
i=1

Zi.

and Yi = 1{Xi60}Xi, i = 1, . . . , n. Since X1 + · · · + Xn = Y , we have (Y1, . . . , Yn) ∈ A−n (Y −∑n
i=1 Zi). Therefore, we have

Xi = Zi + Yi, i = 1, . . . , n

for some Z1, . . . , Zn and Y1, . . . , Yn satisfying P(Zi > 0) 6 αi, i = 1, . . . , n,
∑n

i=1 Zi > Y+, and

(Y1, . . . , Yn) ∈ A−n (Y −
∑n

i=1 Zi).

(ii) Let (X1, . . . , Xn) be an optimal allocation of X. Recall the notation yα = VaRα(X) and we
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further write xi = VaRαi(X), i = 1, . . . , n. Note that by Theorem 2.3,

(X1, . . . , Xn) is an optimal allocation of X

⇒
n∑
i=1

VaRαi(Xi) = yα

⇒
n∑
i=1

VaRαi(Xi − xi) = yα −
n∑
i=1

xi = VaRα(X − yα)

⇒ (X1 − x1, . . . , Xn − xn) is an optimal allocation of X − yα.

Therefore, (X1−x1, . . . , Xn−xn) is an optimal allocation ofX−yα. Observing VaRα(X−yα) =

0 and VaRαi(Xi − xi) = 0, i = 1, . . . , n, by letting Y = X − yα in part (i), we obtain

Xi − xi = Zi + Yi, i = 1, . . . , n

where (Z1, . . . , Zn) ∈ Zα
n and (Y1, . . . , Yn) ∈ A−n (X − yα −

∑n
i=1 Zi). Therefore, (X1, . . . , Xn)

has the form in (4.3).

Assuming β1 = · · · = βn = 0, the optimal allocation (2.10)-(2.11) in Embrechts et al. (2018) is

a special case of (4.3), by taking Zi = (X−m)1{1−
∑i
k=1 αk<UX61−

∑i−1
k=1 αk}

, i = 1, . . . , n, Y1 = · · · =

Yn−1 = 0, Yn = (X −m)1{UX61−
∑n
k=1 αk} +m− yα, c1 = · · · = cn−1 = 0, and cn = yα.

Remark 4.3. As explained above, each random vector in Zα
n is mutually exclusive in the general

case P(X > yα) = α. Theorem 4.2 is the first result showing that an optimal allocation for VaR

agents has to have a mutually exclusive part, whereas in the literature (Embrechts et al. (2018,

2019)) we only know that some optimal allocations for VaR agents have a mutually exclusive part.

4.4 ES agents

Next, we consider the case where α1 = · · · = αn = 0 and β > 0, that is, the objective of

each agent is an ES. In this case, by Theorem 3.6, an optimal allocation exists for β ∈ (0, 1] since

(A2) holds in case β ∈ (0, 1) and (A4) holds in case β = 1. We introduce the following class of

allocations. Let J = {i ∈ {1, . . . , n} : βi = β}, that is, J is the set of agents with the largest

tolerance parameter. If 0 < β < 1, let (X1, . . . , Xn) be given by

Xi = Zi1{i∈J} + Yi + ci, i = 1, . . . , n,

where x ∈ [yβ, y
+
β ], (Zi)i∈J ∈ A+

#J((X − x)+), (Y1, . . . , Yn) ∈ A−n (−(x−X)+),

and (c1, . . . , cn) ∈ Acn(x).

(4.4)

If β = 1, let (X1, . . . , Xn) be given by

Xi = Zi1{i∈J} + ci, i = 1, . . . , n,

where (Zi)i∈J ∈ A#J(X), and (c1, . . . , cn) ∈ Acn(0).
(4.5)
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Intuitively, the allocations in (4.4)-(4.5) mean that the most risk-tolerant agent (or agents) picks

up all the tail risk, and all other agents share the remaining non-positive part of the loss (again, up

to constant shifts). Below we show the optimality of (4.4)-(4.5) and that any optimal allocation of

X has the forms (4.4)-(4.5).

Theorem 4.4. Assume α = 0 and β ∈ (0, 1]. For X ∈ X , (X1, . . . , Xn) ∈ X n is an optimal

allocation of X if and only if it has the form (4.4)-(4.5).

Proof. We first show the “if” part. Let (X1, . . . , Xn) be an optimal allocation of X. If β < 1, using

the VaR-ES relation (2.4), we have

n∑
i=1

ESβi(Xi) =
∑
i∈J

ESβi(Zi + Yi) +
∑

i∈{1,...,n}\J

ESβi(Yi) + x

6
∑
i∈J

ESβi(Zi) + x

=
∑
i∈J

min
zi∈R

{
1

β
E[(Zi − zi)+] + zi

}
+ x

= min
zi∈R, i∈J

{
1

β

∑
i∈J

E[(Zi − zi)+] +
∑
i∈J

zi

}
+ x

6
1

β

∑
i∈J

E[(Zi)+] + x =
1

β
E[(X − x)+] + x = ESβ(X),

where the last equality is because x ∈ [yβ, y
+
β ]. If β = 1, then

n∑
i=1

ESβi(Xi) =
∑
i∈J

E[Zi + Yi + ci] +
∑

i∈{1,...,n}\J

ESβi(Yi + ci)

6
∑
i∈J

E[Zi] +
n∑
i=1

ci = E[(X − x)+] + x = E[X] = ESβ(X).

In both cases, (X1, ..., Xn) is optimal.

Next we show the “only-if” part. Let (X1, . . . , Xn) be an optimal allocation of X. By Theorem

2.3, this means
n∑
i=1

ESβi(Xi) = ESβ(X). (4.6)

(i) First we assume β ∈ (0, 1). Using the VaR-ES relation (2.4), there exist x1, . . . , xn ∈ R, such

that
n∑
i=1

ESβi(Xi) =

n∑
i=1

(
1

βi
E[(Xi − xi)+] + xi

)
.
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It follows that

ESβ(X) =

n∑
i=1

(
1

βi
E[(Xi − xi)+] + xi

)

>
n∑
i=1

(
1

β
E[(Xi − xi)+] + xi

)

=
1

β
E

[
n∑
i=1

(Xi − xi)+

]
+

n∑
i=1

xi

>
1

β
E

( n∑
i=1

(Xi − xi)

)
+

+

n∑
i=1

xi

=
1

β
E

(X − n∑
i=1

xi

)
+

+
n∑
i=1

xi > min
x∈R

{
1

β
E
[
(X − x)+

]
+ x

}
= ESβ(X).

Therefore, the three inequalities above are all equalities, namely

n∑
i=1

(
1

βi
E[(Xi − xi)+] + xi

)
=

n∑
i=1

(
1

β
E[(Xi − xi)+] + xi

)
, (4.7)

1

β
E

[
n∑
i=1

(Xi − xi)+

]
+

n∑
i=1

xi =
1

β
E

(X − n∑
i=1

xi

)
+

+
n∑
i=1

xi, (4.8)

and

1

β
E

(X − n∑
i=1

xi

)
+

+

n∑
i=1

xi = min
x∈R

{
1

β
E
[
(X − x)+

]
+ x

}
. (4.9)

Note that the equalities of expectations in (4.7) and (4.8) are indeed almost surely point-wise

equality.

Next, write x =
∑n

i=1 xi, Zi = (Xi − xi)+ and Yi = −(xi −Xi)+ for i = 1, . . . , n. Recall that

we treat almost equal random variables as identical. By (4.7), we have Zi = (Xi − xi)+ = 0

for each i 6∈ J . By (4.8), we have,∑
i∈J

Zi =
∑
i∈J

(Xi − xi)+ =
n∑
i=1

(Xi − xi)+ =

(
X −

n∑
i=1

xi

)
+

= (X − x)+.

Consequently, (Zi)i∈J ∈ A+
#J((X − x)+). Since

∑n
i=1Xi = X, we have

n∑
i=1

Yi = X −
n∑
i=1

Zi − x = X − x− (X − x)+ = −(x−X)+,

which gives (Y1, . . . , Yn) ∈ A−n (−(x−X)+). By (4.9) and using the VaR-ES relation (2.5), we

have x ∈ [yβ, y
+
β ]. Note that Xi = (Xi − xi)+ − (xi −Xi)+ + xi = Zi + Yi + xi for i = 1, . . . , n

and Zi = 0 for i 6∈ J . Therefore, (X1, . . . , Xn) has the form (4.4).
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(ii) Assume β = 1. Equation (4.6) reads as

n∑
i=1

ESβi(X) = E[X] =

n∑
i=1

E[Xi].

Note that for Y ∈ X and γ ∈ [0, 1), ESγ(Y ) > E[Y ] holds, and ESγ(Y ) = E[Y ] if and only if

Y is a constant. Therefore, Xi is a constant for all i 6∈ J . This leads to the conclusion that

(X1, . . . , Xn) has the form (4.5).

Remark 4.5. It is trivial to observe that, if there is only one agent whose tolerance parameter is the

largest, that is, #J = 1, then (Z1, . . . , Zn) is mutually exclusive. Combined with the observation

in Remark 4.3, in both the case of ES agents and that of VaR agents, (X1, . . . , Xn) is mutually

exclusive on an event that X is large. We will continue discussing this phenomenon in Section 6.

4.5 One VaR agent and one ES agent

We move on to consider the combined case of one VaR agent and one ES agent. For this

purpose, assume n = 2, α1 > 0, β1 = α2 = 0, and β2 > 0. Recall that α = α1 and β = β2.

According to Theorem 3.6, for a fixed X ∈ X , there are two cases where an optimal allocation

exists: either (A2) α + β < 1 or (A3) α + β = 1 and X is bounded from below. In both cases,

y+α+β > −∞. To characterize all optimal allocations, we define the following set

Aα,β = {A ∈ F : {X > yα} ⊂ A, P(A) = α; moreover, A ⊂ {X > yα} if y+α+β 6= yα}.

In the above notation we omit the reliance on X, which should be clear throughout this section. It

is easy to see that Aα,β is non-empty as P(X > yα) 6 α 6 P(X > yα).

A set A in Aα,β represents an event of probability α on which X takes the largest values. It

is clear that, A = {X > yα} if P(X > yα) = α, and {X > yα} ⊂ A ⊂ {X > yα} if y+α+β < yα. A

small complication arises when P(X > yα) 6= α and y+α+β = yα, in which case A \ {X > yα} can

be arbitrary as long as P(A) = α. The reason for this complication can be seen from the proof of

Lemma 4.6, where an optimization for ES relies on the set Aα,β. For risk management practice

such a special case is irrelevant; it is included in our main results for the completeness of this study.

We first present two lemmas useful in characterizing the optimal allocations, and they may be

of independent interest in optimizing ES.

Lemma 4.6. For any X ∈ X , α > 0 and β > 0 with α+ β 6 1 and y+α+β > −∞, (Y,B) ∈ X × F

is a solution to the problem

to minimize ESβ(X − Y 1B) subject to B ∈ F , P(B) = α and Y ∈ X , (4.10)
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if and only if B ∈ Aα,β and Y 1B > (X − y+α+β)1B. Moreover, the minimum of (4.10) is

RVaRα,β(X).

Proof. We first show the “if” part. Note that by Theorem 2.3, for any B ∈ F , P(B) = α and

Y ∈ X ,

RVaRα,β(X) 6 VaRα(Y 1B) + ESβ(X − Y 1B) 6 ESβ(X − Y 1B).

Suppose B ∈ Aα,β and Y 1B > (X − y+α+β)1B. We have

ESβ(X − Y 1B) 6 ESβ(X − (X − y+α+β)1B) =
1

β

∫ β

0
VaRα(X − (X − y+α+β)1B)dγ

=
1

β

∫ α+β

α
VaRγ−α(X − (X − y+α+β)1B)dγ.

In both the case y+α+β < yα and the case y+α+β = yα, we have VaRγ−α(X−(X−y+α+β)1B) 6 VaRγ(X)

holds for γ ∈ [α, α+ β). Hence, ESβ(X − Y 1B) 6 RVaRα,β(X). This shows that (Y,B) satisfying

B ∈ Aα,β and Y 1B > (X − y+α+β)1B minimizes (4.10). Moreover, the corresponding minimum is

ESβ(X − Y 1B) = RVaRα,β(X).

We next show the “only-if” direction. Suppose that (Y,B) is such that ESβ(X − Y 1B) =

RVaRα,β(X), namely, ∫ β

α
VaRγ−α(X − Y 1B)dγ =

∫ α+β

α
VaRγ(X)dγ. (4.11)

Observe that for γ ∈ (α, α+ β),

VaRγ−α(X − Y 1B) > VaRγ−α(X − Y 1B) + VaRα(Y 1B) > VaRγ−α�VaRα(X) = VaRγ(X).

To make (4.11) hold, we need VaRγ−α(X − Y 1B) = VaRγ(X) for γ ∈ (α, α + β) a.e. By the

right-continuity of the left-quantile (VaR), this requires

VaRγ−α(X − Y 1B) = VaRγ(X) (4.12)

holds for γ ∈ [α, α+ β).

Suppose for the purpose of contradiction that P(Y < X − y+α+β|B) > 0. Then,

P(X − Y 1B > y+α+β) > P(X − (X − y+α+β)1B > y+α+β).

As a consequence, there exists some γ ∈ (α, α + β) such that VaRγ−α(X − Y 1B) > VaRγ−α(X −

(X − y+α+β)1B). It follows that

VaRγ−α(X − Y 1B) > VaRγ−α

(
X − (X − y+α+β)1B

)
> VaRγ−α

(
X − (X − y+α+β)1B

)
+ VaRα

(
(X − y+α+β)1B

)
> VaRγ(X),
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contradicting (4.12). Therefore, we have P(Y < X − y+α+β|B) = 0, namely, Y 1B > (X − y+α+β)1B.

Next we show B ∈ Aα,β. Note that we treat two sets as equal if the difference of the two sets

is of measure zero. Equation (4.12) implies P(X − Y 1B 6 VaRγ(X)) > 1 − γ + α. Taking γ = α,

we have P(X − Y 1B 6 VaRα(X)) = 1. This implies {X > VaRα} ⊂ B.

It remains to show B ⊂ {X > VaRα(X)} if y+α+β 6= yα. Take (Y ∗, B∗) ∈ X × F such that

B∗ ∈ Aα,β and Y ∗1B∗ > (X − y+α+β)1B∗ . From the first part of the proof, we know that (Y ∗, B∗)

minimizes (4.10). Since (Y,B) also minimizes (4.10), by (4.12), we know

VaRγ−α(X − Y 1B) = VaRγ−α(X − Y ∗1B∗) = VaRγ(X),

for γ ∈ [α, α+ β). Since y+α+β < yα, the above equation implies

P(X − Y 1B > yα) = P(X − Y ∗1B∗ > yα). (4.13)

Since Y 1B > (X − y+α+β)1B and Y ∗1B∗ > (X − y+α+β)1B∗ , P(X − Y > yα, B) = P(X − Y ∗ >

yα, B
∗) = 0. Using this relation and noting that B∗ ⊂ {X > yα}, (4.13) implies

P(X > yα, B
c) = P(X > yα, (B

∗)c) = P(X > yα)− P(B∗) = P(X > yα)− α = P(X > yα)− P(B).

Therefore, B ⊂ {X > yα}. This shows B ∈ Aα,β.

Lemma 4.7. For any X,Y ∈ X with Y > 0 and β ∈ (0, 1), ESβ(X + Y ) = ESβ(X) if and only if

Y 6 (VaR+
β (X)−X)+.

Proof. We first show the “if” direction. Note that

X + Y 6 X + (VaR+
β (X)−X)+ = X ∨VaR+

β (X).

It is easy to see, for γ ∈ (0, β), that

VaRγ(X ∨VaR+
β (X)) = VaRγ(X).

Therefore, ESβ(X) = ESβ(X ∨VaR+
β (X)) > ESp(X + Y ), which implies ESβ(X) = ESβ(X + Y ).

Next we show the “only-if” direction. By the fact that

ESβ(X) =
1

β

∫ β

0
VaR+

γ (X)dγ =
1

β

∫ β

0
VaR+

γ (X + Y )dγ = ESβ(X + Y ),

and VaR+
γ (X) 6 VaR+

γ (X +Y ) for all γ ∈ (0, β], we have VaR+
γ (X) = VaR+

γ (X +Y ) a.e. on (0, β).

Since VaR+
γ (Z) is left-continuous in γ for any fixed Z ∈ X , VaR+

γ (X) = VaR+
γ (X +Y ) holds for all

γ ∈ (0, β]. Using the VaR-ES relation (2.4), it follows that

E
[(
X −VaR+

β (X)
)
+

]
= E

[(
X + Y −VaR+

β (X)
)
+

]
. (4.14)
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Since Y > 0, (4.14) means(
X −VaR+

β (X)
)
+

=
(
X + Y −VaR+

β (X)
)
+
,

and therefore Y 6 (VaR+
β (X)−X)+.

Now we are ready to characterize the optimal allocations in the setting of this section. Let

(X1, X2) be given by

X1 = Y 1B − Z + c, X2 = X −X1

where B ∈ Aα,β, Y > X − y+α+β, 0 6 Z 6 (y+α+β −X + Y 1B)+, and c ∈ R.
(4.15)

Intuitively, the allocation (4.15) means that the VaR agent picks up all the tail risk, and this tail

risk is measured 0 by VaRα. This leads to the regulatory arbitrage of VaR as discussed by Wang

(2016) and Embrechts et al. (2018).

Theorem 4.8. Assume α1 > 0, β1 = α2 = 0, β2 > 0, and either (A2) or (A3) holds. For X ∈ X ,

(X1, X2) ∈ X 2 is an optimal allocation of X if and only if it has the form (4.15).

Proof. Obviously, the constant c does not matter in terms of the optimality of (X1, X2), and we set

c = 0 for simplicity.

We first show that (4.15) gives an optimal allocation. It is easy to verify that

VaRα(X1) = VaRα(Y 1B − Z) 6 VaRα(Y 1B) = 0.

Using Lemmas 4.6 and 4.7, and noting that VaR+
β (X −Y 1B) = y+α+β as implied by (4.12), we have

ESβ(X2) = ESβ(X − Y 1B + Z) = ESβ(X − Y 1B) = RVaRα,β(X).

Therefore, (X1, X2) is an optimal allocation.

Next, suppose that (X1, X2) is an optimal allocation. Without loss of generality, assume

VaRα(X1) = 0, which implies P(X1 > 0) > α > P(X1 > 0). Therefore, there exists B ∈ F such

that {X1 > 0} ⊂ B ⊂ {X1 > 0} with P(B) = α. Write X1 = X11B − Z where Z = −X11Bc . Note

that Z = −X11Bc > 0. Since (X1, X2) is an optimal allocation, we know

RVaRα,β(X) = VaRα(X1) + ESβ(X2) = ESβ(X −X11B + Z) > ESβ(X −X11B).

From Lemma 4.6, we know that (X1, B) minimizes (4.10). The results of Lemma 4.6 imply B ∈

Aα,β, X11B > (X − y+α+β)1B, and

RVaRα,β(X) = ESβ(X −X11B) = ESβ(X −X11B + Z).
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Using Lemma 4.7, we have Z 6 (y+α+β −X +X11B)+. Let Y = X11B + (X − y+α+β)1Bc . It is clear

that Y 1B = X11B, Y > X − y+α+β. Therefore, X1 = X11B + X11Bc = Y 1B − Z, which has the

form (4.15).

Remark 4.9. Asimit et al. (2013, Theorem 2.2) studied the risk sharing problem of ES and VaR

under the condition of comonotonicity, which is different from Theorem 4.8 where the optimal al-

location is generally not comonotonic such as the one given in Theorem 2.3. This also distinguishes

our framework to many other papers in the literature of optimal (re)insurance, where comonoton-

icity is important as either an assumption or a result; see e.g., Cai et al. (2016). Another technical

difference is that allocations in optimal (re)insurance problems (representing insurance contracts)

are commonly assumed non-negative.

4.6 RVaR agents

Finally, based on the results in Sections 4.2-4.5, we are able to present some general result for

the case of RVaR agents. The main idea here is that, for each i = 1, . . . , n, we write RVaRαi,βi =

VaRαi�ESβi , and reduce the risk sharing problem to the above studied cases. We summarize this

methodology in the following proposition. Since we need to translate between different cases, below

we emphasize the risk measures with respect to which we speak of optimality. The case (A4’)

requires a special treatment which will be discussed later.

Proposition 4.10. Assume (A4’) does not hold. (X1, . . . , Xn) is an optimal allocation of X ∈ X

with respect to (w.r.t.) (RVaRα1,β1 , . . . ,RVaRαn,βn) if and only if there exist an optimal allocation

(Y,Z) of X w.r.t. (VaRα,ESβ), an optimal allocation (Y1, . . . , Yn) of Y w.r.t. (VaRα1 , . . . ,VaRαn),

and an optimal allocation (Z1, . . . , Zn) of Z w.r.t. (ESβ1 , . . . ,ESβn), such that

Xi = Yi + Zi, i = 1, . . . , n.

Proof. We first show the “if” part. From the construction of X, it is easy to calculate

n∑
i=1

RVaRαi,βi(Xi) =

n∑
i=1

VaRαi�ESβi(Xi)

6
n∑
i=1

(VaRαi(Yi) + ESβi(Zi))

=

n∑
i=1

VaRαi(Yi) +

n∑
i=1

ESβi(Zi)

= VaRα(Y ) + ESβ(Z) = RVaRα,β(X).
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Therefore, (X1, . . . , Xn) is an optimal allocation of X with respect to (RVaRα1,β1 , . . . ,RVaRαn,βn).

Next we show the “only-if” part. Suppose that (X1, . . . , Xn) is an optimal allocation of X with

respect to (RVaRα1,β1 , . . . ,RVaRαn,βn).

Since (A4’) does not hold, it is easy to see from the existence of the optimal allocation and

Theorem 3.6 that for each i = 1, . . . , n, αi + βi < 1 and RVaRαi,βi(Xi) 6= ∞. As a consequence,

for each i = 1, . . . , n, we can use Theorem 3.6 on Xi to conclude that there exists (Yi, Zi) ∈ A2(Xi)

such that VaRαi(Yi) + ESβi(Zi) = RVaRαi,βi(Xi). Write Y =
∑n

i=1 Yi and Z =
∑n

i=1 Zi. Clearly

Y + Z = X. It follows that

RVaRα,β(X) =
n∑
i=1

RVaRαi,βi(Xi)

=

n∑
i=1

VaRαi�ESβi(Xi)

=

n∑
i=1

(VaRαi(Yi) + ESβi(Zi))

=

n∑
i=1

VaRαi(Yi) +

n∑
i=1

ESβi(Zi) > VaRα(Y ) + ESβ(Z) > RVaRα,β(X),

where the two inequalities are due to Theorem 2.3. Noting that

RVaRα,β(X) > VaRα(Y ) + ESβ(Z) > RVaRα,β(X),

the inequalities herein are equalities. Therefore
∑n

i=1 VaRαi(Yi) = VaRα(Y ),
∑n

i=1 ESβi(Zi) =

ESβ(Z), and VaRα(Y ) + ESβ(Z) = RVaRα,β(X). In other words, (Y,Z) is an optimal alloca-

tion of X with respect to (VaRα,ESβ), (Y1, . . . , Yn) is an optimal allocation of Y with respect to

(VaRα1 , . . . ,VaRαn), and (Z1, . . . , Zn) is an optimal allocation of Z with respect to (ESβ1 , . . . ,ESβn).

The reason why case (A4’) requires a special treatment can also be seen from the proof. A key

step in the proof is to write Xi = Yi + Zi where (Yi, Zi) ∈ A2(Xi) satisfies VaRαi(Yi) + ESβi(Zi) =

RVaRαi,βi(Xi). If (A4’) holds, then such (Yi, Zi) may not exist, as shown in Lemma 3.3. Below we

analyze the case of (A4’), which is different from all other cases. Recall that, (A4’) implies that

there exists j ∈ {1, . . . , n} such that αj = α and βj = β = 1− α.

Proposition 4.11. Assume that (A4’) holds, and without loss of generality, αn = α and βn = β.

Then, (X1, . . . , Xn) is an optimal allocation of X ∈ X with respect to (RVaRα1,β1 , . . . ,RVaRαn,βn)

if and only if (X1, . . . , Xn−1,−X) is an optimal allocation of −Xn with respect to (ESβ1 , . . . ,ESβn).
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Proof. We shall use the fact that, for all Y ∈ X ,

RVaRα,β(Y ) = RVaRα,1−α(Y ) = −ES1−α(−Y ) = −ESβn(−Y ), (4.16)

which is immediate from the definition of RVaR. Note that for any (X1, . . . , Xn) ∈ X n,

n∑
i=1

RVaRαi,βi(Xi) =

n−1∑
i=1

ESβi(Xi) + RVaRα,1−α(Xn) =

n−1∑
i=1

ESβi(Xi)− ESβn(−Xn). (4.17)

By (4.16) and (4.17), the equality

n∑
i=1

RVaRαi,βi(Xi) = RVaRα,β(X) (4.18)

is equivalent to
n−1∑
i=1

ESβi(Xi)− ESβn(−Xn) = −ESβn(−X).

Rearranging terms, it is

n−1∑
i=1

ESβi(Xi) + ESβn(−X) = ESβn(−Xn). (4.19)

As (4.18) is equivalent to (4.19), the proposition holds.

Before ending this section, we remark that, although we are able to translate the general case

of RVaR agents to the completely characterized cases in Sections 4.2-4.5, we were not able to write

down an elegant unifying form of the optimal allocations, due to the complications raised in the

two-step characterization in Proposition 4.10.

5 Risk sharing for VaR-type risk measures

In this section, we discuss how the techniques developed in Section 4 can be applied to more

general risk measures outside the RVaR family. In particular, we consider the VaR-type risk meas-

ures as studied by Weber (2018). To avoid cases of∞−∞, we choose the underlying space Y as the

set of bounded random variables as in Weber (2018). Our main result in this section is an explicit

formula of the inf-convolution of VaR and another distortion risk measure, which will be useful in

constructing optimal allocations for VaR-type risk measures. Nevertheless, a full characterization

of optimal allocations is not yet available and it requires future research.

We first give the necessary definitions.

Definition 5.1. (i) A distortion function g is a left-continuous and non-decreasing function on

[0, 1] with g(0) = 0 and g(1) = 1. We denote by G the set of distortion functions.
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(ii) A distortion risk measure ρg on Y with distortion function g is defined as the Choquet integral

ρg(X) =

∫
Xd(g ◦ P) =

∫ 0

−∞
(g ◦ P(X > x)− 1)dx+

∫ ∞
0

g ◦ P(X > x)dx, X ∈ Y. (5.1)

(iii) For a distortion function g, the number α = sup{t ∈ [0, 1] : g(t) = 0} ∈ [0, 1) is called the

parameter of g.

(iv) A distortion risk measure is said to be VaR-type if the parameter α of its distortion function

is positive.

(v) For a distortion function g with parameter α, the function ĝ, defined by ĝ(t) = g((t+α)∧ 1),

t ∈ [0, 1], is called the active part of g.

Remark 5.2. In the literature, the distortion risk measure ρg defined by (5.1) does not require g

to be left-continuous. Here we consider the case of left-continuous function g as in Weber (2018).

It is well known that if g is left-continuous, ρg can be written in a Lebesgue-Stieltjes integral form

ρg(X) =

∫ 1

0
VaRγ(X)dg(γ). (5.2)

Clearly, (5.2) includes the RVaR family by definition.

Weber (2018) studied the (sum-)optimal risk sharing problem with respect to the distortion

risk measures ρg1 , . . . , ρgn , where the distortion functions have concave active parts. For α ∈ (0, 1)

and β ∈ [0, 1−α), the risk measure RVaRα,β is a VaR-type distortion risk measure with parameter

α, and its distortion function has a concave active part. Below, we illustrate how the technique

developed in Section 4 can be applied to investigate optimal allocations for VaR-type risk measures.

In what follows, the set of allocations and the inf-convolution are defined as in (2.6) and (2.7) with

X replaced by Y.

Below, we establish a connection between a VaR-type distortion risk measure and a corres-

ponding VaR, generalizing the formula RVaRα,β = VaRα�ESβ which we used repeatedly in this

paper. To make the presentation concise, for h ∈ G and α ∈ [0, 1), we define hα(t) = h((t − α)+),

t ∈ [0, 1]. Clearly, h0 = h, and hα ∈ G if h(1 − α) = 1. Moreover, for g ∈ G with parameter α, we

can easily get ĝα = g.

Theorem 5.3. For any h ∈ G and α ∈ [0, 1), we have

VaRα�ρh =

 ρhα if h(1− α) = 1,

−∞ if h(1− α) < 1.

In particular, for any g ∈ G with parameter α, we have

ρg = VaRα�ρĝ.
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Proof. Take any X ∈ Y. We first consider the case h(1− α) < 1. Take A ∈ F with P(A) = α and

m > 0. Note that
∫∞
0 h ◦ P(X > x)dx <∞ because X is bounded. Using (5.1), we have

ρh (X1Ac −m1A) =

∫ 0

−∞
(h ◦ P(X1Ac −m1A > x)− 1)dx+

∫ ∞
0

h ◦ P(X1Ac −m1A > x)dx

6
∫ 0

−m
(h ◦ P(X1Ac −m1A > x)− 1)dx+

∫ ∞
0

h ◦ P(X > x)dx

6
∫ 0

−m
(h ◦ P(Ac)− 1)dx+

∫ ∞
0

h ◦ P(X > x)dx

=

∫ 0

−m
(h(1− α)− 1)dx+

∫ ∞
0

h ◦ P(X > x)dx

= m(h(1− α)− 1) +

∫ ∞
0

h ◦ P(X > x)dx→ −∞ as m→∞.

On the other hand, VaRα((X + m)1A) 6 0 because P((X + m)1A > 0) 6 P(A) = α. Combining

the above observations, we have ρh (X1Ac −m1A) + VaRα((X + m)1A) → −∞ as m → ∞, and

hence VaRα�ρh(X) = −∞ for all X ∈ Y.

Next, we consider the case h(1 − α) = 1. Assume X > 0; this is without loss of generality

since both ρhα and VaRα�ρh satisfy the property (called cash-additivity) ρ(X + c) = ρ(X) + c for

any constant c ∈ R. The case α = 0 follows from the simple fact that, for all Y ∈ Y,

VaR0�ρh(X) 6 VaR0(0) + ρh(X) = ρh(X) = VaR0(Y ) + ρh(X −VaR0(Y ))

6 VaR0(Y ) + ρh(X − Y ),

and thus VaR0�ρh(X) = ρh(X). In the following we assume α > 0.

(i) We first show ρhα(X) > VaRα�ρh(X). Note that VaRα(X1{UX>1−α}) = 0. We have

ρh
(
X1{UX61−α}

)
+ VaRα

(
X1{UX>1−α}

)
= ρh

(
X1{UX61−α}

)
=

∫ ∞
0

h ◦ P(X1{UX61−α} > x)dx

=

∫ ∞
0

h ◦ P({X > x} ∪ {UX 6 1− α})dx

=

∫ ∞
0

h((P(X > x)− α)+)dx

=

∫ ∞
0

hα(P(X > x))dx = ρhα(X).

By the definition of inf-convolution, we have ρhα(X) > VaRα�ρh(X).

(ii) Next we show ρhα(X) 6 VaRα�ρh(X). For this, it suffices to show ρhα(X) 6 ρh(X − Y )

for all Y ∈ Y with VaRα(Y ) = 0, again due to cash-additivity. Since VaRα(Y ) = 0 implies
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P(Y > 0) 6 α, we have

P(X − Y > x) > (P(X > x)− P(Y > 0))+ > (P(X > x)− α)+, x ∈ R.

As a consequence,

ρh(X − Y ) =

∫ 0

−∞
(h ◦ P(X − Y > x)− 1)dx+

∫ ∞
0

h ◦ P(X − Y > x)dx

>
∫ 0

−∞
(h((P(X > x)− α)+)− 1)dx+

∫ ∞
0

h((P(X > x)− α)+)dx

=

∫ 0

−∞
(hα ◦ P(X > x)− 1)dx+

∫ ∞
0

hα ◦ P(X > x)dx = ρhα(X).

Therefore, we know ρhα(X) 6 VaRα�ρh(X).

As shown in the proof of Theorem 5.3, for h ∈ G with h(1− α) = 1, a sum-optimal allocation

(Y,Z) of X > 0 with respect to (VaRα, ρh) is given by Y = X1{UX>1−α} and Z = X1{UX61−α}.

Theorem 5.3 suggests that a VaR-type distortion risk measure is simply the inf-convolution of

a VaR and another distortion risk measure. Using Theorem 5.3, we can apply the results in Section

4 to study forms of optimal allocations for VaR-type distortion risk measures. For g1, . . . , gn ∈ G

with parameters α1, . . . , αn, respectively, assume that �ni=1 ρgi is finite on Y. Write α =
∑n

i=1 αi

and ρ∗ = �ni=1 ρĝi . Similarly to (4.1), noting that the inf-convolution is associative,

n
�
i=1

ρgi =
n
�
i=1

(VaRαi�ρĝi) =

(
n
�
i=1

VaRαi

)
�

(
n
�
i=1

ρĝi

)
= VaRα�ρ

∗. (5.3)

According to (5.3) and following the idea of Proposition 4.10, the problem of finding optimal

allocations for the risk measures ρg1 , . . . , ρgn can be decomposed into two steps: first, allocate X

to (Y, Z) ∈ A2(X) such that VaRα�ρ∗(X) = VaRα(Y ) + ρ∗(Z), and second, allocate Y and Z

to (Y1, . . . , Yn) ∈ An(Y ) and (Z1, . . . , Zn) ∈ An(Z) such that
∑n

i=1 VaRαi(Yi) = VaRα(Y ) and∑n
i=1 ρgi(Zi) = ρ∗(Z). If all of the above allocations exist, then by letting Xi = Yi + Zi, i =

1, . . . , n, we obtain an optimal allocation for the agents with risk measures ρg1 , . . . , ρgn . In the

above procedure, there are three optimal allocation problems:

(i) Theorem 4.2 gives all forms of optimal allocations (Y1, . . . , Yn) ∈ An(Y ) with respect to

(VaRα1 , . . . ,VaRαn).

(ii) Solution of the optimal allocations (Z1, . . . , Zn) ∈ An(Z) with respect to general choices of

ρĝ1 , . . . , ρĝn is not available in the literature. In the special case that each of g1, . . . , gn has

a concave active part, as studied by Weber (2018), ρĝ1 , . . . , ρĝn are coherent risk measures

(Artzner et al. (1999)). In this case, there always exist comonotonic optimal allocations, and

ρ∗ =
n
�
i=1

ρĝi = ρg∗, where g∗ =
∧n
i=1 gi; (5.4)

28



see e.g. Proposition 5 of Embrechts et al. (2018). For coherent distortion risk measures, the

forms of optimal allocations (Z1, . . . , Zn) ∈ An(Z) are extensively studied in the literature; see

Jouini et al. (2008) and Chapter 11 of Rüschendorf (2013). For similar results on quasi-convex

risk measures, see Mastrogiacomo and Rosazza Gianin (2015).

(iii) The determination of optimal allocations (Y,Z) ∈ A2(X) with respect to (VaRα, ρ
∗) requires

a result that is similar to Theorem 4.8, which depends highly on the form of ρ∗. The proof of

Theorem 5.3 gives an optimal allocation when ρ∗ is also a distortion risk measure (which is

true if g1, . . . , gn have concave active parts).

Although the above arguments do not give explicit forms of all optimal allocations for the VaR-type

distortion risk measures, they offer technical tools as well as new interpretation of VaR-type risk

measures and their optimal allocations. A full characterization of optimal allocations with respect

to VaR-type risk measures requires future research.

Remark 5.4. If ρh is chosen as ESβ, Theorem 5.3 recovers the formula RVaRα,β = VaRα�ESβ

by checking the distortion functions of RVaRα,β, VaRα and ESβ in (5.2). Hence, Theorem 5.3 can

be seen as a generalization of Theorem 2 of Embrechts et al. (2018). Theorem 5.3 also implies the

result on �ni=1 ρgi in Theorem 11 of Weber (2018) for g1, . . . , gn with concave active parts via (5.3)

and (5.4).

6 A representative class of optimal allocations

As is seen from Section 4, optimal allocations for the RVaR family may take various forms,

and this is due to the fact that risk measures in this family only uses partial information of the

underlying distribution. Among many choices of optimal allocations, the allocation (2.10)-(2.11)

obtained by Embrechts et al. (2018) is a rather simple and intuitive choice. One small disadvantage

of (2.10)-(2.11) is that it is not symmetric with respect to the order of agents. Below we present a

slightly more general class, which is also simple, and generalizes (2.10)-(2.11) to a symmetric form.

We consider the most relevant case (A2), that is, 0 < α+ β < 1. Define

Pn =

{
(A1, . . . , An) ∈ Fn : {X > yα} ⊂

n⋃
i=1

Ai ⊂ {X > yα}, P(Ai) = αi, A1, . . . , An are disjoint

}
.

Recall that J = {i ∈ {1, . . . , n} : βi = β}. Let (X1, . . . , Xn) be given by

Xi = (X − yα+β)1Ai +
1

#J
(X − yα+β)1{i∈J}1(

⋃n
i=1 Ai)

c + ci, i = 1, . . . , n,

where (A1, . . . , An) ∈ Pn, and (c1, . . . , cn) ∈ Acn(yα+β).

(6.1)
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One can easily verify that (6.1) defines a class of optimal allocations, and it includes (2.10)-(2.11)

if #J = 1. Comparing with the results in Section 4, (6.1) gives one of the the simplest forms of

optimal allocations.

The economic intuition behind (6.1) is also simple: the agents first share the most dangerous

outcomes, modelled by the event
⋃n
i=1Ai with probability α. They divide the event into pieces so

that each agent feels safe, because the probability of loss is equal to αi for agent i, thus insensitive

to the agent. Then, they share the rest of the risk among agents in J , the most tolerant agents

(with the biggest βi value). Finally, they make some side-payments c1, . . . , cn.

The dependence structure of (6.1) may be worth noting. Assume P(X > yα) = α, as satisfied

by all continuously distributed X. In this case,
⋃n
i=1Ai = {X > yα}. The optimal allocation

(X1, . . . , Xn) is mutually exclusive on the event {X > yα}, a consistent observation with the ones

made in Remarks 4.3 and 4.5. Mutual exclusivity represents the strongest form of negative de-

pendence (see e.g. Puccetti and Wang (2015)). This is in sharp contrast to the classic risk sharing

problems with law-invariant and convex objective functionals, where an optimal allocations is al-

ways comonotonic (based on a result of Landsberger and Meilijson (1994); see Rüschendorf (2013)),

representing the strongest form of positive dependence. For related discussions on this phenomenon

in the context of heterogeneous beliefs, see Embrechts et al. (2019).

We remark that in order to uniquely pin down a specific form of optimal allocations, one may

need to involve a second-step optimization. Here, we give the representative allocation (6.1) only

for the simplicity in its form, economic intuition and dependence structure.
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