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Abstract

We analyze the “convex level sets” (CxLS) property of risk functionals, which is a necessary

condition for the notions of elicitability, identifiability and backtestability, popular in the recent

statistics and risk management literature. We put the CxLS property in the multi-dimensional

setting, with a special focus on signed Choquet integrals, a class of risk functionals that are

generally not monotone or convex. We obtain two main analytical results in dimension one

and dimension two, by characterizing the CxLS property of all one-dimensional signed Choquet

integrals, and that of all two-dimensional signed Choquet integrals with a quantile component.

Using these results, we proceed to show that under some continuity assumption, a comonotonic-

additive coherent risk measure is co-elicitable with Value-at-Risk if and only if it is the corre-

sponding Expected Shortfall. The new findings generalize several results in the recent literature,

and partially answer an open question on the characterization of multi-dimensional elicitability.

Keywords: convex level sets, quantiles, Expected Shortfall, elicitability, backtestability

1 Introduction

Over the past decade, the concepts of elicitability, identifiability and backtestability have

received an increasing attention in the statistics and risk management literature (e.g., Gneiting

(2011), Ziegel (2016), Fissler and Ziegel (2016), Kou and Peng (2016), Acerbi and Szekely (2017)).

These concepts refer to the assessment of the quality and validity of risk forecasts, and have been

a prominent issue in banking regulation and model risk management (see e.g., BCBS (2016)). A
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key mathematical property of risk functionals related to the above concepts is the convex level sets

(CxLS) property of Osband (Osband (1985)). The CxLS property is a necessary condition for the

three concepts above, and it is also known to be sufficient under mild regularity conditions for one-

dimensional risk functionals (Corollary 9 of Steinwart et al. (2014)). In general, CxLS property is

not a sufficient condition for elicitability; some counter-examples are the mode functional provided

by Heinrich (2014) and the max-functional provided by Brehmer and Strokorb (2019).

In this paper, we focus on the CxLS property of (possibly multi-dimensional) risk functionals.

For the reader who is not familiar with elicitability, identifiability and backtestability, we recommend

him/her to start reading the paper from Section 6, where we present the formal definitions of those

concepts, their risk management implications, and their relation with the CxLS property.

Below, we give the definition of the CxLS property, the main object of this paper. Denote by

M0 the set of distributions (i.e., Borel probability measures on R).

Definition 1.1. (The CxLS property) For M⊂M0, we say a functional ρ :M→ Rd has convex

level sets (CxLS) on M if ρ(λF + (1 − λ)G) = ρ(F ) for all λ ∈ [0, 1] and F,G ∈ M satisfying

ρ(F ) = ρ(G) and λF + (1− λ)G ∈M.

IfM is convex, the CxLS property of ρ means that the level set {F ∈M : ρ(F ) = γ} is convex

for each γ ∈ Rd, thus the name. Although Definition 1.1 does not require M itself to be convex,

common choices of M are convex sets, such as the set of distributions with bounded support, or

the set of distributions with positive densities.

To interpret the CxLS property, it means that if two risk models are assessed as equally risky,

then a mixture of the two models should remain at the same risk level. In decision theory, this

property is closely related to (slightly weaker than) the axiom of betweenness, one of the possible

relaxations of the independence axiom of the von Neumann-Morgenstern expected utility theory;

see, e.g., Dekel (1986) and Chew (1989). As mentioned above, the recently growing importance

of the CxLS property in risk management is mainly due to its close relation with the statistical

notions of elicitability, identifiability and backtestability.

In the literature of risk measures, many results on the characterization of elicitable risk mea-

sures are obtained via characterizing the CxLS property in dimension one; see Weber (2006), Bellini

and Bignozzi (2015) and Delbaen et al. (2016) for convex risk measures, Ziegel (2016) for coherent

risk measures, Kou and Peng (2016) and Wang and Ziegel (2015) for distortion risk measures, Liu

and Wang (2020) for tail risk measures, and Fissler et al. (2019a,b) for set-valued risk functionals.

As far as we are aware of, studies dedicated to CxLS in the multi-dimensional setting are not found
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in the literature, although multi-dimensional elicitability has been a popular topic; see Lambert et

al. (2008), Fissler and Ziegel (2016), Nolde and Ziegel (2017) and Acerbi and Szekely (2017) for

multi-dimensional elicitability and their statistical implications. For general statistical functionals,

Lambert et al. (2008) and Frongillo and Kash (2018) studied notions of elicitation complexity, which

are quantitative measurements of non-elicitability.

In the above literature, characterization results are obtained for one-dimensional increasing or

convex risk functionals. Although risk measures are typically increasing functionals, many statistical

quantities, such as measures of variability or shape, are not monotone with respect to the natural

order on M, and they play an important role in the statistical analysis of risks. In this paper, we

study the CxLS property of non-monotone, non-convex, and multi-dimensional functionals, with a

particular focus on the class of signed Choquet integrals (Wang et al. (2020)). One-dimensional

signed Choquet integrals include many commonly used risk functionals, such as risk measures

and variability measures. Moreover, as discussed by Fissler and Ziegel (2016), a two-dimensional

signed Choquet integral (Example 4.5) gives the first example of a multi-dimensional elicitable risk

functional that is not connected to one-dimensional elicitable ones via a bijection. A characterization

of elicitability or CxLS for multi-dimensional signed Choquet integrals is generally an open question,

as mentioned by both Kou and Peng (2016, p. 1063) and Fissler and Ziegel (2016, p. 1698).

This paper contains two main contributions to the theory of risk functionals with the CxLS

property, and hence to the theory of elicitability. First, in Section 3, we characterize all one-

dimensional signed Choquet integrals with the CxLS property (Theorem 3.2). It turns out that

the only signed Choquet integrals that have CxLS are the monotone ones with CxLS multiplied

by a constant. This result requires some new techniques which we provide in a few lemmas, as

non-monotonicity of signed Choquet integrals creates great challenges, which cannot be addressed

by the existing methods in the literature. Second, in Sections 4-5, we extend our discussion to

the multi-dimensional setting, and relate the CxLS property to risk quadrangles of Rockafellar and

Uryasev (2013). Because of the special role of the quantile functionals in the theory of elicitability

and backtestability (for instance, quantile functionals and the mean are the only signed Choquet

integrals that are elicitable), we characterize the CxLS property of all two-dimensional signed

Choquet integrals, whose one component is a quantile (Theorem 5.3). To our knowledge, this

result is the first CxLS characterization in the literature beyond the one-dimensional case, and

it partially answers the open question of Kou and Peng (2016) and Fissler and Ziegel (2016).

To establish this result, we provide some general results on multi-dimensional CxLS property in
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Section 4. Since CxLS is a necessary condition of elicitability, identifiability and backtestability, our

characterization identifies candidates for risk functionals with these statistical properties. Based

on the result in dimension two, we show that under the assumption of lower semi-continuity with

respect to weak convergence, the only spectral risk measure (i.e., comonotonic-additive and coherent

risk measure) co-elicitable with a Value-at-Risk is the corresponding Expected Shortfall (Theorem

6.9 and Corollary 6.12). To better illustrate the concept of the CxLS property, we present a list of

commonly used functionals with or without CxLS in Section 2, and in Section 6 we give an overview

on the relationship among the statistical concepts of elicitability, identifiability, backtestability and

the CxLS property. The proofs of the technical results are put in the Appendix.

Notation

For q ∈ [1,∞), let Mq be the set of distributions with finite q-th moments. Denote by M∞

the set of distributions of bounded random variables, Mcon = {F ∈ M∞ : F has a density}, and

Mdis = {F ∈M∞ : F is discrete}. Recall that, as in Definition 1.1,M0 is the set of all distributions

on R. For the ease of presentation, we identify distributions in M0 with the corresponding cumu-

lative distribution functions, that is, for F ∈ M0 and x ∈ R, F (x) is understood as F ((−∞, x]).

For F ∈M0, define the left-continuous generalized inverse (left-quantile) as

F−1(t) = inf{x ∈ R : F (x) ≥ t}, t ∈ (0, 1],

and in addition let F−1(0) = sup{x ∈ R : F (x) = 0}. For x ∈ R, δx denotes the point mass at

x. Throughout this article, we stick to the following convention. In a result, if we do not specify

M, then the statements hold for any setM⊂M0 such that the risk functional at consideration is

finite on M.

2 Examples of risk functionals and their CxLS properties

We first present some common examples of one-dimensional risk functionals with or without

CxLS. These examples will help to understand the main concepts in this paper, and they will be

referred to repeatedly throughout. We start with a few interesting common quantities that have

CxLS. They are, in fact, increasing Choquet integrals; see Section 3. A full characterization of all

signed Choquet integrals with CxLS will be given in Theorem 3.2 below.
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Example 2.1. (i) The expectation:

E[F ] =

∫ ∞
−∞

x dF (x), F ∈M1.

Note that in this paper we define E on the set of distributions M1 instead of the set of

integrable random variables.

(ii) The left-quantile, or the Value-at-Risk (VaR): For p ∈ (0, 1], define

VaRp(F ) = inf{x ∈ R : F (x) ≥ p}, F ∈M0.

In addition, the essential supremum functional is defined as ess-sup = VaR1.

(iii) The right-quantile: For p ∈ [0, 1), define

VaR+
p (F ) = inf{x ∈ R : F (x) > p}, F ∈M0.

In addition, let ess-inf = VaR+
0 .

(iv) The mixed-quantile: For p ∈ (0, 1) and c ∈ [0, 1], define

VaRc
p = cVaR+

p + (1− c)VaRp.

In addition, we include the cases p = 0 and p = 1 by letting VaRc
1 = VaR1 = ess-sup and

VaRc
0 = VaR+

0 = ess-inf for all c ∈ [0, 1].

(v) The mid-point of range:

Mid-range(F ) =
1

2
ess-sup(F ) +

1

2
ess-inf(F ), F ∈M∞.

Next, let f : R→ R be a measurable function and ρ :M→ R, ρ(F ) =
∫
f dF . In this case, ρ

has CxLS since it is linear in F ∈M, and any one-to-one transform of ρ also has CxLS by checking

the definition. Common examples of such functionals include von Neumann-Morgenstern expected

utilities, expected loss functionals, and moments.

Example 2.2. (i) A von Neumann-Morgenstern expected utility functional has the form F 7→∫∞
−∞ u(x) dF (x) for some increasing utility function u : R→ [−∞,∞).

(ii) Second moment:

F 7→
∫ ∞
−∞

x2 dF (x), F ∈M2.
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(iii) The entropic risk measure for γ ∈ (0,∞):

Eγ(F ) =
1

γ
log

(∫ ∞
−∞

e−γx dF (x)

)
, F ∈M∞.

(iv) Excess loss function: for some k ∈ R,

F 7→
∫ ∞
−∞

(x− k)+ dF (x), F ∈M1.

A lot of results on CxLS of risk measures appear in the recent literature. For definitions of

these risk measures, see McNeil et al. (2015). A coherent risk measure does not have CxLS onM∞

unless it is an expectile (Corollary 4.6 of Ziegel (2016)). A convex risk measure has CxLS on M∞

if and only if it is a utility-based shortfall risk measure in Definition 4.112 of Föllmer and Schied

(2016) (Theorem 3.10 of Delbaen et al. (2016); this includes Examples 2.2 (iii) and 2.3 (ii)). In

particular, the Expected Shortfall (ES)1 does not have CxLS, as noted by Gneiting (2011).

Example 2.3. (i) The Expected Shortfall (ES) for p ∈ (0, 1), defined as

ESp(F ) =
1

1− p

∫ 1

p
VaRt(F ) dt, F ∈M1,

is a coherent risk measure, and it does not have CxLS. The following famous ES-VaR relation

of Rockafellar and Uryasev (2002) will be used repeatedly in this paper.
[VaRp(F ),VaR+

p (F )] = arg min
x∈R

{
x+

1

1− p

∫ ∞
−∞

(y − x)+ dF (y)

}
;

ESp(F ) = min
x∈R

{
x+

1

1− p

∫ ∞
−∞

(y − x)+ dF (y)

}
.

(1)

(ii) The expectile (see e.g., Newey and Powell (1987)) for p ∈ (0, 1), defined as

ep(F ) = arg min
x∈R

{
p

∫ ∞
x

(y − x)2 dF (y) + (1− p)
∫ x

−∞
(y − x)2 dF (y)

}
, F ∈M2,

is a coherent risk measure, and it has CxLS since it is a shortfall risk measure.

A deviation measure, such as the variance or the standard deviation, is a functional D that

satisfies D(δc) = 0 for a constant c and D(µ) > 0 for µ ∈M not a point mass. For a general theory

on deviation measures and measures of variability, see Bickel and Lehmann (1976), Rockafellar et

al. (2006) and Furman et al. (2017). Deviation measures generally cannot have CxLS, as easily seen

from the following argument. For any x, y ∈ R, x 6= y, by definition, D(λδx + (1 − λ)δy) > 0 =

D(δx) = D(δy) for λ ∈ (0, 1). This implies that D does not have CxLS on M. We summarize this

observation in the following proposition. Nevertheless, later in Section 4 we shall see that deviation

measures may have CxLS when they are paired with other risk functionals.

1ES is not a utility-based shortfall risk measure, despite its name.
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Proposition 2.4. Let M be a set that contains all point masses and two-point distributions. A

deviation measure does not have CxLS on M.

Example 2.5. As shown in Proposition 2.4 above, the following deviation measures do not have

CxLS on their domains.

(i) The variance Var(F ) =
∫

(x− E[F ])2 dF (x), F ∈M2.

(ii) The standard deviation SD(F ) =
√

Var(F ), F ∈M2.

(iii) The mean absolute deviation from the median (median deviation, MD):

MD(F ) = min
x∈R

∫ ∞
−∞
|y − x|dF (y) =

∫ ∞
−∞

(∣∣∣∣y − F−1

(
1

2

)∣∣∣∣) dF (y), F ∈M1.

(iv) The Gini deviation:

Gini(F ) =

∫ 1

0
F−1(t)(2t− 1) dt, F ∈M1.

(v) The range:

Range(F ) = ess-sup(F )− ess-inf(F ), F ∈M∞.

Finally, we give a few other notable functionals with or without CxLS.

Example 2.6. (i) The mode functional Mod is defined as Mod(F ) = arg maxx∈R
d

dxF (x) on M

which is the set of distributions with a unique mode. Then Mod has CxLS onM by definition.

(ii) The skewness functional SK is defined as SK(F ) =
∫ (x−µ

σ

)3
dF (x) for F ∈M3 with SD(F ) >

0, where µ = E[F ] and σ = SD(F ). By definition, we can calculate SK
(

1
2δ−1 + 1

2δ0

)
=

SK
(

1
2δ0 + 1

2δ2

)
= 0, and

SK

(
2

3

(
1

2
δ−1 +

1

2
δ0

)
+

1

3

(
1

2
δ0 +

1

2
δ2

))
= SK

(
1

3
δ−1 +

1

2
δ0 +

1

6
δ2

)
= 1 6= 0.

The skewness functional does not have CxLS on its domain.

3 Main results in dimension one

3.1 Signed Choquet integrals

We first define signed Choquet integrals, a popular class of functionals in risk management

and statistics and the main object of this section. Let

H = {h : h maps [0, 1] to R, h is of bounded variation and h(0) = 0}.
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Definition 3.1. A signed Choquet integral Ih :M→ R is defined as

Ih(F ) =

∫ 0

−∞
(h(1− F (x))− h(1)) dx+

∫ ∞
0

h(1− F (x)) dx,

where h ∈ H andM is a convex subset ofM0 such that Ih is well-defined. The function h is called

the distortion function of Ih. An increasing (resp. decreasing) Choquet integral is a signed Choquet

integral with an increasing (resp. decreasing) distortion function.

Signed Choquet integrals are studied extensively in the literature; for their axiomatic char-

acterization and economic interpretation, we refer to Yaari (1987), De Waegenaere and Wakker

(2001), Kou and Peng (2016) and Wang et al. (2020). A functional on M is a signed Choquet

integral if and only if it is comonotonic-additive and satisfies a continuity condition (Theorem 1 of

Wang et al. (2020)); see Proposition 5.2 below for a precise statement of this characterization in

multi-dimension. Many examples of signed Choquet integrals are listed in Section 2. In particular,

increasing Choquet integrals Ih with h(1) = 1 are also known as distortion risk measures, which

include the mean, the quantiles, the mid-point of range, and ES. Many measures of variability also

belong to the class of signed Choquet integrals, such as the median deviation, the Gini deviation

and the range; see Wang et al. (2020) for their distortion functions.

3.2 Characterization of signed Choquet integrals with CxLS

As we have seen in Section 2, some signed Choquet integrals have CxLS whereas some others

do not. The main result in this section characterizes all signed Choquet integrals with CxLS. It

turns out that the following three forms of h in the subsets H∗1,H∗2 and H∗3 of H are important for

the CxLS property.

(i) h ∈ H∗1: For some c ∈ [0, 1], h(t) = ch(1)1{0<t<1} + h(1)1{t=1}, t ∈ [0, 1]. In this case,

Ih(F ) = h(1)(c ess-sup(F ) + (1− c) ess-inf(F )), F ∈M. (2)

(ii) h ∈ H∗2: h(t) = th(1), t ∈ [0, 1]. In this case,

Ih(F ) = h(1)E[F ], F ∈M. (3)

(iii) h ∈ H∗3: For some α ∈ (0, 1) and c ∈ [0, 1], h(t) = ch(1)1{t=α} + h(1)1{t>α}, t ∈ [0, 1]. In this

case,

Ih(F ) = h(1)VaRc
1−α(F ), F ∈M. (4)
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We also denote by H∗ =
⋃3
i=1H∗i .

For increasing Choquet integrals Ih with h(1) = 1, Kou and Peng (2016) show that only

the above three cases are possible for Ih to have CxLS. Without monotonicity, the class of signed

Choquet integrals is much larger than the class of increasing ones. Nevertheless, in the next theorem,

we show that the only possible signed Choquet integrals with CxLS are still the ones listed above.

Theorem 3.2. Let M be a convex set that contains all three-point distributions. A signed Choquet

integral Ih has CxLS on M if and only if h ∈ H∗.

Comparing Theorem 3.2 with the characterization of increasing Choquet integrals with CxLS

in Kou and Peng (2016), we see that removing monotonicity does not lead to many more choices

of functionals with CxLS. More precisely, all functionals in (2)-(4) have either an increasing or

decreasing distortion function, and they are monotone with respect to the usual stochastic order

(e.g., Lemma 2 of Wang et al. (2020)).

Corollary 3.3. If Ih has CxLS on Mdis, then it is monotone (i.e., increasing or decreasing).

Corollary 3.3 is a surprising result, as the CxLS property by definition is not related to mono-

tonicity. For instance, for any measurable function f : R→ R, the mapping ρ : F 7→
∫
f(x) dF (x)

has CxLS; whether f is monotone (i.e., whether ρ is monotone with respect to stochastic order) is

irrelevant to the CxLS property. Among the class of signed Choquet integrals, however, the CxLS

property surprisingly implies monotonicity. On the other hand, Lemma 14 and Theorem 15 of

Steinwart et al. (2014) yield that, under some regularity conditions, CxLS implies quasi-linearity.

According to the example of ρ above, quasi-linearity is not directly related to monotonicity.

The proofs for signed Choquet integrals are much more involved than the case of increasing

ones, due to the lack of monotonicity. Two new technical lemmas are needed for a proof of Theorem

3.2, which are put in the Appendix.

In risk management practice, one may be only interested in backtestability or elicitability over

the set of continuous distribution models. In the following we will show that, when constrained on

the set of continuous distributions, the only possible choices of h to allow for the CxLS property of

Ih are still the three cases in Theorem 3.2. In particular, we can show that CxLS on Mcon implies

CxLS on Mdis for Ih, and as a consequence of Theorem 3.2, we know h ∈ H∗.

Proposition 3.4. For h ∈ H, if Ih has CxLS on Mcon, then Ih has CxLS on Mdis, and, as a

consequence, h ∈ H∗.
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3.3 CxLS under risk transforms

In this section, we discuss the impact of risk transforms on the CxLS property of a functional.

We focus on a special class of transforms; for a comprehensive treatment of risk transforms, see

Liu et al. (2020). For a measurable function v (which is typically monotone in applications), a

v-transform maps the distribution of a random variable X to the distribution of v(X). In other

words, the probability measure F is transformed to F ◦ v−1, where v−1 is the set-valued inverse of

v. For a functional φ well defined on Mv = {F ◦ v−1 : F ∈M}, let φv be defined as

φv(F ) = φ(F ◦ v−1), F ∈M. (5)

In the following result, we show an invariance property of CxLS under v-transforms.

Proposition 3.5. For any measurable function v and M ⊂ M0, φv in (5) has CxLS on M if φ

has CxLS on Mv, and the converse is true if v is an injection.

Note that the converse implication in Proposition 3.5 does not hold in general if v is not

injective. For instance, if v(x) = 0 for all x ∈ R, then φv(F ) = φ(δ0) for all F ∈ M, and it has

CxLS regardless of the choice of φ.

Risk functionals based on v-transforms are widely used in finance. For instance, an expected

utility, a certainty equivalent, or a rank-dependent expected utility involves v-transforms via utility

or loss functions, and a pricing functional for options can be seen as the (risk-neutral) expectation

of a transformed asset price distribution. The loss-based risk measures ρ of Cont et al. (2013) are

defined via the loss-dependence property: ρ(F ) = ρ(F ◦ u−1) for all F ∈ M, where u(x) = x+ for

all x ∈ R. Equivalently, ρ = φu for some φ : M → R (which may be trivially chosen as ρ itself).

Many examples of loss-based risk measures in Cont et al. (2013) are obtained by letting ρ = φu and

choosing φ satisfying some desirable properties such as monotonicity, cash-additivity, and convexity.

Let M+
∞ ⊂ M∞ be the set of compactly supported distributions on R+ = [0,∞). Using

Proposition 3.5, we know that if φ has CxLS on M+
∞, then the loss-based risk measure ρ = φu has

CxLS onM∞. The converse may not be true since u : x 7→ x+ is not an injection. However, since u

is injective on R+, we know that if ρ has CxLS onM+
∞, then φ has CxLS onM+

∞. Moreover, if φ is

cash-additive, then φ also has CxLS on M∞. Recall that a functional ρ :M→ R is cash-additive

if ρ(F ◦ tc) = ρ(F )− c for all c ∈ R, where tc : x 7→ x+ c is a constant shift function. We summarize

these findings in the following corollary.

Corollary 3.6. Let u(x) = x+ for x ∈ R and φ : M∞ → R be cash-additive. The loss-based risk

measure ρ = φu has CxLS on M∞ if and only if φ has CxLS on M∞.
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Corollary 3.6 can be directly applied to characterize CxLS of many loss-based risk measures

together with Theorem 3.2, as most examples of Cont et al. (2013) are generated by choosing a

cash-additive φ, such as a convex risk measure or an increasing Choquet integral with φ(1) = 1.

Example 3.7 (Certainty equivalents). An example of loss-based risk measures that does not fit in

Corollary 3.6 is the class of loss certainty equivalents (Example 2.9 of Cont et al. (2013)). A loss

certainty equivalent ρ defined as, for a strictly increasing function v : R→ R,

ρ(F ) = v−1

(∫ 1

0
v((F−1(t))+) dt

)
, F ∈M.

It is clear that ρ above always has CxLS, since it is a strictly monotone transform of an expected

loss in Example 2.2. Similarly, the classic certainty equivalent, defined as the mapping F 7→

v−1(
∫ 1

0 v(F−1(t)) dt) for a strictly increasing loss function v, also has CxLS.

4 CxLS in multi-dimension

4.1 Some general properties

In this section, we provide some simple results for CxLS in multi-dimension, which will be

useful later to show our main characterization result in dimension two. These results are easy to

verify, and self-contained proofs are provided in the Appendix for completeness. First we present

the straightforward fact that a d-dimensional functional has CxLS if it is an injective function

of some one-dimensional functionals with CxLS. Since one-dimensional functionals with CxLS are

well studied, this result gives a convenient way to construct simple functionals with CxLS in multi-

dimension.

Proposition 4.1. A functional ρ :M→ Rd has CxLS on M if it is an injective function of some

other functionals with CxLS on M.

As a direct consequence of Proposition 4.1, a functional ρ :M→ Rd has CxLS onM if each of

its components has CxLS onM. Another simple implication is that if (ρ1, ρ2) and (ρ1, ρ3) has CxLS,

then so does the combined functional (ρ1, ρ2, ρ3); here each of ρ1, ρ2, ρ3 may be multi-dimensional.

The next proposition establishes a link between a two-dimensional functional with CxLS and

its components, assuming one of the component already has CxLS.

Proposition 4.2. Let ρ1 and ρ2 be two functionals from M to R such that ρ2 has CxLS on M.

The pair of functionals (ρ1, ρ2) has CxLS on M if and only if ρ1 has CxLS on M(r) for all r ∈ R,

where M(r) = {F ∈M : ρ2(F ) = r}.
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Proposition 4.2 is very useful to prove or disprove the CxLS property of two-dimensional

functionals. For instance, it would justify Propositions 4.3 and 4.4 below, and it is used repeatedly

in the proofs of Theorems 5.3 and 6.9.

4.2 Risk quadrangle and the Bayes risk

Many one-dimensional risk functionals are connected via a risk quadrangle proposed by Rock-

afellar and Uryasev (2013). A risk quadrangle consists of five functionals that depend on each

other: the statistic S, the risk R, the regret V, the deviation D, and the error E . We briefly explain

their relationship below following the setup of Rockafellar and Uryasev (2013), albeit using our

convention of defining functionals on a set M ⊂ M1. As in Section 3.3, define the constant shift

function tc : x 7→ x + c for c ∈ R; in other words, F ◦ tc is the distribution of F shifted to the left

by c. For a given V :M→ R, the following functionals on M satisfy:

(i) E(F ) = V(F )− E[F ];

(ii) S(F ) = arg minc∈R{c+ V(F ◦ tc)} = arg minc∈R{E(F ◦ tc)};

(iii) R(F ) = minc∈R{c+ V(F ◦ tc)};

(iv) D(F ) = R(F )− E[F ].

The most popular category of risk quadrangles is the expectation quadrangles, in which V is given

by V(F ) =
∫
R v(x) dF (x) for a function v on R; see the examples in Section 4.3. It turns out

that, although the risk functionals R and D in an expectation quadrangle may not have CxLS by

themselves, the multi-dimensional CxLS property holds if they are combined with S.

Proposition 4.3. In an expectation quadrangle, each of the following quantities, if its components

are well defined from M to R, has CxLS: V, E, S, (S,R), (S,D), and any combined functional of

the above, such as (S,R,D) or (V, E ,S,R,D).

In Proposition 4.3, we need M ⊂ M1 as required in any risk quadrangle. Proposition 4.4

below provides a more general result than Proposition 4.3 by addressing the minimization of∫ 1
0 L(c, x) dF (x) for a general function L on R2, and M is not necessarily a subset of M1. This

result is closely related to the study of the Bayes risk elicitation by Frongillo and Kash (2018).

Proposition 4.4. Suppose M ⊂ M0. For some function L : R2 → R, if a pair of functionals

(γ,Γ) :M→ R2 is given by

γ : F 7→ min
c∈R

∫
R
L(c, x) dF (x) and Γ : F 7→ arg min

c∈R

∫
R
L(c, x) dF (x),
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then Γ and (γ,Γ) both have CxLS.

In the setting of Proposition 4.4, γ is called the Bayes risk of Γ by Frongillo and Kash (2018).

Indeed, Corollary 1 of Frongillo and Kash (2018) shows that (γ,Γ) is elicitable, a sufficient condition

for CxLS (see Section 6). Our self-contained proofs of Propositions 4.3-4.4 are obtained from direct

arguments based on Proposition 4.2.

4.3 Examples

We present some examples of multi-dimensional functionals with CxLS. Since a functional that

has all components with CxLS automatically has CxLS, we only give examples where at least one

of the components does not have CxLS. All examples listed in Example 4.5 belong to some risk

quadrangle, although (iii) is not in an expectation quadrangle.

Example 4.5 (Two-dimensional examples).

(i) (VaRp,ESp) for p ∈ (0, 1) has CxLS on M1. Indeed, (VaRp,ESp) = (S,R) in the expecta-

tion quadrangle with v(x) = x+/(1 − p); see the VaR-ES relationship (1) and Example 2 of

Rockafellar and Uryasev (2013).

(ii) (Median,MD) has CxLS on M1, where Median = VaR1/2. Indeed, (Median,MD) = (S,D)

in the expectation quadrangle with v(x) = 2x+; see Example 3 of Rockafellar and Uryasev

(2013).

(iii) (Mid-range,Range) has CxLS on M∞ by Proposition 4.1, since the pair is a bijection from

(ess-inf, ess-sup), which has components with CxLS. We note that (Mid-range,Range) =

(S,D) in Example 4 of Rockafellar and Uryasev (2013). This risk quadrangle is not an expec-

tation quadrangle, and one can check that V = E + max(| ess-sup |, | ess-inf |) does not have

CxLS; thus Proposition 4.3 does not apply.

(iv) (E,Var) and (E,SD) both have CxLS on M2 by Proposition 4.1, since each of them is a

bijection from the pair of the first two moments, which has components with CxLS. Moreover,

(E,Var) = (S,D) in the expectation quadrangle with v(x) = x+ x2; see Examples 1 and 1’ of

Rockafellar and Uryasev (2013).

(v) The pair (ep, varp) for p ∈ (0, 1) has CxLS on M2, where varp is the variantile functional

defined as

varp(F ) = min
c∈R

{
p

∫ ∞
c

(x− c)2 dF (x) + (1− p)
∫ c

−∞
(x− c)2 dF (x)

}
, F ∈M2,
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which is the Bayes risk for the corresponding expectile ep, as noted by Frongillo and Kash

(2018). Moreover, (ep, varp) = (S,D) in the expectation quadrangle with v(x) = x+ p(x+)2 +

(1− p)(x−)2.

Example 4.6 (Three-dimensional examples).

(i) The Range-Value-at-Risk (RVaR) is a signed Choquet integral with distortion function h(t) =

(t−1+q)+
q−p ∧ 1, t ∈ [0, 1], where 0 < p < q < 1; see Cont et al. (2010) and Embrechts et al.

(2018). An RVaR does not have CxLS because its distortion function does not belong to the

cases in Theorem 3.2. From its definition, we can alternatively write

RVaRp,q(F ) =
1

q − p
((1− p)ESp(F )− (1− q)ESq(F )), F ∈M1,

and therefore the triplet (VaRp,VaRq,RVaRp,q) has CxLS, since RVaRp,q is linear on the set

of distributions with fixed VaRp and VaRq. A study on elicitability of RVaR can be found in

a recent paper Fissler and Ziegel (2019).

(ii) Recall that the skewness functional SK in (ii) of Example 2.6 does not have CxLS. The triplet

(E,SD, SK) has CxLS on M = {F ∈ M3 : SD(F ) > 0}, by using Proposition 4.1, since the

triplet is a bijection from the triplet of the first three moments on M, which has components

with CxLS.

5 Main characterization result in dimension two

5.1 Multi-dimensional signed Choquet integrals

In this section we investigate the CxLS property in higher dimension. It is natural to define

the signed Choquet integral in dimension d ≥ 2 as follows.

Definition 5.1. Let h = (h1, . . . , hn), where each hi ∈ H, i = 1, . . . , d. A signed Choquet integral

Ih :M→ Rd is defined as

Ih(F ) = (Ih1(F ), . . . , Ihd(F )) , (6)

where each Ihi , i = 1, . . . , d, is the one-dimensional signed Choquet integral defined in Definition

3.1.
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Signed Choquet integrals in multi-dimension share a similar characterization via comonotonic-

additivity. Random variables X and Y defined on a probability space (Ω,F ,P) are said to be

comonotonic if there exists Ω0 ∈ F with P(Ω0) = 1 such that ω, ω′ ∈ Ω0,

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0.

Let XM be the set of random variables in (Ω,F ,P) with distribution in M. For a functional

ρ :M→ Rd, we define ρ̂ : XM → Rd via ρ̂(X) = ρ(F ), where F is the distribution of X. We say

that ρ is comonotonic-additive if ρ̂(X + Y ) = ρ̂(X) + ρ̂(Y ) for any comonotonic random variables

X,Y ∈ X .

Recall that we use M∞ to denote the set of distributions of bounded random variables. We

define continuity on M∞ via the metric w given by w(F,G) = supt∈[0,1] |F−1(t) −G−1(t)|, known

as the Wasserstein-L∞ metric. For a sequence {Fn}n∈N ⊂ M∞, we write Fn
w→ F if the sequence

{Fn}n∈N converges to F in the metric w. By applying Theorem 1 of Wang et al. (2020) to each

component of I, and noting that the w-continuity of ρ is equivalent to L∞-continuity of ρ̂, we obtain

the following characterization of multi-dimensional signed Choquet integrals.

Proposition 5.2. A functional I : M∞ → Rd is comonotonic-additive and uniformly continuous

with respect to w if and only if I is a d-dimensional signed Choquet integral.

Clearly, for h1, h2 ∈ H∗, the two-dimensional signed Choquet integral (Ih1 , Ih2) has CxLS,

due to Proposition 4.1. More interestingly, (Ih1 , Ih2) may have CxLS even if it is not an injection

from one-dimensional signed Choquet integrals with CxLS. A famous example is (VaRp,ESp) for

p ∈ (0, 1) as in Example 4.5, as shown by Fissler and Ziegel (2016) and Acerbi and Szekely (2017).

Characterization of multi-dimensional signed Choquet integrals with CxLS seems to be an

extremely challenging task, which is left as an open question by Fissler and Ziegel (2016) and Kou

and Peng (2016). Since VaRp is a canonical candidate for a one-dimensional signed Choquet integral

with CxLS, below we explore for which h ∈ H, (Ih,VaRp) has CxLS.

5.2 Characterizing a signed Choquet integral and a VaR with CxLS

Below we will characterize all pairs (Ih,VaRp) with CxLS. To the best of our knowledge, this

is the first result in the literature on characterizing CxLS in multi-dimension. By Proposition 4.1,

(Ih,VaRp) has CxLS if and only if (Ih + aVaRp,VaRp) has CxLS for one (or all) a ∈ R. Therefore,

adding a constant times VaRp to Ih does not change the CxLS property of (Ih,VaRp). This explains

why the term aVaRp appears in all cases in the following theorem.
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Theorem 5.3. For p ∈ (0, 1) and h ∈ H, (Ih,VaRp) has CxLS on Mdis if and only if Ih is one of

the following cases

(i) Ih = aVaRp + Ih∗ for some a ∈ R and h∗ ∈ H∗;

(ii) Ih = aVaRp + bE + cESp for some constants a, b, c ∈ R;

(iii) Ih = aVaRp + bVaR+
p + c ess-sup for some constants a, b, c ∈ R with bc > 0;

(iv) Ih = aVaRp + bVaR+
p + c ess-inf for some constants a, b, c ∈ R with bc < 0.

Theorem 5.3 reveals a characterization of all signed Choquet integrals that have CxLS jointly

with VaRp, p ∈ (0, 1). In risk management practice, one usually does not distinguish VaRp and

VaR+
p by (sometimes implicitly) assuming a continuous quantile at p; certainly, this assumption

does not hold for all distributions in Mdis. If we loosely treat VaRp and VaR+
p as identical, then

cases (iii) and (iv) can be combined into case (i), and we are left with the following two cases.

(i) Ih = aVaRp + Ih∗ for some a ∈ R and h∗ ∈ H∗;

(ii) Ih = aVaRp + bE + cESp for some constants a, b, c ∈ R.

From (i) and (ii), if (Ih,VaRp) is not a bijection from a pair of signed Choquet integrals with

CxLS, then Ih is a linear combination of VaRp, E and ESp. Regarding the CxLS property, the class

of VaRp for p ∈ (0, 1) plays a unique role among the class of distortion risk measures (Kou and Peng

(2016)) and among positively homogeneous tail risk measures (Liu and Wang (2020)). The above

observation shows that ESp is also very special regarding CxLS. In particular, as the CxLS property

is necessary for elicitability (see Section 6), we will see in Theorem 6.9 that a convex combination

of ESp and E is the only type of comonotonic-additive coherent risk measure that is co-elicitable

with VaRp.

It may be worth noting that the roles of VaRp and VaR+
p are symmetric. To get functionals

Ih such that (Ih,VaR+
p ) has CxLS, one simply switches the positions in the pairs (VaRp,VaR+

p )

and (ess-inf, ess-sup) in Theorem 5.3. This statement is due to the following relation. For any

distribution F ∈M0, let F̄ be given by F̄ (A) = F (−A), where −A = {−x : x ∈ A}, A ∈ B(R).

Proposition 5.4. For p ∈ (0, 1) and h ∈ H, (Ih,VaRp) has CxLS onM if and only if (Ih̄,VaR+
1−p)

has CxLS on M̄, where h̄ ∈ H is given by h̄(t) = h(1− t)− h(1), t ∈ [0, 1] and M̄ = {F̄ : F ∈M}.

Remark 5.5. One may wonder whether the characterization of Ih in Theorem 5.3 also holds ifMdis

is replaced by a different set, such as Mcon in Proposition 3.4, or the set M∗0(p) = {F ∈ M0 :
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F−1 is continuous at p} on which VaRp is elicitable (see Section 6). Unfortunately, we do not have

a definite answer to the above question, as the current techniques used in Proposition 3.4 cannot be

generalized to the case of (Ih, Ig) or (Ih,VaRp) for general h, g ∈ H. Nevertheless, as a consequence

of Lemma A.5 in the Appendix, if h is additionally assumed increasing and concave, then CxLS

of (Ih,VaRp) on M∗0(p) indeed implies CxLS on Mdis. This result will be useful in the proof of

Theorem 6.9 below.

6 Backtestability, elicitability and identifiability

This section gives formal definitions of elicitability, backtestability and identifiability as studied

by Osband (1985), Gneiting (2011) and Acerbi and Szekely (2017), and discusses their relation with

the CxLS property. As the main focus of this paper is the CxLS property, this section collects some

major relevant facts for the interested reader with self-contained proofs, and we refer to Fissler

and Ziegel (2016), Kou and Peng (2016) and Acerbi and Szekely (2017) for excellent summaries

and detailed discussions on the implications in statistical inference, risk management, and banking

regulation. In addition to the known results, new results in this section include a characterization

on co-elicitability of coherent risk measures with VaRp (Theorem 6.9), and a corresponding score

function (Proposition 6.10).

6.1 Definitions and known results

Elicitability refers to the existence of a scoring function for the forecasted value of a risk func-

tional and realized value of future observations, so that the mean of the scoring function attains its

minimum value if and only if the value of the risk functional is truly forecasted; see Gneiting (2011)

for elicitability in a decision-theoretic framework. Comparative backtests, for which elicitability is

a necessary condition, are discussed by Nolde and Ziegel (2017) as an alternative to the traditional

backtests.

Definition 6.1 (Elicitability). The functional ρ :M→ Rd is M-elicitable if there exists a strictly

consistent scoring function S : Rd+1 → R such that for all F ∈M,

ρ(F ) = arg min
x∈Rd

∫ ∞
−∞

S(x, y) dF (y). (7)

We also say that ρ1 :M→ R is co-elicitable with ρ2 :M→ R on M if (ρ1, ρ2) is M-elicitable.

In the literature, elicitability is often defined for set-valued risk functionals (e.g., generally,

quantiles are interval-valued), as the minimizer to the scoring function is not necessarily a singleton.
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In this paper, as we look at risk functionals mappingM to Rd, we use the slightly narrower definition

on Rd-valued functionals. This choice of definition does not affect our discussion.

Next, identifiability refers to the existence of an identification function for the forecasted

value of a risk functional and realized value of future observations. The mean of the identification

function is zero if and only if the value of the risk functional is truly forecasted. Therefore, the

realized average value of the identification function can identify whether a risk forecast is accurate.

Definition 6.2 (Identifiability). A functional ρ : M → Rd is said to be M-identifiable, if there

exists an identification function I : Rd+1 → R such that for all F ∈M and all x ∈ Rd,∫ ∞
−∞

I(x, y) dF (y) = 0 if and only if x = ρ(F ).

Finally, we define backtestability as in Acerbi and Szekely (2017). Backtestability refers to

the existence of a backtest function, whose mean reports positive value if the risk functional is

under-forecasted, and negative value if the risk functional is over-forecasted. Thus, the realized

average value of this backtest functional can distinguish between under- and over-estimation in

risk forecasts. Moreover, we require the value of the backtest function to be strictly increasing in

the prediction to assess the deviation of the prediction from the true value. Due to the lack of a

natural order in Rd, one cannot speak of under-estimation or over-estimation for Rd-valued risk

functionals. Therefore, the notion of backtestability is suitable for dimension one only (a related

notion for multi-dimensional functionals is ridge backtests; see Acerbi and Szekely (2017)).

Definition 6.3 (Backtestability). A functional ρ : M → R is said to be M-backtestable, if there

exists a backtest function Z : R2 → R such that for all F ∈M and all x ∈ R,∫ ∞
−∞

Z(x, y) dF (y) = 0 if and only if x = ρ(F ),

and
∫
Z(x, ·) dF is strictly increasing in the prediction x.

The three notions introduced above are model-free in the sense that the statements holds for

all F ∈ M, that is, in order to compare scores, to identify forecasts, or to quantify backtests, one

does not need to know the underlying distribution that generates the random observations.

In what follows, we illustrate the relationship among the above three concepts and the CxLS

property. First, in dimension one, identifiability follows directly from backtestability, and backtesta-

bility is generally stronger than elicitability. In any dimension, both elicitability and identifiability

imply the CxLS property. Finally, for one-dimensional signed Choquet integrals, CxLS is sufficient
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for backtestability except for the case of h ∈ H∗1. The above statements will be verified (with some

conditions) below.

We shall first see that elicitability and backtestability both imply the CxLS property. Suppose

that F,G ∈ M satisfy ρ(F ) = ρ(G) = x ∈ Rd. If ρ is M-elicitable, let S be its scoring function

in (7). As x is a minimizer for both
∫∞
−∞ S(·, y) dF (y) and

∫∞
−∞ S(·, y) dG(y), it must also be a

minimizer for
∫∞
−∞ S(·, y) d(λF + (1− λ)G)(y). By definition of elicitability, x = ρ(λF + (1− λ)G),

and ρ has CxLS. Similarly, if ρ isM-identifiable, let I : Rd+1 → R is its identification function. As x

satisfies
∫∞
−∞ I(x, y) dF (y) = 0 and

∫∞
−∞ I(x, y) dG(y) = 0, we know

∫∞
−∞ I(x, y) d(λF+(1−λ)G) = 0

for all λ ∈ [0, 1]. By the definition of identifiability, we have x = ρ(λF + (1− λ)G). We summarize

these simple arguments in the following proposition, which is known in the literature (e.g., Osband

(1985) and Lambert et al. (2008)).

Proposition 6.4. For M ⊂ M0, if ρ : M → Rd is M-elicitable or M-identifiable, then ρ has

CxLS on M.

On the other hand, CxLS may not be sufficient for elicitability or backtestability even in

dimension one. For instance, one can check that the essential supremum functional is not elicitable

or backtestable (Proposition 6.7 (i)); see also Heinrich (2014) and Brehmer and Strokorb (2019)

for other functionals with CxLS that are not elicitable. Under which conditions CxLS becomes

sufficient in high-dimension is an open question; see Fissler and Ziegel (2016, p. 1699).

The next proposition verifies that one-dimensional backtestability implies elicitability, as shown

by Acerbi and Szekely (2017).

Proposition 6.5. If ρ :M→ R isM-backtestable with backtest function Z, then ρ isM′-elicitable,

where M′ = {F ∈M :
∫∞
−∞

∫ z
0 |Z(x, y)|dx dF (y) <∞ for all z ∈ R}.

By Theorem 3.2, if a signed Choquet integral Ih has CxLS, then h ∈ H∗, belonging to one of

the three cases (2)-(4). Hence, it suffices to analyze backtestability in these cases. Note that by

Theorem 3.2, a signed Choquet integral Ih with CxLS is either a mean, a mixed-quantile, or a convex

combination of ess-sup and ess-inf, multiplied by a constant equal to h(1). The next proposition

verifies that the constant multiplier does not affect backtestability as long as it is not zero. This

result is similar to the revelation principle for scoring functions; see Theorem 4 of Gneiting (2011).

Proposition 6.6. Suppose that ρ :M→ R is backtestable with backtest function Z, then for c 6= 0,

the functional cρ is backtestable with backtest function Z∗(x, y) = cZ(x/c, y), x, y ∈ R.
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For the signed Choquet integral Ih, h ∈ H∗, if h(1) = 0, then Ih(F ) = 0 for all F ∈ M. This

trivial functional is backtestable with the backtest function Z(x, y) = x for all x, y ∈ R. If h(1) 6= 0,

by Proposition 6.6, the backtestability of Ih reduces to that of increasing Choquet integrals studied

in Acerbi and Szekely (2017). We list them here for completeness.

Proposition 6.7. For h ∈ H∗ with h(1) 6= 0,

(i) if h ∈ H∗1, Ih is not Mdis-backtestable;

(ii) if h ∈ H∗2, Ih is M1-backtestable;

(iii) if h ∈ H∗3, Ih is M∗0-backtestable, where M∗0 = {F ∈M0 : F−1 is continuous}.

Remark 6.8. For a given p ∈ (0, 1), VaRp (or VaRc
p as in case (iii) of Proposition 6.7) is M∗0(p)-

backtestable (and M-elicitable), where M∗0(p) = {F ∈ M0 : F−1 is continuous at p}. The choice

of M =M∗0(p) is the biggest such that VaRp is M-backtestable (or M-elicitable). This is because

the minimizers of the expected scoring function for VaRp fails to be unique if F does not admit a

unique p-quantile; see the discussion at the end of Section 2 of Fissler et al. (2019b).

6.2 A new characterization result for co-elicitability

We conclude this paper by a characterization theorem on spectral risk measures that are co-

elicitable with a VaR. Let X be the set of bounded random variables. According to Artzner et al.

(1999), a functional ρ̂ : X → R is set to be a coherent risk measure if it is increasing, cash-additive,

convex, and positively homogeneous. Translating this definition into our setting, we say that the

functional ρ : M∞ → R is a coherent risk measure, if ρ̂ is a coherent risk measure in the sense of

Artzner et al. (1999), where ρ̂ : X → R is given by ρ̂(X) = ρ(F ) and F is the distribution of X.

We focus on comonotonic-additive and coherent risk measures, a popular class of one-dimensional

signed Choquet integrals. Elicitability of comonotonic-additive risk measures is studied by, for in-

stance, Ziegel (2016), Kou and Peng (2016) and Fissler and Ziegel (2016). Using the characterization

result of Kusuoka (2001), a functional ρ : M∞ → R is comonotonic-additive and coherent if and

only if it can be written as ρ =
∫ 1

0 ESp dµ(p) for a Borel probability measure µ on [0, 1], or equiv-

alently (see e.g., Theorem 3 of Wang et al. (2020)), ρ = Ih for a concave and increasing h ∈ H

satisfying h(1) = 1. Therefore, comonotonic-additive and coherent risk measures are also called

spectral risk measures (Acerbi (2002)).

Since VaRp is elicitable only on M∗0(p), we consider co-elicitability on M∗∞(p) = {F ∈ M∞ :

F−1 is continuous at p}. Among the forms of risk measures identified by Theorem 5.3, it is easy
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to see that the only choice of coherent risk measures is ρ = aESp + (1 − a)E for some a ∈ [0, 1].

Therefore, naturally we would expect that the above form of ρ is the only spectral risk measure

that is co-elicitable with VaRp, although some detailed analysis needs to be carried out to translate

from the CxLS property on the setM∗∞(p) to that on the setMdis, in order to utilize Theorem 5.3.

Theorem 6.9. For p ∈ (0, 1), a spectral risk measure ρ : M∞ → R is co-elicitable with VaRp on

M∗∞(p) if and only if it is a convex combination of E and ESp.

To make sense of the elicitability of (VaRp, aESp + (1 − a)E) in Theorem 6.9, we obtain its

scoring function in the following proposition.

Proposition 6.10. For p ∈ (0, 1) and a ∈ (0, 1], let ρ = aESp+ (1−a)E. The functional (VaRp, ρ)

is M∗∞(p)-elicitable with the strictly consistent scoring function

S(x1, x2, y) = g(x2) + g′(x2)

(
a

(
x1 +

1

1− p
(y − x1)+

)
+ (1− a)y − x2

)
, x1, x2, y ∈ R,

where g is any differentiable, strictly increasing and strictly concave function on R.

Remark 6.11. The scoring function S in Proposition 6.10 is not the only possible form of scoring

functions for (VaRp, ρ). The purpose here is not to characterize all forms of scoring functions, but

to characterize all forms of ρ such that (VaRp, ρ) is elicitable. For a characterization of all scoring

functions for the special case of (VaRp,ESp), see Fissler and Ziegel (2016, Corollary 5.5).

Finally, we give a simple corollary of Theorem 6.9, where an additional semi-continuity as-

sumption identifies ESp as the only comonotonic-additive coherent risk measure co-elicitable with

VaRp.

Corollary 6.12. Suppose that ρ :M∞ → R is a spectral risk measure that is lower semi-continuous

with respect to weak convergence and p ∈ (0, 1). Then ρ is co-elicitable with VaRp on M∗∞(p) if and

only if ρ = ESp.

7 Discussions

We provide various results on the CxLS property of one- and multi-dimensional risk functionals,

and relate them to risk quadrangles, elicitability, and backtestability. Two major characterization

results are established on signed Choquet integrals Ih with CxLS and on (Ih,VaRp) with CxLS. A

particularly elegant message is that the only type of signed Choquet integral that gains CxLS when

paired with VaRp is a linear combination of ESp and E. Based on these results, we proceed to show
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that a convex combination of E and ESp is the only comonotonic-additive coherent risk measure

that is co-elicitable with VaRp.

It however remains an open question to characterize all two-dimensional signed Choquet inte-

grals (Ih, Ig) with CxLS, or, furthermore, a similar problem in higher dimension. Given the level

of technical complexity displayed in the techniques used to show Theorem 5.3, it seems to us that

a general conclusion to the above question is far from being reachable with current methods. Even

if one assumes that the signed Choquet integrals are increasing as in the risk measure literature,

general results in multi-dimension are not available.

Closely related to the above issue, the characterization of elicitable (or identifiable) d-dimensional

signed Choquet integrals remains an open problem. As explained in Section 6, the issues of elic-

itability, identifiability and backtestability are highly relevant for risk management practice, and

they all require the CxLS property as a necessary condition. Hence, our study on CxLS provides

a useful tool for future studies on the statistical notions above, especially in the multi-dimensional

setting.
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A Proofs of the main results

A.1 Proofs in Section 3

In order to prove Theorem 3.2, we first present two technical lemmas.

Lemma A.1. If h ∈ H satisfies, for all t, q ∈ [0, 1], 0 ≤ h(t) ≤ h(1) = 1 and

h(t) = h(t)h(1− q + qt) + (1− h(t))h(qt), (8)
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then h ∈ H∗.

Proof. We first get some smoothness of h using the same trick as in Wang and Ziegel (2015).

Integrating both sides of (8) over q ∈ [0, 1], we obtain for t ∈ (0, 1),

h(t) = h(t)

∫ 1

0
h(1− (1− t)q) dq + (1− h(t))

∫ 1

0
h(tq) dq

=
h(t)

1− t

∫ 1

t
h(x) dx+

1− h(t)

t

∫ t

0
h(x) dx

=
h(t)

1− t
(g(1)− g(t)) +

1− h(t)

t
g(t),

where g(t) =
∫ t

0 h(x) dx. Rearranging terms, we have

h(t)
(
t− t

1− t
(g(1)− g(t)) + g(t)

)
= g(t). (9)

Note that the function g is continuous on (0, 1). For t ∈ (0, 1), if g(t) 6= 0, then (9) implies that h

is continuous at t. If g(t) = 0 and h is not continuous at t, then t − t
1−t(g(1) − g(t)) + g(t) = 0,

which implies t = 1 − g(1). To summarize, either h has a jump at t = 1 − g(1) and is continuous

elsewhere, or h is continuous on (0, 1). This fact implies that g is continuously differentiable on

(0, 1) except for at the point t = 1 − g(1). Using the above relation (9) again, we know that h is

continuously differentiable on (0, 1) except at the point t = 1− g(1).

Differentiating both sides of (8) with respect to q, we get

0 =
d

dq
(h(t)h(1− q + qt) + (1− h(t))h(qt)).

By the product rule,

d

dq
(h(t)h(1− q + qt) + (1− h(t))h(qt)) = h(t)h′(1− q + qt)(t− 1) + (1− h(t))h′(qt)t, (10)

assuming the derivatives in the right-hand-side of (10) exist. Plugging in q = 1 in (10) and

rearranging terms, we have

h(t)h′(t) = h′(t)t for all t ∈ (0, 1) \ {1− g(1)}.

As a consequence,

h(t) = t or h′(t) = 0 for all t ∈ (0, 1) \ {1− g(1)}. (11)

Pick any point t0 ∈ (0, 1) \ {1 − g(1)}, and assume that h′(t0) 6= 0 and h′(t0) 6= 1. Using

(11), we have h(t0) = t0. Since h′(t0) 6= 1, there exists a neighbourhood (t0 − ε, t0 + ε) such that

h(t) 6= t for all t ∈ (t0 − ε, t0 + ε) and t 6= t0. Using (11) again, we know that h′(t) = 0 for all
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t ∈ (t0 − ε, t0 + ε) and t 6= t0. The continuous differentiability of h at t0 then implies h′(t0) = 0, a

contradiction. Therefore, we conclude

h′(t) = 1 or h′(t) = 0 for all t ∈ (0, 1) \ {1− g(1)}. (12)

First, suppose that h is continuously differentiable on (0, 1). In this case, h′ cannot switch between

0 and 1. Therefore, we have, either h′(t) = 0 on (0, 1) or h′(t) = 1 on (0, 1). This means either

h(t) = c on (0, 1) for some constant c ∈ [0, 1], or h(t) = t on (0, 1). In other words, h ∈ H∗1 or

h ∈ H∗2 .

Next, suppose that h is not continuously differentiable at t0 = 1− g(1). Note that this implies

g(t0) = 0, and hence h(t) = 0 a.e on (0, t0). Further, since 1− t0 = g(1) =
∫ 1

0 h(t) dt =
∫ 1
t0
h(t) dt ≤

1 − t0, we know that h(t) = 1 a.e. on (t0, 1). Since h is continuously differentiable on (0, t0) and

(t0, 1), we know that h(t) = 0 on (0, t0) and h(t) = 1 on (t0, 1). Thus, h ∈ H∗3.

The next lemma gives a sufficient condition for h(t) to have the same sign as h(1). Since h is

not necessarily monotone for a signed Choquet integral, it is an important step to verify that h(t)

has the same sign as h(1) in order to utilize Lemma A.1.

Lemma A.2. Fix h ∈ H and t ∈ (0, 1], and suppose h(t) 6= 0 and h(1) 6= 0. For x, y ∈ R, where x

and y satisfy 0 < x < y and y =
(

1− h(1)
h(t)

)
x+ h(1)

h(t) , if h satisfies

h(1) = Ih(q((1− t)δx + tδy) + (1− q)δ1), (13)

for all q ∈ [0, 1], then x < 1 ≤ y and h(1)
h(t) ≥ 1.

Proof. Without loss of generality, we assume h(1) = 1. Because y − x = 1
h(t)(1 − x) and y − 1 =(

1− 1
h(t)

)
(x− 1), by the fact that x < y, there exist three cases.

(a) x > 1, y > 1 and h(t) < 0: Equation (13) reduces to

h(q)h(t) = h(tq). (14)

(b) x < 1, y < 1 and h(t) > 1: Equation (13) reduces to

h(t) = h(1− q(1− t)) + h(1− q)(h(t)− 1). (15)

Then

h(t) =
h(1− q(1− t))− h(1− q)

1− h(1− q)
.
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(c) x < 1, y ≥ 1 and 0 < h(t) ≤ 1: Equation (13) reduces to

h(t) = h(t)h(1− q(1− t)) + (1− h(t))h(tq). (16)

We show that cases (a) and (b) above are actually not possible. In other words, a function h ∈ H

satisfying h(1) = 1 and (a)-(c) takes values in [0, 1].

We first show that such a function h is non-negative. Note that (c) implies

for any t ∈ [0, 1], if h(t) = 0, then h(s) = 0 for all s ∈ [0, t]. (17)

Suppose that there exists t ∈ [0, 1] such that h(t) < 0. If h(
√
t) < 0, by (a), we have h(t) =

h(
√
t)h(
√
t) > 0, which is a contradiction. Hence, h(

√
t) ≥ 0. Note that (14) also holds if h(t) = 0,

due to (17). By (a), we know that h(t)h(
√
t) = h(t

√
t) ≤ 0. Using (a) again,

0 ≥ h(t)h(
√
t)h(
√
t) = h(t

√
t)h(
√
t) = h(t2).

On the other hand, (a) also gives

h(t2) = h(t)h(t) > 0,

a clear contradiction. Therefore, h(t) ≥ 0 for all t ∈ [0, 1].

Next we show h(t) ≤ 1 for all t ∈ [0, 1]. We note the following two useful facts. First, for any

t ∈ [0, 1] such that h(t) ∈ (0, 1], by (c), we have

1 = h(1− q(1− t)) +
1− h(t)

h(t)
h(tq).

Using the fact that h is non-negative, we have h(1 − q(1 − t)) ≤ 1 for all q ∈ [0, 1]. Therefore, we

conclude the following statement:

For any t ∈ [0, 1] such that h(t) ∈ (0, 1], h(s) ∈ [0, 1] for all s ∈ [t, 1]. (18)

Second, for any t ∈ [0, 1] such that h(t) > 1, by taking q = 1− t, (15) gives

h(t) = h(1− (1− t)2) + h(t)(h(t)− 1).

Rearranging terms, we have (h(t) − 1)2 = 1 − h(1 − (1 − t)2). This implies h(1 − (1 − t)2) < 1.

Therefore, we have:

For any t ∈ [0, 1] such that h(t) > 1, h(1− (1− t)2) < 1. (19)

Suppose that there exists t ∈ (0, 1) such that h(t) > 1. Let s = 1−
√

1− t. Clearly, s < t. If

h(s) > 1, then by (19), we have h(1− (1− s)2) = h(t) < 1, a contradiction. If h(s) ∈ (0, 1], then by

(18), h(t) ∈ [0, 1], another contradiction. Hence, h(s) = 0.
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Plugging q = 1− s =
√

1− t in (15),

h(t) = h(1− (1− t)(1− s)) + h(s)(h(t)− 1)) = h(1− (1− t)
√

1− t) > 1. (20)

In particular,

h(t) = h(1− (1− t)
√

1− t) > 1, (21)

and setting w = 1− (1− t)
√

1− t in (20), we get

h(1− (1− w)
√

1− t) = h(1− (1− t)2) > 1.

This is a contraction to (19). Combining all cases, there does not exist t ∈ (0, 1) such that h(t) > 1.

Together with the fact that h is non-negative, we come to the conclusion that h(t) ∈ [0, 1] for all

t ∈ [0, 1]. Thus only case (c) is possible.

Proof of Theorem 3.2. It is easy to verify that the three classes of functionals in (2)-(4) have CxLS,

and hence h ∈ H∗ is sufficient for the CxLS property. Below we show the necessity of h ∈ H∗.

Suppose h(t0) = 0 for some fixed t0 ∈ [0, 1]. Observe that Ih(δ0) = 0 and Ih((1 − t0)δ0 + t0δ1) =

h(t0) = 0. Since Ih has CxLS, for any q ∈ [0, 1],

Ih ((1− q)δ0 + q(1− t0)δ0 + qt0δ1) = h(t0q) = Ih(δ0) = 0. (22)

It follows that if h(1) = 0, then h(t) = 0 on [0, 1]. This is included in each of cases (i)-(iii). In the

following, h(t) 6= 0 for any t ∈ (0, 1], and we can assume h(1) = 1 without loss of generality, since

the set H∗ is invariant under a constant multiplier. For 0 < x < y and any fixed t ∈ (0, 1], we have

Ih((1− t)δx + tδy) = x+ h(t)(y − x).

Note that Ih(δ1) = h(1) = 1. In the following we choose y =
(

1− 1
h(t)

)
x + 1

h(t) , so that Ih((1 −

t)δx + tδy) = 1. Since Ih has CxLS, for all q ∈ [0, 1],

1 = Ih(q((1− t)δx + tδy) + (1− q)δ1). (23)

By Lemma A.2, we have x < 1 ≤ y and h(t) ∈ (0, 1]. Hence, (23) reduces to

h(t) = h(t)h(1− q + qt) + (1− h(t))h(qt), (24)

for all t ∈ (0, 1] with h(t) 6= 0 and q ∈ [0, 1]. Note that (23) holds for t = 0 and if h(t) = 0, then

(24) holds automatically by (22). Therefore, (24) holds for all t, q ∈ [0, 1]. This is precisely (8). By

applying Lemma A.1, we obtain h ∈ H∗.
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The next lemma provides some technical properties of the w-convergence defined in Section

5. The lemma will be useful in bridging the gap between continuous and discrete distributions in

the proof of Proposition 3.4, as well as in the characterization of multi-dimensional signed Choquet

integrals in Section 5.

Lemma A.3. (i) Suppose that Fn, Gn ∈ M∞, n ∈ N, Fn
w→ F ∈ M∞ and Gn

w→ G ∈ M∞.

Then λFn + (1− λ)Gn
w→ λF + (1− λ)G for all λ ∈ [0, 1].

(ii) For h ∈ H, Ih is uniformly continuous with respect to w on M∞.

Proof. For both statements, we note that Fn
w→ F if and only if F−1

n (U)→ F−1(U) in L∞ for any

U[0, 1] random variable U .

(i) Let A ∈ F with P(A) = λ and U ∼ U[0, 1] be independent. It is easy to see that the random

variable 1AF
−1
n (U)+1AcG−1

n (U) has the distribution λFn+(1−λ)Gn, n ∈ N. Moreover, by the

w-convergence of {Fn}n∈N and {Gn}n∈N, 1AF
−1
n (U)+1AcG−1

n (U)→ 1AF
−1(U)+1AcG−1(U)

in L∞. Therefore, λFn + (1− λ)Gn
w→ λF + (1− λ)G.

(ii) The conclusion follows from the fact that a Signed Choquet integral as a functional on L∞ is

uniformly continuous with respect to the L∞-norm (Theorem 1 of Wang et al. (2020)).

Proof of Proposition 3.4. (i) Assume h(1) = 0. Let Fn = U[0, 1/n] and Gn = U[1, 1+1/n], n ∈ N.

Note that Fn
w→ δ0 and Gn

w→ δ1. By Lemma A.3, we have (1−λ)Fn+λGn
w→ Bernoulli(λ) for

λ ∈ (0, 1). Also note that from the translation invariance of Ih (e.g., Lemma 2 of Wang et al.

(2020)), Ih(Gn) = Ih(Fn) +h(1) = Ih(Fn). The CxLS onMcon implies Ih((1−λ)Fn+λGn) =

Ih(Fn). Therefore, by Lemma A.3,

Ih(Bernoulli(λ)) = lim
n→∞

Ih((1− λ)Fn + λGn) = lim
n→∞

Ih(Fn) = Ih(δ0) = 0.

Also note that Ih(Bernoulli(λ)) = h(λ). This gives h(t) = 0 for t ∈ [0, 1]. Hence Ih(F ) = 0 for

all F ∈M0, and it has CxLS on any set of distributions.

(ii) Assume h(1) 6= 0. Take F,G ∈ Mdis such that Ih(F ) = Ih(G). Write c = h(1) and b =

Ih(F ). Take two sequences of distributions {Fn}n∈N ⊂ Mcon and {Gn}n∈N ⊂ Mcon such

that Fn
w→ F and Gn

w→ G. Such sequences are easy to construct by, e.g., replacing each

point mass with a uniform on a small interval of length 1/n. Let U be a U[0, 1] random

variable. For n ∈ N, let F ∗n be the distribution of F−1
n (U) + 1

c (b− Ih(Fn)). We have F ∗n
w→ F ,

because Fn
w→ F and Ih(Fn) → b by Lemma A.3. Moreover, by the translation invariance
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of Ih again, Ih(F ∗n) = Ih(Fn) + b − Ih(Fn) = b. Similarly, let G∗n be the distribution of

G−1
n (U) + 1

c (b − Ih(Gn)), and we have G∗n
w→ G and Ih(G∗n) = b. By Lemma A.3, we have

λF ∗n + (1− λ)G∗n
w→ λF + (1− λ)G. Finally, noting that F ∗n , G

∗
n ∈ Mcon, the CxLS on Mcon

implies that Ih(λF ∗n + (1− λ)G∗n) = Ih(F ∗n) = b. Therefore, by Lemma A.3 again,

Ih(λF + (1− λ)G) = lim
n→∞

Ih(λF ∗n + (1− λ)G∗n) = b = Ih(F ) = Ih(G).

Hence, Ih has CxLS on Mdis.

Proof of Proposition 3.5. First, we note the key observation that, for any λ ∈ (0, 1) and F,G ∈M,

(λF + (1− λ)G) ◦ v−1 = (λF ) ◦ v−1 + ((1− λ)G) ◦ v−1 = λ(F ◦ v−1) + (1− λ)(G ◦ v−1). (25)

This observation follows directly from the definition of probability measures. Suppose that φv(F ) =

φv(G). By (5), we have φ(F◦v−1) = φ(G◦v−1). Using the CxLS property of φ and (25), for λ ∈ (0, 1)

such that λF + (1− λ)G ∈M, we have

φv(λF + (1− λ)G) = φ((λF + (1− λ)G) ◦ v−1)

= φ(λ(F ◦ v−1) + (1− λ)(G ◦ v−1)) = φ(F ◦ v−1) = φv(F ).

Thus φv has CxLS. If v is injective, then the converse statement holds true by noting that φ =

(φv)v−1 .

A.2 Proofs in Section 4

Proof of Proposition 4.1. Fix anm ∈ N. The functional ρ can be written as ρ(·) = h(f1(·), . . . , fm(·)),

where h : Rm → Rd is an injective function and each fi :M→ Rdi has CxLS. For any F,G ∈M that

satisfy ρ(F ) = ρ(G), we have (f1(F ), . . . , fm(F )) = (f1(G), . . . , fm(G)) by the fact that h is an in-

jection. Because each fi has CxLS, (f1(λF+(1−λ)G), . . . , fm(λF+(1−λ)G)) = (f1(F ), . . . , fm(F ))

for any λ ∈ [0, 1]. Hence, ρ(λF + (1 − λ)G) = h(f1(λF + (1 − λ)G), . . . , fm(λF + (1 − λ)G)) =

h(f1(F ), . . . , fm(F )) = ρ(F ) = ρ(G) for any λ ∈ [0, 1].

Proof of Proposition 4.2. We only need to show the “if” direction. For any F,G ∈M, if (ρ1(F ), ρ2(F )) =

(ρ1(G), ρ2(G)) = (r1, r2), then ρ2(λF + (1 − λ)G) = r2 for any λ ∈ [0, 1]. Since ρ1 has CxLS on

M(r2), we have ρ1(λF + (1 − λ)G) = r1 for any λ ∈ [0, 1], implying that (ρ1, ρ2) has CxLS on

M.
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Proof of Proposition 4.3. Obviously, V and E have CxLS since they are linear onM as in Example

2.2. Next, assume that S is real-valued. The CxLS property of S is implied by the fact that it is

the minimizer of an expected score (thus elicitable; see Proposition 6.4). Next, we discuss the case

of (S,R). For F ∈ M(r) where M(r) = {F ∈ M1 : S(F ) = r}, r ∈ R, using the relationship

R(F ) = r + V(F ◦ tr) and D(F ) = R(F ) − E[F ], we have R(F ) =
∫
R v(x − r) dF (x) + r, and

D(F ) =
∫
R(v(x− r)− x) dF (x) + r. Since both R and D are linear in F ∈ M(r), Proposition 4.2

implies that (S,R) and (S,D) both have CxLS. Finally, any combination of functionals with CxLS

still has CxLS because of the injective relation in Proposition 4.1. Hence the last statement of the

proposition holds true.

Proof of Proposition 4.4. Since Γ is the minimizer of an expected loss function, it has CxLS (see

also Proposition 6.4). On the set M(r) = {F ∈ M0 : Γ(F ) = r}, r ∈ R, γ is linear in F ∈ M(r),

and hence (γ,Γ) has CxLS by Proposition 4.2.

A.3 Proofs in Section 5

In order to prove Theorem 5.3, we need the following technical lemma, which connects the

problem on dimension two with the result in dimension one.

Lemma A.4. For p ∈ (0, 1) and h ∈ H, if (Ih,VaRp) has CxLS on Mdis, then

h(t) = h1

(
t

1− p

)
1{t≤1−p} +

(
h2

(
1− t
p

)
+ h(1)

)
1{t>1−p}, (26)

for some h1 and h2 ∈ H∗.

Proof. Define h1, h2 : [0, 1] → R by h1(t) = h(t(1 − p)), t ∈ [0, 1] and h2(t) = h(1 − tp) − h(1),

t ∈ [0, 1). Further, let h2(1) = limt↑1 h2(t), so that h2 is continuous at t = 1. Clearly, h1, h2 ∈ H

and (26) holds. We shall show h1, h2 ∈ H∗ below.

LetM+
∞ = {F ∈Mdis : F ((−∞, 0)) = 0} which is the set of distributions supported on [0,∞).

Further, let M∗ = {pδ0 + (1− p)F : F ∈M+
∞}. Note that VaRp(F ) = 0 for F ∈M∗ by definition.

Therefore, by Proposition 4.2, Ih has CxLS on M∗. By definition of Ih, for F ∈M+
∞,

Ih(pδ0 + (1− p)F ) =

∫ ∞
0

h(1− (p+ (1− p)F (x))) dx =

∫ ∞
0

h1(1− F (x)) dx = Ih1(F ).

Note that in the above equation we treat the measure F as the corresponding cumulative distribution

function. Since Ih has CxLS onM∗, and there is a linear mapping betweenM∗ andM+
∞, we know

that Ih1 has CxLS on M+
∞.
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For G ∈Mdis, we can write G = TxF for some x ∈ R and F ∈M+
∞, where Tx is the operator of

left-shift by x ∈ R, that is, TxF (y) = F (y+x) for y ∈ R. By definition of a signed Choquet integral

(or, see Lemma 2 of Wang et al. (2020)), we have Ih1(G) = Ih1(TxF ) = Ih1(F )−xh1(1). Therefore,

if G1, G2 ∈ Mdis satisfy Ih1(G1) = Ih2(G2), then for some x ∈ R such that T−xG1, T−xG2 ∈ M+
∞,

we know Ih1(T−xG1) = Ih2(T−xG2). Since Ih1 has CxLS on M+
∞,

Ih1(λG1 + (1− λ)G2) = Ih1(λT−xG1 + (1− λ)T−xG2) + xh1(1)

= Ih1(T−xG1) + xh1(1) = Ih1(G1).

As a consequence, Ih1 has CxLS on Mdis. By Theorem 3.2, we know h1 ∈ H∗.

The statement for h2 is somehow more complicated as it is not symmetric to the case of h1.

Fix q ∈ (0, p), and let M− = {F ∈Mdis : F ((−∞, 0]) = 1}, gq(t) = h(1− tq)− h(1), t ∈ [0, 1], and

M∗q = {(1− q)δ0 + qF : F ∈ M−}. Note that VaRp(F ) = 0 for F ∈ M∗q by definition. Therefore,

by Proposition 4.2, Ih has CxLS on M∗q . Let ḡq(t) = gq(1− t)− gq(1), t ∈ [0, 1]. Note that ḡq ∈ H

and ḡq(1) = −gq(1). By definition of Ih, for F ∈M−,

Ih((1− q)δ0 + qF ) =

∫ 0

−∞
(h(1− qF (x))− h(1)) dx

=

∫ 0

−∞
gq (F (x)) dx =

∫ 0

−∞
(ḡq (1− F (x))− ḡq(1)) dx = Iḡq(F ).

Since Ih has CxLS on M∗q , and there is a linear mapping between M∗q and M−, we know that Igq

has CxLS on M−. Following the similar arguments for h1, we obtain ḡq ∈ H∗. Checking the three

forms of functions in H∗, we know that gq ∈ H∗. Note that q is arbitrarily chosen in (0, p), and

h2(t) = gq(pt/q) = gtp(1) for t ≤ q/p. If gq(1) = 0 for all q ∈ (0, 1), then h2 is zero on (0, 1), thus

h2 ∈ H∗1. Next, assume that there exists q0 ∈ (0, p) such that gq0(1) = c 6= 0. There are four cases

to analyze. If gq0 ∈ H∗1 and gq0(1−) = 0, i.e., h2 is zero on (0, q0/p), then, by letting q vary in (q0, p),

constrained by gq ∈ H∗, h2 must be equal to a constant d on (q0/p, 1) with dc > 0 and |d| ≥ |c|,

thus h2 ∈ H∗3. If gq0 ∈ H∗1 and gq0(1−) 6= 0, i.e., h2 is a non-zero constant on (0, q0/p), then, by

letting q vary in (q0, p), constrained by gq ∈ H∗, h2 must be equal to c on (q0/p, 1), thus h2 ∈ H∗1. If

gq0 ∈ H∗2, i.e., h2 is linear on (0, q0/p), then, by letting q vary in (q0, p), constrained by gq ∈ H∗, h2

must be linear on (0, 1), thus h2 ∈ H∗2. If gq0 ∈ H∗3, i.e., there is a jump of h2 in (0, q0/p), then, by

letting q vary in (q0, p), constrained by gq ∈ H∗, h2 must be equal to c on (q0/p, 1), thus h2 ∈ H∗3.

In all cases, h2 ∈ H∗.

Proof of Theorem 5.3. For r ∈ R, denote by M(r) = {F ∈ Mdis : VaRp(F ) = r}. We first verify

(Ih,VaRp) in cases (i)-(iv) indeed has CxLS.
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(i) Both VaRp and Ih∗ have CxLS by Theorem 3.2. Hence, (Ih,VaRp) has CxLS as justified by

Proposition 4.1.

(ii) For F ∈M(r), using the ES-VaR formula of Rockafellar and Uryasev (2002),

Ih(F ) = ar + b

∫ ∞
−∞

x dF (x) + c

(
r +

1

1− p

∫ ∞
r

(x− r) dF (x)

)
.

Hence, Ih is affine for F ∈ M(r). So Ih has CxLS on M(r). By Proposition 4.2, we know

that (Ih,VaRp) has CxLS.

(iii) For F,G ∈M(r), if Ih(F ) = Ih(G), then bVaR+
p (F )+c ess-sup(F ) = bVaR+

p (G)+c ess-sup(G).

Without loss of generality, assume VaR+
p (F ) ≥ VaR+

p (G), which implies ess-sup(F ) ≤ ess-sup(G)

since bc > 0. Note that for λ ∈ (0, 1), since VaRp(F ) = VaRp(G) = VaRp(λF + (1−λG)) = r,

we have VaR+
p (λF + (1− λ)G) = VaR+

p (G). Therefore, for λ ∈ (0, 1).

bVaR+
p (λF + (1− λ)G) + c ess-sup(λF + (1− λ)G) = bVaR+

p (G) + c ess-sup(G).

Hence, Ih has CxLS on M(r). By Proposition 4.2, we know that (Ih,VaRp) has CxLS.

(iv) For F,G ∈M(r), if Ih(F ) = Ih(G), then bVaR+
p (F ) + c ess-inf(F ) = bVaR+

p (G) + c ess-inf(G).

Without loss of generality, assume VaR+
p (F ) ≥ VaR+

p (G), which implies ess-inf(F ) ≥ ess-inf(G)

since bc < 0. Note that for λ ∈ (0, 1), since VaRp(F ) = VaRp(G) = VaRp(λF + (1−λG)) = r,

we have VaR+
p (λF + (1− λ)G) = VaR+

p (G). Therefore, for λ ∈ (0, 1).

bVaR+
p (λF + (1− λ)G) + c ess-inf(λF + (1− λ)G) = bVaR+

p (G) + c ess-inf(G).

Hence, Ih has CxLS on M(r). By Proposition 4.2, we know that (Ih,VaRp) has CxLS.

Next, suppose that (Ih,VaRp) has CxLS, and we show that it has to be one of the cases (i)-(iv).

To simplify notation, for p ∈ (0, 1) and c ∈ [0, 1], let

ES−p (F ) =
1

p

∫ p

0
VaRt(F ) dt, F ∈M∞,

and

Qcp(F ) = c ess-sup(F ) + (1− c)VaR+
p (F ), F ∈M∞.

Note that Q1
p = ess-sup and Q0

p = VaR+
p .

By Lemma A.4, h satisfies (26), that is, for some h1 and h2 ∈ H∗,

h(t) = h1

(
t

1− p

)
1{t≤1−p} +

(
h2

(
1− t
p

)
+ h(1)

)
1{t>1−p} = g1(t) + g2(t),
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where g1(t) = h1( t
1−p)1{t≤1−p} and g2(t) = (h2(1−t

p ) + h(1))1{t>1−p}, t ∈ [0, 1]. Analyzing all

possible forms of Ig1 and Ig2 , we have

Ih = Ig1 + Ig2 = aVaRp + a1I + a2J,

where I ∈ {VaRc1
α ,ES−p } and J ∈ {ESp,VaRc2

β , Q
c
p}, a, a1, a2 ∈ R, α ∈ [0, p), β ∈ (p, 1] and

c1, c2, c ∈ [0, 1]. Since (Ih,VaRp) has CxLS if and only if (Ih − aVaRp,VaRp) has CxLS, we can

freely set a = 0. Hence, we can write Ih = a1I + a2J . Without loss of generality we assume a1 ≥ 0;

otherwise we can replace Ih by −Ih. There are a few cases to analyze. Below, we use the fact that

ES−p is a linear combination of ESp and E via pES−p + (1− p)ESp = E.

(a) a1 = 0. The case J ∈ {VaRc2
β ,VaR+

p , ess-sup} is included in case (i); the case J = ESp is

included in case (ii), and the case J = Qcp for c ∈ (0, 1) is included in case (iii).

(b) a2 = 0. The case I = VaRc1
α is included in case (i) and I = ES−p is included in case (ii).

(c) a1 > 0, a2 > 0. We claim that if Ih has CxLS on M(0), then either (I, J) = (ess-inf, ess-sup),

included in case (i), or (I, J) = (ES−p ,ESp), included in case (ii). Below we show our assertion.

First, suppose that I = VaRc1
α . For ε ∈ (α, p), let F = εδ−a2 + (p − ε)δ0 + (1 − p)δa1 and

G = δ0. We can easily calculate VaRp(F ) = VaRp(G) = 0, I(F ) = −a2, J(F ) = a1 and

I(G) = J(G) = 0. Therefore, Ih(F ) = Ih(G) = 0. For λ ∈ [0, 1],

λF + (1− λ)G = λεδ−a2 + (1− λ+ λ(p− ε))δ0 + λ(1− p)δa1 .

If Ih has CxLS on M(0), then Ih(λF + (1− λ)G) = 0 for all λ ∈ [0, 1] and all ε ∈ (α, p). Note

that the function λ 7→ I(λF + (1 − λ)G) has a jump at λ1 = α/ε ∈ [0, 1), and the function

λ 7→ J(λF + (1 − λ)G) either has no jump (J = ESp), a jump at λ2 = 1 (J = Qcp for c 6= 0),

a jump at λ2 = 0 (J = ess-sup = Q0
p), or a jump at λ2 = (1 − β)/(1 − p) (J = VaRc

β). Note

that λ1 6= λ2 for almost every ε ∈ (α, p), except for the case (α, c) = (0, 0). Hence, except for

(I, J) = (ess-inf, ess-sup), the function λ 7→ Ih(λF + (1− λ)G) does not take a constant value

on [0, 1], and Ih cannot have CxLS on M(0).

Next, suppose that I = ES−p . For ε ∈ (0, p), let F = εδ−a3 + (p− ε)δ0 + (1− p)δa1 and G = δ0,

where a3 = pa2/ε. We can easily calculate VaRp(F ) = VaRp(G) = 0, I(F ) = −εa3/p = −a2,

J(F ) = a1 and I(G) = J(G) = 0. Therefore, Ih(F ) = Ih(G) = 0. For λ ∈ [0, 1],

λF + (1− λ)G = λεδ−a3 + (1− λ+ λ(p− ε))δ0 + λ(1− p)δa1 .
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If Ih has CxLS on M(0), then Ih(λF + (1− λ)G) = 0 for all λ ∈ [0, 1]. Note that the function

λ 7→ I(λF + (1 − λ)G) has no jump whereas the function λ 7→ J(λG + (1 − λ)F ) has a jump

on [0, 1] except for J = ESp. Hence, except for J = ESp, the function λ 7→ Ih(λF + (1− λ)G)

does not take a constant value on [0, 1], and Ih cannot have CxLS on M(0).

(d) a1 > 0, a2 < 0. We claim that if Ih has CxLS on M(0), then either (I, J) = (ess-inf,VaR+
p ),

included in case (iv), or (I, J) = (ES−p ,ESp), included in case (ii). Below we show our assertion.

First, suppose that I = VaRc1
α . For ε ∈ (α, p), let F = εδa2 + (1− ε)δ0 and G = pδ0 + (1−p)δa1 .

We can easily calculate VaRp(F ) = VaRp(G) = 0, I(F ) = a2, J(F ) = 0, I(G) = 0 and

J(G) = a1. Therefore, Ih(F ) = Ih(G) = a1a2. Note that, for λ ∈ [0, 1],

λF + (1− λ)G = λεδa2 + (λ(1− ε) + (1− λ)p)δ0 + (1− λ)(1− p)δa1 .

If Ih has CxLS on M(0), then Ih(λF + (1 − λ)G) = a1a2 for all λ ∈ [0, 1] and all ε ∈ (α, p).

Note that the function λ 7→ I(λF + (1−λ)G) has a jump at λ1 = α/ε ∈ [0, 1), and the function

λ 7→ J(λG+ (1− λ)F ) either has no jump (J = ESp), a jump at λ2 = 1 (J = Qcp for c 6= 1), a

jump at λ2 = 0 (J = VaR+
p = Q1

p), or a jump at λ2 = 1 − (1 − β)/(1 − p) (J = VaRc
β). Note

that λ1 6= λ2 for almost every ε ∈ (α, p), except for the case (α, c) = (0, 1). Hence, except for

(I, J) = (ess-inf,VaR+
p ), the function λ 7→ Ih(λF + (1 − λ)G) does not take a constant value

on [0, 1], and Ih cannot have CxLS on M(0).

Next, suppose that I = ES−p . For ε ∈ (0, p), let F = εδa3 + (1− ε)δ0 and G = pδ0 + (1− p)δa1 ,

where a3 = pa2/ε. We can easily calculate VaRp(F ) = VaRp(G) = 0, I(F ) = εa3/p = a2,

J(F ) = 0, I(G) = 0 and J(G) = a1. Therefore, Ih(F ) = Ih(G) = a1a2. For λ ∈ [0, 1],

λF + (1− λ)G = λεδa3 + (λ(1− ε) + (1− λ)p)δ0 + (1− λ)(1− p)δa1 .

If Ih has CxLS on M(0), then Ih(λF + (1− λ)G) = 0 for all λ ∈ [0, 1]. Note that the function

λ 7→ I(λF + (1 − λ)G) has no jump whereas the function λ 7→ J(λG + (1 − λ)F ) has a jump

except for J = ESp. Hence, except for J = ESp, the function λ 7→ Ih(λF + (1− λ)G) does not

take a constant value on [0, 1], and Ih cannot have CxLS on M(0).

To summarize our findings in (a)-(d), all (Ih,VaRp) with CxLS are included in cases (i)-(iv).

Proof of Proposition 5.4. By definition, it is easy to verify that Ih(F ) = Ih̄(F̄ ) and VaRp(F ) =

−VaR+
1−p(F̄ ) for all F ∈ M (or, see Lemma 2 of Wang et al. (2020)). Therefore, F,G ∈ M

satisfy (Ih(F ),VaRp(F )) = (Ih(G),VaRp(G)) if and only if F̄ , Ḡ ∈ M̄ satisfy (Ih̄(F̄ ),VaR+
1−p(F̄ )) =
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(Ih̄(Ḡ),VaR+
1−p(Ḡ)). Hence, the CxLS property of (Ih,VaRp) on M and that of (Ih̄,VaR+

1−p) on

M̄ are equivalent.

A.4 Proofs in Section 6

Proof of Proposition 6.5. We define S : R2 → R by letting S(z, y) =
∫ z

0 Z(x, y) dx. Observe that

for any F ∈M′, Fubini’s Theorem gives∫ ∞
−∞

S(z, y) dF (y) =

∫ ∞
−∞

∫ z

0
Z(x, y) dx dF (y) =

∫ z

0

∫ ∞
−∞

Z(x, y) dF (y) dx. (27)

Note that the integral
∫ z

0

∫∞
−∞ Z(x, y) dF (y) dx is almost everywhere differentiable with respect to

z. Differentiating (27) we obtain

d

dz

( ∫ z

0

∫ ∞
−∞

Z(x, y) dF (y) dx

)
=

∫ ∞
−∞

Z(z, y) dF (y).

Since Z is a backtest function of ρ,∫ ∞
−∞

Z(z, y) dF (y) = 0 if and only if ρ(F ) = z,

and the following two inequalities hold,∫ ∞
−∞

Z(z, y) dF (y) <

∫ ∞
−∞

Z(ρ(F ), y) dF (y) = 0 for z < ρ(F ),

and ∫ ∞
−∞

Z(z, y) dF (y) >

∫ ∞
−∞

Z(ρ(F ), y) dF (y) = 0 for z > ρ(F ).

Thus,
∫∞
−∞ S(z, y) dF (y) achieves the global minimum at and only at ρ(F ) = z. Hence S is strictly

consistent for ρ and ρ is M′-elicitable.

Proof of Proposition 6.6. For F ∈M, let z = cρ(F ), we have∫ ∞
−∞

Z∗(z, y) dF (y) =

∫ ∞
−∞

cZ(z/c, y) dF (y) =

∫ ∞
−∞

cZ(ρ(F ), y) dF (y) = 0.

For z1 < z2, if c > 0, we have z1/c < z2/c, and by the fact that Z is a backtest function for ρ, we

have ∫ ∞
−∞

cZ(z1/c, y) dF (y) <

∫ ∞
−∞

cZ(z2/c, y) dF (y).

If c < 0, we have z1/c > z2/c, and in this case,∫ ∞
−∞

cZ(z1/c, y) dF (y) <

∫ ∞
−∞

cZ(z2/c, y) dF (y).

In both cases, the function
∫
Z∗(z, y) dF (y) is strictly increasing in z. Therefore, Z∗ is a backtest

function for cρ.
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Proof of Proposition 6.7. Without loss of generality, we assume h(1) = 1. If h ∈ H∗1, Ih =

c ess-sup +(1−c) ess-inf. The non-elicitability of Ih follows essentially from Theorem 3.3 in Brehmer

and Strokorb (2019), and we provide a simple argument below. Suppose Ih is backtestable and Z

is a backtest function. For any u, v ∈ R, u 6= v and p ∈ (0, 1), let G = pδu + (1− p)δv. Note that

0 =

∫ ∞
−∞

Z(Ih(G), y) dG(y) = pZ(Ih(G), u) + (1− p)Z(Ih(G), v).

Since Ih(G) does not depend on p ∈ (0, 1), we have Z(Ih(G), u) = Z(Ih(G), v) = 0, which implies

Ih(G) = u = v, a contradiction. Hence Ih is not backtestable.

If h ∈ H∗2, one can easily check that it is backtestable with backtest function Z(x, y) = x− y,

x, y ∈ R. If h ∈ H∗3, then for some α ∈ (0, 1), Ih = VaR1−α on M∗con. One can easily check that it

is backtestable with backtest function Z(x, y) = α1{y>x}+ (1−α)1{y<x}, x, y ∈ R. The above two

backtest functions can be found in Table 3 of Acerbi and Szekely (2017). Finally, using Proposition

6.6 we get the backtest functions for the signed Choquet integral Ih.

In order to show Theorem 6.9, we need to use the following lemma, as well as Proposition 6.10.

Lemma A.5. For a comonotonic-additive coherent risk measure ρ : M∞ → R and p ∈ (0, 1), if

(ρ,VaRp) has CxLS on M∗∞(p), then it has CxLS on Mdis.

Proof. Write ρ = Ih where h ∈ H is concave and increasing with h(1) = 1. We first assume h is

continuous. If h is not continuous, it can only have a jump at 0, and we will comment on that case

at the end of the proof.

For r ∈ R, denote by Mdis(r) = {F ∈ Mdis : VaRp(F ) = r} and M∗∞(p, r) = {F ∈ M∗∞(p) :

VaRp(F ) = r}. By Proposition 4.2, to show that (ρ,VaRp) has CxLS on Mdis, it suffices to show

that ρ has CxLS on Mdis(r) for all r ∈ R.

Fix r ∈ R and take F,G ∈ Mdis(r) such that ρ(F ) = ρ(G). We construct two sequences of

distributions {Fn}n∈N ⊂ M∗∞(p) and {Gn}n∈N ⊂ M∗∞(p) as follows. Let εn = (1 − p)/n, n ∈ N.

For n ∈ N, let F̂−1
n (t) = F−1(t) for t ∈ [0, p] ∪ [p+ εn, 1], and F̂−1

n is linear on [p, p+ εn]. Similarly,

let Ĝ−1
n (t) = G−1(t) for t ∈ [0, p]∪ [p+ εn, 1], and Ĝ−1

n is linear on [p, p+ εn]. Note that the quantile

function is always left-continuous by definition. Next, let F−1
n (t) = min{F̂−1

n (t), F−1(t)}, t ∈ [0, 1]

and G−1
n (t) = min{Ĝ−1

n (t), G−1(t)}, t ∈ [0, 1]. Since F−1 and G−1 may only have an up-side jump

at p, and F̂n and Ĝn have continuous quantiles at p, we know that Fn and Gn both have continuous

quantiles at p, i.e., {Fn}n∈N ⊂ M∗∞(p, r) and {Gn}n∈N ⊂ M∗∞(p, r). It is also easy to see that

Fn → F and Gn → G weakly.
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Note that F−1
n (t) = F−1(t) for t close to 0 and 1, and hence {F−1

n }n∈N is bounded above

and below. Therefore, the uniform integrability condition in Theorem 4 of Wang et al. (2020) is

satisfied, and we have ρ(Fn)→ ρ(F ) as n→∞. Similarly, ρ(Gn)→ ρ(G) as n→∞.

Let B be the Bernoulli distribution with mean c = (1 − p)/2. Since ρ ≥ E, we know that

ρ(B) ≥ c > 0. Further, since F−1
n (t) ≤ F−1(t) for all t ∈ [0, 1], we know ρ(Fn) ≤ ρ(F ) since a

coherent risk measure is monotone with respect to stochastic order. For n ∈ N, let F ∗n be given by

(F ∗n)−1(t) = F−1
n (t) + 1{t>1−c}

ρ(F )− ρ(Fn)

ρ(B)
, t ∈ [0, 1].

Note that (F ∗n)−1 is increasing and left-continuous, thus a well-defined quantile function. We can

calculate, using the comonotonic-additivity of ρ, that

ρ(F ∗n) = ρ(Fn) + ρ(B)
ρ(F )− ρ(Fn)

ρ(B)
= ρ(F ).

Moreover, (F ∗n)−1(p) = F−1
n (p) = F−1(p) = r. Therefore, {F ∗n}n∈N ⊂ M∗∞(p, r). On the other

hand, since ρ(Fn) → ρ(F ) as n → ∞, we have F ∗n → F weakly. Similarly, we can construct

{G∗n}n∈N ⊂M∗∞(p, r) such that ρ(G∗n) = ρ(G), n ∈ N, and G∗n → G weakly.

It is clear that λF ∗n + (1− λ)G∗n → λF + (1− λ)G weakly for λ ∈ [0, 1]. By noting again the

uniform integrability in the sense of Theorem 4 of Wang et al. (2020) is satisfied by {λF ∗n + (1 −

λ)G∗n}n∈N, we have ρ(λF ∗n + (1− λ)G∗n)→ ρ(λF + (1− λ)G). Thus,

ρ(F ) = ρ(λF ∗n + (1− λ)G∗n)→ ρ(λF + (1− λ)G),

and hence ρ has CxLS on Mdis(r). This shows that (ρ,VaRp) has CxLS on Mdis.

If h has a jump at 0, then ρ can be decomposed into a convex combination of ess-sup and Ig

for a continuous and concave g ∈ H. Since F−1
n (1) = F−1(1) and G−1

n (1) = G−1(1), this does not

affect the arguments that ρ(Fn) → ρ(F ) and ρ(Gn) → ρ(G) as n → ∞, or the construction of F ∗n

and G∗n.

Proof of Proposition 6.10. Fix F ∈M∗∞(p). For x1, x2 ∈ R, let H(x1, x2) =
∫∞
−∞ S(x1, x2, y) dF (y),

and G(x1) =
∫∞
−∞(x1 + 1

1−p(y − x1)+) dF (y). Both H and G are clearly R-valued. Obviously,

H(x1, x2) = g(x2) + g′(x2) (aG(x1) + (1− a)E[F ]− x2) .

Using the ES-VaR relation (1), and noting that F has a continuous quantile at p, we have VaRp(F ) =

arg minx1∈RG(x1) and ESp(F ) = minx1∈RG(x1). Hence, for x2 ∈ R, since ag′(x2) > 0, a minimizer

of H(x1, x2) satisfies x1 = VaRp(F ). Note that

H(VaRp(F ), x2) = g(x2) + g′(x2)(aESp(F ) + (1− a)E(F )− x2) = g(x2) + g′(x2)(ρ(F )− x2).
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Since g is strictly concave, we have g(x2) + g′(x2)(ρ(F )−x2) ≥ g(ρ(F )) for x2 ∈ R and the equality

is attained at x2 = ρ(F ). Therefore,

(VaRp(F ), ρ(F )) = arg min
(x1,x2)∈R2

∫ ∞
−∞

S(x1, x2, y) dF (y),

which shows that S is a strictly consistent function for (VaRp, ρ).

Proof of Theorem 6.9. To show the “only-if” part, note that the elicitability of (ρ,VaRp) implies

that it has CxLS on M∗∞(p), and ρ is an increasing Choquet integral. By Lemma A.5, we know

that (ρ,VaRp) has CxLS on M∗dis. Hence, we know that ρ is one of the four cases in Theorem

5.3. Clearly, case (ii) gives a possible coherent risk measure ρ of the form ρ = aESp + (1− a)E for

a ∈ [0, 1], and all other forms of ρ in Theorem 5.3 are not coherent. The “if” part for a ∈ (0, 1]

follows from Proposition 6.10, and the case a = 0 is due to Proposition 4.1 since both E and VaRp

are M∗∞(p)-elicitable.

Proof of Corollary 6.12. We need to show that ESp is the only lower semi-continuous risk measure

within the class of risk measures identified in Theorem 6.9. For this purpose, we verify two things.

First, ESp is lower semi-continuous with respect to weak convergence. This is implied by

Proposition 2.1 and Remark 2.1 of Wang and Zitikis (2020).

Second, aESp + (1− a)E is not lower semi-continuous for a ∈ [0, 1). This fact is indeed shown

by a counter-example in Wang and Zitikis (2020), which we give below because it is very simple. Let

Fk be the distribution of −kXk, where Xk ∼ Bernoulli(1/k). Clearly, Fk → δ0 weakly, E[Fk] = −1

and ESp(Fk) = 0 for k > 1/(1− p). Therefore, by lower semi-continuity of ρ,

0 = ρ(δ0) ≤ lim inf
k→∞

(aESp(Fk) + (1− a)E[Fk]) = −(1− a),

showing that a ≥ 1.
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