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Abstract

In the recent Basel Accords, the Expected Shortfall (ES) replaces the Value-at-Risk (VaR)

as the standard risk measure for market risk in the banking sector, making it the most popular

risk measure in financial regulation. Although ES is – in addition to many other nice properties

– a coherent risk measure, it does not yet have an axiomatic foundation. In this paper we

put forward four intuitive economic axioms for portfolio risk assessment – monotonicity, law

invariance, prudence and no reward for concentration – that uniquely characterize the family of

ES. The herein developed results, therefore, provide the first economic foundation for using ES

as a globally dominating regulatory risk measure, currently employed in Basel III/IV. Key to

the main results, several novel notions such as tail events and risk concentration naturally arise,

and we explore them in detail. As a most important feature, ES rewards portfolio diversification

and penalizes risk concentration in a special and intuitive way, not shared by any other risk

measure.
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1 Introduction

The Value-at-Risk (VaR) and the Expected Shortfall (ES) – the latter also known as CVaR,

TVaR and AVaR – are the most popular risk measures in banking and insurance. They are

widely employed for regulatory capital calculation, decision making, performance analysis, and

risk management. In particular, both VaR and ES appear in the banking regulation frameworks of

Basel III/IV, as well as in the insurance regulation frameworks of Solvency II and the Swiss Solvency

Test. A major interpretation of these risk measures is the capital requirement for potential losses

faced by financial institutions, and in this paper we take the perspective of banking regulation as

in Basel III/IV, although the results obtained are applicable well beyond the regulatory framework

of banking.

The Basel Committee on Banking Supervision in their Fundamental Review of the Trading

Book (FRTB) (BCBS, 2016) confirmed the replacement of VaR with ES as the standard risk measure

for market risk; see also the more recently revised document BCBS (2019). Specifically, the VaR at

the probability level p = 0.99 is officially replaced by the ES at the level p = 0.975 as the standard

risk measure for market risk. There are several reasons for this transition (BCBS, 2016, 2019), and

the literature on comparative advantages of VaR and ES is abundant (e.g., Embrechts et al., 2014,

2018, and the references therein). Based on this regulatory transition, we may therefore conclude

that ES is currently the most important risk measure in banking practice. See also Azenes and

Effixis (2018) for the use of ES in the context of insurance regulation.

Naturally, the properties that a risk measure satisfies, or fails to satisfy, as well as their

economic implications, play a pivotal role when deciding whether or not it is suitable for practical

use. As a dominating class of risk measures in financial applications, ES has many nice theoretical

properties. In particular, ES satisfies the four axioms of coherent risk measures (Artzner et al.,

1999; Acerbi and Tasche, 2002), and it is also additive for comonotonic risks (Kusuoka, 2001), thus

admitting a convex Choquet integral representation (Yaari, 1987; Schmeidler, 1989). In addition

to its economically relevant properties, ES also admits a nice representation as the minimum of

expected losses (Rockafellar and Uryasev, 2002), which allows for convenient convex optimization.

In addition to its prominent appearance in financial regulation, the family of ES plays a special

and important role in decision analysis. For instance, foundational to the notion of risk aversion

(Rothschild and Stiglitz, 1970), second-order stochastic dominance is equivalent to the partial order

induced by the family of ES.1 Moreover, the dual utility of Yaari (1987) can be written as a mixture

1More precisely, for two random losses X and Y , X ≺ssd Y if and only if ESp(X) > ESp(Y ) for all p ∈ (0, 1),

where ≺ssd stands for second-order stochastic dominance between losses (the convention is the smaller the better);
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of ES if and only if the corresponding preference is risk averse.2

Note, however, that the aforementioned properties, as well as several other ones that we find

in the literature, do not (jointly) characterize ES. Indeed, despite its great popularity and practical

relevance, the family of ES has not yet been characterized with any set of economic axioms.3 As

a consequence, a number of important questions remain unanswered. For example, is there a set

of natural economic axioms suitable for regulatory risk measures that would characterize ES? How

special is ES among the class of coherent risk measures? In sharp contrast to ES, the VaR (quantile)

has been uniquely characterized using various sets of axioms. How would those axioms for VaR

compare with the axioms that characterize ES? Answering these and other questions is the main

purpose of the present paper.

Motivated by practical features of portfolio risk assessment, and in particular by penalizing

concentrated portfolios and emphasizing tail events, we put forward four axioms. The axioms –

monotonicity, law invariance, prudence, and no reward for concentration – naturally characterize

ES from an economic perspective. Our characterization theorem, therefore, empowers regulators

from the decision-making perspective. Indeed, if the aforementioned axioms correctly reflect the

regulator’s practical intentions with respect to risk, then the use of ES as a standard regulatory

risk measure is justified. If, however, the axioms contradict the regulator’s intentions, then it is

the right time to discuss whether ES is still the best risk measure to use. Hence, the present paper

yields a technical foundation for further practical discussions of the (dis-)advantages of using ES,

among all possible alternative risk measures.

The rest of the paper is organized as follows. In Section 2, we introduce four economic axioms

designed for portfolio risk assessment, and put forward an axiomatic characterization of ES in the

form of two theorems. A deeper understanding as well as proofs of these two theorems rely on

several properties and results concerning tail events and risk concentration, which will be discussed

in Sections 3–4. In particular, Section 3 offers some properties and characterizations of risk con-

centration, and its role as a dependence concept. Section 4 illustrates the prominent role of risk

concentration in the maximal risk aggregation for ES and VaR. We conclude the paper in Section 5

see e.g., Shaked and Shanthikumar (2007, Theorem 4.A.3).
2This is because any L1-continuous convex distortion risk measure can be written as a mixture of ES; see e.g.,

McNeil et al. (2015, Proposition 8.18).
3In the literature, the family of ES can be identified with some properties based on VaR. For instance, ES is

known to be the smallest law-invariant coherent risk measure dominating the corresponding VaR; see Artzner et al.

(1999, Proposition 5.4) and Föllmer and Schied (2016, Theorem 4.67). Moreover, Wang and Wei (2018, Theorem 3)

show that ES is the only coherent distortion risk measure co-elicitable with the corresponding VaR. These results do

not provide an axiomatic characterization of ES as they rely on the other risk measure VaR. Moreover, the above

properties do not seem to have a clear interpretation in portfolio capital assessment.
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by discussing a number of important implications of our axioms and results. We relegate proofs of

all results to several appendices, which also contain auxiliary results of interest to risk modeling,

although they do not fit well into the narratives of the main body of the paper.4

1.1 Related literature

Various risk-related terms permeate economic literature: ambiguity, preferences, risk percep-

tions, and knowledge-based (also called subjective) distortions of probability measures, to name a

few. The research on axiomatic approaches for these risk functionals has a long history and, by

now, makes up a large part of literature dealing with economic (and statistical) decision theories.

For a specimen, see for instance the monographs by Gilboa (2009), Wakker (2010), and to the

extensive lists of references therein. In particular, axiomatic studies on preference functionals have

been prolific in decision theory (e.g., Maccheroni et al., 2006; Gilboa et al., 2010; Cerreia-Vioglio

et al., 2011). In a discussion article, Gilboa et al. (2019) share their insights on the usefulness of

axiomatic approaches in modern economic questions.5

The development of axiomatic approaches for risk measures has also been quite fruitful. In the

financial engineering literature, as a prominent piece of work on the axiomatic approach, Artzner et

al. (1999) introduced the class of coherent risk measures, with ES being one of them. Furthermore,

Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002) have axiomatically identified

the class of convex risk measures. Chen et al. (2013) studied axioms for systemic risk measures,

an important subject in risk management, especially after the 2007-2009 financial crisis. Many

axiomatic studies in quantitative finance and insurance find their roots in economic decision theory.

The rank-dependent (also called dual) and Choquet utility theories (Quiggin, 1982; Yaari, 1987;

Schmeidler, 1989; Denneberg, 1994, and the references therein) are particularly popular, and they

have given rise to, e.g., distortion (Wang, 1996) and spectral (Acerbi, 2002) risk measures, extens-

ively explored in the insurance and finance literature. For the case of VaR, different sets of axioms

have been given; see Chambers (2009), Kou and Peng (2016), He and Peng (2018), and Liu and

Wang (2020).

4In particular, Lemma A.2 gives a characterization of functionals that are additive for concentrated risks; Lemmas

A.3, A.4 and A.6 and Corollary A.1 give several technical properties of tail events; Lemma A.5 characterizes tail

events of the sum of concentrated risks; Proposition A.1 gives a relationship between concentration and pair-wise

concentration; Lemma A.7 connects ES with conditional expectation on a tail event.
5Relevant to the axiomatic approach in this paper, we quote from Gilboa et al. (2019) the following question: “Are

we devoting too much time to axiomatic derivations at the expense of developing theories that fit the data?” together

with the paper’s answer: “[...] our response, namely that axiomatic derivations are powerful rhetorical devices, and

outlines several ways that axiomatic derivations of decision rules may be useful for economics, even when the decision

models are interpreted descriptively.”
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The risk measure ES has been extensively studied in financial econometrics. We refer to Scaillet

(2004), Chen (2008), Cai and Wang (2008), Patton et al. (2019) and the references therein for the

inference for, and modelling of, ES with financial data. Fermanian and Scaillet (2005) analyze

sensitivity of ES in the presence of netting and collateral agreements in the banking industry. For

recent developments on (variations of) ES and related risk measure in the context of systemic

risk, we refer to Acharya et al. (2012, 2017) and Adrian and Brunnermeier (2016). Studies on the

backtesting and elicitation of ES as a regulatory risk measure are found in Ziegel (2016), Fissler

and Ziegel (2016), and Du and Escanciano (2017).

1.2 Notation and definitions

Next are basic mathematical notation and definitions that we use throughout the paper. First,

we fix an atomless probability space (Ω,F ,P) of all possible (financial) scenarios of interest. The

assumption of an atomless probability space is standard in the literature, and it is important for

the main results of this paper. A random variable X : Ω → R usually carries the connotation of

a portfolio or asset loss in a fixed period of time (e.g. 10 days in the Basel FRTB, BCBS (2019,

p. 89)); FX denotes its cumulative distribution function (cdf). In our sign convention, a positive

value of X ∈ X represents a loss and a negative value represents a surplus. We write X
d
= Y

if two random variables X and Y follow the same cdf. For q ∈ (0,∞), Lq denotes the set of all

random variables with finite q-th moment, L0 is the set of all random variables, and L∞ is the set

of essentially bounded random variables.

A risk measure is a mapping from X to R, where X is a convex cone of random variables

representing losses faced by financial institutions, e.g., X = Lq, q > 0. In particular, the Value-at-

Risk (VaR) at level p ∈ (0, 1) is the functional VaRp : L0 → R defined by

VaRp(X) = inf{x ∈ R : P(X 6 x) > p},

which is the left p-quantile of X, and the Expected Shortfall (ES) at level p ∈ (0, 1) is the functional

ESp : L1 → R defined by

ESp(X) =
1

1− p

∫ 1

p
VaRq(X)dq.

In this paper, terms such as increasing or decreasing functions are in the non-strict sense.
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2 An axiomatic characterization of ES

This section contains the main ideas and results of this paper. First, we introduce and discuss

four economic axioms for a suitable regulatory risk measure. In particular, one of the axioms,

called Axiom NRC, is the most important one that distinguishes ES from all other risk measures;

it specifically addresses risk assessment at the portfolio level. Second, we shall see that the four

axioms uniquely characterize the class of ES on L1, and that no meaningful risk measure can satisfy

the axioms on Lq for any q ∈ [0, 1). Finally, we shall discuss some technical aspects of the axioms

as well as certain implications of our results.

2.1 Three natural axioms for portfolio risk assessment

Given a risk measure ρ : X → R, the risk value ρ(X) is commonly interpreted as the capital

requirement associated with loss X ∈ X . Next are the first three of the four axioms that we

propose in this paper, followed by brief comments on their roles in the context of capital requirement

calculations. All the random variables that show up in the axioms are implicitly assumed to be in

the domain X of ρ.

Axiom M (Monotonicity). A surely larger or equal loss leads to a larger or equal risk value, that

is, ρ(X) 6 ρ(Y ) whenever X 6 Y .

Axiom LI (Law invariance). The risk value depends on the loss via its distribution, that is,

ρ(X) = ρ(Y ) whenever X
d
= Y .

Axiom P (Prudence). The risk value is not underestimated by approximations, that is, the bound

limk→∞ ρ(ξk) > ρ(X) holds whenever ξk → X (pointwise) and the limit limk→∞ ρ(ξk) exists.

Although the above three axioms are standard, we nevertheless briefly discuss them, to show

their naturalness in the current context. First, Axiom M means that if the loss increases for all

scenarios ω ∈ Ω, then the capital requirement should increase as well.

Axiom LI is common for all risk measures used in practice, as it gives sense of objectivity by

requiring the capital requirement to depend on the loss distribution, but not on the realized loss

outcome. Hence, the axiom facilitates statistical modeling and inference, which are distribution-

based methods by their very nature.

Finally, Axiom P is precisely lower semi-continuity,6 which means that if the loss X is mod-

elled using a truthful approximation (e.g., via the empirical distribution or some other consistent

6This can be equivalently rewritten as the requirement that lim infk→∞ ρ(ξk) > ρ(X) whenever ξk → X (point-

wise), which provides an alternative, and perhaps more mathematically concise, reformulation of Axiom P.
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estimator), then the approximated risk model should not underreport the capital requirement as

the approximation error reduces to zero. Therefore, all three Axioms M, LI, and P are natural

requirements for any reasonable risk measure that is used in practice. Both VaR and ES satisfy

these axioms (see Proposition 1 in Section 2.4 below).

Axioms M, LI, and P are arguably the most natural for risk assessment in any area involving

statistical modeling, such as insurance, engineering, natural catastrophes and econometrics. In

other words, the axioms are not specifically designed for portfolio risk assessment, although the

latter is the main interpretation of risk measures in the current paper. In the next subsection, we

will formulate the fourth axiom, which is specific to the setting of portfolio risk assessment.

Remark 1. The reader may have noticed that our axioms are formulated in the weakest possible

form, so that they are minimal to require. For instance, along the same line of reasoning, it may be

intuitive to replace “X 6 Y ” by “X 6 Y a.s.” in Axiom M, and to replace “ξk → X (pointwise)”

by “ξk → X a.s.” or “ξk → X in distribution” in Axiom P. These changes will make the axioms

stronger and harder to satisfy (thus harder to defend), and the corresponding characterization

theorem will generally become weaker. Therefore, we have chosen to present the axioms in the

current weakest form. Nevertheless, it does not hurt to keep the axioms in mind with their possible

stronger versions as noted above, since our risk measures of interest actually satisfy these stronger

versions (shown in the proof of Proposition 1), and all our results in this section still remain valid

with the stronger version.

2.2 Perspective of the regulator and the fourth axiom

We recall that in the context of the Basel FRTB (BCBS, 2016, 2019), regulatory risk measures

are used to calculate portfolio capital requirements. Below, we summarize two important features

(regulatory considerations) of portfolio risk assessment as reflected in the FRTB.

First, regulators are concerned with tail events, which are rare events (i.e., have small prob-

abilities) in which risky positions incur large losses. The consideration of “tail risk” is the official

reason that the Basel Committee on Banking Supervision has replaced VaR by ES:

A shift from Value-at-Risk (VaR) to an Expected Shortfall (ES) measure of risk under

stress. Use of ES will help to ensure a more prudent capture of “tail risk” and capital

adequacy during periods of significant financial market stress. (BCBS, 2016, Executive

Summary.)7

7See also BCBS (2019, 30.20, p. 70) on rare events: “Banks’ stress scenarios must cover a range of factors that (i)

can create extraordinary losses or gains in trading portfolios, or (ii) make the control of risk in those portfolios very
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To reflect this, we naturally define a tail event of a random loss X as an event on which X takes

its largest values.

Definition 1 (Tail event). A tail event of a random variable X is an event A ∈ F with 0 < P(A) < 1

such that the inequality X(ω) > X(ω′) holds for a.s. all scenarios ω ∈ A and ω′ ∈ Ac, where Ac

stands for the complement of A.

The second feature concerns diversification and risk concentration. We use a random vector

(X1, . . . , Xn) to represent a portfolio with several risky components. If the portfolio (X1, . . . , Xn) is

“properly diversified” (to be defined precisely later), there should be diversification benefit, namely,

ρ (
∑n

i=1Xi) <
∑n

i=1 ρ(Xi). In other words, the portfolio receives some reduction in capital re-

quirement because of diversification or hedging, if compared to the sum of the risk values of its

components.8 On the other hand, if the portfolio is concentrated, or non-diversified, then there is

no diversification benefit, namely, ρ (
∑n

i=1Xi) =
∑n

i=1 ρ(Xi). This reflects regulators’ intention to

penalize risk concentration or unjustifiable diversification.9

We put the above two features into a rigorous mathematical framework by the following intu-

itive argument, which identifies a notion of risk concentration that should not yield diversification

benefit. Suppose that A is a stress event in which the financial system is under severe stress (an

adverse economic scenario, e.g., a financial crisis), identified by the regulator. Consider a portfolio

of random losses, whose components all share the stress event A as a tail event; in other words, if

A happens, all risk factors in the portfolio are realized as their biggest possible losses altogether.

Arguably, this is the most problematic type of risk concentration for the regulator, leading to sig-

nificant negative impact on the financial system. To reflect this discussion, such a portfolio should

not be considered as diversified, and no reward should be given. This observation leads us to the

fourth and final axiom.

Axiom NRC (No reward for concentration). There exists an event A ∈ F such that ρ(X + Y ) =

ρ(X) + ρ(Y ) holds for all risks X and Y sharing the tail event A.

difficult. These factors include low-probability events in all major types of risk, [...]”.
8On the matter, the Basel Committee on Banking Supervision notes the following (BCBS, 2019, 10.22, p. 11):

“Diversification: the reduction in risk at a portfolio level due to holding risk positions in different instruments that

are not perfectly correlated with one another.” The feature of rewarding diversification is also the key notion in the

definition of coherent risk measures introduced by Artzner et al. (1999).
9In particular, the Basel Committee on Banking Supervision specifies (BCBS, 2019, 30.17(3b), p. 70): “[...]

with sufficient consideration given to ensuring: [...] that the models reflect concentration risk that may arise in an

undiversified portfolio.” and (BCBS, 2019, 22.4, p. 54): “No diversification benefit is recognised between the DRC

requirements for: (1) non-securitisations; (2) securitisations (non-CTP); and (3) securitisations (CTP).”
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As noted above, Axiom NRC intuitively means that a concentrated portfolio,10 whose compon-

ents incur large losses simultaneously in the stress event A, does not receive any capital reduction,

thus reflecting the two features of portfolio risk assessment discussed above. The stress event A in

Axiom NRC should be interpreted as a symbolic event of regulatory interest. As we shall see later,

as long as it exists, which event A is chosen as the stress event is not relevant for the characteriza-

tion of the desirable risk measure.11 Moreover, Axiom NRC is a model-free conceptual requirement,

as it does not depend on the choice of the probability measure P.12 This allows for flexibility in

the statistical inference of risk models in practice, which comes after the regulatory risk measure is

decided.

Quite obviously, a linear functional, such as the expectation E : L1 → R or the conditional

expectation E[·|B] for some B ∈ F , satisfies Axiom NRC. Later we shall see that ES also satisfies

Axiom NRC, whereas VaR does not. Furthermore, the four axioms that we have introduced are

independent (Proposition 3).

Remark 2. Axiom NRC does not specify what happens to ρ(X+Y ) if X and Y do not share the tail

event A. A reasonable condition for this situation may be to impose ρ(X+Y ) 6 ρ(X)+ρ(Y ) for all

(X,Y ), which is a requirement for ρ to be a coherent risk measure in Artzner et al. (1999). We do

not impose this requirement to formulate our axiom in its weakest form, as explained in Remark 1.

However we will see that, with our four axioms, we indeed arrive at coherent risk measures (more

precisely, at ES), and hence this extra requirement is satisfied automatically.

2.3 Characterization of ES

The next theorem, which is the main result of this paper, shows that Axioms M, LI, P and

NRC characterize the class of ES on X = L1.

Theorem 1. A functional ρ : L1 → R with ρ(1) = 1 satisfies Axioms M, LI, P and NRC if and

only if ρ = ESp for some p ∈ (0, 1). Moreover, in the forward direction of the above statement, the

value of p is uniquely given by 1− P(A), where A is any stress event in Axiom NRC.

A few clarifying remarks follow. First, as implied by the last statement of Theorem 1, although

the stress event A in Axiom NRC is generally not unique, its probability is. Second, the requirement

10Axiom NRC can be equivalently reformulated using portfolios with n components (Proposition 2 below) thus

facilitating practical relevance of the axiom, but again we choose its weakest form with n = 2, which is undoubtedly

much more convenient to verify mathematically.
11Technically, this is due to Axiom LI. As we will see in Theorem 1, only the probability of A is relevant.
12More precisely, P can be replaced by any other equivalent probability measure. Axioms M and P do not depend

on P, either.
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ρ(1) = 1 is simply for the sake of normalizing the functional; without it, we would have ρ = λESp

for some λ > 0. Third, in contrast to a vast body of literature on risk measures (e.g., Delbaen, 2012;

Föllmer and Schied, 2016, and the references therein), in Theorem 1 we do not impose subadditivity

or convexity on the risk measure ρ; nevertheless, we arrive at the coherent risk measure ESp.
13

Finally, in Theorem 1 we specify the set X = L1 as the domain of risk measures, but we may

wonder whether this choice of domain is too restrictive, noting that the above axioms, as well as

the concept of tail events, do not rely on integrability. The next theorem shows that the domain L1

is the most natural (and essentially the largest) choice for any risk measure under Axioms M, LI, P

and NRC. A similar result on the domain of convex risk measures is obtained by Delbaen (2007).

Theorem 2. Let q ∈ [0, 1). A functional ρ : Lq → R satisfies Axioms M, LI, P and NRC if and

only if ρ(X) = 0 for every X ∈ Lq.

In other words, Theorem 2 says that no meaningful risk measure satisfying Axioms M, LI, P

and NRC is well defined on any Lq space larger than L1.14 The restriction to L1 is certainly not a

problem for portfolio risk assessment, as ample empirical evidence shows that portfolio losses have

a finite mean (and typically also a finite variance); see McNeil et al. (2015, Chapter 3).

2.4 Technical remarks on the axioms and the ES characterization

In this section, we discuss several technical aspects related to the four axioms that we have

proposed above. First, as mentioned previously, both ESp and VaRp satisfy the first three axioms.15

Proposition 1. For p ∈ (0, 1), the two functionals ESp and VaRp on X = L1 satisfy Axioms M,

LI, and P.

The next proposition shows that Axiom NRC can be equivalently reformulated using any

number n of losses in a portfolio. While the case n = 2 facilitates the verification of the axiom,

knowing that it actually holds for every n makes the axiom appealing from the practical point of

view, as real portfolios are comprised of many assets.

13By definition, a coherent risk measure is monotone, translation invariant, positively homogeneous, and subad-

ditive (hence convex); see Artzner et al. (1999). For every p ∈ (0, 1), ESp is a coherent risk measure.
14On the other hand, for a smaller domain Lq with q ∈ (1,∞], the characterization in Theorem 1 remains true

with the same proof.
15Convex risk measures such as ES also satisfy other types of continuity properties; see e.g., Gao et al. (2018).

The lower semi-continuity in Axiom P is with respect to point-wise (or a.s.) convergence, and it is different from the

continuity properties commonly studied in the risk measure literature.
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Proposition 2. Let A be any event. For a functional ρ : X → R, if ρ(X+Y ) = ρ(X) +ρ(Y ) holds

for all X and Y sharing the tail event A, then for every n ∈ N, ρ(
∑n

i=1Xi) =
∑n

i=1 ρ(Xi) holds for

all X1, . . . , Xn sharing the tail event A.

Next, we show that the four axioms M, LI, P and NRC are independent, so that none of them

is redundant in the characterization result of Theorem 1.

Proposition 3. For a risk measure ρ : L1 → R, any combination of three of Axioms M, LI, P and

NRC does not imply the remaining fourth axiom.

In the following last proposition of this section, we show that if Axiom LI holds, then Ax-

iom NRC can be equivalently formulated via a (stronger) functional property, which we shall simply

call p-additivity.

Proposition 4. Suppose q ∈ [0,∞] and a functional ρ : Lq → R satisfies Axiom LI. Then ρ satisfies

Axiom NRC if and only for some p ∈ (0, 1), ρ is p-additive: ρ(X + Y ) = ρ(X) + ρ(Y ) for all X

and Y sharing a tail event of probability 1− p.

In Section 3, we will formally study the notion of dependence in which the components of a

random vector share a common tail event of a specific probability as used in Proposition 4. The new

dependence notion and p-additivity in Proposition 4 will become useful technical tools, eventually

leading to the proofs of Theorems 1 and 2.

Remark 3. We can compare all of our axioms, and in particular Axiom NRC, with the sets of axioms

in the literature that have characterized VaR. In Chambers (2009) and He and Peng (2018), the

main axioms for VaR are invariance properties of some risk transforms. In Kou and Peng (2016)

and Liu and Wang (2020), the main axioms for VaR rely on the statistical notion of elicitability.

To summarize, our axiom NRC is mainly based on the perspective of portfolio risk aggregation,

whereas the key axioms for VaR in the literature are mainly based on statistical or mathematical

advantages of VaR as a quantile. Therefore, these axioms reflect different considerations, and they

suggest that VaR and ES may have their own advantages in different applications.

3 The dependence notion of risk concentration

3.1 Definition and technical properties

We have already seen the pivotal role that risk concentration plays in characterizing ES via

Axiom NRC. Moreover, in Proposition 4, a special notion of risk concentration appears, in which
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random losses share a common tail event of probability 1− p ∈ (0, 1). This notion serves as a key

step in the proofs of our main theorems in Section 2. We formally define the notion under the name

of p-concentration, and we present a few results on verifying and characterizing p-concentration in

this section.

Definition 2 (Risk concentration). For p ∈ (0, 1), a random vector (X1, . . . , Xn) is p-concentrated

if its components share a common tail event of probability 1 − p. We also call a tail event of

probability 1− p a p-tail event.

The terminology that a p-tail event has probability 1− p stems from the regulatory language

where e.g., a tail event with probability 1% corresponds to the calculation of a 99% VaR.

We briefly explain some simple facts about p-tail events. For any random variable and p ∈

(0, 1), a p-tail event of any specific probability always exists (Lemma A.3), but it may not be

unique (Example A.1), unless X is continuously distributed, in which case a tail event is a.s. unique

(Corollary A.1); these results and claims are collected in Appendix A.2.1.

To better understand and to appropriately position p-concentration among dependence con-

cepts, we next recall the classical notion of comonotonicity.

Definition 3 (Comonotonicity). A random vector (X1, . . . , Xn) is comonotonic if there exists a

random variable Z and increasing functions f1, . . . , fn on R such that Xi = fi(Z) a.s. for every

i = 1, . . . , n.

The following proposition characterizes p-concentration, which can be seen as an analogue to

Denneberg’s characterization of comonotonicity (Denneberg, 1994). For the notion of copulas, we

refer to Nelsen (2006).

Theorem 3. Let p ∈ (0, 1), and let (X1, . . . , Xn) be any random vector. The following statements

are equivalent, where S = X1 + · · ·+Xn:

(i) (X1, . . . , Xn) is p-concentrated;

(ii) (X1, . . . , Xn, S) is p-concentrated;

(iii) (Xi, S −Xi) is p-concentrated for every i = 1, . . . , n;

(iv) (f1(X1), . . . , fn(Xn)) is p-concentrated for all increasing functions f1, . . . , fn;

(v) there is a copula C of (X1, . . . , Xn) that satisfies C(p, . . . , p) = p.

The implication (iii)⇒(i) is quite remarkable, as it establishes p-concentration of the vector

(X1, . . . , Xn) from p-concentration of the pair (Xi, S −Xi) without any continuity assumption.
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Remark 4. Generally, the copula of a p-concentrated random vector (X1, . . . , Xn) is not necessarily

unique, unless the random vector has continuously marginal distributions, as implied by Sklar’s

Theorem (e.g., Nelsen, 2006). For instance, any copula is a copula of a constant vector (X1, . . . , Xn),

which is p-concentrated. This explains why the property in statement (v) of Theorem 3 holds for

some copula of (X1, . . . , Xn) but not for all copulas.

By its very nature, p-concentration is defined for arbitrary but fixed p ∈ (0, 1), which is

exactly what is needed to characterize ESp. Nevertheless, it is quite interesting to observe that if

a random vector (X1, . . . , Xn) is p-concentrated simultaneously for all p ∈ (0, 1), then the vector is

comonotonic. This observation relates our present research to the vast literature on comonotonicity,

and we therefore formulate it as our next theorem.

Theorem 4. A random vector (X1, . . . , Xn) is p-concentrated for all p ∈ (0, 1) if and only if it is

comonotonic.

In case the vector (X1, . . . , Xn) has continuous marginal distributions, Theorems 3–4 are nat-

urally connected via the following fact: (X1, . . . , Xn) is comonotonic if and only if its copula C

satisfies C(u1, . . . , un) = min(u1, . . . , un) (e.g., Dhaene et al., 2002, Theorem 2). Note that the

latter condition is equivalent to C(p, . . . , p) = p for all p ∈ (0, 1).

For a random vector, comonotonicity is equivalent to pairwise comonotonicity of its com-

ponents (e.g., Dhaene et al., 2002, Theorem 3). Given the connection between p-concentration

and comonotonicity, one naturally asks whether this also holds for p-concentration. Obviously, if

(X1, . . . , Xn) is p-concentrated, then each pair (Xi, Xj) is p-concentrated. The converse, however,

is generally false (Example A.2), which is in sharp contrast to the case of comonotonicity. Nev-

ertheless, when at least one of the random variables is continuously distributed, p-concentration

becomes equivalent to pairwise p-concentration (Proposition A.1). These observations, as well as

several other auxiliary results on tail events and p-concentration, are relegated to Appendix A.2.1.

3.2 The role of p-concentration in the comparison of risk measures

We next discuss the role of p-concentration in Axiom NRC when comparing risk measures.

Recall that, by Theorem 4, p-concentration is a weaker notion than comonotonicity.

Theorem 1 distinguishes ES from other subadditive risk measures,16 such as the standard

deviation,17 the MINVAR (or MAXVAR) in Cherny and Madan (2009), the expectiles in Newey

16Recall that subadditivity reflects rewarding diversification. Coherent risk measures are subadditive.
17Although the standard deviation is not monotone, it is commonly regarded as a metric of diversification.
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and Powell (1987) and Bellini et al. (2014), and the Gini Shortfalls in Furman et al. (2017). The

most important distinction between these risk measures and the current paper is Axiom NRC. Note

that for a subadditive risk measure ρ, the inequality

ρ

(
n∑

i=1

Xi

)
6

n∑
i=1

ρ(Xi) (1)

holds for every portfolio (X1, . . . , Xn). However, for a fixed p, in contrast to ESp, inequality (1) is

usually a strict inequality even when (X1, . . . , Xn) is p-concentrated. More precisely, we can check

(excluding some cases leading to E or ESp) that for bound (1) to be an equality, it is necessary and

sufficient for (X1, . . . , Xn) to be:

(a) positively and linearly dependent if ρ is the standard deviation;

(b) comonotonic if ρ is a MINVAR;

(c) p-concentrated and comonotonic on a common tail event if ρ is a coherent Gini Shortfall;

(d) p-concentrated if ρ is ES (Theorem 5).

Therefore, the above risk measures as well as other coherent risk measures except ES yield

capital reduction even if large losses in a portfolio occur together, and they typically penalize

risk concentration when dependence is more extreme, like in the cases of comonotonicity or linear

dependence.18 This gives a unique advantage for ES when assessing portfolio risk.

Remark 5. The dependence structure of p-concentration may not appear to be very common in

real financial data, or classic statistical models, except for some conditional models such as losses

conditional on default events (nevertheless, a brief real-data example of p-concentration is presented

in Section 5). This is not surprising, because the new notion represents extremely dangerous port-

folios, and it is used for conceptual exercises and logical considerations. Hypothetical portfolios are

actually very helpful to understand desirable properties of risk measures. For instance, comonoton-

icity is stronger than p-concentration and hence even less likely to be seen in real data, and yet it

is a very popular notion in the axiomatic characterization of risk functionals and preferences (e.g.,

Yaari, 1987; Schmeidler, 1989; Kusuoka, 2001; Marinacci and Montrucchio, 2004).

18A necessary and sufficient condition for (1) to be an equality for coherent expectiles is more complicated and we

omit the discussion here.
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4 Risk aggregation for ES and VaR

In the proof of Theorem 1, we shall need to verify Axiom NRC and thus p-additivity of ESp.

The latter property is closely related to the maximization of risk aggregation, whose definition we

recall next.

Definition 4. Given any p ∈ (0, 1), a random vector (X1, . . . , Xn) with all the components in L1

is said to maximize the ESp aggregation if

ESp(X1 + · · ·+Xn) = max
{

ESp(X
′
1 + · · ·+X ′n) : X ′i

d
= Xi, i = 1, . . . , n

}
.

Risk aggregation of ES and VaR with specified marginal distributions has been extensively

studied in the quantitative finance literature (e.g., Wang et al., 2013; Embrechts et al., 2013, 2015).

It is known (e.g., McNeil et al., 2015, Section 8.4.4) that if (X1, . . . , Xn) is comonotonic, then it

maximizes the ESp aggregation. However, comonotonicity is not necessary. Indeed, a necessary

and sufficient condition in the case of two continuously distributed random variables was derived

by Wang and Zitikis (2020). By generalizing the latter fact to arbitrary dimensions as well as to

arbitrary marginal distributions, the next theorem establishes a unique role of p-concentration in

risk aggregation for ES.

Theorem 5. Let p ∈ (0, 1), and let (X1, . . . , Xn) be any random vector with all its components in

L1. The following statements are equivalent:

(i) (X1, . . . , Xn) is p-concentrated;

(ii) (X1, . . . , Xn) maximizes the ESp aggregation;

(iii) ESp (
∑n

i=1Xi) =
∑n

i=1 ESp(Xi).

As implied by Theorem 5, ESp is additive for and only for p-concentrated portfolios, and it

satisfies Axiom NRC by Proposition 4. We shall next show that this is generally not the case for

VaRp, although VaRp is actually subadditive for p-concentrated random vectors. To equip the next

theorem with generality, in addition to the left p-quantile VaRp, we also use the right p-quantile

VaR+
p (X) = inf{x ∈ R : P(X 6 x) > p}, X ∈ L0.

Theorem 6. Let p ∈ (0, 1), and let (X1, . . . , Xn) be any p-concentrated random vector. We have

15



the inequalities

VaRp

(
n∑

i=1

Xi

)
6

n∑
i=1

VaRp(Xi) 6
n∑

i=1

VaR+
p (Xi) 6 VaR+

p

(
n∑

i=1

Xi

)
. (2)

Each inequality in (2) is generally not an equality, and thus VaRp is not p-additive.

If the quantile function of the aggregate loss
∑n

i=1Xi is continuous at p, then all the inequalities

in (2) are equalities. However, this is generally not the case. Namely, for a p-concentrated random

vector (X1, . . . , Xn), even when all of its marginal quantiles are continuous, the quantile of the sum∑n
i=1Xi may not be continuous. To see this, we next give an explicit example that illustrates that

VaRp may not satisfy Axiom NRC. This observation will be particularly useful when proving the

main characterization result (i.e., Theorem 1) of this paper.

Example 1. Let U ∼ U[0, 1] be a uniform random variable on [0, 1]. Fix p ∈ (0, 1) and let A

be an event of probability P(A) = 1 − p and independent of U . Define X = U1Ac + 1A and Y =

(1−U)1Ac+1A. Clearly, A is a common p-tail event ofX and Y . We check VaRp(X) = VaRp(Y ) = 1

and VaRp(X + Y ) = VaRp(1Ac + 21A) = 1, which imply VaRp(X + Y ) < VaRp(X) + VaRp(Y ).

Hence, VaRp is not p-additive.

Remark 6. The left and right p-quantiles (i.e., VaRp and VaR+
p , respectively) differ only when

the quantile function φ(p) = VaRp(X) of loss X has a jump at p ∈ (0, 1). It is known (e.g.,

Embrechts et al., 2014) that the left and right p-quantiles are additive for every comonotonic

random vector. Since p-concentration is weaker than comonotonicity, the quantiles are no longer

additive for p-concentrated random vectors. Nevertheless, we see from Theorem 6 that for every p-

concentrated random vector, the left p-quantile VaRp is subadditive and the right p-quantile VaR+
p

is superadditive.

5 Concluding remarks

In this paper, we have proposed four intuitive axioms for portfolio risk assessment, which

jointly characterize the family of ES. The first three axioms, which are not necessarily specific to

portfolio risk assessment, are very simple and should be satisfied by every risk measure used in

practice. The fourth axiom, on the other hand, is precisely designed for the purpose of capital

requirement calculation, within the context of the Basel FRTB.

There have been extensive studies in the literature on comparative advantages of VaR or ES

in risk management (e.g., Embrechts et al., 2014; Emmer et al., 2015). In particular, it is argued

16



that VaR has several statistical advantages (e.g., Cont et al., 2010; Gneiting, 2011; Kou and Peng,

2016; Fissler and Ziegel, 2016), whereas ES has advantages in optimization, risk aggregation, and

capturing tail risk (e.g., Krätschmer et al., 2014; Embrechts et al., 2015, 2018). It is not, however,

the intention of the current paper to jump into a conclusion on which risk measure is better.

Nevertheless, our results yield further insights into this important matter, which is relevant for

regulators, practitioners and academics. Our main goal is – via the four economic axioms – to show

that ES has a unique role in the theory of risk measures, specifically in the context of portfolio

capital calculation.

As to the question of whether (and where) ES is indeed the best risk measure to use, the answer

surely depends on whether Axiom NRC is the most desirable to require, since the other three axioms

are satisfied by both VaR and ES. In the context of banking regulation, and in the spirit of the

Basel FRTB features, Axiom NRC seems to fit most naturally: it reflects the regulators’ focal

consideration of risk concentration and stress events, and at the same time, provides substantial

simplicity, tractability and interpretability of the corresponding portfolios and risk measures. Thus,

we believe that it is no coincidence that ES is the only coherent risk measure used in current financial

regulation.

As discussed in Remark 5, the dependence structure of p-concentration is not common for

financial data, and this is not a disadvantage of our theory. Nevertheless, we briefly present a

simple empirical example in Figure 1 below, where we plot the daily return/loss data of S&P 500,

NASDAQ and the Dow Jones Index in 2009.19 As we see from the figure, largest losses of the indices

occur simultaneously, which constitute a common tail event of probability 1− p = 6/252 = 2.38%

(close to the probability level 2.5% chosen in the FTRB). Thus, a portfolio of these indices (e.g., via

index ETFs) is empirically p-concentrated, although not comonotonic.20 By Theorem 5, using ESp

calibrated to empirical losses in 2009, there is no diversification benefit awarded to this portfolio.21

More importantly, Theorem 1 offers the powerful converse direction: If one insists no diversification

benefit for portfolios that behave like the above one (i.e., big losses with probability 1− p occuring

simultaneously), then ESp is the only risk measure to use, assuming the other three natural axioms.

19There are 252 daily data points for each index in 2009, publicly available from Yahoo Finance.
20We also tried similar data analysis for other periods of time, and the phenomenon of p-concentration is sometimes

approximately observed, but not always. The example here is only to show that p-concentration may be empirically

observed for a highly correlated portfolio, and a comprehensive empirical study is not the focus of this paper.
21Even for market risk evaluation today, the empirical distribution of losses in 2009 is practically important since

historical observations dating back to the financial crisis must be used for stressed ES calibration as specified in the

FRTB. Quoting BCBS (2019, 33.7, p.90): “The observation horizon for determining the most stressful 12 months

must, at a minimum, span back to and include 2007.”
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Figure 1: S&P 500, NASDAQ and the Dow Jones Index daily returns in 2009

A Technical appendices

A.1 Proofs of results of Section 2

In this appendix, we prove the main results of Section 2, which are Theorems 1–2 and Pro-

positions 1–4. Some parts of the proofs need technical results of Sections 3–4 (proofs of results

in Sections 3–4 are self-contained and do not rely on those in Section 2). With a focus on the

characterization results, we choose to start with the proofs of Theorems 1–2. For this purpose, we

need the properties in Proposition 1 and 4 as well as later results in Theorems 5–6 which verify that

ES satisfies Axiom NRC and VaR does not. As for Propositions 1–4, the proof of Proposition 2

requires Lemma A.5 and that of Proposition 3 requires Theorems 5–6.22

A.1.1 Characterization of p-additive functionals

First, we present two additional results to prepare for the proofs of Theorems 1–2. Specifically,

Lemma A.1 identifies the form of monotone, law invariant, and linear functionals on L1
+, which is

the space of all non-negative and integrable random variables. Lemma A.2 identifies the form of

monotone, law-invariant, and p-additive functionals on L1. Recall that a functional ρ is called

additive if ρ(X + Y ) = ρ(X) + ρ(Y ) for all X and Y in the domain of ρ.

22The reader who is interested in the full mathematical development may read the appendices in the following

order, which does not involve any references to later results: A.2⇒A.3⇒A.1.3⇒A.1.1⇒A.1.2.
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Lemma A.1. A functional ρ : L1
+ → R is monotone, additive, and law invariant if and only if

ρ = λE on L1
+ for some λ > 0.

Proof. Part (⇐) is trivial to check, and we thus only prove part (⇒). Let λ = ρ(1). Standard

arguments based on additivity and monotonicity imply ρ(x) = λx for all x > 0. Define ρ̂ : L1 → R

by

ρ̂(X) = ρ(X+)− ρ(X−),

where x+ = max{x, 0} and x− = max{−x, 0} for every x ∈ R. Since both X+ and X− are non-

negative, ρ̂ is well defined. If X ∈ L1
+, then X+ = X and X− = 0, and ρ̂(X) = ρ(X)−ρ(0) = ρ(X).

Hence, ρ̂ = ρ on L1
+. It is easy to check that the functional ρ̂ is monotone and law invariant, because

ρ is such.

Let X,Y ∈ L1 and Z := X +Y . From X +Y −Z = 0, we have the equation X+ +Y+−Z+ =

X− + Y− − Z−. Since X+ + Y+ − Z+ > 0 and ρ is additive on L1
+, we have

ρ(X+) + ρ(Y+) = ρ(X+ + Y+) = ρ(X+ + Y+ − Z+) + ρ(Z+). (3)

Similarly, we have

ρ(X−) + ρ(Y−) = ρ(X− + Y−) = ρ(X− + Y− − Z−) + ρ(Z−). (4)

Since ρ(X+ + Y+ − Z+) = ρ(X− + Y− − Z−), equations (3)–(4) imply

ρ̂(Z) = ρ(Z+)− ρ(Z−) = ρ(X+) + ρ(Y+)− ρ(X−)− ρ(Y−) = ρ̂(X) + ρ̂(Y ).

Therefore, ρ̂ is additive on L1.

Furthermore, ρ̂ is a finite coherent risk measure (multiplied by a positive constant) on L1,

and hence is L1-continuous (e.g., Rüschendorf, 2013, Corollary 7.10). Since ρ̂ is L1-continuous and

linear, the risk measure has the representation (e.g., Rüschendorf, 2013, Theorem 7.20)

ρ̂(X) =

∫
XdQ

for a measure Q on (Ω,F). Since ρ̂ is law invariant, Q has to be equal to P multiplied by a

constant. The constant must be ρ̂(1), and since 0 6 ρ̂(1) = ρ(1) = λ, we arrive at ρ̂(X) = λE[X]

for all X ∈ L1. Because ρ̂ = ρ on L1
+, we have ρ = λE on L1

+. This concludes the proof of

Lemma A.1.
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The following lemma is the main result of this appendix and plays a pivotal role in establishing

Theorems 1–2 in the next appendix. Recall that a functional ρ is called p-additive if ρ(X + Y ) =

ρ(X) + ρ(Y ) for all X and Y sharing a tail event of probability 1− p.

Lemma A.2. Let p ∈ (0, 1). A monotone functional ρ : L1 → R is law invariant and p-additive if

and only if ρ = aE + bESp on L1 for some a, b ∈ R.

Proof. (⇐): The proof follows by noting that the functionals E and ESp are monotone, law invariant,

and p-additive (Theorem 5). Hence, such is their linear combination ρ = aE + bESp.

(⇒): Let U ∼ U[0, 1], and let A be an event that has probability P(A) = 1 − p and is

independent of U . Define φ : L1
+ → R by

φ(X) = ρ(F−1X (U)1A).

The functional φ is monotone and law invariant, since ρ is such. For any two random variables

X,Y ∈ L1
+, take (X̃, Ỹ )

d
= (X,Y ) such that (X̃, Ỹ ) is independent of A. Since X̃1A and Ỹ 1A

share the common p-tail event A, we know that (X̃1A, Ỹ 1A) is p-concentrated. As a consequence,

ρ(X̃1A)+ρ(Ỹ 1A) = ρ((X̃+Ỹ )1A). Moreover, noting that F−1Z (U)1A
d
= Z1A for Z ∈ {X̃, Ỹ , X̃+Ỹ },

we have

φ(X) + φ(Y ) = ρ(X̃1A) + ρ(Ỹ 1A) = ρ((X̃ + Ỹ )1A) = φ(X + Y ).

That is, the functional φ is additive on L1
+. Using Lemma A.1, φ has to be equal to λE for some

λ > 0. This gives the representation

ρ(F−1X (U)1A) = λE[X], X ∈ L1
+. (5)

For any random variable X ∈ L1, let B be a p-tail event of X. With the notation xp =

VaRp(X), we see that X > xp on B and X 6 xp on Bc. Hence, the random variables (X − xp)1B

and (X−xp)1Bc share the common p-tail event B, and so the vector ((X−xp)1B, (X−xp)1Bc) is p-

concentrated. Moreover, with Y denoting a random variable with the distribution of X conditional

on B, that is, P(Y 6 x) = P(X 6 x|B) for all x ∈ R, we have E[Y ] = ESp(X) and

(X − xp)1B
d
= (F−1Y (U)− xp)1A.

Combining these facts with equation (5), we have

ρ((X − xp)1B) = ρ((F−1Y (U)− xp)1A) = λE[Y − xp] = λ(ESp(X)− xp).
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Analogously, we have

ρ((X − xp)1Bc) = γ(ES−p (X)− xp)

for some γ > 0, where the functional ES−p , called the Left-ES risk measure (e.g., Embrechts et al.,

2015), is defined by

ES−p (Z) =
1

p

∫ p

0
VaRq(Z)dq

for all Z ∈ L1. Note that

pES−p (Z) + (1− p)ESp(Z) =

∫ 1

0
VaRq(Z)dq = E[Z].

From p-additivity, which implies additivity for constants, we infer that there is a constant κ such

that ρ(x) = κx for all x ∈ R. Putting these observations together, we get the equations

ρ(X) = ρ((X − xp) + xp)

= ρ((X − xp)1B + (X − xp)1Bc) + ρ(xp)

= ρ((X − xp)1B) + ρ((X − xp)1Bc) + κxp

= λ(ESp(X)− xp) + γ(ES−p (X)− xp) + κxp

= λESp(X) + γES−p (X) + (κ− λ− γ)xp

for all X ∈ L1, and thus, in turn,

ρ(X) = λESp(X) + γES−p (X) + cVaRp(X) (6)

for some constants λ, γ, c ∈ R. Using pES−p + (1 − p)ESp = E and substituting a = γ/p and

b = λ− a(1− p), equation (6) turns into

ρ = λESp +
γ

p
(E− (1− p)ESp) + cVaRp = aE + bESp + cVaRp.

By Theorem 5, the functional λESp is p-additive. The expectation E is also p-additive because it is

linear. On the other hand, we have seen from Theorem 6 that VaRp is not p-additive. Therefore,

the constant c must be zero, and so ρ = aE + bESp. This concludes the proof of Lemma A.2.
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A.1.2 Proofs of Theorems 1–2

With Lemma A.2 we are ready to prove Theorem 1, which will in turn lead to the proof of

Theorem 2.

Proof of Theorem 1. From Proposition 4 and its proof, we know that, in the presence of Axiom LI,

Axiom NRC is equivalent to p-additivity for some p ∈ (0, 1), and p = 1−P(A) where A is any stress

event in Axiom NRC. Hence, it suffices to show that a risk measure is monotone, law invariant,

prudent, and p-additive if and only if it is ESp.

(⇐): By Proposition 1 and Theorem 5, the functional ESp is monotone, law invariant, prudent,

and p-additive.

(⇒): By Lemma A.2, we know that ρ = aE + bESp for some a, b ∈ R. Next, we show that

a = 0 and b = 1. Since ρ(1) = 1, we must have a + b = 1. If a < 0 and b > 1, then the functional

aE + bESp is not monotone. To see this, let X = −1A for some event A with P(A) = p. Then

E[X] = −p < 0 and ESp(X) = 0. Hence, aE[X] + bESp(X) > 0 but X 6 0, and so aE + bESp

cannot be monotone.

Consider now the case a > 0. Let ξk = −k1{U<1/k}, where U ∼ U[0, 1]. Clearly, ξk → 0 almost

surely, E[ξk] = −1 and ESp(ξk) = 0 for k > 1/p. Therefore, lim infk→∞ aE[ξk] + ESp(ξk) = −a <

0 = ρ(0), contradicting prudence.

Hence, a = 0 is the only value left, and since a + b = 1, we must have b = 1. This gives the

representation ρ = ESp on L1 and finishes the proof of Theorem 1.

Proof of Theorem 2. Let ρ : Lq → R satisfy Axioms M, LI, P and NRC. Using the result of

Theorem 1, we know that when constrained on L1 ⊂ Lq, the equation ρ = λESp holds with

λ = ρ(1) > 0.

Let L̂q = Lq \ L1, and let L̂q
+ be the set of all non-negative random variables in L̂q. Both L̂q

and L̂q
+ are non-empty. Take X ∈ L̂q

+ and let ξk = min{X, k} for k ∈ N. Clearly, ξk ↑ X almost

surely, and ESp(ξk) > E[ξk] → E[X] = ∞. Since X > ξk, and ESp > E on L1, using monotonicity

of ρ, we have

ρ(X) > lim inf
k→∞

ρ(ξk) = λ lim inf
k→∞

ESp(ξk).

If λ > 0, then ρ(X) > ∞, which violates the assumption that ρ is real-valued. Hence, λ = 0 and

thus ρ = 0 on L1.

To proceed, we utilize the idea of the proof of Lemma A.2. Let U ∼ U[0, 1], and let A be an
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event that has probability P(A) = 1− p and is independent of U . Define φ : Lq
+ → R by

φ(X) = ρ(F−1X (U)1A).

Using the same arguments as in the proof of Lemma A.2, we know that φ is additive and monotone

on Lq
+. Next we define φ̂ : Lq → R by φ̂(X) = φ(X+)−φ(X−) and then, using the same arguments

as in the proof of Lemma A.1, show that φ̂ is linear on Lq. It is well known (e.g., Section 1.47 of

Rudin (1991) or Delbaen (2007)) that there is no non-zero linear functional on Lq, and hence φ̂ = 0

on Lq, which in turn implies φ = 0 on Lq
+. For any random variable Y ∈ Lq

+, let BY be a p-tail

event of Y , and let Y ′ follow the conditional distribution of Y given BY . Then F−1Y ′ (U)1A
d
= Y 1BY

and hence

ρ(Y 1BY
) = ρ(F−1Y ′ (U)1A) = φ(Y ′) = 0. (7)

Next, we work with the functional ψ : Lq
− → R defined by

ψ(X) = ρ(F−1X (U)1Ac)

on the set Lq
− of all non-positive random variables in Lq. We arrive at ψ = 0 on Lq

−. For any random

variable Z ∈ Lq
−, let BZ be a p-tail event of Z, and let Z ′ follow the conditional distribution of Z

given (BZ)c. We have F−1Z′ (U)1Ac
d
= Z1(BZ)c and hence

ρ(Z1(BZ)c) = ρ(F−1Z′ (U)1Ac) = ψ(Z ′) = 0. (8)

Finally, we take any X ∈ Lq and let B be a p-tail event of X. With the notations xp =

VaRp(X), Y = (X − xp)+, and Z = −(X − xp)−, we have (X − xp)1B = Y 1B and (X − xp)1Bc =

Z1Bc . Since the random variables Y 1B and Z1Bc share the common p-tail event B, using ρ(xp) = 0

and equations (7)–(8), we arrive at

ρ(X) = ρ((X − xp) + xp)

= ρ((X − xp)1B + (X − xp)1Bc) + ρ(xp)

= ρ(Y 1B) + ρ(Z1Bc) = φ(Y ) + ψ(Z) = 0.

Hence, ρ = 0 on Lq, thus concluding the proof of Theorem 2.
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A.1.3 Proofs of Propositions 1–4

Next, we prove the four propositions of Section 2.

Proof of Proposition 1. Axioms M and LI are straightforward to check. Hence, we are left to

verify Axiom P for ρ = VaRp and ρ = ESp. To show that ρ satisfies Axiom P, it suffices to

show lim infk→∞ ρ(ξk) > ρ(X) for a sequence (ξk)k∈N with all ξk ∈ L1 and such that ξk → X in

distribution. This gives a stronger version of Axiom P; see Remark 1.

We start with ρ = VaRp. Note that VaRp(ξk) → VaRp(X) for all continuity points p ∈ (0, 1)

of the function φ(p) = VaRp(X), which is left-continuous, monotone, and has at most countably

many points of discontinuity. If p is a continuity point of φ, then limk→∞VaRp(ξk) = VaRp(X),

which verifies Axiom P. If p is a discontinuity point, then, for every ε > 0, we can find a continuity

point q of φ in the interval [p− ε, p]. Using monotonicity of φ, we arrive at

lim inf
k→∞

VaRp(ξk) > lim inf
k→∞

VaRq(ξk) = VaRq(X).

Since φ is left-continuous, taking the limit q ↑ p verifies Axiom P for VaRp.

When ρ = ESp, we choose any continuity point q ∈ (0, p) of φ. Note that

ESp(ξk −VaRq(ξk)) =
1

1− p

∫ 1

p
(VaRt(ξk)−VaRq(ξk))dt.

Using Axiom P for VaRp and also noting that VaRq(ξk)→ VaRq(X), we have

lim inf
k→∞

(VaRt(ξk)−VaRq(ξk)) > VaRt(X)−VaRq(X)

for every t ∈ [p, 1). By Fatou’s Lemma,

lim inf
k→∞

ESp(ξk) = lim inf
k→∞

ESp(ξk)− lim
k→∞

VaRq(ξk) + VaRq(X)

= lim inf
k→∞

ESp(ξk −VaRq(ξk)) + VaRq(X)

>
1

1− p

∫ 1

p
lim inf
k→∞

(VaRt(ξk)−VaRq(ξk))dt+ VaRq(X)

>
1

1− p

∫ 1

p
(VaRt(X)−VaRq(X))dt+ VaRq(X) = ESp(X).

This verifies Axiom P for ESp and concludes the proof of Proposition 1.

Proof of Proposition 2. Suppose that X1, . . . , Xn share the tail event A. By Lemma A.5, we know
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that A is a tail event of the sum of any two of X1, . . . , Xn. By induction, A is also a tail event of

the sum of any of X1, . . . , Xn. Therefore, using the additivity of ρ for risks sharing the tail event

A, we get

ρ

( n∑
i=1

Xi

)
= ρ

(
X1 +

n∑
i=2

Xi

)
= ρ(X1) + ρ

( n∑
i=2

Xi

)
= · · · = ρ(X1) + · · ·+ ρ(Xn),

and this finishes the proof of Proposition 2.

Proof of Proposition 3. It suffices to construct four examples, each satisfying a distinct set of three

axioms but not the fourth one:

1. For fixed p ∈ (0, 1), VaRp satisfies all axioms but Axiom NRC.

2. E satisfies all axioms but Axiom P.

3. For fixed ω ∈ Ω, the mapping X 7→ X(ω) satisfies all axioms but Axiom LI.

4. For fixed p ∈ (0, 1), the mapping X 7→ ESp(−X) satisfies all axioms but Axiom M.

The above examples are straightforward to check, with the help of Theorems 5–6 and Proposition 1.

Proof of Proposition 4. The (⇐) implication is straightforward. Take any event A with probability

1− p, and we can see that ρ satisfies Axiom NRC with A being the stress event.

Below we show the (⇒) implication. Suppose that ρ satisfies Axiom NRC with A being the

stress event, and let p = 1−P(A). Let X and Y be two Lq random variables which share a tail event

B of probability 1 − p. Recall that our probability space (Ω,F ,P) is atomless. As a consequence,

the probability spaces (A,F ∩A,P(·|A)) and (Ac,F ∩Ac,P(·|Ac)) are again atomless, implying that

there exist random vectors on these spaces with any specified joint distribution (this can be verified

via e.g., Proposition A.31 of Föllmer and Schied (2016)).

Let (X1, Y1) be a random vector on (A,F ∩ A,P(·|A)) with the same distribution as the

conditional distribution of (X,Y ) on B, and (X2, Y2) be a random vector on (Ac,F ∩ Ac,P(·|Ac))

with the same distribution as the conditional distribution of (X,Y ) on Bc. Define a random vector

(X ′, Y ′) on (Ω,F ,P) by

(X ′, Y ′)(ω) =

 (X1, Y1)(ω) ω ∈ A,

(X2, Y2)(ω) ω ∈ Ac.
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Since B is a tail event of X, we have X(ω) > X(ω′) for P-a.s. ω ∈ B and ω′ ∈ Bc. This implies, by

construction of X1 and X2, X1(ω) > X2(ω
′) for P-a.s. ω ∈ A and ω′ ∈ Ac. By definition, we further

have X ′(ω) > X ′(ω′) for P-a.s. ω ∈ A and ω′ ∈ Ac. That is, A is a tail event of X ′. Analogously,

A is also a tail event of Y ′. By Axiom NRC, we know ρ(X ′ + Y ′) = ρ(X ′) + ρ(Y ′).

Moreover, using the law of total probability,

P((X ′, Y ′) 6 (x, y)) = P(A)P((X,Y ) 6 (x, y)|A) + P(Ac)P((X,Y ) 6 (x, y)|Ac)

= P(A)P((X1, Y1) 6 (x, y)|A) + P(Ac)P((X2, Y2) 6 (x, y)|Ac)

= P(B)P((X,Y ) 6 (x, y)|B) + P(Bc)P((X,Y ) 6 (x, y)|Bc)

= P((X,Y ) 6 (x, y)).

Thus, (X ′, Y ′) and (X,Y ) are identically distributed, and hence X ′, Y ′ ∈ Lq. With Axiom LI, this

implies ρ(X ′) = ρ(X), ρ(Y ′) = ρ(Y ), and ρ(X ′ + Y ′) = ρ(X + Y ). Therefore, we have

ρ(X + Y ) = ρ(X ′ + Y ′) = ρ(X ′) + ρ(Y ′) = ρ(X) + ρ(Y ),

completing the proof of the statement.

A.2 Proofs of results of Section 3

A.2.1 Auxiliary results

In this appendix, we provide several auxiliary results on tail events and p-concentration, some

of which have been mentioned in the main text of the paper. They will be essential when proving

results of Section 3. In the proofs, all statements should be understood in the sense of “a.s.”, but

we shall omit “a.s.” in obvious places for simplicity.

Lemma A.3. Let p ∈ (0, 1) and denote xp = VaRp(X). For any random variable X, an event

A is a p-tail event of X if and only if P(A) = 1 − p and {X > xp} ⊂ A ⊂ {X > xp} a.s. As a

consequence, a p-tail event of X always exists.

Proof. Define D = {X > xp} and E = {X > xp}. Clearly, D ⊂ E.

(⇐): Suppose that P(A) = 1 − p and D ⊂ A ⊂ E. Since A ⊂ E and Ac ⊂ Dc, we have

X(ω) > X(ω′) for all ω ∈ A and ω′ ∈ Ac. Hence, A is a p-tail event of X.

(⇒): Let A be a p-tail event of X. We need to prove the inclusions D ⊂ A ⊂ E, which we do

in two steps, starting with A ⊂ E.

26



Suppose for the sake of contradiction that P(A \E) > 0, which and the bound P(E) > 1− p =

P(A) imply P(E \ A) > 0. By definition of A, we have X(ω) > X(ω′) for ω ∈ A and ω′ ∈ Ac, and

thus

X(ω) > X(ω′) for ω ∈ A \ E and ω′ ∈ E \A. (9)

By definition of E, we have X(ω′) > xp for all ω′ ∈ E \ A and hence for all ω ∈ A \ E by

inequality (9). Therefore, (A \E) ⊂ E, which can only happen if A \E is empty, and thus we have

P(A \ E) = 0, which contradicts the supposition P(A \ E) > 0. Hence, we must have P(A \ E) = 0

and thus A ⊂ E.

Now we prove D ⊂ A, which is very similar to the previous case. Namely, suppose that

P(D \A) > 0, which and the bound P(D) 6 1− p = P(A) imply P(A \D) > 0. By definition of A,

we have X(ω) > X(ω′) for ω ∈ A and ω′ ∈ Ac, and thus

X(ω) > X(ω′) for ω ∈ A \D and ω′ ∈ D \A. (10)

By definition of D, we know that X(ω′) > xp for all ω′ ∈ D \ A and hence for all ω ∈ A \ D by

inequality (10). Therefore, (A\D) ⊂ D, which implies P(A\D) = 0 and contradicts the supposition

P(D \A) > 0. Hence, P(D \A) = 0 and thus D ⊂ A.

We conclude the proof of Lemma A.3 by noting that the existence of a tail event follows

directly from the already noted bound P(E) > 1 − p > P(D). Namely, choose any set B ⊂ E \D

of probability 1 − p − P(D). Such a choice is possible because the probability space is assumed

to be atomless. Finally, we check that D ∪ B is a p-tail event of X. This completes the proof of

Lemma A.3.

As a direct consequence of Lemma A.3, we have the following corollary.

Corollary A.1. If X is continuously distributed, then its p-tail event is a.s. equal to {X >

VaRp(X)} and, therefore, is a.s. unique.

For discrete random variables, however, their p-tail events may not be unique.

Example A.1. If X is constant, then Lemma A.3 implies that every event A ⊂ Ω of probability

1− p is a p-tail event of X.

The following lemma provides an additional insight into the structure of p-tail events. The

lemma also plays an important role when dealing with copulas in the proof of Theorem 3 below.
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Lemma A.4. Let p ∈ (0, 1), and let X be any random variable. An event A is a p-tail event of X if

and only if A = {U > p} a.s. for some uniform on [0, 1] random variable U satisfying F−1X (U) = X

a.s.

Proof. (⇐): For any set A which is a.s. equal to {U > p}, we obviously have P(A) = 1 − p.

Furthermore, for a.s. all ω ∈ A and ω′ ∈ Ac, we have

X(ω) = F−1X (U(ω)) > F−1X (p) > F−1X (U(ω′)) = X(ω′).

Hence, the set A is a p-tail event of X.

(⇒): Define the probability space (A,FA,PA), where FA = {A ∩ C : C ∈ F} and PA(C) =

P(C)/P(A) for C ∈ FA, and similarly for B = Ac, define the probability space (B,FB,PB). The

mapping X : A → R (resp. X : B → R) is a random variable on (A,FA,PA) (resp. (B,FB,PB)),

and we denote its distribution by FA (resp. FB). Note that for u ∈ (0, 1),

F−1A (u) = F−1(p+ (1− p)u) and F−1B (u) = F−1(pu). (11)

By Föllmer and Schied (2016, Lemma A.32), there exists a uniform on [0, 1] random variable UA

on (A,FA,PA) such that F−1A (UA) = X, PA-a.s., and a uniform on [0, 1] random variable UB on

(B,FB,PB), such that F−1B (UB) = X, PB-a.s. Define U = 1A(p + (1 − p)UA) + 1BpUB. Clearly,

U is a well-defined random variable on (Ω,F ,P), and it is also clear that A = {U > p} a.s.

Moreover, U is uniform on [0, 1] since its distribution is a mixture of the uniform distribution on

[p, 1] with probability 1− p and the uniform distribution on [0, p] with probability p. Finally, using

properties (11), we have

F−1X (U) = 1AF
−1
X ((p+ (1− p)UA) + 1BF

−1
X (pUB)

= 1AF
−1
A (UA) + 1BF

−1
B (UB) = X a.s.

This completes the proof of Lemma A.4.

The next lemma on the common tail events of a portfolio vector and its aggregate loss is

of profound importance and serves a crucial step in the proofs of Proposition 2, Theorem 3, and

Theorem 5.

Lemma A.5. Let p ∈ (0, 1), and let (X,Y ) be any p-concentrated random pair. An event A is a

p-tail event of X + Y if and only if A is a p-tail event of both X and Y .
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Proof. (⇐): Let A be a common p-tail event of X and Y . The existence (by assumption) of such

an event gives the inequality X(ω) + Y (ω) > X(ω′) + Y (ω′) for all ω ∈ A and ω′ ∈ Ac, and thus

proves that A is a p-tail event of X + Y .

(⇒): By Lemma A.3, we have the inclusions {X > xp} ⊂ A ⊂ {X > xp} and {Y > yp} ⊂

A ⊂ {Y > yp}, where xp = VaRp(X), yp = VaRp(Y ), and A is a common p-tail event of X and Y .

Consequently, (
{X > xp} ∪ {Y > yp}

)
⊂ A ⊂

(
{X > xp} ∩ {Y > yp}

)
. (12)

Take now any p-tail event B of X + Y . By inclusion (12), we have

P(X + Y > xp + yp) > P({X > xp} ∩ {Y > yp}) > P(A) = 1− p

and

P(X + Y > xp + yp) 6 P({X > xp} ∪ {Y > yp}) 6 P(A) = 1− p.

Hence, since B is a p-tail event of X +Y , we obtain {X +Y > xp + yp} ⊂ B ⊂ {X +Y > xp + yp}.

Using inclusion (12) again, we have

{X + Y > xp + yp} ⊂ ({X = xp, Y = yp} ∪ {X > xp} ∪ {Y > yp})

⊂ ({X = xp, Y = yp} ∪ {X > xp} ∪ {X > xp}) = {X > xp},

and similarly {X + Y > xp + yp} ⊂ {Y > yp}. Therefore, B ⊂ ({X > xp} ∩ {Y > yp}). On the

other hand, inclusion (12) also implies

{X > xp} = ({Y > yp} ∩ {X > xp}) ⊂ {X + Y > xp + yp}

and similarly {Y > yp} ⊂ {X + Y > xp + yp}. Therefore, ({X > xp} ∪ {Y > yp}) ⊂ B. By

Lemma A.3, B is a p-tail event of both X and Y . This finishes the proof of Lemma A.5.

The next lemma is an immediate consequence of the definition of p-tail events, and it will be

used for proving Theorems 3–4.

Lemma A.6. Let f : R → R be any increasing function, and let X be any random variable. A

p-tail event of X is a p-tail event of f(X), and the converse is also true when the function f is

strictly increasing.

The next example illustrates that pairwise p-concentration does not necessarily imply p-

concentration.
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Example A.2. Let A1, A2, A3 be three disjoint events, each of probability p = 1/3, and letXi = 1Ai

for every i = 1, 2, 3. Every pair (Xi, Xj) is p-concentrated because Xi and Xj share the same p-tail

event Ai ∪Aj . However, the triplet (X1, X2, X3) cannot be p-concentrated because for an event to

be a p-tail event of all three random variables, the event has to contain all the three sets A1, A2, A3,

as implied by Lemma A.3, but this is impossible.

As we have seen from Example A.2, for a random vector (X1, . . . , Xn), pairwise p-concentration

is generally not sufficient for p-concentration of the vector. The next proposition illustrates the

simple fact that pairwise p-concentration becomes sufficient for having p-concentration of the entire

vector if at least one of the random components is continuously distributed.

Proposition A.1. Let p ∈ (0, 1), and let (X1, . . . , Xn) be any random vector with continuously

distributed X1. The following statements are equivalent:

(i) (X1, . . . , Xn) is p-concentrated;

(ii) (Xi, Xj) is p-concentrated for every pair i, j = 1, . . . , n;

(iii) (X1, Xj) is p-concentrated for every j = 2, . . . , n.

Proof. The implications (i)⇒(ii)⇒(iii) are trivial. To show (iii)⇒(i), note that p-tail events of X1

are a.s. unique (Corollary A.1) and hence can be chosen as common p-tail events of X1, . . . , Xn.

This finishes the proof of Proposition A.1.

A direct consequence of Proposition A.1 is that p-concentration is transitive for continuous

random variables. Namely, given a random triplet (X,Y, Z) with Y continuously distributed, if

both (X,Y ) and (Y,Z) are p-concentrated, then (X,Z) is also p-concentrated.

A.2.2 Proofs of Theorems 3–4

With the technical lemmas collected in Appendix A.2.1, we are now ready to prove the main

results of Section 3.

Proof of Theorem 3. The equivalence (i)⇔(iv) follows immediately from Lemma A.6. We complete

the rest of the proof by first establishing (i)⇒(ii)⇒(iii)⇒(i) and then (i)⇒(v)⇒(i).

(i)⇒(ii): Let A be a common p-tail event of X1, . . . , Xn. This immediately implies the in-

equality
∑n

i=1Xi(ω) >
∑n

i=1Xi(ω
′) for all ω ∈ A and ω′ ∈ Ac. Hence, A is a p-tail event of

S = X1 + · · ·+Xn, and so (X1, . . . , Xn, S) is p-concentrated.
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(ii)⇒(iii): With the same A as above, we have, for every i = 1, . . . , n,

S(ω)−Xi(ω) =
n∑

j=1,j 6=i

Xj(ω) >
n∑

j=1,j 6=i

Xj(ω
′) = S(ω′)−Xi(ω

′)

for all ω ∈ A and ω′ ∈ Ac. Hence, A is a p-tail event of S−Xi. Consequently, the pair (Xi, S−Xi)

is p-concentrated, and this is true for every i = 1, . . . , n.

(iii)⇒(i): Using Lemma A.5, we know that every p-tail event of the sum S is also a p-tail event

of each X1, . . . , Xn. Hence, (X1, . . . , Xn) is p-concentrated.

(i)⇒(v): Since (X1, . . . , Xn) is p-concentrated, there is a common p-tail event A. Since it is a

p-tail event for every Xi, by Lemma A.4 we can find a uniform on [0, 1] random variable Ui such

that F−1Xi
(Ui) = Xi a.s. and A = {Ui > p} a.s. Given these uniform on [0, 1] random variables

U1, . . . , Un, let the copula C : [0, 1]n → [0, 1] be defined by

C(u1, . . . , un) = P
(
U1 6 u1, . . . , Un 6 un

)
.

We have C(p, . . . , p) = P(Ac) = p and complete the proof of (i)⇒(v).

(v)⇒(i): Since C is a copula of X1, . . . , Xn, there are uniform on [0, 1] random variables

U1, . . . , Un such that C(u1, . . . , un) = P
(
U1 6 u1, . . . , Un 6 un

)
, and F−1Xi

(Ui) = Xi a.s. for i =

1, . . . , n. Write Bi = {Ui 6 p}. By Lemma A.4, we know that Bc
i is a p-tail event of Xi, and this

is true for every i = 1, . . . , n. Since C(p, . . . , p) = p by assumption, we have

p = C(p, . . . , p) = P
(
U1 6 p, . . . , Un 6 p

)
= P

(
n⋂

i=1

Bi

)
= p. (13)

Furthermore, since U1, . . . , Un are uniform on [0, 1], we have

P(Bi) = p for every i = 1, . . . , n. (14)

Statements (13) and (14) imply B1 = · · · = Bn a.s. Hence, Bc
1 is a common p-tail event of every

X1, . . . , Xn. This finishes the proof of (v)⇒(i) and concludes the proof of Theorem 3.

Proof of Theorem 4. (⇒): By comonotonicity of X1, . . . , Xn, we can find a random variable Z and

increasing functions f1, . . . , fn such that Xi = fi(Z) a.s. for every i = 1, . . . , n. By Lemma A.6,

every p-tail event of Z is also a p-tail event of X1, . . . , Xn, implying that (X1, . . . , Xn) is p-

concentrated.
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(⇐): Consider first the case n = 2. That is, we shall show that if a random pair (X,Y )

is p-concentrated for every p ∈ (0, 1), then (X,Y ) is comonotonic. Let Ap be a p-tail event of

X + Y . We can assume Aq ⊂ Ap for 1 > q > p > 0 because p-tail events, as characterized by

Lemma A.3, need to only satisfy P(Ap) = 1 − p and {X + Y > sp} ⊂ Ap ⊂ {X + Y > sp}, where

sp = VaRp(X + Y ).

By Lemma A.5, we know that Ap is also a p-tail event of both X and Y . Define P : Ω→ [0, 1]

by P (ω) = sup{q ∈ (0, 1) : ω ∈ Aq}, with sup∅ = 0 by usual convention. Note that for q ∈ (0, 1], we

have {P > q} =
⋂

s<q As, and hence P is a well-defined random variable on (Ω,F). Furthermore,

{P > q} ⊂ Aq ⊂ {P > q}. Noting that P(Aq) = 1− q, we have P ∼ U[0, 1], that is, P is a uniformly

on [0, 1] distributed random variable. Let Q = P × P be the probability product measure on Ω2.

We have

Q({(ω, ω′) ∈ Ω2 : P (ω) = P (ω′)}) = 0.

For (ω, ω′) ∈ Ω2, if P (ω) > P (ω′), then there exists q ∈ (P (ω′), P (ω)) such that ω ∈ Aq and

ω′ ∈ Ac
q. Since Aq is a q-tail event of both X and Y , we have (X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0.

Similarly, if P (ω) < P (ω′), we have (X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0. Therefore,

Q({(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0}) > Q({P (ω) 6= P (ω′)}) = 1.

This is an equivalent reformulation of comonotonicity (e.g., Rüschendorf, 2013, Theorem 2.14). In

other words, (X,Y ) is comonotonic.

For a general n, suppose that (X1, . . . , Xn) is p-concentrated for every p ∈ (0, 1). With the

notation S = X1 + · · · + Xn and for every i = 1, . . . , n, Theorem 3 implies that (Xi, S − Xi) is

p-concentrated for every p ∈ (0, 1). This in turn implies that (Xi, S −Xi) is comonotonic, by the

above established case n = 2. By Denneberg’s Lemma (Denneberg, 1994, Proposition 4.5), we

know that Xi = fi(S) for some increasing function fi, and this holds for every i = 1, . . . , n. Hence,

(X1, . . . , Xn) is comonotonic.

A.3 Proofs of results of Section 4

The following lemma is a key step in the study of risk aggregation for ES.

Lemma A.7. Let p ∈ (0, 1) and X ∈ L1. For any event A of probability 1 − p, the equation

ESp(X) = E[X|A] holds if and only if A is a p-tail event of X.

Proof. We start with the general note (e.g., Embrechts and Wang, 2015, equation (3.1)) that ESp
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has a dual representation in the form

ESp(X) = max
{
E[X|B] : B ∈ F , P(B) = 1− p

}
. (15)

(⇐): For any p-tail event A of X, the pair (1A, X) is comonotonic. By the Fréchet-Hoeffding

inequality, E[X1A] > E[X1B] for every event B of probability 1 − p. Hence, by equation (15), we

have ESp(X) = E[X|A].

(⇒): Take any event A of probability 1− p and such that E[X|A] = ESp(Z). In addition, take

any event B of the same probability 1− p. By equation (15), we have E[X|A] > E[X|B] and thus

E[X1A\B] + E[X1A∩B] = E[X1A] > E[X1B] = E[X1B\A] + E[X1A∩B].

Since P(A \ B) = P(B \ A), we have E[X|A \ B] > E[X|B \ A], and since B is arbitrary, the

relationship X(ω) > X(ω′) holds for a.s. all ω ∈ A and ω′ ∈ Ac. Hence, A is a p-tail event of X.

This finishes the proof of Lemma A.7.

Proof of Theorem 5. We shall rely on the well-known facts that ESp is always subadditive, and that

it is additive when X1, . . . , Xn are comonotonic (e.g., Embrechts and Wang, 2015).

(i)⇒(ii): Suppose that X1, . . . , Xn are p-concentrated random variables. Denote by A their

common p-tail event, which is also a p-tail event of X1 + · · · + Xn due to Lemma A.5. Using

Lemma A.7 and subadditivity of ESp, we have

ESp

( n∑
i=1

Xi

)
= E

[ n∑
i=1

Xi

∣∣∣A] =

n∑
i=1

E [Xi|A]

=

n∑
i=1

ESp(Xi) =

n∑
i=1

ESp(X
′
i) > ESp

( n∑
i=1

X ′i

)
,

where X ′i
d
= Xi, i = 1, . . . , n. Hence, the vector (X1, . . . , Xn) maximizes the ESp aggregation, as

per Definition 4.

(ii)⇒(iii): Since ESp is always subadditive, and it is additive for comonotonic random variables,

we have the equation

n∑
i=1

ESp(Xi) = max

{
ESp

( n∑
i=1

X ′i

)
: X ′i

d
= Xi, i = 1, . . . , n

}
, (16)

which establishes implication (ii)⇒(iii).
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(iii)⇒(i): Using Lemma A.7, there exists a p-tail event A of X1 + · · ·+Xn such that

n∑
i=1

ESp(Xi) = ESp

( n∑
i=1

Xi

)
= E

[ n∑
i=1

Xi

∣∣∣A] =
n∑

i=1

E[Xi|A]. (17)

Since E[Xi|A] 6 ESp(Xi) for every i = 1, . . . , n, equations (17) imply E[Xi|A] = ESp(Xi) for every

i = 1, . . . , n. Using Lemma A.7 again, we conclude that A is a p-tail event of every Xi, i = 1, . . . , n.

Therefore, (X1, . . . , Xn) is p-concentrated. This completes the proof of Theorem 5.

Proof of Theorem 6. The middle inequality of (2) is trivial, and so we only need to check the two

remaining ones. We start with two auxiliary definitions. Namely, for any random variable X and

event B with P(B) > 0, the essential infimum and supremum of X conditioned on B are defined by

ess-inf(X|B) = inf{x ∈ R : P(X 6 x|B) > 0},

ess-sup(X|B) = sup{x ∈ R : P(X 6 x|B) < 1},

respectively. The bounds ess-inf(X+Y |B) > ess-inf(X|B) + ess-inf(Y |B) and ess-sup(X+Y |B) 6

ess-sup(X|B) + ess-sup(Y |B) always hold.

By Lemma A.3, any p-tail event A of X satisfies {X > xp} ⊂ A a.s. If P(X 6 x) > p, then

Ac ⊂ {X 6 xp} ⊂ {X 6 x} a.s., and hence

P(X 6 x) = P({X 6 x} ∩A) + P({X 6 x} ∩Ac)

= P({X 6 x} ∩A) + P(Ac) = P({X 6 x} ∩A) + p.

Therefore,

VaR+
p (X) = inf{x ∈ R : P({X 6 x} ∩A) > 0} = ess-inf(X|A).

Similarly, we get the equation VaRp(X) = ess-sup(X|Ac).

By Theorem 3, we can find a common p-tail event A of X1, . . . , Xn, S, where S = X1+· · ·+Xn.

We get
n∑

i=1

VaR+
p (Xi) =

n∑
i=1

ess-inf(Xi|A) 6 ess-inf(S|A) = VaR+
p (S)

and
n∑

i=1

VaRp(Xi) =
n∑

i=1

ess-sup(Xi|Ac) > ess-sup(S|Ac) = VaRp(S).

As seen from Example 1, the first inequality in (2) is not always an equality, and VaRp is not

p-additive. By symmetry, the last inequality in (2) is not always an equality either. For the second

34



inequality to hold strictly, it suffices that one of X1, . . . , Xn has a quantile with a jump at p. This

finishes the proof of Theorem 6.
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