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Abstract

We introduce and study the main properties of a class of convex risk measures that refine

Expected Shortfall by simultaneously controlling the expected losses associated with different

portions of the tail distribution. The corresponding adjusted Expected Shortfalls quantify risk

as the minimum amount of capital that has to be raised and injected into a financial position

X to ensure that Expected Shortfall ESp(X) does not exceed a pre-specified threshold g(p) for

every probability level p ∈ [0, 1]. Through the choice of the benchmark risk profile g one can

tailor the risk assessment to the specific application of interest. We devote special attention

to the study of risk profiles defined by the Expected Shortfall of a benchmark random loss, in

which case our risk measures are intimately linked to second-order stochastic dominance.

1 Introduction

In this paper we introduce and discuss the main properties of a new class of quantile-based risk

measures. Following the seminal paper by Artzner et al. (1999), we view a risk measure as a capital

requirement rule. More precisely, we quantify risk as the minimal amount of capital that has to be

raised and invested in a pre-specified financial instrument (which is typically taken to be risk free)

to confine future losses within a pre-specified acceptable level of security. Value at Risk (VaR) and

Expected Shortfall (ES) are the most prominent examples of monetary risk measures in the above

sense. Throughout, we always adopt the convention to assign positive values to losses. Under

VaR, a financial position is acceptable if its loss probability does not exceed a given threshold.

In line with our convention, this means that VaR coincides the lower quantile of the underlying

1Ruodu Wang is supported by Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-03823,

RGPAS-2018-522590).
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distribution at an appropriate level. Under ES, a financial position is acceptable if, on average, it

does not produce a loss beyond a given VaR. In the banking regulatory sector, the Basel Committee

has recently decided to move from VaR at level 99% to ES at level 97.5% for the measurement of

financial market risk. In the insurance regulatory sector, VaR at level 99.5% is the reference risk

measure in the Solvency II and in the forthcoming Insurance Capital Standard framework while

ES at level 99% is the reference risk measure in the Swiss Solvency Test framework. In the past

20 years, an impressive body of research has investigated the relative merits and drawbacks of VaR

and ES at both a theoretical and a practical level. This investigation led to a better understanding

of the properties of these two risk measures at the same time triggering a variety of new research

questions about risk measures in general. We refer to early work on ES in Acerbi and Tasche (2002)

Acerbi (2002), Frey and McNeil (2002), and Rockafellar and Uryasev (2002) (where ES was called

Conditional VaR). Some recent contributions to the broad investigation on whether and to what

extent VaR and ES meet regulatory objectives are Koch-Medina and Munari (2016), Embrechts

et al. (2018), Weber (2018), Bignozzi et al. (2020), Baes et al. (2020), and Wang and Zitikis (2020).

For robustness problems concerning VaR and ES, see, e.g., Cont et al. (2010) and Krätschmer et al.

(2014), and for their backtesting, see, e.g., Ziegel (2016), Du and Escanciano (2017), and Kratz

et al. (2018).

A fundamental difference between VaR and ES is that, by definition, VaR is completely blind to the

behavior of the loss tail beyond the reference quantile whereas ES depends on the whole tail beyond

it. It is often argued that this difference, together with the convexity property, makes ES a superior

risk measure compared to VaR. In fact, this is the main motivation that led the Basel Committee

to shift from VaR to ES in their market risk framework; see BCBS (2012). However, every risk

measure captures risk in a specific manner and, as such, is bound to possess some limitations. This

is also the case of ES. Indeed, being essentially an average beyond a given quantile, ES can only

provide an aggregate estimation of risk which, by its very definition, does not distinguish across

different tail behaviors with the same mean. While in specific situations a finer risk classification

can be obtained by means of other risk measures, including spectral and deviation risk measures,

our goal is to introduce a general class of convex risk measures that help make that distinction

by using ES as their fundamental building block. The advantage of this approach is that it can be

directly linked to a regulatory framework based on ES. To this end, we construct a risk measure

that is sensitive to changes in the ES profile of a random variable X, i.e., the curve of ES

p 7→ ESp(X)
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viewed as a function of the underlying confidence level. More specifically, we “adjust” ES into

ESg(X) := sup
p∈[0,1]

{ESp(X)− g(p)}

where g : [0, 1] → (−∞,∞] is a given increasing function. The risk measure ESg is called the

adjusted ES with risk profile g and is a monetary risk measure in the sense of Artzner et al. (1999).

Indeed, the quantity ESg(X) can be interpreted as the minimal amount of cash that has to be

raised and injected into X in order to ensure the following target solvency condition:

ESg(X) 6 0 ⇐⇒ ESp(X) 6 g(p) for every p ∈ [0, 1].

In this sense, the function g defines the threshold between acceptable and unacceptable ES profiles.

Interestingly, ESg is a convex risk measure but is not coherent unless it reduces to a standard ES.

The goal of this paper is to introduce the class of adjusted ES’s and discuss their main theoretical

properties. In Section 2 we provide a formal definition and a useful representation of adjusted ES

together with a number of illustrations. The focus of Section 3 is on some basic mathematical

properties. A special interesting case is when the risk profile g is given by the ES of a benchmark

random variable. We focus on this situation in Section 4 and show that such special adjusted ES’s

are strongly linked with second-order stochastic dominance. More precisely, they coincide with the

monetary risk measures for which acceptability is defined in terms of carrying less risk, in the sense

of second-order stochastic dominance, than a given benchmark random variable. In Section 5 we

focus on a variety of optimization problems featuring risk functionals either in the objective function

or in the optimization domain and study the existence of optimal solutions in the presence of this

type of risk measures. In each case of interest we are able to establish explicit optimal solutions.

2 Introducing adjusted ES

Throughout the paper we fix an atomless probability space (Ω,F ,P) and denote by L1 the space

of (equivalent classes with respect to P-almost sure equality of) P-integrable random variables. For

any two random variables X,Y ∈ L1 we write X ∼ Y whenever X and Y are identically distributed.

We adopt the convention that positive values of X ∈ L1 correspond to losses. In this setting, Value

at Risk (VaR) and Expected Shortfall (ES) are respectively defined as

VaRp(X) :=

inf{x ∈ R | P(X 6 x) > p} if p ∈ (0, 1],

ess inf X if p = 0,

ESp(X) :=


1

1−p
∫ 1
p VaRq(X)dq if p ∈ [0, 1),

ess supX if p = 1.
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The quantities VaRp(X) and ESp(X) represent the minimal amount of cash that has to be raised

and injected into X in order to ensure the following target solvency condition (for 0 < p < 1):

VaRp(X) 6 0 ⇐⇒ P(X 6 0) > p,

ESp(X) 6 0 ⇐⇒
∫ 1

p
VaRq(X)dq 6 0.

The VaR solvency condition requires that the loss probability of X is capped by 1− p whereas the

ES solvency condition states that there is no loss on average beyond the (left) p-quantile of X.

The focus of the paper is on the following class of risk measures. Here and in the sequel, we denote

by G the set of all functions g : [0, 1] → (−∞,∞] that are increasing (in the non-strict sense) and

not identically ∞. Moreover, we use the convention ∞−∞ = −∞.

Definition 2.1. Consider a function g ∈ G and define the set

Ag := {X ∈ L1 | ∀p ∈ [0, 1], ESp(X) 6 g(p)}.

The functional ESg : L1 → (−∞,∞] defined by

ESg(X) := inf{m ∈ R | X −m ∈ Ag}.

is called the g-adjusted Expected Shortfall (g-adjusted ES).

To best appreciate the financial interpretation of the above risk measure, it is useful to consider the

ES profile associated with a random variable X ∈ L1, i.e., the function

p 7→ ESp(X).

From this perspective, the function g in the preceding definition can be interpreted as a threshold

between acceptable (safe) and unacceptable (risky) ES profiles. In this sense, the set Ag consists

of all the positions with acceptable ES profile and the quantity ESg(X) represents the minimal

amount of capital that has to be injected into X in order to align its ES profile with the chosen

acceptability profile. For this reason, we will sometimes refer to g as the target ES profile or, more

generally, the target risk profile. If, for given p ∈ [0, 1], we consider the target ES profile

g(q) =

0 if q ∈ [0, p],

∞ if q ∈ (p, 1],

then ESg(X) = ESp(X) for every random variable X ∈ L1. In words, the standard ES is a special

case of an adjusted ES. The next proposition highlights an equivalent but operationally preferable

formulation of adjusted ES’s which also justifies the chosen terminology.
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Proposition 2.2. For every risk profile g ∈ G and for every X ∈ L1 we have

ESg(X) = sup
p∈[0,1]

{ESp(X)− g(p)}.

Proof. Fix X ∈ L1 and note that for every m ∈ R the condition X −m ∈ Ag is equivalent to

ESp(X)−m = ESp(X −m) 6 g(p)

for every p ∈ [0, 1]. For p = 1 both sides could be equal to ∞. However, in view of our convention

∞−∞ = −∞, the above inequality holds if and only if m > ESp(X) − g(p) for every p ∈ [0, 1].

The desired representation easily follows.

Remark 2.3. (i) In line with our main motivation, the adjusted ES is a tool that allows us to

distinguish risks with the same tail expectation without leaving the world of ES. In the context of

the discussion on tail risk triggered by BCBS (2012), the authors of Liu and Wang (2020) proposed

the following way to quantify the degree of tail blindness of a risk measure: For a given p ∈ (0, 1),

a functional ρ : L1 → (−∞,∞] satisfies the p-tail property if for all X,Y ∈ L1

VaRq(X) = VaRq(Y ) for every q ∈ [p, 1) =⇒ ρ(X) = ρ(Y ).

In this case, ρ does not distinguish between two random losses having the same (left) quantiles

beyond level p. It is not difficult to prove that ESg satisfies the p-tail property if and only if g is

constant on the interval (0, p). This provides a simple way to tailor the tail sensitivity of ESg.

(ii) The definition of ESg is reminiscent of the Loss Value at Risk (LVaR) introduced in Bignozzi

et al. (2020). In that case, one takes an increasing and right-continuous function α : [0,∞)→ [0, 1]

(the so-called benchmark loss distribution) and defines the acceptance set by

Aα := {X ∈ L1 | P(X > x) 6 α(x), ∀x > 0}.

The corresponding LVaR is given by

LVaRα(X) := inf{m ∈ R | X −m ∈ Aα}.

The quantity LVaRα(X) represents the minimal amount of capital that has to be injected into the

position X in order to ensure that, for each loss level x, the probability of exceeding a loss of size

x is controlled by α(x). According to Proposition 3.6 in the cited paper, we can equivalently write

LVaRα(X) = sup
p∈[0,1]

{
VaRp(X)− α−1+ (p)

}
, (1)

where α−1+ is the right inverse of α. This highlights the similarity with adjusted ES’s.
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Figure 1: Left: Density function of X1 (blue) and X2 (black). The vertical lines correspond to the

respective 99% quantiles. Right: Tails of of X1 (blue) and X2 (black) beyond the 99% quantile.

Below: ES profile of X1 (blue) and X2 (black) for p > 0.99.

To illustrate the functioning of the adjusted ES, we consider the following simple example. Consider

two normally distributed random variables Xi ∼ N(µi, σ
2
i ), with µ1 = 1, µ2 = 0, σ1 = 0.125,

σ2 = 0.5. For every probability level p ∈ (0, 1) we have

ESp(Xi) = µi + σi
φ(Φ−1(p))

1− p
,

where φ and Φ are, respectively, the density and the distribution function of a standard normal

random variable. For p = 99% the ES of both random variables is approximately equal to 1.33. In

Figure 1 we plot the two distribution functions. Despite having the same ES, the two risks are quite

different mainly because of their different variance: The potential losses of X1 tend to accumulate

around its mean whereas those of X2 are more disperse and can be significantly higher (compare

the tails in Figure 1). A closer look at the ES profile of both random variables shows that the ES

profile of X1 is more stable than that of X2 (see again Figure 1). A simple way to distinguish X1

and X2 while, at the same time, focusing on average losses beyond the 99% quantile is to consider
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Figure 2: Estimated ES0.95, ESg, and VaR0.95 for S&P 500 and NASDAQ.

the adjusted ES with risk profile

g(p) =


0 if p ∈ [0, 0.99],

0.1 if p ∈ (0.99, 0.9975],

∞ if p ∈ (0.9975, 1].

In this case, we easily obtain

ESg(Xi) = max{ES0.99(Xi),ES0.9975(Xi)− 0.1} =

ES0.99(X1) ≈ 1.33 for i = 1,

ES0.9975(X2)− 0.1 ≈ 1.45 for i = 2.

(2)

The focus of ESg is still on the tail beyond the 99% quantile. However, the risk measure ESg is able

to detect the heavier tail of X2 and penalize it with a higher capital requirement. This is because

ESg is additionally sensitive to the tail beyond the 99.75% quantile and penalizes any risk whose

average loss on this far region of the tail is too large.

We use a similar target risk profile to compare the behavior of the classical ES and the adjusted

ES on real data. We collect the S&P 500 and the NASDAQ Composite indices daily log-returns

(using closing prices) from January 01, 1999 to June 30, 2020. Each index has 5406 data points

(publicly available from Yahoo Finance). We estimate the risk measures using a standard AR(1)-

GARCH(1,1) model with t innovations (see Chapter 4 of McNeil et al. (2015) for details). In

line with Basel III guidelines, to obtain less volatile outcomes we compute average risk measure

estimates based on a 60-days moving window. We consider the risk profile function

7



g(p) =


0 if p ∈ [0, 0.95],

0.01 if p ∈ (0.95, 0.99],

∞ if p ∈ (0.99, 1],

which yields

ESg(X) = max{ES0.95(X),ES0.99(X)− 0.01}

similar to (2) in a different context. The numbers 0.95, 0.99, and 0.01 that appear in g are chosen

for the ease of illustration only. The 20-year estimated values of ES at level 95% and ESg, as well

as those of VaR at level 95%, are plotted in Figure 2. As we can see from the numerical results

on both S&P 500 and NASDAQ, the estimated values of ESg and the reference ES approximately

agree with each other during most of the considered time horizon. However, during periods of

significant financial stress, such as the dot-com bubble in 2000, the subprime crisis in 2008, and

the COVID-19 crisis in early 2020, ESg is visibly larger than the reference ES. This illustrates that

ESg may capture tail risk in a more appropriate way than ES, especially under financial stress.

Choosing the target ES profile

As illustrated above, a key feature of adjusted ES is the flexibility in the choice of the target risk

profile g. Indeed, the same random loss can be considered more or less relevant depending on a

variety of factors, including the availability of hedging strategies or other risk mitigation tools in

the underlying business sector. The choice of g can be therefore tailored to the particular area of

application by assigning different weights to different portions of the reference tail. Two examples

are especially relevant. On the one hand, we consider a continuous risk profile of the form

g(p) = ESp(L),

where L is a benchmark random loss. In this case, we have

ESg(X) = sup
p∈[0,1]

{ESp(X)− ESp(L)}.

The associated target solvency condition reads:

ESg(X) 6 0 ⇐⇒ ESp(X) 6 ESp(L) for every p ∈ [0, 1].

This choice of g seems appropriate in the context of portfolio risk management. The distribution of

the random loss L may belong to a class of benchmark distributions and the adjusted ES corresponds

to the smallest amount of cash that has to be raised and injected in the portfolio to shift its profit
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and loss distribution until the new distribution dominates the benchmark distribution in the sense

of second order stochastic dominance. In other words, the above adjusted ES incorporates second-

order stochastic dominance into a monetary risk measure by

ESg(X) = inf{m ∈ R | X −m >SSD L}

where >SSD denotes second-order stochastic domination. Despite the importance of such a concept,

we are not aware of earlier attempts to explicitly construct monetary risk measures whose underlying

acceptability condition is based on second-order stochastic dominance. This paper offers first results

in this direction thereby preparing the theoretical ground for new contributions to the rich literature

on the application of stochastic dominance to portfolio risk management, for which we refer to the

survey by Levy (1992) and to the more recent contributions by, e.g., Ogryczak and Ruszczynski

(2002), De Giorgi (2005), and Hodder et al. (2015).

In the second example, we consider a piecewise constant function of the form

g(p) =



r1 if p ∈ [0, p1],

r2 if p ∈ (p1, p2],

. . .

rn if p ∈ (pn−1, pn],

∞ if p ∈ (pn, 1],

(3)

where 0 = r1 < · · · < rn−1 <∞ and 0 < p1 < · · · < pn < 1. In this case, we have

ESg(X) = max
i=1,...,n

{ESpi(X)− ri}.

The associated target solvency condition reads:

ESg(X) 6 0 ⇐⇒ ESpi(X) 6 ri for every i = 1, . . . , n.

The coefficients r1, . . . , rn represent benchmark risk thresholds whereas p1, . . . , pn correspond to

some pre-specified confidence levels. Note that, by design, we always have

ESg(X) > ESp1(X).

This choice of g seems appropriate in the context of solvency regulation. If p1 coincides with a

reference regulatory level, e.g. 97.5% in Basel III and 99% in the Swiss Solvency Test, the adjusted

ES is by design as stringent as the regulatory ES and the additional thresholds r2, . . . , rn impose

extra limitations to the amount of risk that a firm is allowed to take. In particular, different bounds
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can be imposed for the, e.g., one in a hundred times event, one in a thousand times event, and

the one in a hundred thousand times event. These bounds may correspond to suitable fractions of

available capital so that, in case of such adverse events, one can directly quantify the necessary cost

for covering the underlying losses. In this way, the actual risk bounds would be firm specific but the

rule to determine them would be the same for every company. This is reminiscent of the proposal

about Loss VaR in Bignozzi et al. (2020), with ES replacing VaR. It is worth pointing out that

imposing additional constraints for higher risks may lead to lower the base regulatory requirement

by taking p1 strictly smaller than the reference regulatory level. By doing so, regulators may avoid

penalizing firms that are particularly careful about their tail behavior.

A piecewise constant risk profile may be adopted also in other applications. We provide a simple

illustration in the context of cyber risk. Differently from other operational risks, cyber risk has a

strong geographical component. The empirical study Biener et al. (2015), which takes into account

22,075 incidents reported between March 1971 and September 2009, reveals that “Northern America

has some of the lowest mean cyber risk and non-cyber risk losses, whereas Europe and Asia have

much higher average losses despite Northern American companies experience more than twice as

many (51.9 per cent) cyber risk incidents than European firms (23.2 per cent) and even more than

twice as many as firms located on other continents”. A possible reason is that North American

companies may be better equipped to protect themselves against such events. Cyber risk cannot

be properly managed by a simple frequency-severity analysis. In the qualitative analysis of Refsdal

et al. (2015), many additional factors are identified including ease of discovery, ease of exploit,

awareness and intrusion detection. The answers may very well depend on the specific sector if not

on the specific firms under consideration. The choice of different reference risk profiles g across

companies might be a way to apply the theory of risk measures in the spirit of Artzner et al. (1999)

to the rather complex analysis of this type of risk. For example, it would be possible to set

g(p) =



ES0.99(Z1) if p ∈ [0, 0.99],

ES0.999(Z2) if p ∈ (0.99, 0.999],

ES0.9999(Z3) if p ∈ (0.999, 0.9999],

∞ otherwise,

where Z1, Z2, Z3 are suitable benchmark random losses. The resulting adjusted ES is

ESg(X) = max{ES0.99(X)− ES0.99(Z1),ES0.999(X)− ES0.999(Z2),ES0.999(X)− ES0.999(Z3)}.
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The associated target solvency condition is given by

ESg(X) 6 0 ⇐⇒


ES0.99(X) 6 ES0.99(Z1),

ES0.999(X) 6 ES0.999(Z2),

ES0.9999(X) 6 ES0.9999(Z3).

The choice of g should be motivated by specific cyber risk events (see Refsdal et al. (2015) for a

categorization of likelihood/severity for different cyber attacks): The one in a hundred times event

could be the malfunctioning of the server, the one in a thousand times event the stealing of the

profile data of the clients, the one in a hundred thousand times event the stealing of the credit cards

details of the customers. Note that it is possible to choose a single benchmark random loss or a

different benchmark random loss for each considered incident. This choice could also be company

specific so as to reflect the company’s ability to react to the different types of cyber attacks. This is

in line with Biener et al. (2015), which says that “Regarding size (of the average loss per event), we

observe a U-shaped relation, that is, smaller and larger firms have higher costs than medium-sized.

Possibly, smaller firms are less aware of and less able to deal with cyber risk, while large firms may

suffer from complexity”.

While in principle a different risk category may call for a different choice of the acceptable ES

profile g, it is sometimes important in practice to ensure a certain degree of comparability across

risk assessments.2 Suppose for example that a bank wants to compare the exposure to different

risks X1, . . . , Xk arising from different business lines. In principle, each business unit may use a

specific ES profile gj . However, if the bank requires that g1 = · · · = gk = 0 on [0, p) for a common

p ∈ (0, 1), we can write

ESgj (Xj) = ESp(Xj) + ESgj (Xj)− ESp(Xj)︸ ︷︷ ︸
>0

.

For each Xj , the first component in the decomposition is an ES with common confidence level p,

which can be used for comparison. The exceedance term ESgj (Xj)− ESp(Xj) represents the extra

amount of capital that is needed to cover the specific risk type. The above decomposition takes a

more explicit form if each gj is a piecewise constant function as in (3) with customized parameters

rji ’s and pji ’s. If we take p11 = · · · = pk1 = p, then we obtain

ESgj (Xj) = ESp(Xj) + max

{
max
i=2,...,n

{ES
pji

(Xj)− ESp(Xj)− rji }, 0
}
.

In this case, the risk-specific component is activated only when ES
pji

(Xj) is larger than the penalized

benchmark ES term ESp(Xj) + rji for some index i. The parameters rji ’s and pji ’s can be tailored,

2We thank an anonymous referee for stressing this important point.
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e.g., to the size of the underlying tails. This example can be easily adapted to include a different

number of thresholds for each risk class, i.e., n may also depend on j. The choice may depend, e.g.,

on the size of the available observation sample and the frequency of tail observations.

3 Basic properties of adjusted ES

In this section we discuss a selection of relevant properties of adjusted ES. It is a direct consequence

of our definition that every adjusted ES is a monetary risk measure in the sense of Föllmer and Schied

(2016), i.e., is monotone and cash additive. The other properties listed below are automatically

inherited from the corresponding properties of ES. For every risk profile g ∈ G the risk measure

ESg satisfies the following properties:

• monotonicity: ESg(X) 6 ESg(Y ) for all X,Y ∈ L1 such that X 6 Y .

• cash additivity: ESg(X +m) = ESg(X) +m for all X ∈ L1 and m ∈ R.

• convexity: ESg(λX + (1− λ)Y ) 6 λESg(X) + (1− λ) ESg(Y ) for all X,Y ∈ L1 and λ ∈ [0, 1].

• law invariance: ESg(X) = ESg(Y ) for all X,Y ∈ L1 such that X ∼ Y .

• normalization: ESg(0) = 0 if and only if g(0) = 0.

Being convex and law invariant, every adjusted ES is automatically consistent with second-order

stochastic dominance; see, e.g., Bellini et al. (2021). In fact, the link between adjusted ES’s and

stochastic dominance is far stronger. Recall that for any random variables X,Y ∈ L1 we say that

X dominates Y with respect to second-order stochastic dominance, written X >SSD Y , whenever

the following condition holds:

E[u(−X)] > E[u(−Y )] for every increasing and concave function u : R→ R.

In the language of utility theory, this means that X is preferred to Y by every risk-averse agent

(recall that positive values of a random variable represent losses). We refer to Levy (1998) for a

classical reference on stochastic dominance. By convexity and law invariance, for every risk profile

g ∈ G the risk measure ESg satisfies:

• consistency with >SSD: ESg(X) 6 ESg(Y ) for all X,Y ∈ L1 such that X >SSD Y .

This implies that ESg belongs to the class of consistent risk measures as defined in Mao and Wang

(2020). In fact, it is shown in that paper that any consistent risk measure can be expressed as an

infimum of a collection of risk measures which, using the terminology of this paper, are precisely of

adjusted ES type.
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Proposition 3.1 (Theorem 3.1 in Mao and Wang (2020)). Let ρ : L1 → (−∞,∞] be cash additive

and consistent with >SSD. Then, there exists H ⊂ G such that for every X ∈ L1 we have

ρ(X) = inf
g∈H

ESg(X).

The above proposition shows that adjusted ES can be seen as the building block for risk measures

that are consistent with second-order stochastic dominance. This class is large and includes, e.g.,

all law-invariant convex risk measures.

It is well known that, in addition to convexity, ES satisfies positive homogeneity. This qualifies it

as a coherent risk measure in the sense of Artzner et al. (1999). In the next proposition we show

that ESg satisfies positive homogeneity only in the case where it coincides with some ES. In other

words, with the exception of ES, the class of adjusted ES’s consists of monetary risk measures that

are convex but not coherent.

Proposition 3.2. For every risk profile g ∈ G the following statements are equivalent:

(a) ESg is positively homogeneous, i.e., ESg(λX) = λESg(X) for all X ∈ L1 and λ ∈ (0,∞).

(b) g(0) = 0 and g(p) ∈ (0,∞) for at most one p ∈ (0, 1].

(c) ESg = ESp where p = sup{q ∈ [0, 1] | g(q) = 0}.

Proof. “(a)⇒(b)”: Since ESg is positively homogeneous we have

λg(0) = −λESg(0) = −ESg(λ0) = −ESg(0) = g(0)

for every λ ∈ (0,∞). As g(0) < ∞ by our assumptions on the class G, we must have g(0) = 0.

Now, assume by way of contradiction that 0 < g(p1) 6 g(p2) <∞ for some 0 < p1 < p2 6 1. Take

now q ∈ (p1, p2) and b ∈ (0, g(p1)) and set

a = min

{
−(1− q)b
p− p1

, inf
p∈[0,p1)

(1− p)g(p)− b(1− q)
q − p

}
.

Note that a < 0. Since the underlying probability space is assumed to be atomless, we can always

find a random variable X ∈ L1 satisfying

FX(x) =


0 if x ∈ (−∞, a),

q if x ∈ [a, b),

1 if x ∈ [b,∞).

13



Note that, for every p ∈ [0, p1), the definition of a implies

(1− p)g(p)− b(1− q)
q − p

> a.

Moreover, for every p ∈ [p1, q), the choice of b implies

(1− p)g(p)− b(1− q)
q − p

>
(1− p)g(p1)− b(1− q)

q − p
>

(1− p)b− b(1− q)
q − p

= b > a.

As a result, for every p ∈ [0, q) we obtain

ESp(X) =
a(q − p) + b(1− q)

1− p
6 g(p).

Similarly, for every p ∈ [q, 1] we easily see that

ESp(X) = b < g(p1) 6 g(q) 6 g(p).

This yields ESg(X) 6 0. However, taking λ > 0 large enough delivers

ESg(λX) = sup
p∈[0,1]

{λESp(X)− g(p)} > λESq(X)− g(q) = λb− g(q) > 0

in contrast to positive homogeneity. As a consequence, we must have p1 = p2 and thus (b) holds.

“(b)⇒(c)”: Set q = sup{p ∈ [0, 1] | g(p) = 0}. Note that q ∈ [0, 1]. Clearly, we have g(p) = 0 for

every p ∈ [0, q) and g(p) =∞ for every p ∈ (q, 1] by assumption. Take an arbitrary X ∈ L1. From

the definition of ES and the continuity of the integral, it follows that p 7→ ESp(X) is continuous.

As a result, we obtain

ESg(X) = sup
p∈[0,q]

{ESp(X)− g(p)} = sup
p∈[0,q]

ESp(X) = ESq(X).

“(c)⇒(a)”: The implication is clear.

An adjusted ES is convex but, unless it coincides with a standard ES, not subadditive. It is therefore

natural to focus on infimal convolutions of adjusted ES’s, which are important tools in the study

of optimal risk sharing and capital allocation problems involving non-subadditive risk measures;

see, e.g., Barrieu and El Karoui (2005), Burgert and Rüschendorf (2008), Filipović and Svindland

(2008) for results in the convex world and Embrechts et al. (2018) for results beyond convexity.

Definition 3.3. Let n ∈ N and consider ρ1, . . . , ρn : L1 → (−∞,∞]. For every X ∈ L1 we set

Sn(X) :=

{
(X1, . . . , Xn) ∈ L1 × · · · × L1

∣∣∣∣ n∑
i=1

Xi = X

}
.
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The map
n

2
i=1

ρi : L1 → [−∞,∞] defined by

n

2
i=1

ρi(X) := inf

{
n∑
i=1

ρi(Xi)

∣∣∣∣ (X1, . . . , Xn) ∈ Sn(X)

}
,

is called the inf-convolution of {ρ1, . . . , ρn}. For n = 2 we simply write ρ12ρ2.

Remark 3.4. Recall that, if ρ1, . . . , ρn are monetary risk measures, then for every X ∈ L1

n

2
i=1

ρi(X) = inf{m ∈ R | X −m ∈ A1 + · · ·+An}

where Ai = {X ∈ L1 | ρi(X) 6 0} is the acceptance sets induced by ρi for i = 1, . . . , n. This shows

that the infimal convolution of monetary risk measures is also a monetary risk measure.

We establish a general inequality for inf-convolutions. More precisely, we show that any inf-

convolution of adjusted ES’s can be controlled from below by a suitable adjusted ES. This allows

us to derive a formula for the inf-convolution of an adjusted ES with itself.

Proposition 3.5. Let n ∈ N and consider the risk profiles g, g1, . . . , gn ∈ G. For every X ∈ L1

n

2
i=1

ESgi(X) > ES
∑n

i=1 gi(X). (4)

In particular, for every X ∈ L1

n

2
i=1

ESg(X) = ESng(X). (5)

Proof. To show (4), it suffices to focus on the case n = 2. For all Y ∈ L1 and p ∈ [0, 1] we have

ESg1(Y ) + ESg2(X − Y ) > ESp(Y )− g1(p) + ESp(X − Y )− g2(p) > ESp(X)− (g1 + g2)(p)

by subadditivity of ES. Taking the supremum over p and the infimum over Y delivers the desired

inequality. To show (5), note that the inequality “>” follows directly from (4). To show the

inequality “6”, observe that

ESg
(

1

n
X

)
=

1

n
sup
p∈[0,1]

{ESp(X)− ng(p)} =
1

n
ESng(X).

As a result, we infer that

n

2
i=1

ESg(X) 6
n∑
i=1

ESg
(

1

n
X

)
= ESng(X).

This yields the desired inequality and concludes the proof.
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Remark 3.6. A risk measure that is not subadditive may incentivize the splitting and (internal)

reallocation of risk with the sole purpose of reaching a lower level of capital requirements. This is

related to the notion of regulatory arbitrage introduced in Wang (2016). In line with that paper,

we say that a functional ρ : L1 → (−∞,∞] is either free of regulatory arbitrage or has limited or

infinite regulatory arbitrage if the quantity (recall our convention ∞−∞ = −∞)

ρ(X)− inf
n∈N

n

2
i=1

ρ(X)

is null, finite, or infinite for every X ∈ L1. Clearly, every risk measure that is not subadditive

admits regulatory arbitrage. The preceding result on infimal convolutions allows us to show that an

adjusted ES exhibits regulatory arbitrage only in a limited form. More precisely, for a risk profile

g ∈ G with g(0) = 0 we have:

(i) ESg(X)− infn∈N
n

2
i=1

ESg(X) <∞ for every X ∈ L1 with ESg(X) <∞.

(ii) ESg(X)− infn∈N
n

2
i=1

ESg(X) =∞ for every X ∈ L1 with ESg(X) =∞.

In particular, to prove (i), it suffices to note that Proposition 3.5 implies for every X ∈ L1

inf
n∈N

n

2
i=1

ESg(X) = inf
n∈N

ESng(X) > ES0(X) = E[X] > −∞.

We conclude this section by focusing on dual representations, which are a useful tool in many

applications, notably optimization problems; see the general discussion in Rockafellar (1974) and

the results on risk measures in Föllmer and Schied (2016). In what follows we denote by P the set

of probability measures on (Ω,F) and use standard notation for Radon-Nikodym derivatives.

Proposition 3.7. Consider a risk profile g ∈ G. For every X ∈ L1 we have

ESg(X) = sup
Q∈P∞

P

{
EQ[X]− g

(
1−

∥∥∥∥dQdP
∥∥∥∥−1
∞

)}
,

where P∞P = {Q ∈ P | Q� P, dQ/dP ∈ L∞}.

Proof. For notational convenience, for every Q ∈ P∞P set

D(Q) =

{
p ∈ [0, 1]

∣∣∣∣ dQdP 6
1

1− p

}
=

[
1−

∥∥∥∥dQdP
∥∥∥∥−1
∞
, 1

]
.

Take X ∈ L1. The well-known dual representation of ES states that

ESp(X) = sup

{
EQ[X]

∣∣∣Q ∈ P∞P , dQ
dP 6

1

1− p

}
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for every p ∈ [0, 1]; see, e.g., Föllmer and Schied (2016). Then, it follows that

ESg(X) = sup
p∈[0,1]

{
sup

Q∈P∞
P , p∈D(Q)

{EQ[X]− g(p)}
}

= sup
Q∈P∞

P

{
sup

p∈D(Q)
{EQ[X]− g(p)}

}
= sup

Q∈P∞
P

{
EQ[X]− inf

p∈D(Q)
g(p)

}
.

It remains to observe that the above infimum equals g(1− ‖dQ/dP‖−1∞ ) by monotonicity of g.

4 Benchmark-adjusted ES

In this section we focus on a special class of adjusted ES’s for which the target risk profiles are

expressed in terms of the ES profile of a reference random loss. As shown below, these special

adjusted ES’s are intimately linked with second-order stochastic dominance.

Definition 4.1. Consider a functional ρ : L1 → (−∞,∞].

(1) ρ is called a benchmark-adjusted ES if there exists Z ∈ L1 such that for every X ∈ L1

ρ(X) = sup
p∈[0,1]

{ESp(X)− ESp(Z)}.

(2) ρ is called an SSD-based risk measure if there exists Z ∈ L1 such that for every X ∈ L1

ρ(X) = inf{m ∈ R | X −m >SSD Z}.

It is clear that benchmark-adjusted ES’s are special instances of adjusted ES’s for which the target

risk profile is defined in terms of the ES profile of a benchmark random loss. The distribution

of this random loss may correspond, for example, to the (stressed) historical loss distribution of

the underlying position or to a target (risk-class specific) loss distribution. It is also clear that

SSD-based risk measures are nothing but monetary risk measures associated with acceptance sets

defined through second-order stochastic dominance.

The classical characterization of second-order stochastic dominance in terms of ES can be used

to show that benchmark-adjusted ES’s coincide with SSD-based risk measures. In addition, we

provide a simple characterization of this class of risk measures.

Theorem 4.2. For a monetary risk measure ρ : L1 → (−∞,∞] the following are equivalent:

(i) ρ is a benchmark-adjusted ES.
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(ii) ρ is an SSD-based risk measure.

(iii) ρ is consistent with >SSD and the set {X ∈ L1 | ρ(X) 6 0} has an >SSD-minimum element.

Proof. Recall that for all X ∈ L1 and Z ∈ L1 we have X >SSD Z if and only if ESp(X) 6 ESp(Z)

for every p ∈ [0, 1]; see, e.g., Theorem 4.A.3 in Shaked and Shanthikumar (2007). For convenience,

set A = {X ∈ L1 | ρ(X) 6 0}. To show that (i) implies (ii), assume that ρ is a benchmark-adjusted

ES with respect to Z ∈ L1. Then, for every X ∈ L1

ρ(X) = inf{m ∈ R | X −m ∈ A}

= inf{m ∈ R | ESp(X)−m 6 ESp(Z), ∀p ∈ [0, 1]}

= inf{m ∈ R | X −m >SSD Z}.

To show that (ii) implies (i), assume that ρ is SSD-based with respect to Z ∈ L1. Then, we have

ρ(X) = inf{m ∈ R | X −m >SSD Z}

= inf{m ∈ R | ESp(X)−m 6 ESp(Z), ∀p ∈ [0, 1]}

= sup
p∈[0,1]

{ESp(X)− ESp(Z)}.

It is clear that (iii) implies (ii). Finally, to show that (ii) implies (iii), assume that ρ is an SSD-

based risk measure with respect to Z ∈ L1. It is clear that Z ∈ A. Now, take an arbitrary X ∈ A.

We find a sequence (mn) ⊂ R such that mn ↓ ρ(X) and X −mn >SSD Z for every n ∈ N. This

implies that X − ρ(X) >SSD Z. Since ρ(X) 6 0, we infer that X >SSD Z as well. This shows

that A has an SSD-minimum element. To establish that ρ is consistent with >SSD, take arbitrary

X,Y ∈ L1 satisfying X >SSD Y . For every m ∈ R such that Y −m >SSD Z we clearly have that

X −m >SSD Y −m >SSD Z. This implies that ρ(X) 6 ρ(Y ) and concludes the proof.

The preceding result delivers an interesting representation of a benchmark-adjusted ES in terms of

utility functions which helps highlighting its “risk aversion” nature. More precisely, we show that an

adjusted ES with risk profile given by the ES profile of a benchmark random loss Z ∈ L1 determines

the minimal amount of capital that makes every risk-averse agent better off than being exposed to

the loss Z. In this sense, one may view a benchmark-adjusted ES as a worst-case utility-based risk

measure over all conceivable risk-averse profiles. Recall that, if one moves from utility functions to

loss functions, then utility-based risk measures correspond to the so-called shortfall risk measures

as defined, e.g., in (Föllmer and Schied, 2016, Section 4.9).
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Proposition 4.3. Let Z ∈ L1 and consider the risk profile g(p) = ESp(Z) for every p ∈ [0, 1].

Moreover, let U be the family of all (nonconstant) concave and increasing functions u : R → R.

Then, for every X ∈ L1

ESg(X) = sup
u∈U

inf{m ∈ R | E[u(m−X)] > E[u(−Z)]}.

Proof. Let A = {X ∈ L1 | ∀p ∈ [0, 1], ESp(X) 6 ESp(Z)} and set Au = {X ∈ L1 | E[u(−X)] >

E[u(−Z)]} for every u ∈ U . To establish the claim, we can equivalently prove that for every X ∈ L1

inf{m ∈ R | X −m ∈ A} = sup
u∈U

inf{m ∈ R | X −m ∈ Au}. (6)

To this effect, Theorem 4.A.3 in Shaked and Shanthikumar (2007) implies that

A = {X ∈ L1 | X >SSD Z} = {X ∈ L1 | ∀u ∈ U , E[u(−X)] > E[u(−Z)]} =
⋂
u∈U
Au.

This implies (6). Indeed, the inequality “>” is clear. To show the inequality “6”, take any number

k > supu∈U inf{m ∈ R | X − m ∈ Au}. Then, for every u ∈ U we must have X − k ∈ Au or,

equivalently, X − k ∈ A. This yields k > inf{m ∈ R | X −m ∈ A}. Taking the infimum over such

k’s delivers the desired inequality and completes the proof.

In light of the relevance of benchmark adjusted ES’s, we are interested in characterizing when the

acceptable risk profile g of an adjusted ES can be expressed in terms of an ES profile. To this effect,

it is convenient to introduce the following additional class of risk measures, which will be shown to

contain all benchmark-adjusted ES’s. We denote by L0 the space of all random variables.

Definition 4.4. A functional ρ : L1 → (−∞,∞] is called a quantile-adjusted ES if there exists

Z ∈ L0 such that for every X ∈ L1

ρ(X) = sup
p∈[0,1]

{ESp(X)−VaRp(Z)}.

To establish our desired characterization, for a risk profile g ∈ G we define hg : [0, 1]→ (−∞,∞] by

hg(p) := (1− p)g(p).

Here, we set 0 · ∞ = 0 so that hg(1) = 0. Moreover, we introduce the following sets:

GVaR := {g ∈ G | g is finite on [0, 1), left-continuous on [0, 1], and right-continuous at 0},

GES := {g ∈ GVaR | hg is concave on (0, 1) and left-continuous at 1}.
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Lemma 4.5. For every risk profile g ∈ G the following statements hold:

(i) g ∈ GVaR if and only if there exists a random variable Z ∈ L0 that is bounded from below and

satisfies g(p) = VaRp(Z) for every p ∈ [0, 1].

(ii) g ∈ GES if and only if there exists a random variable Z ∈ L1 such that g(p) = ESp(Z) for

every p ∈ [0, 1].

Proof. (i) The “if” part is clear. For the “only if” part, let U be a uniform random variable on

[0, 1] and set Z = g(U). Then, it is well known that VaRp(Z) = g(p) for every p ∈ [0, 1]. Moreover,

since g(0) > −∞, we see that Z is bounded from below.

(ii) The “if” part is straightforward. For the “only if” part, let U be a uniform random variable on

[0, 1]. We denote by h′g the left derivative of hg. Then, for every p ∈ [0, 1) we have

ESp(−h′g(U)) = − 1

1− p

∫ 1

p
h′g(u)du = −hg(1)− hg(p)

1− p
= g(p).

This shows that, by taking Z = −h′g(U), we have g(p) = ESp(Z) for every p ∈ [0, 1). The left

continuity of g and ES·(Z) at 1 gives the same equality for p = 1.

As a direct consequence of the previous lemma we derive a characterization of quantile- and

benchmark-adjusted ES’s in terms of the underlying risk profile.

Theorem 4.6. For every risk profile g ∈ G the following statements hold:

(i) There exists Z ∈ L0 that is bounded from below and such that ESg is a quantile-adjusted ES

with respect to Z if and only if g ∈ GVaR.

(ii) There exists Z ∈ L1 such that ESg is an benchmark-adjusted ES with respect to Z if and only

if g ∈ GES.

Remark 4.7. We infer from Theorem 4.2 and 4.6 that the classical ES does not belong to the class

of SSD-based risk measures as the associated risk profile is not in GES (see also Proposition 3.2).

Since we clearly have GES ⊂ GVaR, it follows from the above results that every benchmark-adjusted

ES is also a quantile-adjusted ES. In particular, this implies that, for every random variable Z ∈ L1,

we can always find a random variable W ∈ L0 such that VaRp(W ) = ESp(Z) for every p ∈ [0, 1].

In words, every ES profile can be reproduced by a suitable VaR profile. As pointed out by the next

proposition, the converse result is, in general, not true. In addition, we also show that an adjusted

ES need not be a quantile-adjusted ES.
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Proposition 4.8. (i) There exists g ∈ G such that ESg 6= ESh for every h ∈ GVaR.

(ii) There exists g ∈ GVaR such that ESg 6= ESh for every h ∈ GES.

Proof. The second assertion follows immediately from Theorem 4.6 and the fact that the inclusion

GES ⊂ GVaR is strict. To establish the first assertion, fix q ∈ (0, 1) and define g ∈ G by setting

g(p) =

0 if p ∈ [0, q],

∞ if p ∈ (q, 1].

It follows that

ESg(X) = sup
p∈[0,q]

{ESp(X)} = ESq(X)

for every X ∈ L1. We claim that ESg is not a quantile-adjusted ES. To the contrary, suppose that

there exists a random variable Z ∈ L0 that is bounded from below and satisfies

ESq(X) = ESg(X) = sup
p∈[0,1]

{ESp(X)−VaRp(Z)}

for every X ∈ L1. Take r ∈ (q, 1) and X ∈ X such that ESr(X) > ESq(X). Then, for each λ > 0

ESq(X) =
1

λ
ESq(λX) =

1

λ
sup
p∈[0,1]

{ESp(λX)−VaRp(Z)}

>
1

λ
(ESr(λX)−VaRr(Z)) = ESr(X)− 1

λ
VaRr(Z).

By sending λ→∞, we obtain ESq(X) > ESr(X), which contradicts our assumption on X.

Note that ES is always finite on our domain. Here, we are interested in discussing the finiteness

of adjusted ES’s associated with risk profiles in the class GVaR and GES. We show that finiteness

on the whole reference space L1 can never hold in the presence of a risk profile in GES while it can

hold if we take a risk profile in GVaR.

Proposition 4.9. Consider a risk profile g ∈ G. If g ∈ GVaR, then ESg can be finite on L1. If

g ∈ GES, then ESg cannot be finite on L1.

Proof. To show the first part of the assertion, set g(p) = 1
1−p for every p ∈ [0, 1] (with the convention

1
0 =∞). Note that g ∈ GVaR. Fix X ∈ L1 and note that there exists q ∈ (0, 1) such that

sup
p∈[q,1]

∫ 1

p
VaRr(X)dr < 1.

It follows that

sup
p∈[q,1]

{
ESp(X)− 1

1− p

}
= sup

p∈[q,1]

{
1

1− p

(∫ 1

p
VaRr(X)dr − 1

)}
6 0.
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Therefore,

ESg(X) 6 max

{
sup
p∈[0,q]

{
ESp(X)− 1

1− p

}
, 0

}
6 max{ESq(X), 0} <∞.

This shows that ESg is finite on the entire L1. To establish the second part of the assertion, take

Z ∈ L1 and set g(p) = ESp(Z) for every p ∈ [0, 1]. Note that g ∈ GES by Lemma 4.5. If Z is

bounded from above, then take X ∈ L1 that is unbounded from above. In this case, it follows that

ESg(X) > ES1(X)− ES1(Z) =∞.

If Z is unbounded from above, then take X = 2Z ∈ L1. In this case, we have

ESg(X) > ES1(2Z)− ES1(Z) = ES1(Z) =∞.

Hence, we see that ESg is never finite on L1.

The next result improves Proposition 3.5 by showing that the inf-convolution of benchmark-adjusted

ES’s can still be expressed as an adjusted ES.

Proposition 4.10. Let n ∈ N and consider the risk profiles g1, . . . , gn ∈ GES. For every X ∈ L1

n

2
i=1

ESgi(X) = ES
∑n

i=1 gi(X).

Proof. The inequality “>” follows from Proposition 3.5. To show the inequality “6”, note that

there exist Z1, . . . , Zn ∈ L1 such that Agi = {X ∈ L1 | X >SSD Zi} by Theorem 4.6. We prove that

A := {X ∈ L1 | ES
∑n

i=1 gi(X) 6 0} ⊂
n∑
i=1

Agi

which, together with Remark 3.4, yields the desired inequality. Let U be a uniform random variable

and, for any X ∈ L1, denote by F−1X the (left) quantile function of X. Take i ∈ {1, . . . , n} and note

that F−1Zi
(U) ∼ Zi. It follows from the law invariance of ES that ESp(F

−1
Zi

(U)) = ESp(Zi) for every

p ∈ [0, 1], so that F−1Zi
(U) ∈ Agi . Since the random variables F−1Zi

(U)’s are comonotonic,

n∑
i=1

ESp(Zi) =
n∑
i=1

ESp(F
−1
Zi

(U)) = ESp(Z)

with Z =
∑n

i=1 F
−1
Zi

(U). We deduce that each X ∈ A satisfies ESp(X) 6 ESp(Z) for every p ∈ [0, 1],

which is equivalent to X >SSD Z. Note that Z ∈
∑n

i=1Agi so that
n

2
i=1

ESgi(Z) 6 0. Since the

inf-convolution is consistent with >SSD, as shown in Theorem 4.1 by Mao and Wang (2020), we

have
n

2
i=1

ESgi(X) 6
n

2
i=1

ESgi(Z) 6 0, which implies X ∈
∑n

i=1Agi as desired.
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5 Optimization with benchmark-adjusted ES

Using the characterization of benchmark-adjusted ES’s established in Theorem 4.2, many optimiza-

tion problems related to benchmark-adjusted ES’s or, equivalently, SSD-based risk measures can be

solved explicitly. In this section, we focus on risk minimization and utility maximization problems

in the context of a multi-period frictionless market that is complete and arbitrage free. The interest

rate is set to be zero for simplicity. As is commonly done in the literature, this type of optimization

problems, which are naturally expressed in terms of dynamic investment strategies, can be con-

verted into static optimization problems by way of martingale methods. Below we focus directly

on their static counterparts. For more details we refer, e.g., to Schied et al. (2009) or Föllmer and

Schied (2016). In addition, to ensure that all our problems are well defined, we work in the space

L∞ of P-bounded random variables.

In the sequel, we denote by Q the risk-neutral pricing measure (whose existence and uniqueness in

our setting are ensured by the Fundamental Theorem of Asset Pricing), by w ∈ R a fixed level of

initial wealth, by x ∈ R a real number representing a constraint, by u : R → R ∪ {−∞} a concave

and increasing function that is continuous (at the point where it potentially jumps to −∞) and

satisfies limy→−∞ u(y) < x < limy→∞ u(y), and by ρ : L∞ → (−∞,∞] a risk functional. We focus

on the following five optimization problems:

(A) Risk minimization with a budget constraint:

minimize ρ(X) over X ∈ L∞ subject to EQ[w −X] 6 x.

(B) Price minimization with controlled risk:

minimize EQ[w −X] over X ∈ L∞ subject to ρ(X) 6 x.

(C) Risk minimization with a target utility level:

minimize ρ(X) over X ∈ L∞ subject to E[u(w −X)] = x.

(D) Worst-case utility with a reference risk assessment:

minimize E[u(w −X)] over X ∈ L∞ subject to ρ(X) = x.

(E) Worst-case risk with a reference risk assessment:

maximize ρ′(X) over X ∈ L∞ subject to ρ(X) = x,

where ρ′ is an SSD-consistent functional that is continuous with respect to the L∞-norm.
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Problem (A) is an optimal investment problem minimizing the risk given a budget constraint.

Conversely, problem (B) aims at minimizing the cost given a controlled risk level. Problem (C) is

about minimizing the risk exposure with a target utility level, similar to the mean-variance problem

of Markowitz (1952). The interpretation of problems (D) and (E) is different from the first three

problems: They are not about optimization over risk, but about ambiguity, i.e., in these problems

the main concern is model risk. Indeed, the set L∞ may represent the class of plausible models for

the distribution of a certain financial position of interest. In the case of problem (D), the assumption

is that the only available information for X is the risk figure ρ(X), evaluated, e.g., by an expert

or another decision maker. In this context, we are interested in determining the worst case utility

among all possible models which agree with the evaluation ρ(X) = x (see also Example 5.3 of Wang

et al. (2019)). A similar interpretation can be given for problem (E).

Proposition 5.1. Each of the optimization problems (A)-(E) relative to a benchmark-adjusted ES

ρ = ESg for g ∈ GES admits an optimal solution of the explicit form Z+z where Z ∈ L∞ has the ES

profile g and z ∈ R. Moreover, Z is comonotonic with dQ
dP in (A)-(B), and the (binding) constraint

uniquely determines z in each problem.

Proof. The result for the optimization problem (A) is a direct consequence of Proposition 5.2 in

Mao and Wang (2020). Let Z be comonotonic with dQ/dP which has ES profile g (comonotonicity

is only relevant in problems (A) and (B)). Note that ρ(Z) = 0. For any random variable X ∈ L∞,

we set YX = Z + ρ(X). It is clear that ρ(YX) = ρ(X) and

ESp(YX) = g(p) + ρ(X) = g(p) + sup
q∈[0,1]

{ESq(X)− g(q)} > ESp(X).

Hence, X >SSD YX . This observation will be useful in the analysis below.

(i) We first look at problem (B). First, since both X 7→ EQ[X] and ρ are translation-invariant,

the condition ρ(X) 6 x is binding, and problem (B) is equivalent to maximizing EQ[X] over

X ∈ L∞ such that ρ(X) = x. Let X ∈ L∞ be any random variable with ρ(X) = x and let X ′

be identically distributed as X and comonotonic with dQ/dP. Since X ′ ∼ X, by the Hardy–

Littlewood inequality (see, e.g., Remark 3.25 of Rüschendorf (2013)), we have EQ[X] 6 EQ[X ′].

Moreover, for any random variable Y ∈ L∞ that is comonotonic with dQ/dP, we can write

(see, e.g., (A.8) of Mao and Wang (2020))

EQ[Y ] =

∫ 1

0
ESp(Y )dµ(p)

for some Borel probability measure µ on [0, 1]. Hence, X ′ >SSD YX implies EQ[X ′] 6 EQ[YX ],

and we obtain

EQ[X] 6 EQ[X ′] 6 EQ[YX ].
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Note also that ρ(YX) = ρ(X) = x. Hence, for any random variable X ∈ L∞, there exists

Z + z for some z ∈ R which dominates X for problem (B). Since both the constraint and the

objective are continuous in z ∈ R, an optimizer of the form Z + z exists.

(ii) We next look at problem (C). Let X ∈ L∞ be any random variable such that E[u(w−X)] = x.

The aforementioned fact X >SSD YX implies that E[u(w−Y )] 6 E[u(w−X)] = x since u is a

concave utility function. Therefore, there exists ε > 0 such that E[u(w− (Y −ε))] = x, and we

take the largest ε satisfying this equality, which is obviously finite. Let z = ρ(X)−ε. It is then

clear that E[u(w− (Z + z))] = E[u(w−X)] = x and ρ(Z + z) = ρ(Y − ε) = ρ(X)− ε 6 ρ(X).

Hence, Z+ z dominates X as an optimizer for problem (C). Since both the constraint and the

objective are continuous in z ∈ R, an optimizer of the form Z + z exists.

(iii) Problems (D) and (E) can be dealt with using similar arguments.

Remark 5.2. (i) Recall that ES does not belong to the class of SSD-based risk measures. As a

consequence, the results in this section do not directly apply to ES. In particular, although ES

is consistent with SSD, its acceptance set does not have a minimum SSD element as required by

Proposition 4.2. We refer to Wang and Zitikis (2020) for a different characterization of ES.

(ii) In the context of decision theory and, specifically, portfolio selection, it is sometimes argued

that (second order) stochastic dominance is too extreme in the sense that it ranks risks according

to the simultaneous preferences of every risk-averse agent, thus including utility functions that may

lead to counterintuitive outcomes. A typical example is the one proposed by Leshno and Levy

(2002). Consider a portfolio that pays one million dollars in 99% of cases and nothing otherwise

and another portfolio that pays one dollar with certainty. According to the sign convention adopted

in this paper, the corresponding payoffs are given by

X =

0 with probability 1%

−106 with probability 99%

and Y = −1.

Even though X does not dominate Y with respect to SSD, most agents prefer X to Y . Thus, the

authors argue for the necessity of relaxing SSD in favor of a more reasonable notion. We point

out that our approach yields a novel and reasonable generalization of SSD. First, consider the risk

profile defined by g(p) = ESp(Y ) = −1 for every p ∈ [0, 1] and note that X is acceptable under ESg

precisely when X >SSD Y . Note also that

ESp(X) 6 g(p) ⇐⇒ p 6 p̄ := 1− 10−4

106 − 1
≈ 1− 10−10.
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This fact has two implications. On the one hand, it confirms that X does not dominate Y with

respect to SSD and highlights that this failure is due to the behavior of X in the far region of its

left tail. On the other hand, it suggests that it is enough to consider the new risk profile defined

by h(p) = g(p) for p 6 p̄ and h(p) = ∞ otherwise to make X acceptable under ESh. In other

words, moving from g to h is equivalent to moving from SSD to a relaxed form of SSD that enlarges

the spectrum of acceptability in portfolio selection problems. However, note that ESh is not an

SSD-based risk measure and, hence, the existence results obtained above do not apply to it. A

systematic study of optimization problems under constraints of ESh type requires further research.
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Föllmer, H. and Schied, A. (2016). Stochastic Finance: An Introduction in Discrete Time. De Gruyter,

Berlin, 4th edition.

Frey, R. and McNeil, A. J. (2002). Var and expected shortfall in portfolios of dependent credit risks:

conceptual and practical insights. Journal of banking & finance, 26(7):1317–1334.

Hodder, J. E., Jackwerth, J. C., and Kolokolova, O. (2015). Improved portfolio choice using second-order

stochastic dominance. Review of Finance, 19(4):1623–1647.

Koch-Medina, P. and Munari, C. (2016). Unexpected shortfalls of expected shortfall: Extreme default profiles

and regulatory arbitrage. Journal of Banking & Finance, 62:141–151.
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