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Trade-off between validity and efficiency of merging p-values under

arbitrary dependence
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Abstract

Various methods of combining individual p-values into one p-value are widely used in many

areas of statistical applications. We say that a combining method is valid for arbitrary depen-

dence (VAD) if it does not require any assumption on the dependence structure of the p-values,

whereas it is valid for some dependence (VSD) if it requires some specific, perhaps realistic but

unjustifiable, dependence structures. The trade-off between validity and efficiency of these meth-

ods is studied via analyzing the choices of critical values under different dependence assumptions.

We introduce the notions of independence-comonotonicity balance (IC-balance) and the price

for validity. In particular, IC-balanced methods always produce an identical critical value for

independent and perfectly positively dependent p-values, a specific type of insensitivity to a

family of dependence assumptions. We show that, among two very general classes of merging

methods commonly used in practice, the Cauchy combination method and the Simes method

are the only IC-balanced ones. Simulation studies and a real data analysis are conducted to

analyze the sizes and powers of various combining methods in the presence of weak and strong

dependence.
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1 Introduction

In many areas of statistical applications where multiple hypothesis testing is involved, the

task of merging several p-values into one naturally arises. Depending on the specific application,

these p-values may be from a single hypothesis or multiple hypotheses, in small or large numbers,

independent or correlated, and with sparse or dense signals, leading to different considerations when

choosing merging procedures.

Let K be a positive integer, and F : [0, 1]K → [0,∞) be an increasing Borel function used to

combine K p-values, which we shall refer to as a combining function. Generally, the combined value

may not be a valid p-value itself, and a critical point needs to be specified. Different dependence

assumptions on the p-values lead to significantly different critical points, and thus different statistical

decisions. The problem of merging p-values has a long history, and early results can be found in

Tippett (1931), Pearson (1933) and Fisher (1948) where p-values are assumed to be independent.

Certainly, these methods do not always produce a valid p-value if the assumption of independence

is violated. On the other hand, the independence assumption is often very difficult or impossible

to verify in many applications where only one set of p-values is available.

There are, however, some methods that produce valid p-values without any dependence as-

sumption. A classic one is the Bonferroni method by taking the minimum of the p-values times K

(we allow combined p-values to be greater than 1 and they can be treated as 1) or equivalently,

dividing the critical value by K. Other methods that are valid without assumptions include the

ones based on order statistics by Rüger (1978) and Hommel (1983), and the ones based on averaging

by Vovk and Wang (2020a); details of these merging methods are presented in Section 3.

Some other methods work under weak or moderate dependence assumptions, such as the

method of Simes (1986), which uses the minimum of Kp(i)/i over i = 1, . . . ,K, where p(i) is

the i-th smallest order statistic of p1, . . . , pK . The validity of the Simes method is shown under

a large class of dependence structures (e.g., Sarkar (1998, 2008); Benjamini and Yekutieli (2001)

and Rødland (2006)), although even such dependence assumptions are unlikely to hold in practice

(see e.g., Efron (2010, p.51)). Two more recent methods include the Cauchy combination test

proposed by Liu and Xie (2020) using the weighted average of Cauchy transformed p-values, and

the harmonic mean p-value of Wilson (2019) using the harmonic mean of p-values. Under mild

dependence assumptions, these two methods are asymptotically valid as the significance level goes

to 0 (see Theorem 2).

This paper is dedicated to a comprehensive and unifying treatment of p-value merging methods
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under various dependence assumptions. Some methods are valid without any assumption on the

interdependence of p-values, and they will be referred to as VAD methods. On the other hand,

methods that are valid for some specific but realistic dependence assumption (e.g., independence,

positive dependence, or joint normality dependence) will be referred to as VSD methods. Our main

goal is to understand the difference and the trade-off between these methods.

For a fixed combining function F , using a VAD method means choosing a smaller critical value

(threshold) for making rejections compared to a VSD method. Thus, the gain of validity comes at

the price of a loss of detection power. As it is often difficult to make valid statistical inference on the

dependence structure of p-values, our analysis also helps to understand the relative performance of

VSD combining methods under the presence of model misspecification. As a byproduct, we obtain

several new theoretical results on the popular Simes, harmonic, and Cauchy merging methods.

In the next section, we collect some basic definitions of VAD and VSD merging methods and

their corresponding threshold functions. We focus on symmetric merging functions for the tractabil-

ity in their comparison. In Section 3, we introduce two general classes of combining functions, which

include all methods mentioned above. Formulas for their VAD and VSD threshold functions are

derived, some based on results from robust risk aggregation, e.g., Wang et al. (2013). In Section

4, we introduce independence-comonotonicity balanced (IC-balanced) combining functions, which

are indifferent between the two dependence assumptions. We show that the Cauchy combination

method and the Simes method are the only IC-balanced ones among two general classes of com-

bining methods, thus highlighting their unique roles. In Section 5, we establish strong similarity

between the Cauchy combination and the harmonic averaging methods, and obtain an algebraic

relationship between the harmonic averaging and the Simes functions. In Section 6, the price for

validity is introduced to assess the loss of power of VAD methods compared to their VSD ver-

sions. Simulation studies and a real data analysis are presented in Section 7 to analyze the relative

performance of these methods. Proofs of all technical results are put in the supplementary material.

We conclude the section by providing additional notation and terminology that will be adopted

in this paper. All random variables are defined on an atomless probability space (Ω,F ,P). Random

variables X1, . . . ,Xn are comonotonic if there exist increasing functions f1, . . . , fn and a random

variable Z such that Xi = fi(Z) for each i = 1, . . . , n. For α ∈ (0, 1], qα(X) is the left α-quantile of

a random variable X, defined as

qα(X) = inf{x ∈ R | P(X ≤ x) > α}.

We also use F−1(α) for qα(X) if X follows the distribution F . The set U is the set of all standard
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uniform random variables defined on (Ω,F ,P) (i.e., the set of all measurable functions on (Ω,F)

whose distribution under P is uniform on [0, 1]) and 1 is the indicator function. The equality

d
= represents equality in distribution. For given p1, . . . , pK , the order statistics p(1), . . . , p(K) are

ordered from the smallest to the largest. The equivalence Ax ∼ Bx as x → x0 means that Ax/Bx →
1 as x → x0. All terms of “increasing” and “decreasing” are in the non-strict sense.

2 Merging methods and thresholds

Following the terminology of Vovk and Wang (2020a), a p-variable is a random variable P

such that P(P ≤ ε) ≤ ε, for all ε ∈ (0, 1) (such random variables are called superuniform by

Ramdas et al. (2019)). Values realized by p-variables are p-values. In the Introduction, p-values

are used loosely for p-variables, which should be clear from the context.

Let P1, . . . , PK be K p-variables for testing a common hypothesis. A combining function is an

increasing Borel measurable function F : [0, 1]K → [0,∞) which transforms P1, . . . , PK into a single

random variable F (P1, . . . , PK). The choice of combining function depends on how one integrates in-

formation, and some common options are mentioned in the Introduction. Generally, F (P1, . . . , PK)

may not be a valid p-variable. For different choices of F and assumptions on P1, . . . , PK , one needs

to assign a critical value g(ε) so that the hypothesis can be rejected with significance level ε ∈ (0, 1)

if F (P1, . . . , PK) < g(ε). We call g a threshold (function) for F and P1, . . . , PK . Clearly, g(ε) is

increasing in ε. In case g is strictly increasing, which is the most common situation, the above

specification of g is equivalent to requiring g−1 ◦ F (P1, . . . , PK) to be a p-variable. To objectively

compare various combining methods, one should compare the corresponding values of the function

g−1 ◦ F .

In some situations, it might be convenient and practical to assume additional information

on dependence structure of p-variables, e.g., independence, comonotonicity (i.e., perfectly positive

dependence), and specific copulas. The choice of the threshold g certainly depends on such as-

sumptions. If no assumption is made on the interdependence of the p-variables, the corresponding

threshold function is called a VAD threshold, otherwise it is a VSD threshold. A testing proce-

dure based on a VAD threshold always produces a size less than or equal to the significance level

regardless of the dependence structure of the p-variables.

We denote the VAD threshold of a combining function F by aF . If a merging method is valid

for independent (resp. comonotonic) dependence of p-variables, we use bF (resp. cF ) to denote the

corresponding valid threshold function, and we call it the VI (resp. VC ) threshold. More precisely,
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for the equation

P(F (P1, . . . , PK) < g(ε)) ≤ ε, ε ∈ (0, 1), (1)

a VAD threshold g = aF satisfies (1) for all p-variables P1, . . . , PK ; a VI threshold g = bF satisfies

(1) for all independent p-variables P1, . . . , PK , and a VC threshold g = cF satisfies (1) for all

comonotonic p-variables P1, . . . , PK .

The comonotonicity assumption on the p-variables to combine (actually they are identical if

they are uniform on [0, 1]) is not interesting by itself for statistical practice. Nevertheless, comono-

tonicity is a benchmark for (extreme) positive dependence, and we analyze cF for the purpose of

comparison; it helps us to understand how valid thresholds for different methods vary as the depen-

dence assumption gradually shifts from independence to extreme positive dependence. This point

will be made more clear in Sections 4-7.

An immediate observation is that the p-variables can be equivalently replaced by uniform

random variables on [0, 1] as for each p-variable P , we can find U ∈ U with U 6 P ; see e.g.,

Vovk and Wang (2020a). Therefore, it suffices to consider p-variables in U . Moreover, if g satisfies

(1), then any function that is smaller than g is also valid. Hence, for the sake of power, it is natural

to use the largest functions that satisfy (1). Putting these considerations together, we formally

define the thresholds of interest as follows.

Definition 1. The thresholds aF , bF and cF of a combining function F are given by, for ε ∈ (0, 1),

aF (ε) = inf{qε(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}, (2)

bF (ε) = qε(F (V1, . . . , VK)), (3)

cF (ε) = qε(F (U, . . . , U)), (4)

where U, V1, . . . , VK are independent standard uniform random variables.

It is clear that g = aF , bF or cF in Definition 1 satisfies (1) under the respective dependence

assumptions.

Remark 1. While the objects bF and cF in (3)-(4) can often be explicitly calculated, the object aF in

(2) is generally difficult to calculate for a chosen function F due to the infimum taken over all possible

dependence structures. Techniques in the field of robust risk aggregation, in particular, results in

Wang et al. (2013), Embrechts et al. (2013, 2015) and Wang and Wang (2016), are designed for

such calculation, as illustrated by Vovk and Wang (2020a).
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3 Combining functions

3.1 Two general classes of combining functions

We first introduce two general classes of combining functions, the generalized mean class and

the order statistics class. Let p1, . . . , pK ∈ [0, 1] be the K realized p-values. The first class of

combining functions is the generalized mean, that is,

Mφ,K(p1, . . . , pK) = φ−1

(

1

K

K
∑

i=1

φ(pi)

)

,

where φ : [0, 1] → [−∞,∞] is a continuous and strictly monotone function and φ−1 is its inverse

on the domain φ([0, 1]). Many combining functions used in the statistical literature are included in

this class. For example, the Fisher method (Fisher (1948)) corresponds to the geometric mean with

φ(p) = log(p); the averaging methods of Vovk and Wang (2020a) and Wilson (2019) correspond

to the functions φ(p) = pr, and r ∈ [−∞,∞] (including limit cases), and the Cauchy combination

method of Liu and Xie (2020) corresponds to φ(p) = tan
(

π
(

p− 1
2

))

.

The second class of combining functions is built on order statistics. Let α = (α1, . . . , αK) ∈ R
K
+ ,

where R+ = [0,∞). We define the combining function

Sα,K(p1, . . . , pK) = min
i∈{1,...,K}

p(i)

αi
,

where the convention is p(i)/α = ∞ if α = 0. If α1 = 1/K and all the other components of α are 0,

then using Sα,K yields the Bonferroni method based on the minimum of p-values. The VAD method

via order statistics of Rüger (1978) uses Sα,K by setting αi = i/K for a fixed i ∈ {1, . . . ,K} and

all the other components of α to be 0. On the other hand, if αi = i/K for each i = 1, . . . ,K, then

we arrive at the method of Simes (1986); in this case, we will simply denote Sα,K by SK , namely,

SK(p1, . . . , pK) := min
i∈{1,...,K}

Kp(i)

i
,

and SK will be called the Simes function. The method of Hommel (1983) uses ℓKSK , which is SK

adjusted via the VAD threshold, where

ℓK =
K
∑

k=1

1

k
. (5)

If αi+1 6 αi, then the term p(i+1)/αi+1 does not contribute to the calculation of Sα,K(p1, . . . , pK).

Hence, we can safely replace αi+1 by αi without changing the function Sα,K . Thus, we shall assume,

without loss of generality, that α1 6 . . . 6 αK . Admissibility of VAD merging methods in the above

two classes are studied by Vovk et al. (2020).
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Recall that a function F : RK
+ → R is homogeneous if F (λx) = λF (x) for all λ > 0 and

x ∈ R
K
+ . It is clear that the function Sα,K is homogeneous, and so are the averaging methods of

Vovk and Wang (2020a). In such cases, we can show that the VAD threshold aF is a linear function.

Proposition 1. If the combination function F is homogeneous, then the VAD threshold aF (x) is

a constant times x on (0, 1).

In the subsections below we will discuss several special cases of the above two classes of

combining functions, and analyze their corresponding threshold functions. As the first example, we

note that the functions aF , bF and cF for the Bonferroni method can be easily verified.

Proposition 2. Let F (p1, . . . , pK) = min{p1, . . . , pK} for p1, . . . , pK ∈ [0, 1]. Then aF (ε) = ε/K,

bF (ε) = 1− (1− ε)1/K and cF (ε) = ε for ε ∈ (0, 1).

3.2 The averaging methods

The aforementioned averaging methods of Vovk and Wang (2020a) use the combining functions

given by

Mr,K(p1, . . . , pK) =

(

pr1 + · · ·+ prK
K

)
1

r

,

for r ∈ R \ {0}, together with its limit cases

M−∞,K(p1, . . . , pK) = min{p1, . . . , pK};

M0,K(p1, . . . , pK) =

(

K
∏

i=1

pi

)

1

K

;

M∞,K(p1, . . . , pK) = max{p1, . . . , pK}.

Some special cases of the combining function above are r = −∞ (minimum), r = −1 (harmonic

mean), r = 0 (geometric mean), r = 1 (arithmetic mean) and r = ∞ (maximum); the cases

r ∈ {−1, 0, 1} are known as Platonic means. Note that M−∞,K gives rise to the Bonferroni method,

and the geometric mean yields Fisher’s method (Fisher (1948)) under the independence assumption.

The harmonic mean p-value of Wilson (2019) is a VSD method using the harmonic mean.

Since the mean function Mr,K is homogeneous, by Proposition 1, the VAD threshold is a

linear function aF (x) = arx, x ∈ (0, 1) for some ar > 0. The multipliers ar have been well studied

in Vovk and Wang (2020a), and here we mainly focus on the cases of Platonic means and the

Bonferroni method. It is known that a−∞ = K and a1 = 2. For r = 0 or r = −1, the values of ar
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and their asymptotic formulas are calculated by Propositions 4 and 6 of Vovk and Wang (2020a),

summarized below for K > 3.

(i) a0 = cK exp((K − 1)(1 − KcK)) where cK is the unique solution to the equation: log(1/c −
(K − 1)) = K −K2c for c ∈ (0, 1/K). Moreover, a0 ≥ 1/e, and a0 → 1/e as K → ∞.

(ii) a−1 =
(yK+1)K
(yK+K)2

where yK is the unique solution to the equation: y2 = K((y+1) log(y+1)−y)

for y ∈ (0,∞). Moreover, a−1 ≥ (e logK)−1, and a−1 logK → 1 as K → ∞.

To determine the VC threshold, it is easy to check that cMr,K
(x) = x, x ∈ (0, 1) for all

r ∈ [−∞,∞], because the generalized mean of identical objects is equal to themselves; this obviously

holds for all functions in the family of Mφ,K .

Next, we study br := bMr,K
or its approximate form. For this, we will use stable distributions

(e.g., Samorodnitsky (2017)) below. Let Fα be the stable distribution with stability parameter

α ∈ (0, 2), skewness parameter β = 1, scale parameter σ = 1 and shift parameter µ = 0. The

characteristic function of Fα is given by, for θ ∈ R,

∫

exp(iθx) dFα(x) =











exp
(

−|θ|α(1− i sgn(θ) tan πα
2 )
)

if α 6= 1,

exp
(

−|θ|(1 + i 2π sgn(θ) log |θ|)
)

if α = 1,

where sgn(·) is the sign function. For α > 2, Fα stands for the standard normal distribution.

Proposition 3. Let br be the VI threshold of Mr,K , r ∈ R.

(i) If r < 0, then for K ∈ N+

br(ε) ∼ K−1−1/rε, as ε ↓ 0,

and for ε ∈ (0, 1),

br(ε) ∼
((

CαF
−1
α (1− ε) + bK

)

/K
)

1

r , as K → ∞,

where α = −1/r > 0 and the constants Cα and bK are given in Table 1.

(ii) If r = 0, then

br(ε) = exp

(

− 1

2K
q1−ε

(

χ2
2K

)

)

.

(iii) If r > 0, then for K ∈ N+,

br(ε) =
(Γ(1 +K/p))1/Kε1/K

K1/rΓ(1 + 1/p)
, if ε ≤ (Γ(1+1/p))K

Γ(1+K/p) ,
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where Γ is the Gamma function. For ε ∈ (0, 1),

br(ε) ∼
(

σ√
K

Φ−1(ε) + µ

)1

r

, as K → ∞,

where µ = (r + 1)−1 and σ2 = r2(1 + 2r)−1(1 + r)−2.

r = −1/α Cα bK

− 1

2
≤ r < 0

(

K

(

α
α−2

−
(

α
α−1

)2
))1/2

Kα/(α− 1)

−1 < r < − 1

2
K1/α (Γ(1− α) cos(πα/2))

1/α
Kα/(α− 1)

r = −1 Kπ/2
πK2

2

∫

∞

1

sin

(

2x

Kπ

)

αx−α−1 dx

r < −1 K1/α (Γ(1− α) cos(πα/2))
1/α

0

Table 1: Coefficients Cα and bK for r = −1/α < 0.

3.3 The Cauchy combination method

The Cauchy combination method is recently proposed by Liu and Xie (2020) which relies on

a special case of the generalized mean via φ = C−1, where C is the standard Cauchy cdf, that is,

C(x) = 1

π
arctan(x) +

1

2
, x ∈ R; C−1(p) = tan

(

π

(

p− 1

2

))

, p ∈ (0, 1).

We denote this combining function by MC,K (instead of MC−1,K for simplicity), namely,

MC,K(p1, . . . , pK) := C
(

1

K

K
∑

i=1

C−1 (pi)

)

.

It is well known that the arithmetic average of either independent or comonotonic standard Cauchy

random variables follows again the standard Cauchy distribution. This feature allows the use of

such a combination method to combine p-values under uncertain dependence assumptions. In

addition, Liu and Xie (2020) showed that under a bivariate normality assumption of the individual

test statistics (i.e., a normal copula), the combined p-value has the same asymptotic behaviour as

the one under the assumption of independence (see Theorem 2 (ii) below).

Since 1
K

∑K
i=1 C−1(Ui) follows a standard Cauchy distribution if U1, . . . , UK ∈ U are either

independent or comonotonic, we have bF (x) = cF (x) = x for all x ∈ (0, 1). This convenient feature

will be studied in more detail in Section 4.

By Definition 1, we get, for F = MC,K ,

aF (ε) = C
(

inf

{

qε

(

1

K

K
∑

i=1

C−1(Ui)

)

| U1, . . . , UK ∈ U
})

. (6)
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The function aF does not admit an explicit formula, but it can be calculated via results from

robust risk aggregation (Corollary 3.7 in Wang et al. (2013)) as in the following proposition.

Proposition 4. For ε ∈ (0, 1/2), we have aF (ε) = C (−Hε(xK)/K) , where

Hε(x) = (K − 1)C−1(1− ε+ (K − 1)x) + C−1(1− x), x ∈ (0, ε/K),

and xK is the unique solution x ∈ (0, ε/K) to the equation

K

∫ ε/K

x
Hε(t) dt = (ε−Kx)H(x).

3.4 The Simes method

The method of Simes (1986) uses the Simes function SK in the order statistics family, given

by SK(p1, . . . , pK) = mini∈{1,...,K}
K
i p(i). For F = SK , the results in Hommel (1983) together with

Proposition 1 suggest that aF (x) = x/ℓK for x ∈ (0, 1). For independent p-variables P1, . . . , PK ∈ U ,
Simes (1986) obtained

P

(

min
i∈{1,...,K}

K

i
P(i) > ε

)

= 1− ε, ε ∈ (0, 1),

which gives bF (x) = x for x ∈ (0, 1). For comonotonic p-variables P1, . . . , PK ∈ U , it is clear that

SK(P1, . . . , PK) = P(K), which follows a standard uniform distribution, and hence we again have

cF (x) = x for x ∈ (0, 1). The validity of the Simes function using the VI (VC) threshold (called the

Simes inequality) holds under many positive dependence structures; see e.g., Sarkar (1998, 2008).

In the context of testing multiple hypotheses, if p-variables for several hypothesis are indepen-

dent, the Benjamini-Hochberg procedure for controlling the false discovery rate (FDR) (Benjamini and Hochberg

(1995)) also relies on the Simes function (in case all hypotheses are null). Although the Benjamini-

Hochberg procedure is valid for many practical models, to control the FDR under arbitrary depen-

dence structure of p-variables, one needs to multiply the p-values by ℓK , resulting in the Benjamini-

Yekutieli procedure (Benjamini and Yekutieli (2001)). This constant is exactly x/aF (x), and the

function aF is called a reshaping function by Ramdas et al. (2019) in the FDR context.

4 Independence-comonotonicity balance

As we have seen above, the Cauchy function and the Simes function both satisfy bF = cF ,

and hence the corresponding merging methods are invariant under independence or comonotonicity

assumption, an arguably convenient feature. Inspired by this observation, we introduce the property
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of independence-comonotonicity balance for combining functions in this section. This property

distinguishes the Cauchy combination method and the Simes method from their corresponding

classes Mφ,K and Sα,K , respectively.

A combining function is said to be balanced between two different dependence structures of

p-variables if the resulting combined variable under the two dependence assumptions coincide in

distribution. Recall that U, V1, . . . , VK are independent standard uniform random variables.

Definition 2. A combining function F : [0, 1]K → [0,∞) is independence-comonotonicity balanced

(IC-balanced) if F (V1, . . . , VK)
d
= F (U, . . . , U).

As the VI and VC thresholds are the corresponding quantile functions of F (P1, . . . , PK), we

immediately conclude that a combining function F : [0, 1]K → [0,∞) is IC-balanced if and only if

bF = cF on (0, 1]; recall that cF is the identity for all functions in Section 3.

IC-balanced methods have the same threshold bF = cF if the dependence structure of p-

variables is a mixture of independence and comonotonicity, i.e., with the copula

λ
n
∏

i=1

xi + (1− λ) min
i=1,...,n

xi, (x1, . . . , xn) ∈ [0, 1]n, (7)

where λ ∈ [0, 1]. This is because P(F (U1, . . . , UK) 6 bF (ε)) is linear in the distribution of

(U1, . . . , UK).

For any combining function F , VI (VC) thresholds generally yield more power to the test

compared with the corresponding VAD threshold, but the gain of power may come with the in-

validity due to model misspecification. If a combining function F is IC-balanced, the validity is

preserved under independence, comonotonicity and their mixtures, and we may expect (without

mathematical justification) that, to some extent, the size of the test can be controlled properly

even if mild model misspecification exists. Therefore, the notion of IC-balance can be interpreted

as insensitivity to some specific type of model misspecification (e.g., dependence structure given in

(7)) for VSD merging methods.

We have already seen in Section 3 that the Cauchy combination method and the Simes method

are IC-balanced. Below we show that they are the only IC-balanced methods among the two classes

of combining functions based on generalized mean and order statistics.

Theorem 1. For a generalized mean function Mφ,K and an order statistics function Sα,K ,

(i) Mφ,K is IC-balanced for all K ∈ N if and only if it is the Cauchy combining function, i.e.,

φ(p) is a linear transform of tan
(

π
(

p− 1
2

))

, p ∈ (0, 1);
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(ii) Sα,K is IC-balanced if and only if it is a positive constant times the Simes function.

The IC-balance of Mφ,K for some fixed K (instead of all K ∈ N) does not imply that φ

is the quantile function of a Cauchy distribution; see the counter-example (Example A.1) in the

supplementary material. As a direct consequence of Theorem 1, if Sα,K is IC-balanced, then Sα,k

for k = 2, . . . ,K − 1, are also IC-balanced (here we use the first k component of α); a similar

statement does not hold in general for the generalized mean functions, also shown by Example A.1.

Remark 2. The property of IC-balance should be seen as a necessary but not sufficient condition

for a merging method to be insensitive to dependence between independence and comonotonicity.

As shown by Sarkar (1998), the Simes method is valid for positive regression dependence, which

is a large spectrum of dependence structures connecting independence and comonotonicity (larger

than (7)); on the other hand, the Cauchy combination method using VI threshold is valid under a

bivariate Gaussian assumption asymptotically but not precisely (Liu and Xie (2020)); see Theorem

2 below and the simulation studies in Section 7. Instead of arguing for the practical usefulness of

IC-balance, we emphasize it as a necessary condition for insensitivity to dependence. The main

aim of Theorem 1 is, via this necessary condition, to pin down the unique role of the Simes and

the Cauchy combination methods among their respective generalized classes, thus justifying their

advantages with respect to dependence.

5 Connecting the Simes, the harmonic averaging and the Cauchy

combination methods

As we have seen from Theorem 1, the Cauchy and Simes combining functions are the only

IC-balanced ones among the two classes considered in Section 3. Although the harmonic combining

function does not satisfy bF = cF , we observe empirically that the harmonic averaging method and

the Cauchy combination method report very similar results in all simulations; see Section 7.

In this section, we explore the relationship among the three methods based on SK , M−1,K

and MC,K . We first show that that the harmonic averaging method is equivalent to the Cauchy

combination method asymptotically in a few senses. Second, we show the Simes function SK and

the harmonic averaging function M−1,K are closely connected via M−1,K 6 SK 6 ℓKM−1,K , where

ℓK is given in (5). Throughout this section, for fixed K ∈ N, we write aC = aMC,K
, aS = aSK

,

aH = aM−1,K
and similarly for bC , bS and bH.

We will use the following assumption on the p-variables U1, . . . , UK ∈ U .

12



(G) For each 1 ≤ i < j ≤ K, (Ui, Uj) follows a bivariate Gaussian copula (which can be different

for each pair).

The assumption (G) is mild and is imposed by Liu and Xie (2020, Condition C.1). Note that

condition (G) includes independence and comonotonicity as special cases. The following theorem

confirms the close relationship between the harmonic averaging method and the Cauchy combination

method. Recall that the VC thresholds for both methods are the identity function, and thus it

suffices to look at VAD and VI thresholds.

Theorem 2. For fixed K ∈ N, the harmonic averaging and the Cauchy combination methods are

asymptotically equivalent in the following senses:

(i) If mini∈{1,...,K} pi ↓ 0 and maxi∈{1,...,K} pi ≤ c for some fixed c ∈ (0, 1), then

MC,K(p1, . . . , pK)

M−1,K(p1, . . . , pK)
→ 1.

(ii) For K standard uniform random variables U1, . . . , UK satisfying condition (G),

P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε) ∼ ε, as ε ↓ 0. (8)

In particular, bC(ε) ∼ bH(ε) as ε ↓ 0.

(iii) aC(ε) ∼ aH(ε) as ε ↓ 0.

(iv) For r 6= −1,
MC,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
6→ 1, as max

i∈{1,...,K}
pi ↓ 0.

Remark 3. The statement P (MC,K(U1, . . . , UK) < ε) ∼ ε in Theorem 2 (ii) is implied by Theorem 1

of Liu and Xie (2020), which gives the same convergence rate for the weighted Cauchy combination

method. For the weighted harmonic averaging method, we have a similar result (see (A.20) in the

supplementary material): For standard uniform random variables U1, . . . , UK satisfying condition

(G) and any (w1, . . . , wK) ∈ [0, 1]K with
∑K

i=1 wi = 1, we have

P

(

K
∑

i=1

wiU
−1
i < ε

)

∼ ε, as ε ↓ 0.

We omit a discussion on weighted merging methods as the focus of this paper is comparing sym-

metric combination functions.
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The first statement of Theorem 2 means that, if at least one of realized p-values are close to

0, the harmonic averaging and the Cauchy combining functions will produce very close numerical

results. This case is likely to happen in high-dimensional situations where the number of p-variables

is very large. As the condition (G) for (ii) in Theorem 2 is arguably mild, the thresholds of the

two methods are similar for a small significance level under a wide range of dependence structures

of p-variables (including independence and comonotonicity). Therefore, if the significance level is

small, one likely arrives at the same statistical conclusions on the hypothesis testing by using either

method. The third result in Theorem 2 illustrates the equivalence between the VAD thresholds

of the harmonic averaging method and the Cauchy combination method as the significance level

goes to 0. The final result in Theorem 2 shows that among all averaging methods, the harmonic

averaging method is the only one that is asymptotically equivalent to the Cauchy combination

method.

Remark 4. We note that the equivalence

P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε)

in (8) does not always hold under arbitrary dependence structures. Since the Cauchy distribution

is symmetric, it is possible that P(C−1(U1) + · · · + C−1(UK) = 0) = 1 for some U1, . . . , UK ∈ U ,
implying P(MC,K(U1, . . . , UK) < 1/2) = 0. Indeed, Theorem 4.2 of Puccetti et al. (2019) implies

that there exist K standard Cauchy random variables whose sum is a constant c, for each c ∈
[−K log(K − 1)/π,K log(K − 1)/π]. On the other hand, P(M−1,K(U1, . . . , UK) < ε) > 0 for all

ε > 0 and all U1, . . . , UK ∈ U . Thus, P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε) does

not hold.

Remark 5. The equivalence in Theorem 2 (ii) relies on the p-variables being uniform on [0, 1]. For

p-variables that are stochastically larger than uniform, the behaviour of the Cauchy combination

method and that of the harmonic averaging method may diverge; nevertheless, by Theorem 2 (i),

for a realized vector of p-values with at least one very small component, the two methods would

produce similar values.

The next result reveals an intimate relationship between the Simes and the harmonic averaging

methods.

Theorem 3. For p1, . . . , pK ∈ [0, 1],

M−1,K(p1, . . . , pK) 6 SK(p1, . . . , pK) 6 ℓKM−1,K(p1, . . . , pK).
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The first inequality holds as an equality if p1 = · · · = pK . The second inequality holds as an equality

if p1 = pk/k for k = 2, . . . ,K. As a consequence, aS/aH ∈ [1, ℓK ] and bS/bH ∈ [1, ℓK ].

By Proposition 3 (i), the VI threshold of the harmonic averaging method satisfies bH(ε) ∼
ε = bS as ε ↓ 0. Using Theorem 3, we further know that bH(ε) < ε (the inequality is strict since

M−1,K < SK has probability 1 for independent p-variables). Therefore, we cannot directly use

the asymptotic VI threshold ε of the harmonic averaging method, which needs to be corrected; see

Wilson (2019).

To summarize the results in this section, the Cauchy combining function and the harmonic

averaging function are very similar in several senses, and the Simes function is more conservative

than the harmonic averaging function. Empirically, we see that the Simes function is only slightly

more conservative; see Section 7.

6 Prices for validity

For a given set of realized p-values, the decision to the hypothesis testing for some specific

combining function will be determined by the corresponding threshold. The VAD method can

always control the size below the significance level; VSD methods may not have the correct size,

but they yield more power than the VAD method. Therefore, there is always a trade-off between

validity and efficiency, thus a price for validity.

For a combining function F , let gF be the VSD threshold under some specific dependence

assumption of the p-variables, e.g., independence, comonotonicity, or condition (G). For some fixed

ε ∈ (0, 1), the ratio gF (ε)/aF (ε) is called the price for validity under the corresponding depen-

dence assumption of the p-variables. For instance, bF (ε)/aF (ε) is the price paid for validity under

independence assumption and cF (ε)/aF (ε) is the corresponding price under the comonotonicity as-

sumption. For a specific application, one may consider the price for validity under other dependence

assumptions. The calculation of the price for validity serves for two purposes:

i (Power gain/loss): On the one hand, if additional information on the dependence structure of

the p-values is available, the price for validity can be used as a measure for the gain of power

from the dependence information. On the other hand, if the dependence information is not

available or credible, the price can be used to measure the power loss by switching to the VAD

threshold.

ii (Sensitivity to model misspecification): If the dependence structure is ambiguous, VAD thresh-
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olds should be used. A small price for validity indicates that a relatively small change of

threshold due to the model ambiguity. Hence, the price for validity can be used as a tool to

assess the sensitivity of VSD methods to model misspecification.

We use the Bonferroni method based on the combining function F = M−∞,K as an example

to illustrate the above idea. Using Proposition 2 and noting that K(1− (1− ε)1/K) ∼ ε as ε ↓ 0, we

obtain that the prices for validity of the Bonferroni method satisfy cF (ε)/aF (ε) = K for ε ∈ (0, 1)

and bF (ε)/aF (ε) → 1 as ε ↓ 0. Therefore, for a small ε close to 0, the price for validity under the

independence assumption is close to 1 while the price for validity under the comotonicity assumption

increases linearly as the number of p-variables increases. This means a model misspecification of

independence is not affecting the Bonferroni method much, whereas a model misspecification of

comonotonicity greatly affects the statistical conclusion of the Bonferroni method.

Next we numerically calculate the prices for validity under independence and comonotonicity

assumptions for various merging methods using results in Section 3. We consider the Bonferroni,

the harmonic averaging, the geometric averaging, the Cauchy combination, the Simes, and the

negative-quartic (using M−4,K , a compromise between Bonferroni and harmonic averaging) meth-

ods. Numerical results on the prices for validity are reported in Table 2 for ε = 0.01. The results

for ε = 0.05 are similar and reported in Table B.4 in the supplementary material.

K = 50 K = 100 K = 200 K = 400

bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF

Bonferroni 1.005 50.000 1.005 100.000 1.005 200.000 1.005 400.000

Negative-quartic 1.340 25.071 1.340 42.164 1.340 70.911 1.340 119.257

Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570

Cauchy 6.625 6.625 7.465 7.465 8.277 8.277 9.058 9.058

Harmonic 6.658 6.625 7.496 7.459 8.314 8.273 9.117 9.072

Geometric 69.903 2.718 78.096 2.718 84.214 2.718 88.694 2.718

Table 2: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.01 and K ∈ {50, 100, 200, 400}

The Bonferroni and the negative-quartic methods pay much lower price under the indepen-

dence assumption than the comonotonicity assumption, and the geometric averaging method is the

absolute opposite. On the other hand, the harmonic averaging, the Simes and the Cauchy combina-

tion methods have relatively small prices under both independence and comonotonicity assumptions

and their prices increase at moderate rates as K increases, compared to other methods. In partic-

ular, the harmonic averaging and the Cauchy combination methods have very similar performance
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(cf. Theorem 2) and their prices are slightly larger than that of the Simes method. If mild model

misspecification exists, it may be safer to choose one of the harmonic averaging, the Simes and

the Cauchy combination methods and use the corresponding VAD threshold without losing much

power.

Next, we show that the prices for validity of the harmonic averaging, the Cauchy combination

and the Simes methods behave like logK for K large enough and ε small enough.

Proposition 5. For ε ∈ (0, 1), the prices for validity satisfy:

(i) For the harmonic averaging method, F = M−1,K ,

lim
δ↓0

bF (δ)

aF (δ)
=

cF (ε)

aF (ε)
∼ logK, as K → ∞.

(ii) For the Cauchy combination method, F = MC,K ,

lim
δ↓0

bF (δ)

aF (δ)
= lim

δ↓0

cF (δ)

aF (δ)
∼ logK, as K → ∞.

(iii) For the Simes method, F = SK ,

bF (ε)

aF (ε)
=

cF (ε)

aF (ε)
∼ logK, as K → ∞.

Numerical values of the ratios between the price for validity under independence assumption

and logK are reported in Table 3; the results for the corresponding ratios under comonotonicity

assumption are similar for these methods. The Simes method has the fastest convergence rate

among the three methods. The ratios for the harmonic averaging and the Cauchy combination

methods converge quite slowly and have similar rates. This fact can also be explained by Theorem

3, where we see that the Simes function is generally larger than the harmonic averaging function.

Based on Proposition 5, one may be tempted to use bF / logK as the corrected critical value

under model misspecification; however, for the harmonic averaging and the Cauchy combination

methods, the asymptotic rate of logK can only be expected for very large K (instead, 1.7 logK

works for K > 100).

Remark 6. Instead of using gF (ε)/aF (ε), an alternative way to define the price for validity is

the ratio of the type-I errors, P(F (P1, . . . , PK) < gF (ε))/P(F (P1, . . . , PK) < aF (ε)), where the

dependence of p-variables P1, . . . , PK corresponds to the VSD method. More precisely, for a fixed

ε ∈ (0, 1), the price for validity is ε/g−1
F (aF (ε)), where g−1

F is the (generalized) inverse of gF . This

alternative formulation is similar to our gF (ε)/aF (ε), as we explain below.
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ε K = 10 20 50 100 200 500

Simes
0.05 1.272035 1.200955 1.150097 1.126425 1.109415 1.093041

0.01 1.272035 1.200955 1.150097 1.126425 1.109415 1.093041

Cauchy
0.05 1.979572 1.82826 1.693025 1.620527 1.561670 1.511264

0.01 1.980144 1.828822 1.693562 1.621011 1.562121 1.504288

Harmonic
0.05 2.026308 1.873762 1.73641 1.661098 1.601539 1.539448

0.01 1.989255 1.837605 1.701851 1.627702 1.569179 1.508248

Table 3: Numerical values of 1
log(K)

bF (ε)
aF (ε) for the Simes, the Cauchy combination and the harmonic

averaging methods.

(i) For the averaging, the Simes and the Cauchy combination methods, the alternative prices

under comonotonicity are identical to our definition cF (ε)/aF (ε) since cF is the identity.

(ii) Similarly, the alternative prices for the Simes and the Cauchy combination methods under

independence are identical to our definition bF (ε)/aF (ε) since bF is the identity.

(iii) For the averaging methods, ε/b−1
F (aF (ε)) may be different from bF (ε)/aF (ε); however, by

letting δ = aF (ε), we have (aF is strictly increasing in all cases we consider)

ε

b−1
F (aF (ε))

=
a−1
F (δ)

b−1
F (δ)

.

This is very similar to our definition of prices, bF (ε)/aF (ε); it is a matter of looking at the

ratio of threshold functions or that of their inverses.

7 Simulations and a real data example

7.1 Simulation studies

We conduct K one-sided z-tests of the null hypothesis: µi = 0 against the alternative hypothe-

sis µi > 0, i = 1, . . . ,K, using the test statistic Xi and the p-value pi from the ith test, i = 1, . . . ,K.

The tests are formulated as the following:

pi = Φ(Xi), Xi = ρZ +
√

1− ρ2Zi − µi, i = 1, . . . ,K.

where Φ is the standard normal distribution function, Z,Z1, . . . , ZK are iid standard normal random

variables, µi ≥ 0, i = 1, . . . ,K, and ρ is a parameter in [0, 1]. Note that for ρ = 0, the p-variables

are independent, and ρ = 1 corresponds to the case where p-variables are comonotonic.
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Let K ∈ {50, 200} and set the significance level ε = 0.01. To see how different dependence

structures and signals affect the size and the power for various methods using both VAD and VSD

thresholds, the rejection probabilities (RPs) are computed over ρ ∈ [0, 1] under the following four

cases:

(i) (no signal) 100% of µi’s are 0;

(ii) (needle in a haystack) 98% of µi’s are 0 and 2% of µi’s are 4;

(iii) (sparse signal) 90% of µi’s are 0 and 10% of µi’s are 3;

(iv) (dense signal) 100% of µi’s are 2.

The RP corresponds to the size under case (i), and it corresponds to the power under (ii), (iii)

and (iv). The RP is computed as the ratio between the number of the combined values which are

less than the critical threshold and the number of simulations for some ρ ∈ [0, 1], that is,

RP =

∑N
i=1 1{Fi<g(ε)}

N
,

where N is the number of simulations and is equal to 15000 in our study, Fi is the realized value

of the combining function for the i-th simulation, i = 1, . . . , N , and g(ε) is the corresponding

critical value. For ρ ∈ [0, 1], graphs of RPs for different combining methods are drawn using VAD

thresholds and VSD thresholds. Some observations from Figures 1-4 are made below, and those on

the averaging methods using Mr,K are consistent with the observations in Vovk and Wang (2020a).

(a) All VAD methods give sizes less than ε = 0.01 as expected. Using VAD thresholds, the Bon-

ferroni, the harmonic averaging, the Cauchy combination and the Simes methods have good

powers.

(b) The Simes method using thresholds bF or cF reports the right size for all values of ρ. Sarkar

(1998) showed the validity of the Simes method in the so-called MTP2 class including multi-

variate normal distributions with nonnegative correlations (the setting of our simulation).

(c) Using thresholds bF or cF , the harmonic averaging and Cauchy combination methods perform

similarly with sizes possibly larger than 0.01 (see Theorems 2 and 3).

(d) The geometric averaging method using bF and the Bonferroni and negative-quartic methods

using cF do not yield correct sizes under model misspecification, and the sizes increase rapidly

as the misspecification gets bigger.
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(e) Using bF or cF , the harmonic averaging, the Cauchy combination and the Simes methods have

good performances on capturing the signals.
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Figure 1: Case (i): size (top: K = 50, bottom: K = 200)

7.2 Real data analysis

We apply several merging methods to a genomewide study to compare their performances.

We use the dataset of p-values of Storey and Tibshirani (2003) which contains 3170 p-values com-

puted based on the data from Hedenfalk et al. (2001) for testing whether genes are differentially

expressed between BRCA1- and BRCA2-mutation-positive tumors. As mentioned in Section 2,

g−1 ◦F (P1, . . . , PK) is a p-variable if the threshold g is strictly increasing, and it is the quantity we

choose to compare combined p-values for different methods.

For each method, we calculate the combined p-value, and remove the smallest p-value from the

dataset. Repeat this procedure until the resulting combined p-value loses significance. Using the

Bonferroni combining function, this leads to the Bonferroni-Holm (BH) procedure (Holm (1979));

thus we mimic the BH procedure for other methods in a naive manner. The rough interpretation

is to report the number of significant discoveries (this procedure generally does not control the

family-wise error rate (FWER); to control FWER one needs to use a generalized BH procedure

as in Vovk and Wang (2020a) or Goeman et al. (2019). This procedure can be seen as a lower

confidence bound from a closed testing perspective). For a visual comparison of detection power,

20



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VAD methods
po

w
er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VI methods

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VC methods

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rho

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rho

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rho

po
w

er

Bonferroni Negative−quartic Geometric Harmonic Simes Cauchy

Figure 2: Case (ii): needle in a haystack (top: K = 50, bottom: K = 200)
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Figure 3: Case (iii): sparse signal (top: K = 50, bottom: K = 200)
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Figure 4: Case (iv): dense signal (top: K = 50, bottom: K = 200)

the combined p-values against the numbers of removed p-values are plotted in Figure 5, where we

use both the VAD and the VI thresholds (comonotonicity is obviously unrealistic here).
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Figure 5: Combined p-value after removing n smallest p-values

All VAD methods lose significance at ε = 0.05 after omitting the first or the second smallest

p-value (the smallest p-value is 0 and the second smallest is 1.26 × 10−5). Using thresholds bF

for independence, the Bonferroni and the negative quartic methods behave similarly to their VAD

versions (as their price for validity is close to 1). In contrast, the Simes, the Cauchy combination and

the harmonic averaging methods lose significance at ε = 0.05 after removing around 20, 70 and 110

p-values respectively. The geometric averaging method (Fisher’s) exceeds 0.05 only after removing

around 400 p-values. However, this method relies heavily on the independence assumption, which
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is impossible to verify from just one set of p-values.

8 Concluding remarks

We discussed two aspects of merging p-values: the impact of the dependence structure on

the critical thresholds and the trade-off between validity and efficiency. The Cauchy combination

method and the Simes method are shown to be the only IC-balanced members among the generalized

mean class and the order statistics class of combining functions. The harmonic averaging and

the Cauchy combination methods are asymptotically equivalent, and the Simes and the harmonic

averaging methods have simple algebraic relationship. For the above three methods, the prices

for validity under independence (comonotonicity) assumption all behaves like logK for large K.

Moreover, these methods lose moderate amount of power if VAD thresholds are used, and their

performance against model misspecification is better than other methods. This explains the wide

applications of these methods in different statistical procedures.

Merging p-values is not only useful for testing a single hypothesis, but also important in testing

multiple hypotheses, controlling false discovery rate (Benjamini and Hochberg (1995), Benjamini and Yekutieli

(2001)), and exploratory research (Goeman and Solari (2011), Goeman et al. (2019)). In many sit-

uations especially involving a large number of hypotheses and tests, dependence information is

hardly available. The results in our paper offer some insights, especially in terms of gain/loss of va-

lidity and power, on how the absence of such information influences different statistical procedures

of merging p-values.

In many practical applications, p-values arrive sequentially in time, and the existence of the

n-th p-variable may depend on previously observed p-values (only promising experiments may

be continued); thus the number of experiments to combine is a stopping time. Unfortunately,

the current merging method of p-values discussed in this paper cannot be used to sequentially

update p-values with arbitrary stopping rule. To deal with such a situation, one has to rely on

anytime-valid methods, typically through the use of a test supermartingale (see Howard et al. (2020)

and Ramdas et al. (2020)) or through e-values (see Shafer (2020) and Vovk and Wang (2020b)).

Moreover, e-values are nicer to combine (e.g., using average and product as in Vovk and Wang

(2020b)) especially under arbitrary dependence, in contrast to the complicated methods of merging

p-values.
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Supplementary Material for

Trade-off between validity and efficiency of merging p-values under arbitrary

dependence

A Proofs of theorems and propositions

A.1 Proof of Proposition 1

By definition, we have

aF (ε) = inf{qε(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}, ε ∈ (0, 1).

We shall show

aF (ε) = inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}, ε ∈ (0, 1), (A.9)

where Uε denotes the collection of all uniform random variables distributed on [0, ε]. Denote by

S = F (U1, . . . , UK) and G−1
S (t) = qt(S), t ∈ (0, 1]. We can find US ∈ U such that G−1

S (US) = S

a.s. (e.g., Lemma A.32 of Föllmer and Schied (2016)). Let fi(t) = P (Ui ≤ t|US < ε) , t ∈ [0, 1].

Then fi(Ui) conditionally on US < ε is a uniform random variable on [0, 1] and V ε
i := εfi(Ui)

conditionally on US < ε is a uniform random variable on [0, ε]. We construct the following two

random variables:

S1 = S1{US<ε} + d1{US≥ε}, S2 = F (V ε
1 , . . . , V

ε
n )1{US<ε} + d1{US≥ε}, (A.10)

where d > F (ε, . . . , ε). Noting the fact that εfi(t) = P(Ui ≤ t, US < ε) ≤ t, t ∈ [0, 1] and

F is increasing, we have S1 ≥ S2. Hence qε(S1) ≥ qε(S2). Moreover, direct calculation shows

qε(S) = qε(S1). Thus qε(S) ≥ qε(S2). Let V̂1, . . . , V̂n be uniform random variables on [0, ε] such

that (V̂1, . . . , V̂n) has the joint distribution identical to the conditional distribution of (V ε
1 , . . . , V

ε
n )

on US < ε. Hence, for x < d,

P(S2 ≤ x) = P(F (V ε
1 , . . . , V

ε
n ) ≤ x,US < ε)

= εP(F (V ε
1 , . . . , V

ε
n ) ≤ x|US < ε)

= εP(F (V̂1, . . . , V̂n) ≤ x).

This implies qε(S2) = q1(F (V̂1, . . . , V̂n)). Thus we have

aF (ε) ≥ inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}.
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We next show “≤” in (A.9). Take V1, . . . , Vn ∈ Uε and U ∈ U such that U is independent of

V1, . . . , Vn. Let Ûi = Vi1{U<ε} + U1{U≥ε}, i = 1, 2, . . . , n. It is clear that Ûi ∈ U , i = 1, 2, . . . , n

and F (Û1, . . . , Ûn) = F (V1, . . . , Vn)1{U<ε} + F (U, . . . , U)1{U≥ε}. Noting that F is increasing, we

have q1(F (V1, . . . , Vn)) = qε(F (Û1, . . . , Ûn)). This implies

aF (ε) ≤ inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}.

Therefore, (A.9) holds. By (A.9) and the homogeneity of F we have that for ε ∈ (0, 1),

aF (ε) = inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}

= inf{q1(F (εU1, . . . , εUK)) | U1, . . . , UK ∈ U}

= ε inf{q1(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}.

This completes the proof.

A.2 Proof of Proposition 2

It is well known that the Bonferroni correction yields aF (ε) = ε/K. Also, since the average of

identical objects is itself, cF (ε) = ε for any averaging method, including the Bonferroni method. For

iid standard uniform random variables V1, . . . , VK , we have P(min{V1, . . . , VK} ≤ x) = 1− (1−x)K .

Therefore, bF (ε) = 1− (1− ε)1/K for ε ∈ (0, 1).

A.3 Proof of Proposition 3

(a) Suppose r < 0. We first fix K and find the asymptotic of br as ε ↓ 0 satisfying

P

(

K
∑

i=1

P r
i ≥ K (br(ε))

r

)

= ε.

Observe that the random variables P r
i , i = 1, . . . ,K, follow a common Pareto distribution with

cdf P(P r
i ≤ x) = 1 − x1/r, x ∈ (1,∞), i = 1, . . . ,K. Note that the tail probability of the sum

of iid Pareto random variables is asymptotically the same as that of the maximum of the iid

Pareto random variables (e.g., Embrechts et al. (2013), Corollary 1.3.2). Hence

lim
ε↓0

P

(

∑K
i=1 P

r
i ≥ K (br(ε))

r
)

P
(

max{P r
1 , . . . , P

r
K} > K (br(ε))

r) = lim
ε↓0

ε

1−
(

1−K
1

r br(ε)
)K

= 1.

This implies

br(ε) ∼
1− (1− ε)

1

K

K
1

r

∼ K−1−1/rε, as ε ↓ 0.
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The case K → ∞ follows directly from the generalized central limit theorem (e.g., Theorem

1.8.1 of Samorodnitsky (2017)).

(b) If r = 0, in a similar way, we first have,

P

(

2
K
∑

i=1

log
1

Pi
≥ 2K log

1

br(ε)

)

= ε.

The random variable log 1
Pi
, i = 1, . . . ,K, follows exponential distribution with parameter 1.

Thus 2
∑K

i=1 log
1
Pi

follows a chi-square distribution with parameter 2K. We denote qα(χ
2
ν) the

α-quantile of the chi-square distribution with ν degrees of freedom. Hence

br(ε) = exp

(

− 1

2K
q1−ε

(

χ2
2K

)

)

.

(c) If r > 0, using the result of Wang (2005), we have for 0 ≤ x ≤ K−r,

P (Mr,K(U1, . . . , UK) ≤ x) = P

(

K
∑

i=1

U r
i ≤ Kxr

)

= λ

{

(x1, . . . , xK) :

K
∑

i=1

xri ≤ Kxr, x1, . . . , xK ≥ 0

}

=
(Γ(1 + 1/p))K

Γ(1 +K/p)
KK/rxK ,

where λ is the Lebesgue measure. This implies that if ε ≤ (Γ(1+1/p))K

Γ(1+K/p) ,

br(ε) =
(Γ(1 +K/p))1/Kε1/K

K1/rΓ(1 + 1/p)
. (A.11)

The asymptotic behaviour of br(ε) for fixed ε ∈ (0, 1) as K → ∞ can be obtained by the

Central Limit Theorem. Note that the random variables P r
i , i = 1, . . . ,K, follow a common

Beta distribution with mean and variance given by, respectively,

µ = (r + 1)−1, and σ2 = r2(1 + 2r)−1(1 + r)−2.

The Central Limit Theorem gives (
∑K

i=1 P
r
i −Kµ)/

√
Kσ

d→ N(0, 1). Hence

br(ε) ∼
(

σ√
K

Φ−1(ε) + µ

) 1

r

, as K → ∞,

where Φ−1 is the inverse of the standard normal distribution function.
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A.4 Proof of Proposition 4

By symmetry of the standard Cauchy distribution,

aF (ε) = C
(

inf

{

qε

(

1

K

K
∑

i=1

C−1(Ui)

)

| U1, . . . , UK ∈ U
})

= C
(

−1

K
sup

{

q1−ε

(

K
∑

i=1

C−1(Ui)

)

| U1, . . . , UK ∈ U
})

.

Moreover, C−1(Ui), i = 1, . . . ,K, follow the standard Cauchy distribution with decreasing density

on [C−1(1− ε),∞] for ε ∈ (0, 1/2). The proposition follows directly from applying Corollary 3.7 of

Wang et al. (2013).

A.5 Proof of Theorem 1

(i) IC-balance of Mφ,K for all K ∈ {2, 3, . . . } is equivalent to 1
K

∑K
i=1 φ(Vi)

d
= φ(U) for all

K ∈ {2, 3, . . . }, which is further equivalent to the fact that φ(U) follows a strictly 1-stable

distribution. We know that strictly 1-stable distributions are Cauchy distributions (see, e.g.,

Theorem 14.15 of Sato (1999)). This proves the statement of part (i).

(ii) For the Simes function Sα,K = SK , αi = i for i ∈ {1, . . . ,K} and bF (x) = cF (x) = x for

x ∈ [0, 1]. Therefore, Sα,K is IC-balanced.

Below we show the opposite direction of the statement. For n ∈ {2, . . . ,K}, let V(1), . . . , V(n)

be the order statistics for n independent standard uniform random variables V1, . . . , Vn. Let

(X1, . . . ,Xn−1) = (V(1)/V(n), . . . , V(n−1)/V(n)) which is identically distributed as the order

statistics for n − 1 independent standard uniform random variables, independent of V(n).

Hence, for x ∈ (0, 1/αn),

P (Sα,n(V1, . . . , Vn) > x)

= P
(

V(1) > xα1, . . . , V(n−1) > xαn−1, V(n) > xαn

)

= P
(

X1 > xα1/V(n), . . . ,Xn−1 > xαn−1/V(n), V(n) > xα1

)

=

∫ 1

xαn

P (X1 > xα1/p, . . . ,Xn−1 > xαn−1/p)np
n−1 dp

=

∫ 1

xαn

P (Sα,n−1(V1, . . . , Vn−1) > x/p)npn−1 dp, (A.12)

where for simplicity we use Sα,n−1 for S(α1,...,αn−1),n−1. Note that

P (Sα,1(V1) > x) = 1− α1x, x ∈ (0, 1/α1). (A.13)

30



Plugging (A.13) in (A.12), we obtain that P (Sα,2(V1, V2) > x) is a polynomial function of x of

degree less than or equal to 2. Recursively, using (A.12) we are able to show that the function

P (Sα,n(V1, . . . , Vn) > x) for x ∈ (0, 1/αn) is a polynomial of x of degree less than or equal to

n for n = 2, . . . ,K. Hence, there exist K constants β0, . . . , βK−1 such that

P (Sα,K−1(V1, . . . , VK−1) > x) =

K−1
∑

i=0

βix
i, x ∈ (0, 1/αK−1).

Moreover, noting that Sα,K is IC-balanced, we have
∫ 1

xαK

P (Sα,K−1(V1, . . . , VK−1) > x/p)KpK−1 dp = P (Sα,K(U, . . . , U) > x) = 1− xαK ,

for x ∈ (0, 1/αK). Therefore, we have

∫ 1

xαK

(

K−1
∑

i=0

βix
ip−i

)

KpK−1 dp = 1− xαK ,

which implies that for x ∈ (0, 1/αK),

K−1
∑

i=0

Kβi
K − i

xi −
(

K−1
∑

i=0

Kβi
K − i

αK−i
K

)

xK = 1− xαK .

Solving the above equation, we get β0 = 1, β1 = −K−1
K αK and β2 = · · · = βK−1 = 0.

Consequently,

P (Sα,K−1(V1, . . . , VK−1) > x) = 1− K − 1

K
αKx, x ∈ (0, 1/αK−1).

Recursively, using (A.12) we have

P (Sα,n(V1, . . . , Vn) > x) = 1− n

K
αKx, x ∈ (0, 1/αn) (A.14)

for n = 1, . . . ,K, which gives, using (A.13),

αK = Kα1. (A.15)

Inserting (A.14) into (A.12), we obtain, for x ∈ (0, 1/αn) and n = 2, . . . ,K,

1− n

K
αKx =

∫ 1

xαn

(

1− n− 1

K
αKxp−1

)

npn−1 dp

= 1− n

K
αKx+

( n

K
αKαn−1

n − αn
n

)

xn.

Consequently,

αn =
n

K
αK , n = 2, . . . ,K,

which together with (A.15) implies αn = nα1, k = 1, . . . ,K. This gives the desired statement.
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Example A.1 (IC-balanced generalized mean for a finiteK). We show that IC-balance of Mφ,K for

a finite K does not imply Mφ,K that φ is the Cauchy quantile function (up to an affine transform).

For this purpose, we construct a continuous distribution µ such that

1

K

K
∑

i=1

Xi
d
= X, (A.16)

where X and Xi, i = 1, . . . ,K are iid random variables with distribution µ, but µ is not a Cauchy

distribution. Define

µ̂(z) = exp

(
∫

R

(

eizx − 1− 1[−1,1](x)
)

ν( dx)

)

, z ∈ R,

where 1[−1,1](·) is the indicator function, i2 = −1 and ν is a symmetric measure on R\{0} satisfying

ν({Kn}) = ν({−Kn}) = K−n, n ∈ Z, and ν

(

R \
(

{0} ∪
⋃

n∈Z

{Kn,−Kn}
))

= 0.

It follows from Theorem 8.1 of Sato (1999) that µ̂ is the characterization function of some infinitely

divisible distribution µ. Also noting that ν(R\{0}) = ∞, by Theorem 27.16 of Sato (1999) we know

that µ is a continuous distribution. By Theorem 14.7 of Sato (1999), (µ(z))b = µ(bz), z ∈ R, b > 0

holds if and only if

Tbν(B) = bν(B), and

∫

1<|x|≤b
xν( dx) = 0,

where Tbν(B) = ν(b−1B) for all Borel sets B ⊂ R. By symmetry of ν,
∫

1<|x|≤b xν( dx) = 0

holds for any b > 0. However, Tbν(B) = bν(B) holds only for b ∈ {Kn, n ∈ Z}. Consequently,

(µ(z))b = µ(bz), z ∈ R if and only if b ∈ {Kn, n ∈ Z}. This implies that µ is not a Cauchy

distribution (strictly 1-stable distribution) but (A.16) holds.

A.6 Proof of Theorem 2

(i) Recall that

C−1(x) = tan
(

−π

2
+ πx

)

, x ∈ (0, 1);

C(y) = 1

π
arctan(y) +

1

2
, y ∈ R.

Note that C−1(x) ∼ −1/(πx) as x ↓ 0 and C(y) ∼ −1/(πy) as y → −∞. For any δ1, δ2 ∈
(0, 1/K), there exists 0 < ε < 1 and m < 0 such that for all x ∈ (0, ε) and y ∈ (−∞,m),

−(1 + δ1)

πx
≤ C−1(x) ≤ −(1− δ1)

πx
; (A.17)
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−(1− δ2)

πy
≤ C(y) ≤ −(1 + δ2)

πy
. (A.18)

For 0 < c < 1, there exists 0 < ε′ < ε such that

sup
x∈[ε,c]

∣

∣

∣

∣

tan
(

−π

2
+ πx

)

+
1

πx

∣

∣

∣

∣

≤ δ1
πε′

. (A.19)

Take (p1, . . . , pK) such that p(1) < ε′ and p(K) ≤ c < 1. Let l = max{i = 1, . . . ,K : p(i) < ε}.
As a consequence of (A.17), we have

−
l
∑

i=1

(1 + δ1)

πp(i)
≤

l
∑

i=1

tan
(

−π

2
+ πp(i)

)

≤ −
l
∑

i=1

(1− δ1)

πp(i)
.

For j > l, (A.19) implies

∣

∣

∣

∣

tan
(

−π

2
+ πp(j)

)

+
1

πp(j)

∣

∣

∣

∣

≤ δ1
πε′

≤ δ1
πp(1)

.

Therefore,

K
∑

i=1

tan
(

−π

2
+ πpi

)

≤ −
l
∑

i=1

(1− δ1)

πp(i)
−

K
∑

i=l+1

1

πp(i)
+

(K − l)δ1
πp(1)

≤ −
K
∑

i=1

(1−Kδ1)

πp(i)

= −
K
∑

i=1

(1−Kδ1)

πpi
.

Similarly, we can show

K
∑

i=1

tan
(

−π

2
+ πpi

)

≥
K
∑

i=1

−(1 +Kδ1)

πpi
.

Using (A.18), for any (p1, . . . , pK) satisfying p(1) < min(ε′, Kδ1−1
Kπm ) and p(K) ≤ c < 1,

1− δ2
1 +Kδ1

M−1,K(p1, . . . , pK) ≤ MC,K(p1, . . . , pK) ≤ 1 + δ2
1−Kδ1

M−1,K(p1, . . . , pK).

We establish the claim by letting δ1, δ2 ↓ 0, and the above inequalities hold as long as p(1) is

sufficiently small.

(ii) The statement

P (MC,K(U1, . . . , UK) < ε) ∼ ε as ε ↓ 0
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follows directly from Theorem 1 of Liu and Xie (2020) by noting that standard Cauchy dis-

tribution is symmetric at 0. Below we show P (M−1,K(U1, . . . , UK) < ε) ∼ ε as ε ↓ 0, based

on similar techniques as in Theorem 1 of Liu and Xie (2020). Observe that

P (M−1,K(U1, . . . , UK) < ε) = P

(

1

K

K
∑

i=1

U−1
i > 1/ε

)

.

Condition (G) means that for any 1 ≤ i < j ≤ K, (Φ−1(Ui),Φ
−1(Uj)) is a bivariate normal

random variable with cov(Φ−1(Ui),Φ
−1(Uj)) = σij , where Φ is the standard normal distribu-

tion function and Φ−1 is its inverse. Clearly, σij = 1 implies that Ui = Uj a.s. In this case we

can combine them in one and the corresponding coefficient becomes 2/K. Thus, it suffices to

prove the stronger statement

P

(

K
∑

i=1

wiU
−1
i > 1/ε

)

∼ ε, as ε ↓ 0, (A.20)

where wi > 0, i = 1, . . . ,K,
∑K

i=1wi = 1 and σij < 1, i, j = 1, . . . ,K. We choose some

positive constant δε depending on ε, such that δε → 0 and δε/ε → ∞ as ε ↓ 0. Denote by

S =
∑K

i=1wiU
−1
i , and define the following events: for i ∈ {1, . . . ,K},

Ai,ε =

{

U−1
i >

1 + δε
wiε

}

, Bi,ε =

{

U−1
i ≤ 1 + δε

wiε
, S > 1/ε

}

.

Let Aε =
⋃K

i=1 Ai,ε and Bε =
⋂K

i=1 Bi,ε and thus we have

P (S > 1/ε) = P(Aε) + P(Bε).

First we show P(Bε) = o(ε). Note that S > 1/ε implies that there exists i ∈ {1, . . . ,K} such

that U−1
i > 1

wiKε . Hence,

P (Bε) ≤
K
∑

i=1

P

(

1

wiKε
< U−1

i ≤ 1 + δε
wiε

, S > 1/ε

)

≤
K
∑

i=1

P

(

1

wiKε
< U−1

i ≤ 1− δε
wiε

, S > 1/ε

)

+

K
∑

i=1

P

(

1− δε
wiε

< U−1
i ≤ 1 + δε

wiε

)

≤
K
∑

i=1

P

(

1

wiKε
< U−1

i ≤ 1− δε
wiε

, S > 1/ε

)

+

K
∑

i=1

wiε

(

1

1− δε
− 1

1 + δε

)

=: I1 + I2.
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Noting that δε ↓ 0 as ε ↓ 0, we have I2 = o(ε). We next focus on I1. Observe

I1 ≤
K
∑

i=1

P





1

wiKε
< U−1

i ≤ 1− δε
wiε

,
K
∑

j 6=i

wjU
−1
j > δε/ε





≤
K
∑

i=1

K
∑

j 6=i

P

(

1

wiKε
< U−1

i ≤ 1− δε
wiε

, U−1
j >

δε
wjKε

)

.

It remains to show for 1 ≤ i 6= j ≤ K,

Ii,j := P

(

1

wiKε
< U−1

i ≤ 1− δε
wiε

, U−1
j >

δε
wjKε

)

= o(ε).

Condition (G) implies that there exist Zi,j and δi,j such that

Φ−1(Uj) = σijΦ
−1(Ui) + δijZij , (A.21)

where Zij is a standard normal random variable that is independent of Ui and σ2
ij + δ2ij = 1.

If σij = −1, we have Ui = 1 − Uj . This implies that Ii,j = 0 for ε > 0 sufficiently small.

Next, assume |σij| < 1, and write γij = Φ−1 (wiKε) if −1 < σij ≤ 0 and γij = Φ−1
(

wiε
1−δε

)

if

0 < σij < 1. We have

Ii,j = P

(

1

wiKε
< U−1

i ≤ 1− δε
wiε

, σijΦ
−1(Ui) + δijZij < Φ−1

(

wjKε

δε

))

≤ P

(

1

wiKε
< U−1

i ≤ 1− δε
wiε

, δijZij < Φ−1

(

wjKε

δε

)

− σijγij

)

= P

(

1

wiKε
< U−1

i ≤ 1− δε
wiε

)

P

(

δijZij < Φ−1

(

wjKε

δε

)

− σijγij

)

.

Note that Φ−1(ε) ∼ −
√
−2 ln ε, as ε ↓ 0, which is a slowly varying function. Taking δε =

−1/ log ε, we have

Φ−1

(

wiε

1− δε

)

∼ Φ−1 (wiKε) ∼ Φ−1

(

wjKε

δε

)

as ε ↓ 0.

This implies

Φ−1

(

wjKε

δε

)

− σijγij → −∞, as ε ↓ 0.

Hence Ii,j = o(ε). Consequently, I1 = o(ε) and further P(Bε) = o(ε). Next, we show P(Aε) ∼
ε. By the Bonferroni inequality, we have,

K
∑

i=1

P(Ai,ε)−
∑

1≤i<j≤K

P(Ai,ε ∩Aj,ε) ≤ P(Aε) ≤
K
∑

i=1

P(Ai,ε).
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Direct calculation gives

K
∑

i=1

P(Ai,ε) =

K
∑

k=1

wiε

1 + δε
∼ ε.

For any 1 ≤ i < j ≤ K, since the Gaussian copula is tail independent (e.g., Example 7.38 of

McNeil et al. (2015)), we have, writing w = max{wi, wj},

P(Ai,ε ∩Aj,ε) = P

(

U−1
i >

1 + δε
wiε

, U−1
j >

1 + δε
wjε

)

6 P

(

Ui <
wε

1 + δε
, Uj <

wε

1 + δε

)

= o(1)P

(

U1 <
wε

1 + δε

)

= o(1)ε.

Hence P(Ai,ε ∩Aj,ε) = o(ε). This implies P(Aε) ∼ ε, and we establish (A.20).

(iii) By Lemma A.1 of Vovk and Wang (2020a), we have

aH(ε) = ε

(

sup

{

q+0

(

1

K

K
∑

i=1

P−1
i

)

| P1, . . . , PK ∈ U
})−1

, ε ∈ (0, 1),

where q+0 (X) = sup{x ∈ R | P(X ≤ x) = 0}. Note that for any δ > 0, there exists 0 < εδ < 1

such that for all x ∈ (0, εδ)

−(1 + δ)

x
< tan

(

−π

2
+ x
)

< −(1− δ)

x
.

For δ > 0, letting 0 < ε < εδ/π and using Theorem 4.6 in Bernard et al. (2014), we have

inf

{

qε

(

1

K

K
∑

i=1

C−1(Pi)

)

| P1, . . . , PK ∈ U
}

= inf

{

qε

(

1

K

K
∑

i=1

tan

(

π

(

Pi −
1

2

))

)

| P1, . . . , PK ∈ U
}

= inf

{

q1

(

1

K

K
∑

i=1

tan

(

π

(

εPi −
1

2

))

)

| P1, . . . , PK ∈ U
}

≤ inf

{

q1

(

1

K

K
∑

i=1

−1− δ

επPi

)

| P1, . . . , PK ∈ U
}

= −1− δ

επ
sup

{

q+0

(

1

K

K
∑

i=1

P−1
i

)

| P1, . . . , PK ∈ U
}

= − 1− δ

aH(ε)π
.

Similarly, we obtain, for 0 < ε < εδ/π,

inf

{

qε

(

1

K

K
∑

i=1

C−1(Pi)

)}

≥ − 1 + δ

aH(ε)π
.
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Consequently,

inf

{

qε

(

1

K

K
∑

i=1

C−1(Pi)

)}

∼ − 1

aH(ε)π
as ε ↓ 0.

Plugging the above result in the formula for aC in (6), and using C(y) ∼ −1/(πy) as y → −∞,

we have, as ε ↓ 0,

aC(ε) = C
(

inf

{

qε

(

1

K

K
∑

i=1

C−1(Pi)

)})

∼ − 1

π

(

inf

{

qε

(

1

K

K
∑

i=1

C−1(Pi)

)})−1

∼ aH(ε).

This completes the proof.

(iv) By (i), it suffices to show that for r 6= −1

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
9 1, as max

i∈{1,...,K}
pi ↓ 0.

Take p1 = p2 and pi = xip with xi > 0 and p > 0 for i = 2, . . . ,K. By homogeneity of Mr, for

r ≤ −1,
M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
=

M−1,K(p, x2, . . . , xK)

Mr,K(p, x2, . . . , xK)
.

Hence

lim
p↓0

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
= K1/r+1 6= 1, r < −1.

This proves the claim of (iv) for r < −1. The case for r > −1 can be argued similarly.

A.7 Proof of Theorem 3

Take arbitrary p1, . . . , pK ∈ (0, 1], and let j ∈ {1, . . . ,K} be such that mink∈{1,...,K}
1
kp(k) =

1
j p(j). We have

SK(p1, . . . , pK)

M−1,K(p1, . . . , pK)
=

K
∑

i=1

1

j
p(j)

1

pi
≤

K
∑

i=1

1

i
pi

1

pi
=

K
∑

i=1

1

i
= ℓK .

Moreover,

SK(p1, . . . , pK)

M−1,K(p1, . . . , pK)
=

1

j
p(j)

(

K
∑

i=1

1

p(i)

)

≥ 1

j
p(j)





j
∑

i=1

1

p(j)
+

K
∑

i=j+1

1

p(i)



 ≥ 1.

Therefore, M−1,K 6 SK 6 ℓKM−1,K . The two special cases of equalities are straightforward to

check.
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A.8 Proof of Proposition 5

(i) Recall that aF (x) = aFx for x ∈ (0, 1). By (i) of Proposition 3, we have bF (δ) ∼ δ as

δ ↓ 0. Hence limδ↓0 bF (δ)/aF (δ) = 1/aF . By Proposition 6 of Vovk and Wang (2020a), we

have aF ∼ 1/logK, as K → ∞. Consequently,

lim
δ↓0

bF (δ)

aF (δ)
∼ logK, as K → ∞.

Moreover, for the harmonic averaging method, cF (ε) = ε. This implies cF (ε)aF (ε) = 1/aF .

We establish the claim by the fact aF ∼ 1
logK , as K → ∞.

(ii) By Theorem 2, we have aC(δ) ∼ aH(δ) and bC(δ) ∼ bH(δ) as δ ↓ 0, which together with (i)

leads to

lim
δ↓0

bC(δ)

aC(δ)
∼ logK, as K → ∞.

The rest of the statement follows by noting that cC(δ) = bC(δ).

(iii) For the Simes method, recall that aF (x) = x/ℓK and bF (x) = cF (x) = x. The claim follows

directly from the fact that ℓK =
∑K

k=1
1
k ∼ logK, as K → ∞.

B Additional tables

In Table B.4 we report numerical results of prices for validity for ε = 0.05.

K = 50 K = 100 K = 200 K = 400

bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF

Bonferroni 1.025 50.000 1.026 100.000 1.026 200.000 1.026 400.000

Negative-quartic 1.367 25.071 1.367 42.164 1.368 70.911 1.368 119.257

Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570

Cauchy 6.623 6.623 7.463 7.463 8.274 8.274 9.055 9.055

Harmonic 6.793 6.625 7.650 7.459 8.485 8.273 9.306 9.072

Geometric 15.679 2.718 16.874 2.718 17.755 2.718 18.395 2.718

Table B.4: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.05 and K ∈ {50, 100, 200, 400}
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