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Abstract

Motivated by recent advances on elicitability of risk measures and practical considerations

of risk optimization, we introduce the notions of Bayes pairs and Bayes risk measures. Bayes

risk measures are the counterpart of elicitable risk measures, extensively studied in the recent

literature. The Expected Shortfall (ES) is the most important coherent risk measure in both

industry practice and academic research in finance, insurance, risk management, and engineering.

One of our central results is that under a continuity condition, ES is the only class of coherent

Bayes risk measures. We further show that entropic risk measures are the only risk measures

which are both elicitable and Bayes. Several other theoretical properties and open questions on

Bayes risk measures are discussed.
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Dedication

We dedicate our paper to the memory of Mark H. A. Davis who sadly passed away on March

18, 2020. For those who knew Mark personally, he will always be remembered as a trusted friend

whose gentle personality charmed during so many encounters. We all will no doubt recall his shining

brilliance as a teacher and researcher. He was one of the rare academic lighthouses bringing clarity

to the occasional darkness in the field of mathematical finance. The first author (PE) vividly recalls

a talk he (PE) gave at Imperial College on March 7, 2013, with title “Model uncertainty and risk

aggregation”. During this talk, PE mentioned the notion of elicitability as discussed in the paper
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Gneiting (2011). It was clear that the latter paper would become fundamental to Quantitative Risk

Management. In a wonderful paper, put online on October 19, 2013, Davis (2013) compares and

contrasts the elicitability approach to the notion of prequential statistics as developed in Dawid

(1984). He graciously states, “The author thanks Paul Embrechts for introducing him to this

topic.” We further quote from the paper “The direct inspiration for this work comes from the

exceptionally stimulating paper Dawid and Vovk (1999). It seems surprising that this whole circle

of ideas is totally ignored in almost all published discussions of risk management.” We very much

hope that our paper will renew interest in the above debate. The fourth author (RW) recalls

reading Davis (2013) when visiting ETH Zurich in fall 2013. It was precisely that paper, along with

Gneiting (2011), which introduced to RW the world of elicitability and statistical forecasting of risk

measures, a field to which Mark Davis continued to contribute substantially; see Davis (2016, 2017).

We definitely urge the interested reader to also keep Davis (2014) at the corner of her/his desk.

Most unfortunately, Mark Davis will not be there to provide the necessary light on the resulting

discussions.

1 Introduction

Mainly through Gneiting (2011), the concept of elicitability has drawn considerable interest

within the quantitative risk management literature. The concept is fundamental when comparing

different forecasting procedures. We refer to the latter paper for an excellent introduction. In this

Introduction we explain our motivation, and more detailed definitions are given in Section 2.

Let X be a linear space of random variables. A set-valued d-dimensional functional S : X → 2R
d

is elicitable if there exists a measurable function L : Rd+1 → R (called a loss function) such that

S(X) = arg min
x∈Rd

E[L(x,X)], X ∈ X . (1)

In the recent literature, a lot of research has been done on characterizing risk measures that are

elicitable for d = 1.1 The case of d ≥ 2 is much more difficult; see Fissler and Ziegel (2016) and

Wang and Wei (2020). In sharp contrast to the functional S in (1), much less attention has been

paid to functionals R of the form

R(X) = min
x∈Rd

E[L(x,X)], X ∈ X , (2)

1For characterization of elicitability in dimension d = 1, see Ziegel (2016) on coherent risk measures, Bellini and
Bignozzi (2015) and Delbaen et al. (2016) on convex risk measures, Kou and Peng (2016) and Wang and Ziegel (2015)
on Choquet risk measures, and Liu and Wang (2021) on tail risk measures.
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which computes the Bayes risk of X for the Bayes estimator S. As an important example for d = 1,

the Value-at-Risk (VaR) at level α is elicited by the loss function L : (x, y) 7→ x + 1
1−α(y − x)+,

and the Expected Shortfall (ES) at level α is the corresponding Bayes risk (e.g., Rockafellar and

Uryasev (2002)); see (4) in Section 2.

The functionals in (1) and (2) are both important in the context of expected loss minimization,

and yet only the characterization of (1) is extensively studied in the literature of elicitability. In case

d = 1, the functional S in (1) is a minimizer and the functional R in (2) is a minimum. The classic

interpretation of risk measures, as in Artzner et al. (1999), is the least amount of capital needed

for a financial loss to be acceptable for the regulator. In other words, an acceptable capital reserve

needs to be no smaller than the value of the risk measure. With this interpretation, requiring for

a capital reserve to be larger than the minimizer S does not have a clear financial meaning. On

the other hand, the minimum in the Bayes risk R may be interpreted as a “generalized L-distance”

from X to the real line,2 so that the corresponding capital reserve may be interpreted as a penalty

for deviating from constancy, thus for bearing risk.3

The main focus of this paper is (S,R) in (1) and (2), which we call a Bayes pair. After

the formal definition of Bayes pairs and Bayes risk measures in Section 2, we derive two main

characterization results. In Theorem 3.1 we show that, under a continuity assumption, an ES is

the only Bayes risk measure that is either coherent or Choquet, and in Theorem 6.1 we pin down

entropic risk measures as the only monetary risk measures which are both elicitable and Bayes.

Currently, ES is the standard risk measure in the Fundamental Review of the Trading Book

(BCBS (2019)) in banking. Our characterization of ES as the only coherent Bayes risk measure

strengthens the unique role of ES from the perspective of elicitability. This result complements

the recent finding of Wang and Zitikis (2021) on an axiomatic characterization of ES from the

perspective of portfolio risk aggregation. See also Emmer et al. (2015) and Embrechts et al. (2018)

for discussions on comparative advantages of VaR and ES as regulatory risk measures.

Our main technical results are closely related to those in Weber (2006), Ziegel (2016) and Wang

and Wei (2020) on risk measures with convex level sets, those in Ben-Tal and Teboulle (2007) on

optimized certainty equivalents, those in Rockafellar and Uryasev (2013) on risk quadrangles, and

those in Frongillo and Kash (2021) on elicitation complexity. More general discussions on elicitabil-

2For instance, in the simple case L(x, y) = (x − y)2, the Bayes risk minx∈R E[(X − x)2] = var(X), which is the
squared L2-distance from X to the real line. If R is used as a regulatory risk measure, we typically need to adjust the
value by the location of X (that is why we call it a “generalized L-distance”), e.g., using L(x, y) = x+ λ(x− y)2 for
λ > 0 would give rise to a mean-variance risk measure. The minimum in (2) should not be interpreted as a minimum
over economic scenarios; indeed, it is more natural to take a maximum over economic scenarios.

3We do acknowledge that elicitability is an important statistical property, especially when comparing competing
forecast procedures; see e.g., Fissler and Ziegel (2016). Our paper stresses the important practical difference, even
complementarity, between regulatory interpretation (Bayes) and statistical tractability (elicitability).
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ity and forecasting risk measures can be found in Davis (2013, 2016) and Nolde and Ziegel (2017).

Although we do focus on risk measures, the general theory of elicitability has wide applications

outside of finance. For some recent work on interval-valued elicitable functionals, see Fissler et

al. (2020) and Brehmer and Gneiting (2021). Elicitability is also closely related to empirical risk

minimization; see e.g., Lambert et al. (2008), Steinwart et al. (2014) and Frongillo and Kash (2021)

in the context of machine learning.

2 Bayes pairs and Bayes risk measures

2.1 Risk measures

In Definition 2.1 below, we slightly generalize the standard definition of scalar risk measures

in Artzner et al. (1999) and Föllmer and Schied (2002) to interval-valued risk measures such as

quantiles. In what follows, equalities and inequalities between intervals are understood as holding

for both end-points, and so are addition and scalar multiplication. Denote by (Ω,F ,P) an atomless

probability space. For p ∈ [1,∞), let Lp represent the space of random variables with finite p-th

moment, and let L∞ represent the set of bounded variables. Throughout, X is a linear space of

random variables containing L∞, representing the domain of risk measures. Let I(R) be the set

of closed real intervals, including (−∞, a] and [a,∞), and the interval [a, a] is identified with its

element a (hence, R is treated as a subset of I(R)).

Definition 2.1. A risk measure S is a mapping from X to I(R), and it is scalar if it maps X to

R. A risk measure S is monetary if it is (i) monotone: S(X) ≤ S(Y ) for X,Y ∈ X with X ≤ Y ,

and (ii) translation invariant: S(X + c) = S(X) + c for all X ∈ X and c ∈ R. A scalar risk measure

S is coherent if it is monetary, (iii) convex: S(λX + (1 − λ)Y ) ≤ λS(X) + (1 − λ)S(Y ) for all

X,Y ∈ X and λ ∈ [0, 1], and (iv) positively homogeneous: S(λX) = λS(X) for all X ∈ X and

λ ∈ (0,∞). A scalar risk measure S is Choquet if it is monetary and (v) comonotonic-additive:

S(X + Y ) = S(X) + S(Y ) for all comonotonic X,Y ∈ X .4

It was shown by Schmeidler (1986) that comonotonic-additivity characterizes Choquet inte-

grals, and hence we use the name Choquet risk measure. Law-invariant Choquet risk measures

are also called distortion risk measures;5 Theorem 1 of Wang et al. (2020) gives a characterization

of law-invariant comonotonic-additive functionals. Both coherence and comonotonic-additivity are

4Two random variables X and Y are said to be comonotonic, if there exists a random variable U and two increasing
functions f, g such that X = f(U) and Y = g(U) almost surely. Such U can be chosen as U[0, 1] distributed, and f
and g can be chosen as the quantile functions of X and Y , respectively.

5A risk measure S is law invariant if S(X) = S(Y ) whenever X and Y have the same distribution.
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argued as desirable properties, and a law-invariant risk measure that is both coherent and Choquet

is called a spectral risk measure by Acerbi (2002).

We make an important clarification concerning Definition 2.1, which also justifies our focus

on risk measures in (2). It is well known that with positive homogeneity, convexity is equivalent

to subadditivity: S(X + Y ) ≤ S(X) + S(Y ) for all X,Y ∈ X , which is not easy to financially

interpret if S is interval-valued. In view of this, convexity and coherence are suitable properties for

risk measures in (2), but it is unclear whether they are suitable for risk measures in (1), unless one

additionally assumes uniqueness of the optimizer, or some convention (e.g., using the left end-point)

is imposed.

The most important examples of risk measures are VaR and ES, widely used in financial

regulation. At a probability level α ∈ [0, 1], VaR has two versions, the left- and right-quantiles. We

define VaRα : X → I(R) by VaRα(X) = [VaR−α (X),VaR+
α (X)], where VaR−α (X) = inf{x ∈ R : P(X ≤ x) ≥ α};

VaR+
α (X) = inf{x ∈ R : P(X ≤ x) > α}.

(3)

By definition, VaR−0 = −∞ and VaR+
1 = ∞. The interval-valued risk measure VaRα is monetary.

The ES (also called CVaR, TVaR and AVaR) at a probability level α ∈ [0, 1) is defined as

ESα(X) =
1

1− α

∫ 1

α
VaR−β (X) dβ, X ∈ X .

It is well known that an ES is both coherent and Choquet. Rockafellar and Uryasev (2002) obtained

the following ES-VaR relation (4)

[VaR−α (X),VaR+
α (X)] = arg min

x∈R

{
x+

1

1− α
E[(X − x)+]

}
;

ESα(X) = min
x∈R

{
x+

1

1− α
E[(X − x)+]

}
.

(4)

The relation (4) will be used repeatedly in this paper.

2.2 Bayes pairs and Bayes risk measures

To define the main objects of the paper, we follow the standard terminology of Bayes estimator

and Bayes risk in statistical decision theory. Despite this terminology, our discussion stays purely

within the theory of risk measures, and does not require specific knowledge on Bayesian statistics

to understand.
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Definition 2.2. A pair of risk measures (S,R) : X → I(R) × R is a Bayes pair if for some Borel

function L : R2 → R, called the loss function,

S(X) = arg min
x∈R

E[L(x,X)] and R(X) = min
x∈R

E[L(x,X)], X ∈ X . (5)

If S is further translation invariant, then we call S a Bayes estimator, and R a Bayes risk measure.6

In a Bayes pair (S,R), R is always scalar, whereas S not necessarily. Therefore, it is appropri-

ate to consider conditions for R, instead of S, to be a coherent risk measure. By (4), for α ∈ [0, 1),

the pair (VaRα,ESα) is a Bayes pair, and ESα is a coherent Bayes risk measure. Obviously, a Bayes

pair is always law invariant.

Let us first explain the important requirement of S being translation invariant in Definition

2.2. In the next theorem, we show a negative result: if we do not impose any conditions on S, then

the interpretation of Bayes estimator and Bayes risk is lost.

Theorem 2.3. A risk measure R : X → R satisfies (5) for some S : X → 2R and loss function L

if and only if there exists a set A of real Borel functions such that

R(X) = min
`∈A

E[`(X)], X ∈ X . (6)

Proof. The ⇒ implication follows directly by setting A = {y 7→ L(x, y) : x ∈ R}. Next we show

the ⇐ implication. Let φ be a one-to-one mapping from R to the set of real Borel functions on R

(since both sets have the same cardinality), and define L(x, y) = φ(x)(y) for x, y ∈ R. Let

S(X) = φ−1
(

arg min
`∈A

E[`(X)]

)
= arg min

x∈R
E[L(x,X)]. (7)

Hence, (5) holds.

The negative result in Theorem 2.3 is very simple, but it is important for the motivation behind

the concept of Bayes risk measures as in Definition 2.2. If no property is imposed on S, then we can

directly define R by (6) without introducing S. However, this would be problematic because the

Bayes estimator S is not interpretable as there is nothing to estimate. A similar problem appears

in Frongillo and Kash (2021) when they define elicitation complexity.7 In the context of Bayes

6S is also called a Bayes act; see e.g., Grünwald and Dawid (2004). When we say that a risk measure is Bayes in
this paper, we mean that it is a Bayes risk measure (instead of a Bayes estimator).

7Frongillo and Kash (2021) argue that, through a one-to-one mapping from R to the set of real Borel functions on
R like φ in the proof of Theorem 2.3, one arrives at a counter-intuitive statement that all functionals have elicitation
complexity 1. Hence, some regularity requirements are needed.
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estimation, both S and R have a concrete meaning: S is the estimated parameter and R is the risk

of this estimation. Therefore, directly defining a risk measure R by (6) cannot be called a Bayes

risk measure because it is not the Bayes risk of any interpretable parameter. For this reason, we

impose translation invariance on S, which means that the parameter of interest of the unknown

financial loss is additive under location shift. This is similar to the consideration of Artzner et al.

(1999), where location shift is interpreted as capital injection. Other types of regularization on S

may also be considered, among which translation invariance seems both natural and easy to work

with. See Examples 3.4 and 3.5 in Section 3 for instances of R in (5) where translation invariance

of S is not assumed.

For a Bayes pair (S,R) with loss function L, by defining

R′ : X 7→ λR(X) + (1− λ)E[f(X)] (8)

for any real function f and λ ∈ (0, 1], the pair (S,R′) is also a Bayes pair with loss function

L′ : (x, y) 7→ λL(x, y) + (1 − λ)f(y). Hence, some conditions on R also need to be imposed to

obtain an economically meaningful risk measure. For this, we have plenty of candidates in the

literature, notably in the theories of coherent and Choquet risk measures.

Some advantages of Bayes risk measures follow from the definition and results in this paper,

and we briefly summarize them below. Bayes risk measures are (i) convenient to optimize due

to their form as a minimizer to a linear mapping on distributions;8 (ii) concave in mixtures and

thus correctly measuring randomness (see Section 5); (iii) relatively easy to evaluate forecasts due

to their second-order elicitability (Corollary 4.3); (iv) relatively easy to compute due to their low

elicitation complexity (Frongillo and Kash (2021)), which is at most 2.9

2.3 Examples of Bayes pairs

We present some common examples of Bayes pairs. Except for the ES/E-mixture, none of

the other Bayes risk measures in Example 2.4 are coherent risk measures; this gives a hint on the

unique role of ES/E-mixtures among coherent Bayes risk measures.

8A typical optimization problem is to minimize R(f(a, Y )) over a ∈ A where A is a set of actions, Y is a random
vector, and f : A×Rd → R is a function; this includes the classic problem of portfolio selection with risk measures. IfR
is a Bayes risk measure with loss function L, then via the relationship minaR(f(a, Y )) = minx mina E[L(x, f(a, Y ))],
the above optimization problem can be solved by first minimizing an expected loss over a ∈ A, which is well studied.
See Rockafellar and Uryasev (2013) and the references therein for optimizing risk measures of the form (2).

9Roughly speaking, the elicitation complexity of a functional R is the lowest dimension of R′ such that (i) R′ is
elicitable; (ii) R is determined by R′; (iii) R′ satisfies some regularity conditions. We omit a detailed definition in
this paper since some heavy preparation is needed for a proper definition of elicitation complexity. The interested
reader is referred to Frongillo and Kash (2021).
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Example 2.4. In all examples below, S in a Bayes pair (S,R) is translation invariant, and hence

R is a Bayes risk measure in Definition 2.2.

(i) (VaRα,ESλα): As we have seen from (4), for α ∈ [0, 1), (VaRα,ESα) is a Bayes pair with loss

function L : (x, y) 7→ x+ 1
1−α(y − x)+, and ESα is a coherent Bayes risk measure. Moreover,

using (8), the convex combination of ESα and E, called an ES/E-mixture and denoted by ESλα,

i.e.,

ESλα = λESα + (1− λ)E, λ ∈ [0, 1], α ∈ (0, 1), (9)

is a coherent Bayes risk measure with loss function L : (x, y) 7→ x+ λ(y − x) + 1−λ
1−α(y − x)+.

Note that λ = 0 corresponds to the mean, and λ = 1 corresponds to ESα.

(ii) (ERγ ,ERγ): An entropic risk measure (ER) is defined as

ERγ(X) =
1

γ
logE[eγX ], X ∈ L∞,

for γ ∈ (0,∞), with the limiting case ER0 = E.10 The entropic risk measure ERγ is known to

be convex but not coherent. Next we see that ERγ is both Bayes and elicitable for the same

loss function L : (x, y) 7→ x+ (eγ(y−x) − 1)/γ. Indeed, by defining

R(X) := min
x∈R

E[L(x,X)] = min
x∈R

{
x+

1

γ
E[eγ(X−x) − 1]

}
, (10)

one can verify that the minimizer of (10) is S(X) = 1
γ logE[eγX ] = ERγ(X). Substituting it

into (10), we have

R(X) =
1

γ
logE[eγX ] +

E[eγX ]

E[γeγX ]
− 1

γ
=

1

γ
logE[eγX ] = ERγ(X).

(iii) (E, σ2): The variance

σ2(X) := E[(X − E[X])2] = min
x∈R

E[(X − x)2], X ∈ L2,

is a Bayes risk measure with loss function L : (x, y) 7→ (y − x)2. The corresponding Bayes

estimator is the mean E.

10The domain of ERγ can be enlarged to include random variables with finite exponential moments, such as normal
random variables.
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(iv) (E,E + λσ2): The mean-variance functional, for λ > 0,

E[X] + λσ2(X), X ∈ L2,

is a Bayes risk measure with loss function L : (x, y) 7→ y + λ(y − x)2. The Bayes estimator

corresponding to the mean-variance functional is also the mean E.

(v) (VaR1/2,MD): The mean-median deviation,

MD(X) := min
x∈R

E[|X − x|], X ∈ L1,

is a Bayes risk measure with loss function L : (x, y) 7→ |y − x|, and the corresponding Bayes

estimator is the median (interval) VaR1/2(X). The mean-median deviation is a signed Choquet

integral with distortion function h(t) = min{t, 1− t}, t ∈ [0, 1]; see Wang et al. (2020).

(vi) (exα, varα): The variantile (e.g., Wang and Wei (2020)),

varα(X) := min
x∈R

{
αE[(X − x)2+] + (1− α)E[(X − x)2−]

}
, X ∈ L2,

where α ∈ (0, 1), is a Bayes risk measure with loss function

L : (x, y) 7→ α(y − x)2+ + (1− α)(y − x)2−.

The Bayes estimator corresponding to the variantile varα is the expectile at the level α, denoted

by exα; see Bellini et al. (2014) and Ziegel (2016).

3 Characterizing ES as a Bayes risk measure

We will present below our first main result on the characterization of Bayes risk measures.

Recall that the ES/E-mixtures in (9) of Example 2.4 are coherent and Choquet Bayes risk measures.

Theorem 3.1 below further shows that they are the only possible class of Bayes risk measures which

are either coherent or Choquet. This result is illustrated by the Venn diagram in Figure 1.

Below, lower semicontinuity is defined with respect to almost sure convergence. This form of

lower semicontinuity is used to formulate the prudence axiom of Wang and Zitikis (2021), and the

interpretation is that a consistent statistical approximation of the true risk should not underestimate

the risk measure.

9



Theorem 3.1. Suppose that L∞ ⊂ X ⊂ L1. For a risk measure R : X → R, the following are

equivalent:

(i) R is a coherent Bayes risk measure;

(ii) R is a Choquet Bayes risk measure;

(iii) R = ESλα for some α ∈ (0, 1) and λ ∈ [0, 1].

If R further satisfies lower semicontinuity, then R = ESα for some α ∈ (0, 1).

Proof. The full proof is presented in Appendix A.1, and we give a sketch of the main steps here.

The implication (iii)⇒(ii) is obvious. The implication (ii)⇒(i) is implied by Proposition 5.2 in

Section 5. Below are the main steps for the most important implication (i)⇒(iii). Assume (S,R)

is a Bayes pair in which S is translation invariant and R is coherent.

We first show in Lemma A.1, that, using the fact that S and R are both translation invariant,

we can choose a loss function for (S,R) in the form (x, y) 7→ x+ v(y − x) for some real function v.

Thus, we have

R(X) = inf
c∈R
{c+ E[v(X − c)]}, X ∈ X . (11)

Using the monotonicity of R, we proceed to show in Lemma A.2 that such v can be replaced by an

increasing function ṽ without changing R. Next, using the convexity of R, we show in Lemma A.3

that ṽ can be replaced by an increasing convex function v̂. Using the positive homogeneity of R, in

Lemma A.5 we show that v̂ can be replaced by the piece-wise linear function v̄(x) = λx+(γ−λ)x+

for some γ ≥ 1 and λ ∈ [0, 1]. Finally, with the above loss function, we derive R = ES1−λ
α where

α = (γ − 1)/(γ − λ) ∈ (0, 1).

For the last statement of the theorem, the lower semicontinuity of ES1−λ
α implies λ = 0 since

ESα is lower semicontinuous and E is not, as implied by Theorem 1 of Wang and Zitikis (2021).

Remark 3.2. As we see in the proof of Theorem 3.1, a key step is to show that a translation-invariant

Bayes risk measure R has the form (11) in Lemma A.1. Risk measures directly defined via the form

(11) have appeared in the literature, and we make two notable connections.

1. The optimized certainty equivalent (OCE) of Ben-Tal and Teboulle (2007) has the form (11)

where v is increasing, convex, and satisfying v(0) = 0 and v′(0+) ≥ 1; here it is adapted to our

convention that a positive value of X represents a loss. Theorem 3.1 of Ben-Tal and Teboulle

(2007), which is closely related to Theorem 3.1, states that, assuming that v is real-valued,

increasing, convex, v(0) = 0, v′(0+) > 0, and v(x) > x for all x 6= 0, the only coherent risk

10



∅∅
ESλα

Spectral

Bayes

Choquet

(distortion)
Coherent

Figure 1: A Venn diagram for three classes of law-invariant risk measures

measure in the OCE class is generated by v(x) = λx+(γ−λ)x+ for some∞ > γ > 1 > λ ≥ 0,

which is an ES/E-mixture, similar to Lemma A.5 except for the boundary cases of γ = ∞,

γ = 1 and λ = 1. Different from Ben-Tal and Teboulle (2007), all our assumptions are made

on R and not on the form of v in (11).

2. The form (11) also appears in the expectation quadrangle of Rockafellar and Uryasev (2013),

where (VaRα,ESα) also serves as an important example. Our choice of notation, especially

S and R, is consistent with the notation of Rockafellar and Uryasev (2013). Nevertheless,

our interpretation of the Bayes pair and our focus on characterization are different from their

framework. See also the recent paper Chong et al. (2021) where (11) appears as an optimized

objective in the context of capital allocation.

Remark 3.3. Using Lemmas A.2 and A.3 in Appendix A.1, we also obtain the forms of monetary

and convex Bayes risk measures. A risk measure R is a monetary (resp. monetary and convex)

Bayes risk measure if and only if (11) holds for some increasing (resp. increasing convex) function

v : R→ R.

Below we further present two examples of a coherent risk measure R satisfying (5), but the

corresponding minimizer S is not translation invariant (indeed, not interpretable). By Theorem

2.3, these risk measures have the form (6), for a set of loss functions A,

R(X) = min
`∈A

E[`(X)], X ∈ X .
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The examples also show that the assumption of translation invariance on S in Definition 2.2 is

essential for the characterization of the Bayes risk measures in Theorem 3.1.

Example 3.4. The first example is a convex combination of ES at different levels. Define a risk

measure R = 1
2ESα + 1

2ESβ for some distinct numbers α, β ∈ (0, 1). Clearly, R is a coherent risk

measure. By (4), for X ∈ L1,

R(X) =
1

2
min
x∈R

{
x+

1

1− α
E[(X − x)+]

}
+

1

2
min
x∈R

{
x+

1

1− β
E[(X − x)+]

}
=

1

2
min

x1,x2∈R

{
x1 + x2 +

1

1− α
E[(X − x1)+] +

1

1− β
E[(X − x2)+]

}
.

By Theorem 2.3, R satisfies (5) for some S. Since R is not an ES/E-mixture, by Theorem 3.1, R

is not a Bayes risk measure. This implies that any minimizer S satisfying (5) is not translation

invariant. We can also see from this example that S(X) should be a one-to-one function of the

minimizer (x1, x2) above, which is difficult to interpret in a financial context (one-to-one mappings

from R2 to R are usually quite strange).

Example 3.5. The second example is the coherent entropic risk measure introduced by Föllmer

and Knispel (2011), defined, for some c > 0, as

R(X) = min
γ>0

{
1

γ
logE[eγX ] +

c

γ

}
, X ∈ L∞.

Föllmer and Knispel (2011) showed that R is a coherent risk measure; it satisfies (5) by Theorem

2.3. Since R is not an ES/E-mixture, by Theorem 3.1, R is not a Bayes risk measure.

Before ending this section, we show that the Bayes pair (VaRα,ESλα) can be characterized if

R is coherent or Choquet. This result slightly generalizes Theorem 3.1 which only gives the form

of R but not that of S. A proof of Proposition 3.6 is put in Appendix A.2.

Proposition 3.6. For a Bayes pair (S,R) with loss function L, the following are equivalent:

(i) S(0) = 0 and R is a coherent Bayes risk measure;

(ii) S(0) = 0 and R is a Choquet Bayes risk measure;

(iii) (S,R) = (VaRα,ESλα) for some α ∈ (0, 1) and λ ∈ [0, 1);

(iv) the loss function can be chosen as L : (x, y) 7→ x + (1 − λ)(y − x) + λ
1−α(y − x)+ for some

α ∈ (0, 1) and λ ∈ (0, 1].
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For a given α ∈ (0, 1), Wang and Wei (2020, Theorem 6.9) showed that an ES/E-mixture is

the only coherent Choquet risk measure ρ such that (ρ,VaRα) is elicitable. This result does not

imply, and is not implied by, Theorem 3.1 and Proposition 3.6, although the similarity is visible.

4 Elicitability of Bayes risk measures

In this section we study the connection between Bayes pairs and elicitability. Recall that the

functional S is elicitable if there exists a loss function L : Rd+1 → R such that

S(X) = arg min
y∈Rd

E[L(y,X)], X ∈ X . (12)

The first observation is that a Bayes pair (S,R) is always elicitable. This was essentially shown in

Theorem 1 of Frongillo and Kash (2021) where S takes scalar values. We present a similar proof

which is adapted to our slightly different definitions.

Theorem 4.1. Any Bayes pair (S,R) with loss function L is elicitable by

L∗(x, y, z) =

∫ y

0
h(t) dt+ h(y)(L(x, z)− y), (x, y) ∈ D, z ∈ R,

where h is any positive and strictly decreasing function on R and D is the range of (S,R).

Proof. We need to show that L∗ elicits (S,R); that is, for X ∈ X ,

(S,R)(X) = arg min
(x,y)∈D

E[L∗(x, y,X)] = arg min
(x,y)∈D

{∫ y

0
h(t) dt+ h(y)(E[L(x,X)]− y)

}
. (13)

First, for a fixed (y,X), the minimizers x∗ to (13) are the same as the minimizers of E[L(x,X)].

Therefore, we know that the set of minimizers x∗ are precisely S(X), and E[L(x∗, X)] = R(X).

Next, we need to find the minimizers for

arg min
y∈R

{∫ y

0
h(t) dt+ h(y)(R(X)− y)

}
,

which gives y∗ = R(X) since h is a strictly decreasing function.

Remark 4.2. In Theorem 4.1, the loss function which elicits (S,R) is not unique. For instance, if

S(X) is itself elicited by a loss function L′, then (x, y, z) 7→ L∗(x, y, z) +L′(x, z) also elicits (S,R).

Following the terminology of Emmer et al. (2015) and Fissler and Ziegel (2016), a functional

R : X → R is second-order elicitable if it is a component of a 2-dimensional elicitable functional,

13



and it is conditionally elicitable on another functional S if for each r ∈ R and some loss function

Lr, we have

R(X) = arg min
y∈Rd

E[Lr(y,X)], X ∈ X with S(X) = r.

Theorem 4.1 immediately yields that any Bayes risk measure R is second-order elicitable as a

component of the Bayes pair (S,R) and conditionally elicitable on S via Lr : (y, z) 7→ L∗(r, y, z).

Corollary 4.3. Any Bayes risk measure is second-order elicitable and conditionally elicitable.

Remark 4.4. Another direct consequence of Theorem 4.1 is that any Bayes risk measure has elici-

tation complexity of at most 2 (implied by second-order elicitability), and hence they are relatively

simple to estimate via empirical risk minimization; see Frongillo and Kash (2021) for a precise

definition and related discussions.

5 Other properties of Bayes risk measures

The following two results of a Bayes risk measure do not require monotonicity. Let M be the

set of distributions of the elements in X . For any scalar law-invariant risk measure R, we write

R̂ : F 7→ R(X) where X ∼ F ∈ M. Thus, R̂ represents the risk measure R treated as a mapping

from M to R. We say that a scalar risk measure R is mixture concave if R̂ is concave in F ∈ M;

R has convex level sets (CxLS) if the set {F ∈ M : R̂(F ) = r} is convex for each r ∈ R. Mixture

concavity represents that using a mixture of models (i.e., introducing a stochastic factor) increases

randomness, and it is a desirable property for both risk and deviation measures. Moreover, for

Choquet risk measures, mixture concavity is equivalent to coherence (Theorem 3 of Wang et al.

(2020)). The CxLS property is a necessary condition for elicitability (Osband (1985)) and has been

widely studied in the risk measure literature (e.g., Weber (2006), Ziegel (2016), Delbaen et al. (2016)

and Wang and Wei (2020)). The following two properties are useful in the proofs of Theorems 3.1

and 6.1. Moreover, Proposition 5.1 directly inspires the study in Section 6.

Proposition 5.1. A Bayes risk measure is necessarily mixture concave, and a Bayes estimator

necessarily has CxLS.

Proof. By definition, R̂ : F 7→ infx∈R{
∫
R L(x, y) dF (y)} is the infimum of linear functions on M,

and hence concave. Thus, R is mixture concave. The second statement is due to the fact that any

Bayes estimator is elicitable, and it is well known that elicitable functionals have CxLS (e.g., Ziegel

(2016)).

Proposition 5.2. A Choquet Bayes risk measure is necessarily coherent.
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Proof. Note that a monetary risk measure is uniformly continuous with respect to the L∞-norm.

Using Theorem 1 of Wang et al. (2020), a law-invariant, uniformly L∞-continuous and comonotonic-

additive functional admits a representation as a Choquet integral. Theorem 3 of Wang et al.

(2020) further implies that mixture concavity is equivalent to convexity. Therefore, as Choquet risk

measures are automatically positively homogeneous, R is coherent.

6 Elicitable Bayes risk measures

Any Bayes risk measure is mixture concave (Proposition 5.1), and any elicitable risk measure,

such as the Bayes estimator, has CxLS. We wonder what is the intersection of the two classes of

risk measures. This question is not only driven by mathematical curiosity, but also has interesting

connections with some classical results in decision theory.

As we have seen above, the mean is both elicitable (with loss function L(x, y) = (y − x)2)

and Bayes (with loss function L(x, y) = x+ (y − x)+). Moreover, the entropic risk measure ER in

Example 2.4 is mixture concave and has CxLS, since it is both elicitable and Bayes. The next result

shows that ER is the only risk measure that is mixture concave and has CxLS under the following

continuity assumption (recall that R̂(F ) = R(X) where X ∼ F )

(C) For any x < y, the mapping α 7→ R̂((1− α)δx + αδy) on [0, 1] is continuous at α = 0, where

δz is the point-mass at z ∈ R.

Clearly, continuity (C) is weaker than continuity from above.

Theorem 6.1. Let R be a law-invariant monetary risk measure on X = L∞ satisfying continuity

(C) with R(0) = 0. Then R is mixture concave and has CxLS if and only if it is an entropic risk

measure.

The proof of Theorem 6.1 is technical and put in Appendix A.3. Below we illustrate some

intuition of this result by connecting mixture concavity and CxLS to the notions of betweenness

(Chew (1983)) and associativity (Grant et al. (2000)) in decision theory.11 We say that R satisfies

associativity if for any F,G,H ∈M and λ ∈ (0, 1),

R̂(F ) = R̂(G) =⇒ R̂(λF + (1− λ)H) = R̂(λG+ (1− λ)H). (14)

Lemma 2 of Grant et al. (2000) shows that associativity holds under the assumption of a suitable

continuity condition, mixture concavity and betweenness. The betweenness property is slightly

11We thank an anonymous referee for brining up this connection.
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stronger than the CxLS property, but they are equivalent under some mild assumption (e.g., Lemma

14 of Steinwart et al. (2014)). If R̂ satisfies associativity, then by the de Finetti-Kolmogorov-

Nagumo Theorem (see e.g., Cifarelli and Regazzini (1996)), R is a certainty equivalent, that is, there

exists a continuous and strictly increasing function u : R → R such that R(X) = u−1(E[u(X)]),

X ∈ X . Finally, by translation-invariance of R, one can conclude that u(x) = ecx for c > 0 or

u(x) = x, x ∈ R. As a consequence, R must be an entropic risk measure. The main gap in the

above informal argument is to verify the conclusion of Lemma 2 of Grant et al. (2000) under CxLS

and (C), which is a complicated mathematical task although intuitively clear. In Appendix A.3, we

provide a full proof without using the results of Grant et al. (2000).

Remark 6.2. Continuity (C) is not satisfied by the essential supremum X 7→ VaR−1 (X), which is

mixture concave and has CxLS. In our proof of Theorem 6.1, the continuity condition (C) is essential

and we were not able to relax it. Nevertheless, we conjecture that by including VaR−1 = ER∞ as

an extended member of the ER family, one may remove or weaken (C) in Theorem 6.1.

A consequence of Theorem 6.1 is that a risk measure R with the form

R(X) = inf{x ∈ R : E[g(X − x)] ≤ z} (15)

for a strictly increasing g cannot be mixture concave unless it is an entropic risk measure. In

particular, this implies that expectiles defined in Example 2.4 (vi) are not mixture concave. This

fact is shown by Bellini et al. (2018), and it is (surprisingly) not easy to directly verify.

Corollary 6.3. Let R be defined by (15) for some increasing function g and constant z satisfying

g(−t) < z < g(t) for all t > 0. Then R is mixture concave if and only if it is an entropic risk

measure.

Proof. It is clear that the risk measure R defined by (15) is monetary. Note that the condition

g(−t) < z < g(t) for all t > 0 implies R(0) = 0. Lemma A.7 guarantees (C) from the above

condition on g. The rest follows by applying Theorem 6.1.

Finally, we obtain a characterization of entropic risk measures as the intersection of Bayes

estimators and Bayes risk measures. Moreover, as we see in Example 2.4 (ii), an entropic risk

measure is a Bayes estimator and a Bayes risk measure with the same loss function.

Corollary 6.4. A monetary risk measure R with R(0) = 0 is elicitable and Bayes if and only if it

is an entropic risk measure.
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Proof. Note that an elicitable risk measure satisfies CxLS and a Bayes risk measure satisfies

mixture concavity. Using Theorem 6.1, it suffices to verify that a Bayes risk measure R(X) =

minx E[L(x,X)] satisfies continuity (C). That is, for any x < y, the function

α 7→ H(α) := min
s∈R
{(1− α)L(s, x) + αL(s, y)}

is continuous at α = 0. Note that there exists s0 such that L(s0, x) = x. Then

x ≤ lim inf
α↓0

H(α) ≤ lim sup
α↓0

H(α) ≤ lim
α↓0
{(1− α)L(s0, x) + αL(s0, y)} = L(s0, x) = x.

Hence, we have H(α) is continuous at α = 0, which gives the desired condition (C).

7 Concluding remarks

In this paper, we introduce the concepts of Bayes pairs and Bayes risk measures, and offer

some characterization results. In particular, Theorem 3.1 yields a new characterization of ES in the

context of statistical inference and optimization, complementing the ES characterization of Wang

and Zitikis (2021) based on portfolio risk aggregation.

It is known that entropic risk measures are the only dynamically consistent law-invariant

risk measures (Kupper and Schachermayer (2009)), and they are also the only intersection of the

class of optimized certainty equivalents (OCE) and the class of shortfall risk measures (Ben-Tal

and Teboulle (2007) and Föllmer and Schied (2016)). Theorem 6.1 further shows that, under a

continuity assumption, the entropic risk measures are the only monetary risk measures satisfying

mixture concavity (a property of the OCE) and CxLS (a property of the shortfall risk measures).

Bayes risk measures are closely related to elicitability, and they are second-order elicitable

(Theorem 4.1). There are several open questions on the theory of Bayes pairs and Bayes risk

measures which will be explored in the future; we discuss a few of them here.

The first question is regarding the special role of Bayes pairs among elicitable two-dimensional

functionals. Almost all examples of elicitable two-dimensional functionals (S,R) in the literature

are one-to-one transforms of either a Bayes pair, such as those in Example 2.4, or a pair whose com-

ponents are both elicitable, such as (VaRα,VaRβ), (exα, exβ), or the modal interval (see Brehmer

and Gneiting (2021)). We wonder under what conditions an elicitable two-dimensional functional

has to be obtained from a Bayes pair.

Next, we focus on the Bayes risk measure R. We say that a risk measure is genuinely 2-
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elicitable if it is second-order elicitable but not elicitable. Since coherent risk measures are not

elicitable except for the expectiles (Ziegel (2016)), it is natural to study the class of genuinely 2-

elicitable coherent risk measures. A non-elicitable Bayes risk measure is genuinely 2-elicitable (see

Corollary 4.3), but the converse is not true; it is unclear what special role Bayes risk measures play

among genuinely 2-elicitable risk measures.

There are at least two very different ways to construct a genuinely 2-elicitable coherent risk

measure. The first is to combine two elicitable risk measures, such as a mixture of two different

expectiles, (1 − λ)exα + λexβ, and the second is to use a Bayes risk measure, such as an ES/E-

mixture. We conjecture that a coherent Choquet risk measure is genuinely 2-elicitable if and only

if it is an ES/E-mixture (except for the mean). We also wonder under what conditions, a genuinely

2-elicitable coherent risk measure has to be a mixture of two expectiles.

Finally, if we replace translation invariance of S in Definition 2.2 with another property, the

characterization in Theorem 3.1 may fail to hold, as we see in Examples 3.4 and 3.5. A full

characterization of coherent R without translation invariance of S is open at the moment. A

similar question arises in a setting where S is allowed to be multi-dimensional; these questions are

planned for future research.
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A Lemmas and proofs of several results

A.1 Lemmas in the proof of Theorem 3.1

Below we derive a few lemmas which lead to the proof of Theorem 3.1, implication (i)⇒(iii).

The other implications are already shown in the proof sketch in Section 3. In all lemmas below, X

is a linear space satisfying L∞ ⊂ X ⊂ L1.

Lemma A.1. Suppose that (S,R) is a Bayes pair with loss function L, and S and R are translation

invariant. The function (x, y) 7→ x+L(0, y− x) is also a loss function for (S,R). As consequence,
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there exists a real function v such that

R(X) = min
x∈R
{x+ E[v(X − x)]}, X ∈ X .

Proof. Define L∗(x, y) = x+ L(0, y − x), (x, y) ∈ R2, and

R∗(X) = min
x∈R

E[L∗(x,X)], X ∈ X .

We aim to show R∗ = R. For a random variable X ∈ X , denote by S∗ the left end-point of

S, that is, S∗(X) = min{arg minx∈R E[L(x,X)]}, X ∈ X . By translation invariance of S, we have

S∗(X+c) = S∗(X)+c for c ∈ R. Then by translation invariance of R we have R(X) = c+R(X−c),

that is,

min
x∈R

E[L(x,X)] = c+ min
x∈R

E[L(x,X − c)].

As a consequence,

E[L(S∗(X), X)] = c+ E[L(S∗(X − c), X − c)] = c+ E[L(S∗(X)− c,X − c)], (16)

where the last equality follows from S∗(X + c) = S∗(X) + c. By setting x∗ = S∗(X), we have

R∗(X) = min
x∈R

E[L∗(x,X)] = min
x∈R
{x+ E[L(0, X − x)]}

≤ x∗ + E[L(0, X − x∗)] = x∗ + E[L(S∗(X)− x∗, X − x∗)]

= x∗ + E[L(S∗(X − x∗), X − x∗)] = x∗ + min
x∈R

E[L(x,X − x∗)]

= x∗ +R(X − x∗) = R(X),

where the last equality is due to the translation invariance of R. Thus we have R∗ ≤ R. In order

to show R∗ ≥ R, take y∗ ∈ arg minx∈R{x+ E[L(0, X − x)]}. By (16), we have

R∗(X) = y∗ + E[L(0, X − y∗)] ≥ y∗ + min
x∈R

E[L(x,X − y∗)]

= y∗ + E[L(S∗(X − y∗), X − y∗)] = E[L(S∗(X), X)] = R(X).

Hence, we have R = R∗. Taking v(y) = L(0, y) gives the last statement.
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Using Lemma A.1, we can write

R(X) = min
x∈R
{x+ E[v(X − x)]}, where v(y) = L(0, y). (17)

In the following lemmas, we allow v to take the value ∞, and obtain results that are slightly more

general than required, i.e., we will also include ES1 which is the essential supremum. We define the

increasing version of v as

ṽ(x) = inf
y≥x

v(y), x ∈ R.

Note that R in (17) is real-valued, and

R(x) = inf
c∈R
{c+ v(x− c)} ≤ inf

y≥x
v(y).

Hence, ṽ(x) > −∞ for all x ∈ R. The finiteness of R also implies that v is not always ∞ on R.

Lemma A.2. Suppose that R : X → R in (17) is monotone. Then

R(X) = inf
c∈R
{c+ E[ṽ(X − c)]}, X ∈ X .

Proof. Let us denote by R̃(X) = infc∈R{c+E[ṽ(X−c)]}, X ∈ X .Obviously,R(X) ≥ R̃(X), X ∈ X .

Below we show R ≤ R̃. Take ε > 0 and c ∈ R. By definition of ṽ, for any x ∈ R, there exists

y ≥ x such that v(y) ≤ ṽ(x) + ε, and such y admits an increasing (hence measurable) selection. As

a consequence, there exists Y ∈ X such that Y ≥ X and v(Y − c) ≤ ṽ(X − c) + ε. This implies

c+ E[v(Y − c)] ≤ c+ E[ṽ(X − c)] + ε. By monotonicity of R and Y ≥ X, we further have

R(X) ≤ R(Y ) ≤ c+ E[v(Y − c)] ≤ c+ E[ṽ(X − c)] + ε.

Taking an infimum of the above inequality over c ∈ R and ε > 0 yields R(X) ≤ R̃(X).

Next, for an increasing function v, we define the largest convex function dominated by v as

v̂(x) = sup{g(x) : g ≤ v on R, g is convex}, x ∈ R.

By definition, v̂ is convex. To state the following lemma, we define

U =
{
v : v is increasing and convex, 1 ∈ int ∂v(R)

}
, (18)

where ∂v(R) = cx{v′−(x), v′+(x), x ∈ R}, intA is the interior of a set A, and cx(A) is the convex
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hull of A. Here we define the right derivative v′+(x) =∞ if v(y) =∞ for any y > x.

Lemma A.3. Suppose that R : X → R in (17) is monetary and convex, and v is an increasing

function. Then

R(X) = inf
c∈R
{c+ E[v̂(X − c)]}, X ∈ X .

Specifically, if v̂ 6∈ U , then either R(X) ≡ −∞ or R(X) = E[X]− v̂∗(1), where v̂∗(x) = supy{xy −

v̂(y)} is the conjugate function of v̂.

Proof. Let us denote by

R′(X) = inf
c∈R
{c+ E[v̂(X − c)]}, X ∈ X .

Obviously, R ≥ R′. Below we show R ≤ R′. Take ε > 0 and c ∈ R. Note that a law-invariant

convex risk measure is monotonic with respect to convex order (e.g., Proposition 3.2 of Mao and

Wang (2020)). For X ∈ X , we assert that there exists Y ∈ X be such that

X ≺cx Y and E[v(Y − c)] ≤ E[v̂(X − c)] + ε. (19)

To show this assertion, we use Theorem 4.1 of Mao et al. (2018), which gives

E[v̂(X)] = lim
n→∞

1

n
inf {E [v (X1)] + · · ·+ E [v (Xn)] : X1 + · · ·+Xn = nX} .

Then for any ε > 0, there exist n ∈ N and X1, . . . , Xn such that X1 + · · ·+Xn = nX and

1

n

(
E [v (X1)] + · · ·+ E [v (Xn)]

)
≤ E[v̂(X)] + ε.

Denote by Fi the distribution of Xi, i = 1, . . . , n and take a random variable Y such that its

distribution is H =
∑n

i=1 Fi/n. We then have

E[v(Y )] =

∫
R
v(y) dH(y) =

1

n

n∑
i=1

E[v(Xi)] ≤ E[v̂(X)] + ε.

For any convex function `, we have E[`(Y )] = 1
n

∑n
i=1 E[`(Xi)] ≥ E[`(X)], where the inequality

follows convexity. This implies X ≺cx Y , and hence (19) holds. This implies c + E[v(Y − c)] ≤

c + E[v̂(X − c)] + ε. By monotonicity of R with respect to convex order and X ≺cx Y , we further

have

R(X) ≤ R(Y ) ≤ c+ E[v(Y − c)] ≤ c+ E[v̂(X − c)] + ε.

Taking an infimum of the above inequality over c ∈ R and ε > 0 yields R(X) ≤ R′(X). Therefore,
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R = R′. The last statement is shown in the discussion below Definition 3.1 of Wu et al. (2020).

By Lemma A.3, in order to avoid the trivial cases of R, we only need to consider v ∈ U .

Lemma A.4. Let v be a function such that v(x) ≥ v(x) := λx+ (γ − λ)x+, x ∈ R, and

min
x∈R
{x+ E[v(X − x)]} = min

x∈R
{x+ E[v(X − x)]}, X ∈ X .

Then v = v.

Proof. We show the result by contradiction. Suppose that v(x0) > v(x0) for some x0 ∈ R. Define

a random variable X such that 1 − P(X = 0) = P(X = x0) = p, where p ∈ (0, 1) satisfies

1− p > α := 1− (1− λ)/γ. Then we have VaRα(X) = 0 and thus

R(X) = min
x
{x+ E[v(X − x)]} = 0 + E[v(X − 0)] = v(x0).

Note that 0 is the unique minimizer of the above minimization problem, which implies that

x+ E[v(X − x)] ≥ x+ E[v(X − x)] > R(X), x 6= 0. (20)

For x = 0, note that E[v(X)] = (1 − p)v(0) + pv(x0) > pv(x0) = R(X). This combined with (20)

yields a contradiction to the fact that minx∈R x+ E[v(X − x)] can be attained. Hence, v = v.

Theorem 3.1 of Ben-Tal and Teboulle (2007) showed that an OCE in (17) is positively homo-

geneous if and only if v(x) = λx + (γ − λ)x+ for some γ, λ. The following lemma gives a similar

result under slightly different conditions. It states that R defined by (17) with v ∈ U is positively

homogeneous if and only if v can be replaced by v̄. For completeness, we give a self-contained proof

that is different from Ben-Tal and Teboulle (2007).

Lemma A.5. For v ∈ U , suppose that R : X → R in (17) is positively homogeneous and v is an

increasing convex function. Then there exist γ ∈ [1,∞] and λ ∈ [0, 1], such that

R(X) = inf
c∈R
{c+ E[v̄(X − c)]}, X ∈ X , (21)

where v̄(x) = λx+ (γ − λ)x+ for all x 6= 0.

Proof. Since R is positively homogeneous, we have R(0) = infc∈R{c + E[v(−c)]} = 0. Note that

one minimizer of the above infimum is −ζv given by ζv := inf{x : v′−(x) ≥ 1} ∈ R, where v′− is

the left-derivative of v. One can easily verify that 1 ∈ [v′−(ζv), v
′
+(ζv)] and v(ζv) = ζv. Define
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u(x) := v(x + ζv) − ζv, x ∈ R. We have 1 ∈ [u′−(0), u′+(0)], and thus, u ∈ U with u(0) = 0. It is

obvious that R(X) = infc∈R{c+E[u(X−c)]}, X ∈ X . Hence, without loss of generality, we assume

that v ∈ U and v(0) = 0.

For λ > 0, denote by vλ(x) = v(λx)/λ and v̄(x) = infλ>0 vλ(x), x ∈ R. It is clear that v̄ is

convex, increasing and positively homogeneous. Since v is convex, we have, for 0 < λ ≤ γ,

v(λx) ≤ λ

γ
v(γx) +

(
1− λ

γ

)
v(0) =

λ

γ
v(γx).

As a consequence, vλ(x) ≤ vγ(x). Thus we know that vλ(x) is increasing in λ. Hence, v̄(x) =

limλ↓0 vλ(x). Note that if v(x) = ∞ for any x > 0, then we have v̄(x) = ∞ for x > 0; if however

v(x) <∞ for some x > 0, then for any x ∈ R, there exists λ > 0 such that vλ(x) <∞. For X ∈ X

with an upper bound and c ∈ R, the Monotone Convergence Theorem gives

E[v̄(X − c)] = E
[
lim
λ↓0

vλ(X − c)
]

= lim
λ↓0

E [vλ(X − c)] = inf
λ>0

E [vλ(X − c)] .

By definition, for λ > 0 and X ∈ X ,

R(λX) = inf
c∈R
{c+ E[v(λX − c)]} = inf

c∈R
{λc+ E[v(λ(X − c))]} = λ inf

c∈R
{c+ E[vλ(X − c)]}.

Hence, positive homogeneity of R implies

R(X) =
R(λX)

λ
= inf

c∈R
{c+ E[vλ(X − c)]}.

Taking an infimum over λ > 0 yields that for any X ∈ X with an upper bound

R(X) = inf
c∈R

{
c+ inf

λ>0
E[vλ(X − c)]

}
= inf

c∈R
{c+ E[v̄(X − c)]} ,

thus showing that (21) holds for X ∈ X with an upper bound. By Lemma A.4, we have v = v, and

thus, (21) holds for all X ∈ X . Positive homogeneity and monotonicity of v̄ imply that

v̄(x) = γx+ − λx− = λx+ (γ − λ)x+, x 6= 0,

for some γ ∈ [0,∞] and λ ∈ [0,∞). Using Lemma A.3, we further know that eitherR(X) = E[X]+c

for some constant c or v̄ ∈ U . If R(X) = E[X] + c, then c = 0 due to positive homogeneity of

R. In this case, v̄ can be chosen as v̄(x) = x, corresponding to γ = λ = 1. If v̄ ∈ U , then

int ∂v(R) = (λ, γ), which implies λ < 1 < γ.
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Proof of Theorem 3.1. It remains to prove the last step in the implication (i)⇒(iii). Combining

Lemmas A.1-A.5, we know that (17) holds, and v can be chosen as v(x) = λx+ (γ−λ)x+ for some

γ ∈ [1,∞] and λ ∈ [0, 1]. If λ < 1, write α = (γ − 1)/(γ − λ) ∈ (0, 1]. Using (4), including the case

α = 1, we have

R(X) = inf
c∈R
{c+ λE[(X − c)] + (γ − λ)E[(X − c)+]}

= (1− λ)ESα(X) + λE[X].

If λ = 1, then R(X) = infc∈R {(γ − 1)E[(X − c)+]} + E[X] = E[X]. In either case, R = ES1−λ
α =

(1−λ)ESα+λE. If, moreover, v is real-valued (it is in the definition of the loss function for a Bayes

pair), then we have γ <∞ and thus, α < 1.

A.2 Proof of Proposition 3.6

Proof of Proposition 3.6. Note that the implications (iii)⇔(iv)⇒(ii) are obvious, and the implica-

tion (ii)⇒(i) is implied by Proposition 5.2 in Section 5. We next show the implication (i)⇒(iii). By

Lemma A.1, there exists a function v : R→ R such that

S(X) = arg min
x∈R

{x+ E[v(X − x)]}, R(X) = min
x∈R
{x+ E[v(X − x)]}.

On the other hand, by Theorem 3.1, R(X) = ESλα(X) for some λ ∈ [0, 1] and α ∈ (0, 1). That is,

there exists v(x) = λ′x + (γ − λ′)x+ with λ′ = 1 − λ ∈ [0, 1] and γ = (1 − αλ′)/(1 − α) ∈ [1,∞)

such that

R(X) = ESλα(X) = min
x∈R
{x+ E[v(X − x)]}.

Denote by v̂ the largest increasing convex function dominated by v. That is,

v̂(x) = sup{g(x) : g ≤ ṽ on R, g is convex}, x ∈ R, (22)

with ṽ(x) = infy≥x v(y). We then show the result by considering the following two cases.

(i) If v̂(0) = 0, then by the proofs of Lemmas A.2 to A.5, we have v ≤ v, and hence v = v by

Lemma A.4. By S(0) = 0, which excludes λ = 1, we have S(X) = VaRα(X).

(ii) If v̂(0) > 0, then by the proof of Lemma A.5, there exists c ∈ R such that v̂(c) = c. Define

v∗(x) = v(x + c) − c, x ∈ R and the corresponding v̂∗ of v∗ by (22). One can verify that
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v̂∗(x) = v̂(x+ c)− c, which implies v̂∗(0) = 0, and

R(X) = min
x∈R
{x+ E[v∗(X − x)]}.

Similar to Case (i), we have v∗ ≥ v and thus, v∗ = v by Lemma A.4. Since S(0) = 0 excludes

λ = 1, it follows that S(X) = VaRα(X)−c. By S(0) = 0 again, we have c = 0. This completes

the proof.

A.3 Proof of Theorem 6.1

We present two lemmas used in the proof of Theorem 6.1. The first lemma uses a weaker

continuity (C’) than (C) in Theorem 6.1. This result is similar to Theorem 3.1 of Weber (2006)

which uses a different condition of ψ-weak lower semi-continuity to replace mixture concavity.

(C’) There exists x ≤ 0 such that for any y > 0, R̂((1− α)δx + αδy) ≤ 0 for small enough α > 0.

Lemma A.6. Let R be a monetary risk measure on X = L∞ satisfying continuity (C’) with

R(0) = 0. If R is mixture concave and has CxLS, then there exist z ∈ R and an increasing and

left-continuous g such that

R(X) = inf{x ∈ R : E[g(X − x)] ≤ z}, X ∈ X . (23)

Proof. Take x ≤ 0 in assumption (C’) and any fixed constant y > 0, and let z ∈ (0, 1) be such that

[0, z] = {α ∈ [0, 1] : R̂((1− α)δx + αδy) ≤ 0}; the interval is closed since α 7→ R((1− α)δx + αδy) is

concave. We define the function g as

g(t) =


z−α(t)
1−α(t) , t ≤ 0,

z
α(t) , t > 0,

(24)

where

α(t) =

 sup{α ∈ [0, 1] : R̂((1− α)δt + αδy) ≤ 0}, t ≤ 0,

sup{α ∈ [0, 1] : R̂((1− α)δx + αδt) ≤ 0}, t > 0.

(25)

This is the same construction as in Eq. (3.5) and (3.7) of Weber (2006). Since for any t ≤ 0,

α 7→ R̂((1− α)δt + αδy) is increasing concave in α ∈ [0, 1] and R̂(δy) = y > 0, we have α(t) < 1 for

t ≤ 0. By (C’), we have α(t) > 0 for t > 0. Hence, g is well defined. By monotonicity of R, one can

verify that g is increasing and satisfies g(0) = z. Next we show (23) and the left-continuity of g.

25



1. Denote by S the convex hull of {δxi , i = 1, . . . , n}, that is,

S =

{
n∑
i=1

αiδxi : αi ≥ 0, i = 1, . . . , n,
n∑
i=1

αi = 1

}
,

where x1 = x, x2 = y are those fixed above. By mixture concavity of R, one can verify

that (α1, . . . , αn) 7→ R̂(
∑n

i=1 αiδxi) is a concave function, and thus is lower-semicontinuous by

Theorem 10.2 of Rockafellar (1970). It follows that N := {(α1, . . . , αn) : R̂(
∑n

i=1 αiδxi) ≤ 0} is

closed sets in the Euclidean topology. By CxLS of R, we have N and S \N are both convex sets.

Using similar arguments of Weber (2006), one can verify that (23) holds for random variable X

which has distribution in S.

2. We next show g is left-continuous. Since g is increasing, it suffices to show lims↑t g(s) = g(t) for

t ∈ R, which is equivalent to lims↑t α(s) ≤ α(t) as α is decreasing.

(a) For t > 0, if α(t) = 1, then lims↑t α(s) ≤ α(t) holds trivially as α(s) ≤ 1 for any s.

(b) For t > 0 with α(t) < 1, by definition of α(t), we have for any ε ∈ (0, 1 − α(t)), R̂((1 −

α(t) − ε)δx + (α(t) + ε)δt) > 0. Since R is monetary, R̂((1 − α)δx + αδt) is continuous in

t ∈ R, and hence there exists s0 < t such that R̂((1−α(t)− ε)δx + (α(t) + ε)δs0) > 0. That

is, α(s0) ≤ α(t) + ε. Therefore, lims↑t α(s) ≤ α(s0) ≤ α(t) + ε. As ε is arbitrary, we have

lims↑t α(s) ≤ α(t).

(c) For t ≤ 0, we have α(t) < 1. Similar arguments as in (b) yield lims↑t α(s) ≤ α(t).

3. Next we show that (23) holds for any X ∈ X . Since R is monetary, there exist Xn, n ∈ N,

each taking values in a finite set, such that Xn ↑ X and limn→∞R(Xn) = R(X). Since g is

left-continuous, we have g(Xn − x) ↑ g(X − x) and by the Monotone Convergence Theorem, we

obtain limn→∞ E[g(Xn − x)] = E[g(X − x)] for any x ∈ R. This implies

lim
n→∞

inf{x ∈ R : E[g(Xn − x)] ≤ z} = inf{x ∈ R : E[g(X − x)] ≤ z}.

It then follows from limn→∞R(Xn) = R(X) and R(Xn) = inf{x ∈ R : E[g(Xn − x)] ≤ z} that

(23) holds for any X ∈ X .

Lemma A.7. Let R be defined by (23) for an increasing function g and z ∈ R satisfying R(0) = 0.

Then R satisfies (C) if and only if g(t) < z for all t < 0. Moreover, if R is mixture concave and

satisfies (C), then g in (23) can be chosen continuous and strictly increasing on either (−∞, 0) or

(0,∞), and R(X) is the unique solution x to the equation E[g(X − x)] = z.
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Proof. 1. We first show that R satisfies (C) if and only if g(t) < z for t < 0. To see the “if”

statement, by translation invariance, it suffices to show that R̂((1−α)δx +αδy) is continuous at

α = 0 for x ≤ 0 < y. For this, we will verify limα↓0 R̂((1−α)δx+αδy) ≤ x. For any ε ∈ (0, y−x),

we have

lim
α↓0

(1− α)g(x− x− ε) + αg(y − x− ε) = g(−ε) < z.

Hence, there exists α0 ∈ (0, 1) such that (1 − α0)g(x − x − ε) + α0g(y − x − ε) < z, implying

R̂((1 − α0)δx + α0δy) ≤ x + ε. By monotonicity of R, we have limα↓0 R̂((1 − α)δx + αδy) ≤

R̂((1− α0)δx + α0δy) ≤ x+ ε. As ε is arbitrary, we have limα↓0 R̂((1− α)δx + αδy) ≤ x.

To see the “only if” statement, suppose that there exists ε > 0 such that g(t) = z for z ∈ (−ε, 0).

By R(0) = 0, we have z < g(t) for any t > 0. It follows that R̂((1− α)δ0 + αδε/2) ≥ ε/2 for any

α > 0. This contradicts (C).

2. In what follows, we take g from (24) in the proof of Lemma A.6. We will show that g is continuous

and strictly increasing on either (−∞, 0) or (0,∞) by contradiction. We have seen from Step

1 above that (C) and R(0) = 0 together imply that g is strictly increasing at 0. Suppose that

there exist a < b < 0 < c < d such that [a, b] = {x : g(x) = g(a)} and [c, d] = {x : g(x) = g(c)}.

As g(a) < z < g(c), there exists α0 ∈ [0, 1) such that (1− α0)g(a) + α0g(c) = g(0), and hence

(1− α)g(a) + αg(c) > z for any α > α0. (26)

Since g(t) < z for t < 0, there exist α1 > α0 and ε ∈ (0,min{(b− a)/2, (d− c)/2}) such that

1− α1

2
g(a) +

α1

2
g(c) +

1

2
g(−ε) < z. (27)

Define the distribution Fx,y = (1−α1)δx+α1δy with x ∈ [a+2ε, b] and y ∈ [c+2ε, d]. Then by (26),

we have R̂(Fx,y) > 2ε. By letting G = 1
2Fx,y+ 1

2δ0, (27) implies R̂(G) ≤ ε < R̂(Fx,y)/2+R̂(δ0)/2,

yielding a contradiction. Hence, g is strictly increasing on either (−∞, 0) or (0,∞).

3. Using results in Steps 1 and 2, for any X ∈ X , we have E[g(X − x)] is strictly decreasing for x

in the range of X, and thus, the equation E[g(X − x)] = z has a unique solution x.

4. Finally we show that g is continuous. Using (C), α defined by (25) satisfies that α(t) is the

unique solution to the equation in α, R̂((1 − α)δt + αδy) = 0, if t ≤ 0, and it is the unique

solution α to R̂((1 − α)δx + αδt) = 0 if t > 0. Since R is monetary and hence L∞-continuous,

we have that R̂((1 − α)δx1 + αδx2) is continuous in (x1, x2) ∈ R2. Hence, α is continuous and
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thus, g is continuous.

Proof of Theorem 6.1. The “if” statement is argued in (ii) of Example 2.4, where we see that the

entropic risk measure is both a Bayes risk measure and a Bayes estimator. Hence, it is mixture

concave and has CxLS. To prove the “only if” statement, first note that by using Lemmas A.6 and

A.7, we have (15) holds with g and z satisfying that g is continuous, and strictly increasing on

either (−∞, 0) or (0,∞), and the equation E[g(X − x)] = z always has a unique solution. Further,

by Lemma A.7 and R(0) = 0, we have g(−t) < z < g(t) for all t > 0. We then employ the following

steps to show that R must be an entropic risk measure.

1. Note that a monotone function g has derivatives almost everywhere. Let t be a point such that

g(t) < z and g is differentiable at t. Take arbitrary x, y > 0. Since g(t) < z < min{g(x), g(y)},

for each ε ∈ (0,min{x, y}), there exist unique λ1(ε) ∈ (0, 1) and λ2(ε) ∈ (0, 1) such that

λ1(ε)g(x− ε) + (1− λ1(ε))g(t) = z and λ2(ε)g(y − ε) + (1− λ2(ε))g(t) = z. (28)

As g is increasing, λi(ε) is decreasing in ε, i = 1, 2. Let λ0i = limε↓0 λi(ε) ∈ (0, 1) for i = 1, 2,

and we have

λ01g(x) + (1− λ01)g(t) = z and λ02g(y) + (1− λ02)g(t) = z. (29)

2. Let a random variable X be given by P(X = x) = λ01 and P(X = t) = 1−λ01, and Yε be given

by P(Yε = y + ε) = λ2(ε) and P(Yε = t+ 2ε) = 1− λ2(ε) for ε > 0.

3. Since g is strictly increasing at either t or x, the first equation of (29) gives the inequality

λ01g(x + δ) + (1 − λ01)g(t + δ) > z for any δ > 0. This implies R(X) = 0. Similarly, we have

R(Yε) = 2ε.

4. Let Z have a distribution with is a mixture of the distributions of X and Yε with weight 1/2

each. Using mixture concavity, we have R(Z) ≥ ε, meaning that E[g(Z − ε)] ≥ z. Hence, we

have

λ01g(x− ε) + (1− λ01)g(t− ε) + λ2(ε)g(y) + (1− λ2(ε))g(t+ ε) ≥ 2z.

Subtracting the second equality in (28) and the first equality in (29) from the above equation,
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we get

λ01 (g(x− ε)− g(x)) + λ2(ε) (g(y)− g(y − ε))

+ (1− λ01) (g(t− ε)− g(t)) + (1− λ2(ε)) (g(t+ ε)− g(t)) ≥ 0.

Divide the above equation by ε, and letting ε ↓ 0, we obtain

λ02 lim inf
ε↓0

g(y)− g(y − ε)
ε

− λ01 lim sup
ε↓0

g(x)− g(x− ε)
ε

≥ (λ02 − λ01)g′(t), (30)

where we use λ02 = limε↓0 λ2(ε). Since the positions of (x, λ01) and (y, λ02) are symmetric, we

also have

λ01 lim inf
ε↓0

g(x)− g(x− ε)
ε

− λ02 lim sup
ε↓0

g(y)− g(y − ε)
ε

≥ (λ01 − λ02)g′(t), (31)

Combining (30) and (31), we conclude that the two inequalities in (30) and (31) are both

equalities, and because λ01, λ
0
2 > 0, we have

lim inf
ε↓0

g(x)− g(x− ε)
ε

= lim sup
ε↓0

g(x)− g(x− ε)
ε

.

That is, g has a left-derivative at x and y. Similarly, we can show that it also has a right-

derivative at x and y, so that

λ02g
′(y)− λ01g′(x) = (λ02 − λ01)g′(t), (32)

for all x, y > 0. By (29), we can write λ01 = z−g(t)
g(x)−g(t) and λ02 = z−g(t)

g(y)−g(t) . Substituting them

into (32) yields

(g′(x)− g′(t))(g(y)− g(t)) = (g′(y)− g′(t))(g(x)− g(t)). (33)

5. By fixing t and y and noting that g(y) > g(t), (33) can be rewritten as

g′(x)− bg(x) = d (34)

for some constants b and d. Solving (34), we obtain that, on (0,∞), either g is linear or

g(x) = aebx + c for some constants a, b, c. Similarly, by fixing x and y, we have that, almost
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everywhere on (−∞, 0), either g is linear or g(x) = a′eb
′x + c′ for some constants a′, b′, c′;

continuity of g now implies that the above for holds on (−∞, 0).

6. From the previous step, g indeed has a positive derivative at any point t < 0. Hence, (33)

holds for all x, y > 0 and t < 0. Note that (33) and the continuity of g imply that g′ is

continuous at 0. The forms of g on (−∞, 0) and on (0,∞) have three parameters each (the

linear case corresponds to the limit of b→ 0 after normalization). We obtain three equations

from g′(x)(g(y)− c′) = g′(y)(g(x)− c′) (obtained by letting t→ −∞) and the continuity of g

and g′ at 0, and these three equations give a = a′, b = b′ and c = c′. Hence, we conclude that

either g is linear or g(x) = aebx + c on R.

7. If g is linear, then R = ER0 = E. If g is not linear, then ab > 0 since R is monotone.

Moreover, (15) implies

R(X) =
1

b
logE[ebX ], X ∈ X .

Since log is a concave function, mixture concavity does not hold if b < 0 (in this case, R is

mixture convex). Hence, b > 0, and R = ERb.
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