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Abstract

In the recent Fundamental Review of the Trading Book (FRTB), the Basel Commit-

tee on Banking Supervision proposed the shift from the 99% Value-at-Risk (VaR) to the

97.5% Expected Shortfall (ES) for internal models in market risk assessment. Inspired by

the above transition, we introduce a new distributional index, the probability equivalence

level of VaR and ES (PELVE), which identifies the balancing point for the equivalence

between VaR and ES. PELVE enjoys many desirable theoretical properties and it distin-

guishes empirically heavy-tailed distributions from light-tailed ones via a threshold of 2.72.

Convergence properties and asymptotic normality of the empirical PELVE estimators are

established. Applying PELVE to financial asset and portfolio data leads to interesting

observations that are not captured by VaR or ES alone. We find that, in general, the

transition from VaR to ES in the FRTB yields an increase in risk capital for single-asset

portfolios, but for well-diversified portfolios, the capital requirement remains almost un-

changed. This leads to both a theoretical justification and an empirical evidence for the

conclusion that the use of ES rewards portfolio diversification more than the use of VaR.

Key-words: Value-at-Risk; Expected Shortfall; regulatory capital; heavy tails; port-

folio diversification

∗Haas School of Business, University of California Berkeley, USA. � hanson.li@berkeley.edu
†Department of Statistics and Actuarial Science, University of Waterloo, Canada. � wang@uwaterloo.ca

hanson.li@berkeley.edu
wang@uwaterloo.ca


1 Introduction

The Value-at-Risk (VaR) and the Expected Shortfall (ES, also known as CVaR, TVaR

and AVaR)1 are the most popular risk measures used in banking and insurance, and they

are widely used for regulatory capital calculation, decision making, performance analysis, and

risk management (see Section 2 for precise definitions). In particular, both VaR and ES are

currently employed in the banking regulation framework of Basel III/IV and the insurance

regulation frameworks of Solvency II and the Swiss Solvency Test. In the above context,

the main interpretation of the values of these risk measures is the capital requirement for a

potential loss faced by a financial institution.

In the recent Fundamental Review of the Trading Book (FRTB), the Basel Committee

on Banking Supervision confirmed to replace a VaR with an ES as the standard risk measure

for market risk; see BCBS (2019). Nevertheless, the presence of VaR remains in Basel III/IV

for backtesting risk models, and it is still the dominating risk measure in Solvency II. Re-

flecting on this matter, there has been extensive research in the literature on the comparative

advantages of VaR, ES and alternative risk measures; see Embrechts et al. (2018), Chen et

al. (2019), Patton et al. (2019) and the references therein. As a general consensus, VaR and

ES both have advantages from different perspectives, such as estimation, forecasts and back-

tests, optimization, economic implications, and numerical calculation. Moreover, the two risk

measures will likely co-exist in risk management practice for a long period of time.

In this paper, we look at the issue of VaR and ES from a novel angle. When a VaR is to

be replaced by an ES, a proper probability level needs to be specified. Quoting BCBS (2013),

Page 22, discussing the potential transition:

“... using an ES model, the Committee believes that moving to a confidence level of 97.5%

(relative to the 99th percentile confidence level for the current VaR measure) is appropriate.”

The current FRTB specifies that banks should use ES0.975 to replace VaR0.99, regardless of

the asset class that they invest in. If ES0.975 ≈ VaR0.99, then the bank’s portfolio capital

requirement is almost unchanged in this VaR-ES transition, whereas, if ES0.975 > VaR0.99,

then the bank’s portfolio capital charge is increased in the transition. One of the main reasons

1We use the name ES to be consistent with the terminology used by the Basel Committee on Banking
Supervision, which reflects our main motivation.
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for the Basel Committee to replace VaR by ES is that ES “better captures tail risk” as

explained in BCBS (2016). The implementation of ES, which facilitates a better assessment

of tail risk,2 will lead to changes in the overall capital requirement of banks. On the other

hand, it is undesirable and impractical if the regulator increases capital charges by too much;

for instance, this would have been the case if VaR0.99 was to be replaced by ES0.99, which

will be clearly unacceptable for the banks. Therefore, a balance needs to be reached, and a

natural question arises from this transition:

For various portfolios, asset classes and risk models, what is an equivalent probability level to

choose when an ES is to replace a VaR?

To answer this question, we introduce the Probability Equivalent Level of VaR-ES (PELVE),

which is the ratio of the ES confidence level to that of VaR with an equivalent risk value.

More precisely, for a chosen level ε close to 0 and a loss random variable X, the PELVE

is a constant multiplier c such that ES1−cε(X) = VaR1−ε(X); a formal definition is given

in Section 2. The value of PELVE addresses the issue of the regulatory capital change if

one replaces a VaR by an ES. In particular, for ε = 0.01, if PELVE is larger than 2.5, then

ES0.975 > ES1−0.01c = VaR0.99, that is, replacing VaR0.99 by ES0.975 will lead to an increase

of the risk value. On the other hand, if PELVE is smaller than 2.5, then replacing VaR0.99 by

ES0.975 will lead to a decrease of the risk value. We will see in this paper that for commonly

used parametric distributions in risk management and real asset return data, their PELVE

values are typically larger than 2.5. This partially explains (among other changes) the survey

finding of BCBS (2015, p.3), where two thirds of the banks reported an increase of capital

charges under the proposed new market risk framework. Moreover, a larger value of PELVE

indicates a more drastic increase of capital during the VaR-ES transition.

Motivated by the above practical question, we formally analyze properties of PELVE as a

statistical quantity of loss distributions. By simply looking at PELVE for classic distribution

families, we observe that PELVE can be seen as a measure of distributional variability be-

cause a higher value is reported for a loss distribution with a heavier tail. We discover several

desirable properties of PELVE. First, PELVE is invariant under increasing3 linear transforma-

tions, a convenient feature in portfolio risk analysis, which is often scale-free. Second, PELVE

2See Embrechts et al. (2018) for an explanation of ES better capturing tail risk in the context of risk sharing
and optimization.

3In this paper, terms “increasing” and “decreasing” are in the non-strict sense.
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generally increases (decreases) if an increasing convex (concave) transform is applied to the

loss random variable. In particular, this implies that purchasing a put or call option on an

asset reduces the PELVE of a long-only portfolio, a put option more so, consistent with the

general intuition that a put option (or an insurance) protects the investor. Third, PELVE

is both quasi-convex and quasi-concave for comonotonic risks, leading to advantages in both

risk comparison and optimization. These properties lead to a profound implication: a well

diversified (more Gaussian-like) portfolio has a smaller PELVE than individual assets, and

the use of ES rewards portfolio diversification more than the use of VaR, a hidden feature of

the aforementioned regulatory transition. As far as we know, our theory is the first in the

literature to explain the above advantage of ES in portfolio diversification. This advantage

cannot be explained by Extreme Value Theory (EVT)4 or the coherence of ES.5 See Section

3 for a theoretical treatment leading to the above claims.

Financial data typically exhibit heavy tails (see e.g., Jansen and De Vries (1991) and

Cont (2001)). We analyze PELVE within the class of regularly varying distributions, which

is an important class of heavy-tailed distributions. In particular, we found that the value of

e ≈ 2.72 can be seen as a threshold for PELVE separating (empirically) heavy- and light-tailed

distributions, and hence the Basel proposal of using a multiplier of 2.5 will lead to an increase of

capital requirement for heavy-tailed loss distributions. See Section 4 for an analysis of PELVE

for commonly used distributions in risk management, which gives practical interpretation of

PELVE values obtained from various models and data sets. For non-parametric estimation

of PELVE, we show that in the iid and the α-mixing cases, the empirical PELVE estimator

and its smoothed version are both consistent and have asymptotic normality. The asymptotic

variance is also obtained explicitly; see Section 5 for the above results.

We conduct a few empirical studies, including PELVE curves for different S&P 500 sec-

tors, and an analysis of PELVE for well-diversified portfolios in Section 6. We find that the

1/N portfolio exhibits a much smaller PELVE value on average (≈ e) compared to individual

stocks (≈ 3), thus showing a novel advantage of the 1/N portfolio. According to the com-

4Diversification does not reduce the tail index in EVT, even for a portfolio of iid risks. See Section 4.2 for
the definition and discussions.

5Coherence of ES only justifies that ES does not penalize diversification. However, VaR has diversification
benefit for common portfolio data, and coherence of ES does not address which of ES and VaR has a larger effect
of diversification; note that the mean is also a coherent risk measure but it does not have any diversification
benefit. See also our discussions in Section 3.3.
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mon interpretation, a proper diversification would reduce both risk measures VaR and ES

simultaneously. The above result further suggests that the reduction in ES is more significant

empirically, complementing the theoretical results in Section 3. Proofs of all technical results,

as well as several additional examples, simulation results, and figures, are relegated to the

Appendices.

From the main results of this paper, PELVE enjoys several practical advantages. For

instance, it is well defined for both bounded and unbounded distributions, its values are

easily interpretable, and it directly relates to the FRTB transition between VaR and ES. The

definition of PELVE involves minimal model assumptions (essentially, finite first moment),6

in contrast to other measures of variability (which typically require higher moments) and

measures of tail heaviness (which typically require asymptotics of the distribution function).

Furthermore, its estimation procedure is quite standard when working with data. From the

empirical studies, we can see that PELVE provides a powerful complement to classic risk

measures such as VaR and ES, and it captures features in the financial data which ES or VaR

alone does not detect.

The work is related to various studies on VaR and ES and their relationship. For recent

developments on these risk measures within the FRTB, we refer to Embrechts et al. (2018), Li

and Xing (2019), Wang and Zitikis (2021) and the references therein. Heavy-tailed distribu-

tions are a popular topic in EVT; a classic reference to EVT is de Haan and Ferreira (2006)

and its applications in finance and insurance are found in Embrechts et al. (1997). The deriva-

tion of the asymptotic normality of PELVE estimators is based on recent results in Asimit et

al. (2019), where a capital allocation method is built on the relationship between VaR and

ES. For a comparison of VaR and ES estimators and issues related to their backtests, see the

recent papers Dańıelsson and Zhou (2016), Fissler and Ziegel (2016) and Du and Escanciano

(2017). We also refer to the book McNeil et al. (2015) for a comprehensive treatment on VaR

and ES in quantitative risk management.

6Although there are debates on whether short-term (daily or more frequent) financial returns have finite
variance (see e.g., Grabchak and Samorodnitsky (2010)), it is commonly agreed that they have finite mean,
and thus PELVE is applicable.
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2 Definition and basic properties of PELVE

2.1 VaR, ES and PELVE

Let L1 be the set of random variables with finite mean in an atomless probability space

(Ω,F ,P), which will be the set of random losses that we are interested in. Throughout, for

a random variable X, denote by FX(x) = P(X 6 x), x ∈ R, its distribution function, and

F−1
X (p) = inf{x ∈ R : FX(x) > p}, p ∈ [0, 1], its quantile function.

Below we define VaR and ES, the two most popular risk measures. The VaR at confidence

level (or probability level) p ∈ (0, 1) is defined as

VaRp(X) = inf{x ∈ R : P(X 6 x) > p} = F−1
X (p), X ∈ L1,

and the ES at confidence level p ∈ [0, 1) is defined as

ESp(X) =
1

1− p

∫ 1

p
VaRq(X)dq, X ∈ L1.

Note that ES0 corresponds to the mean of a random variable.

With the definitions of VaR and ES above, we introduce our key concept in this paper,

the Probability Equivalent Level of VaR-ES (PELVE). For a level ε ∈ (0, 1), the PELVE of a

random variable X, denoted by Πε(X), is a constant multiplier c ∈ [1, 1/ε] such that ES at

level 1− cε and VaR at level 1− ε become equal, that is,

ES1−cε(X) = VaR1−ε(X). (1)

The typical value of ε of interest is close to 0, such as ε = 0.01, which corresponds to VaR0.99

in Basel II.

Later we will see that (1) usually admits a unique solution c ∈ [1, 1/ε], but this requires

some weak conditions. To formulate PELVE rigorously for all random variables in L1, we

formally define Πε : L1 → R as

Πε(X) = inf {c ∈ [1, 1/ε] : ES1−cε(X) 6 VaR1−ε(X)} , X ∈ L1. (2)

Here, we use the convention inf(∅) =∞, which may happen if ε is large. We will sometimes
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say “the PELVE of a distribution”, which of course means the PELVE of a random variable

with that distribution. Note that (2) is defined in terms of an infimum instead of a unique

point. That is precisely because in some rare situations, there are possibly multiple values, or

even no value of c ∈ [1, 1/ε] such that (1) holds. In Section 2.2 below we will investigate the

issue of existence and uniqueness of c for (1). Before that, to facilitate a better understanding

of numeric PELVE values, we look at a few typical examples of commonly used distributions

in Table 1. Formulas for these PELVE values as well as more numerical illustrations are

presented in Section 4.

ε Dirac U N Exp
LN(σ2) t(ν) Pareto(α)

0.04 0.25 1 2 10 30 2 4 10
0.100

1.00 2.00

2.46

2.72

2.56 2.76 3.23 3.60 2.58 2.49

4.00 3.16 2.87
0.050 2.51 2.61 2.79 3.19 3.80 2.65 2.55
0.010 2.58 2.66 2.81 3.13 3.96 2.74 2.63
0.005 2.59 2.67 2.81 3.10 3.98 2.77 2.65

Table 1: PELVE for some commonly used distributions and ε = 0.1, 0.05, 0.01, 0.005

From Table 1, we see that the PELVE values are relatively stable across different ε for

the same distribution; in particular, they are constant in ε for degenerate (Dirac), uniform

(U), exponential (Exp) and Pareto distributions. On the other hand, the PELVE values vary

significantly across distributions with different levels of tail heaviness (see Section 4.2 for a

rigorous treatment of tail heaviness). PELVE generally reports a higher value if the tail of

the distribution is heavier, and it reports a smaller value if the distribution is lighter-tailed.

The smallest possible value of Πε(X) = 1 is attained by the degenerate distribution, and the

largest value in Table 1 is attained by a Pareto distribution with shape parameter 2, whose

variance is infinite. As such, PELVE can be seen as an index of variability or tail-heaviness of

the loss distribution. We also note that PELVE is close to 2.5 for normal (N) distributions,

which suggests VaR0.99 ≈ ES0.975 (the latter is slightly larger) for normal distributions in the

context of the FRTB.

2.2 Existence and uniqueness

Below, we analyze issues on existence and uniqueness of c ∈ [1, 1/ε] such that (1) holds.

Fortunately, there are very simple conditions to guarantee both existence and uniqueness, and

they are satisfied for almost all practically relevant choices of X and ε.
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Proposition 1 (Existence of PELVE). For X ∈ L1 and ε ∈ (0, 1), the following statements

are equivalent.

(i) There exists c ∈ [1, 1/ε] such that (1) holds.

(ii) Πε(X) ∈ [1, 1/ε] and (1) holds for c = Πε(X).

(iii) E[X] 6 VaR1−ε(X).

(iv) Πε(X) <∞.

By Proposition 1, the PELVE value Πε(X) is in [1, 1/ε] if and only if E[X] 6 VaR1−ε(X).

The existence is guaranteed because E[X] = ES0(X) 6 VaR1−ε(X) 6 ES1−ε(X) and p 7→

ESp(X) is continuous, implying that there exists c ∈ [1, 1/ε] such that ES1−cε(X) = VaR1−ε(X).

Note that ε is typically very small, and hence this condition usually holds, especially for port-

folio losses, which are the main concern in the FRTB. Concerning the uniqueness of c ∈ [1, 1/ε]

for (1), we have the following condition.

Proposition 2 (Uniqueness of PELVE). Suppose E [X] 6 VaR1−ε(X) and VaRp(X) is not a

constant for p ∈ [1− ε, 1). Then, there exists a unique c ∈ [1, 1/ε] such that (1) holds.

To utilize the results in Propositions 1-2, we state the following simple assumption, which

will be used repeatedly in the rest of the paper.

Assumption 1. E [X] < VaR1−ε(X) and VaRp(X) is not a constant for p ∈ [1− ε, 1).

Note that Assumption 1 is satisfied by most meaningful models for portfolio losses used in

practice, noting that ε is typically very small. In particular, if X is continuously distributed,

then VaRp(X) is strictly increasing in p. Under Assumption 1, Πε(X) is the unique solution

of c ∈ (1, 1/ε) to the equation (1). This fact will be convenient for the discussions in the next

few sections.

Remark 1. For the asymptotic results in Section 5, we will need to require E [X] < VaR1−ε(X)

instead of E [X] 6 VaR1−ε(X) (as in Propositions 1 and 2) to avoid hitting the boundary case

of c = 1/ε in (2). For this purpose, we use the current formulation of Assumption 1.

Remark 2. An alternative way of formulating an object similar to PELVE is to define, for

δ ∈ (0, 1) which is the ES confidence level of interest,

Π′δ(X) = inf{d > 1 : ES1−δ(X) 6 VaR1−δ/d(X)}, X ∈ L1. (3)
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We can compare the formulation (3) with the formulation (2). The advantage of using (3)

is that we do not need to assume that δ is small; indeed, Π′δ(X) gives a finite value for all

δ ∈ (0, 1). The disadvantage, on the other hand, is that the equation

ES1−δ(X) = VaR1−δ/d(X) (4)

is not always satisfied for d = Π′δ(X) or any d > 0,7 whereas ES1−cε(X) = VaR1−ε(X) always

holds for c = Πε(X) if Πε(X) < ∞, as implied by Proposition 1. To balance comparative

advantages, and to reflect our main motivation of the FRTB in the introduction, we decided

to work with the formulation (2). Notably, for distributions with a constant PELVE, such as

Pareto, uniform or exponential distributions (see Section 4), both formulations (2) and (3)

give identical values for Πε and Π′δ.

Remark 3. In the recent engineering and optimization literature, Mafusalov and Uryasev

(2018) introduced the buffered Probability of Exceedance (bPOE), defined as the number

cx(X) = c which solves ES1−c(X) = x, if it exists. For a continuously distributed X, PELVE is

connected to the ratio θx(X) = cx(X)/P(X > x) via the following argument: if P(X > x) = ε,

then Πε(X) = cx(X)/ε = θx(X). Our notion of PELVE is different from the ratio θx(X) in

two ways. First, Πε(X) has a parameter ε ∈ (0, 1) whereas θx(X) has a parameter x ∈ R.

The mappings Πε and θx exhibit very different theoretical properties; for instance, Πε is

location-scale invariant (see Theorem 1) whereas θx is not. Second, PELVE is designed for and

motivated by financial regulation and capital assessment (thus, ε has an economic meaning),

whereas θx was motivated by buffering probability of failure in reliability engineering.

3 Theoretical features of PELVE

3.1 Invariance and ordering properties

In this section, we discuss a few theoretical features of PELVE: location-scale invariance,

shape-relevance and quasi-convexity/concavity for comonotonic risks. As we have seen in

Table 1, PELVE can be seen as a measure of variability. A key feature of PELVE, in contrast

to commonly used measures of variability, such as variance or standard deviation, is location-

7For instance, (4) has a solution d only for a few values of δ ∈ (0, 1) if X has a discrete distribution.
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scale invariance. That means, adding a constant loss or gain, or multiplying a portfolio by

a constant, does not change its PELVE value. Hence, PELVE captures the shape of the

distribution instead of its location or scale. This is a particular advantage for portfolio risk

assessment, as one often needs to compare portfolios in a scale-free way, such as using the

Sharpe ratio.

Another attractive feature of PELVE is that it reports a higher value for a convex trans-

form of the risk. Generally, for an increasing and convex function f and a random variable

X, f(X) has a heavier (right-)tail than X. For instance, if X is normally distributed, then

eX is log-normally distributed, which has a heavier tail than normal; if X has a Pareto(α)

distribution, then X2 has a Pareto(α/2) distribution, which has a heavier tail than Pareto(α).

Therefore, with the property of reporting a higher value for f(X) than for X, PELVE can

be seen as a measure of tail-heaviness. Moreover, this property is an axiom for measures of

(right) skewness of Oja (1981).

Finally, PELVE is both quasi-convex and quasi-concave for comonotonic risks.8 The

property of satisfying both quasi-convexity and quasi-concavity is known as betweenness in

decision theory (e.g., Chew (1983)). The economic interpretation of this property is that

combining two non-hedging risks does not yield a PELVE value beyond that of the worse risk,

or one below that of the better risk, noting that comonotonic risks do not hedge each other; see

e.g., Yaari (1987). Quasi-convexity and quasi-concavity are also important for optimization

due to techniques in quasi-convex programming (e.g., Kiwiel (2001)). The above three features

are summarized in the following theorem.

Theorem 1. Suppose that X ∈ L1, ε ∈ (0, 1) and E [X] 6 VaR1−ε(X).

(i) For all λ > 0 and a ∈ R, Πε(λX + a) = Πε(X).

(ii) Πε(f(X)) 6 Πε(X) for all increasing concave functions f : R→ R with f(X) ∈ L1.

(iii) Πε(g(X)) > Πε(X) for all strictly increasing convex functions g : R→ R with g(X) ∈ L1.

8Two random variables X and Y are said to be comonotonic if there exists a random variable Z and
increasing functions f and g such that X = f(Z) and Y = g(Z) almost surely. A real function f on a
set D is quasi-convex if f(λx + (1 − λ)y) 6 max{f(x), f(y)} for all x, y ∈ D, and it is quasi-concave if
f(λx+(1−λ)y) > min{f(x), f(y)} for all x, y ∈ D. Quasi-convexity (quasi-concavity) is obviously weaker than
convexity (concavity).
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(iv) For all λ ∈ [0, 1] and increasing functions f, g : R→ R with f(X), g(X) ∈ L1, the value

Πε(λf(X) + (1− λ)g(X)) is between Πε(f(X)) and Πε(g(X)).

The next few examples illustrate important implications of Theorem 1 in risk manage-

ment. The first two examples address portfolio losses from an asset and simple derivatives on

the same asset, and the third example is a comparison between linear losses and log-losses.

The last example puts PELVE in the setting of risk forecast using time-series models.

Example 1 (Reducing PELVE with options). Consider portfolios which consist of an asset

and a European call or put option on the asset (with the same maturity). Via Theorem 1,

we can compare the PELVE of the time-t loss of the following portfolios: (a) long one unit

of the asset, with loss XA; (b) long a call option, with loss XC ; (c) long one unit of the

asset and a call option, with loss XAC ; (d) long one unit of the asset and a put option, with

loss XAP . By design, the losses from the above portfolios have some general relationships

via concave or convex functions. More precisely, all of XC , XAC , and XAP are increasing

concave functions of XA, and XAP is an increasing concave function of XAC ; details of the

derivation are given in Appendix A.2. Using Theorem 1 (ii) and the put-call parity, which

implies Πε(XC) = Πε(XAP ), the above relationships lead to

Πε(XC) = Πε(XAP ) 6 Πε(XAC) 6 Πε(XA). (5)

The conclusion in (5) is consistent with the natural intuition that purchasing options reduces

the portfolio risk (measured by PELVE), and the protective put portfolio (d) is less risky than

the long-asset-long-call portfolio (c). We remark that the relationship (5) does not depend on

ε or any model assumptions on the financial asset. Moreover, the weights in the options and

the asset in the above portfolios are irrelevant since they do not affect the relationship via

concave or convex transforms.

Example 2 (Comparison of PELVE using quasi-convexity/concavity). We continue in the

setting of Example 1. Note that the loss from the asset XA and that from the call option XC

are comonotonic. By the quasi-convexity/concavity in Theorem 1 (iv), we get

min{Πε(XC),Πε(XA)} 6 Πε(XAC) 6 max{Πε(XC),Πε(XA)}. (6)
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If we know Πε(XC) 6 Πε(XA), e.g., by using Theorem 1 (ii), then with the put-call parity we

also arrive at (5). Note that the relationship (6) still holds true if the call option in XC and

XAC is replaced by any other payoffs, as long as it is an increasing function of the asset price

(not necessarily convex or concave).

Example 3 (Linear loss and log-loss). For an asset with priceXt at time t = 0, 1, . . . (e.g. daily

prices), the one-period linear return at time t is defined as Rt = Xt/Xt−1−1, and the log-return

is rt = log(Xt/Xt−1). Note that risk measures are applied to losses instead of gains. Hence,

relevant quantities are the linear loss (negative return) −Rt = 1 −Xt/Xt−1 and the log-loss

(negative log-return) −rt = − log(Xt/Xt−1), which we shall analyze in the empirical studies

in Section 6. Since y 7→ − log(1 − y) is a strictly increasing convex function, by Theorem 1

(iii), Πε(−rt) > Πε(−Rt), i.e. using log-loss will produce a (slightly) higher PELVE value than

the linear loss; see Figure 9 in the Appendix for a comparison.

Example 4 (PELVE for time-series models). In risk management practice, risk measure

forecast (such as VaR and ES forecasts) is usually done via conditional models; see, e.g.,

Chapter 4 of McNeil et al. (2015) and Patton et al. (2019). Consider a time-series model for

risk factors (e.g., GARCH)

Xt = µt + σtZt, t ∈ Z,

where µt and σt are the conditional mean and standard deviation given a σ-field Ft−1, and Zt

is a random error independent of Ft−1. Using Theorem 1 (i), we have Πε(Xt|Ft−1) = Πε(Zt).

Hence, the conditional PELVE is determined by that of the error term. Note that by using

PELVE, we are interested in the shape of the loss distribution, instead of its location and

scale, which are precisely the information contained in Ft−1.

Remark 4. The increasing convex function g in Theorem 1 (iii) is required to be strictly

increasing, and this requirement is essential. For instance, if g is a constant function, then

Πε(g(X)) = 1 for all X since g(X) is degenerate, which clearly violates Πε(g(X)) > Πε(X) if

Πε(X) > 1. Note, however, that for the increasing concave function f in Theorem 1 (ii), it

does not have to be strictly increasing.

Remark 5. Generally, Πε is not quasi-convex or quasi-concave on non-comonotonic random

variables, and this is because VaRp is neither quasi-convex nor quasi-concave, although ESp

is convex.
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3.2 Convergence properties

Next, we discuss convergence properties of PELVE, which are useful for statistical infer-

ence of PELVE (in particular, consistency). Let {Xn}n∈N be a sequence of random variables

such that Xn → X in distribution as n → ∞. The following two common assumptions are

used to guarantee the convergence of VaR and ES. More precisely, Assumption 2 below guar-

antees VaR1−ε(Xn) → VaR1−ε(X), and Assumption 3 below guarantees ESq(Xn) → ESq(X)

for all q ∈ (0, 1). These claims are standard because, assuming convergence in distribution,

the quantile function converges at continuous points of its limit, and ESq is continuous with

respect to L1 convergence which is guaranteed by uniform integrability.

Assumption 2 (Continuous quantile). F−1
X (q) is continuous at q = 1− ε.

Assumption 3 (Uniform integrability). {Xn}n∈N is uniformly integrable.

With the above assumptions, we can establish a convergence result of PELVE in the

following theorem. Throughout,
d→ represents convergence in distribution.

Theorem 2. Suppose that {Xn}n∈N ⊂ L1, X ∈ L1 and ε ∈ (0, 1) satisfy Assumptions 1-3

and Xn
d→ X as n→∞. Then Πε(Xn)→ Πε(X) as n→∞.

Note that for iid or α-mixing (see Section 5.2) data, the empirical distribution converges

to the true distribution. Moreover, for stationary observations, Assumption 3 is satisfied au-

tomatically, where Xn follows from the empirical distribution based on n observations. There-

fore, Theorem 2 implies that the empirical PELVE estimator is consistent under Assumptions

1-2; see Corollary 1 in Section 5.

3.3 Effect of diversification

Diversification techniques are widely used in portfolio risk management. A proper diver-

sification should, in theory, reduce the volatility of the portfolio, and this is often reflected in

a reduction of standard deviation, VaR, ES, or other risk measures of the portfolio loss com-

pared to the the sum of the individual assets.9 Below we will discuss the impact on PELVE

of portfolio diversification through results in Theorems 1 and 2.

9Here the term “risk measures” is used in a broad sense, which includes non-monotone functionals such as
standard deviation and variance.
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Suppose that X1, . . . , Xn are losses from individual sources with finite variances. The

portfolio loss Sn is defined as Sn =
∑n

i=1wiXi for some weights w1, . . . , wn > 0, and we will

allow n to grow. Assume that as n increases, (Sn − an)/bn converges in distribution to a

normal distribution for some constants an ∈ R and bn > 0. This assumption is satisfied as

soon as any form of the central limit theorem (CLT) applies (Bilingsley (1999) has many such

conditions). By Theorems 1 and 2,

Πε(Sn) = Πε

(
Sn − an
bn

)
→ Πε(N), (7)

where N is a standard normal random variable. For instance, Π0.01(N) = 2.58 from Table 1.

Most common distributions in risk management have higher PELVE values than the normal

distribution; this will be clear from the examples in Section 4 and the empirical results in

Section 6. Therefore, if CLT conditions hold, then the loss from a well-diversified portfolio

has asymptotically smaller PELVE than individual assets. Nevertheless, we need to keep in

mind that both individual assets and portfolio loss data are empirically not very close to

normality due to the presence of systematic risk; see e.g., Chapter 3 of McNeil et al. (2015).

Thus, even if there is a tendency to normality, the convergence is slow. Hence, we do not

claim Πε(Sn) ≈ Πε(N); instead, Πε(Sn) is likely closer to Πε(N) than Πε(X1), . . . ,Πε(Xn)

are. This statement will be verified in the empirical analysis in Section 6.

Diversification techniques can simultaneously reduce both VaR and ES of a portfolio, and

it is not obvious which one is reduced more significantly.10 PELVE provides an answer to the

above question: assuming that the individual losses have a higher PELVE than normal, the

portfolio ES is reduced more significantly than VaR by a proper diversification.

Remark 6. The result in this section should not be confused with, and is not a consequence

of, the coherence of ES in Artzner et al. (1999). Indeed, the conclusion needs to be flipped if

the individual assets have Πε(Xi) < Πε(N) (e.g., uniform distributions), although such a case

is unlikely observed in asset loss data.

10For instance, for a vector (X1, . . . , Xn) following an elliptical distribution, diversification ratios for VaR
and ES are identical; see Theorem 8.28 of McNeil et al. (2015).
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4 PELVE for various distributions and its limit

In this section, we present formulas and curves of Πε for common distributions which

are used in Table 1, and discuss the interpretation of these values. We proceed to analyze

the limit of PELVE as ε ↓ 0 for heavy-tailed distributions, noting that in risk management

practice ε is typically quite small.

4.1 Formulas and numerical values for commonly used distributions

As shown in Theorem 1, location and scale parameters are irrelevant for the calculation

of Πε. We thus only need to consider a representative of each location-scale family of distri-

butions. Furthermore, we are interested in the cases that ε is close to 0, and hence all results

are stated for small values of ε so that Assumption 1 holds. All calculations are based on

analytical formulas for VaR and ES and solving (1), whose details are given in Appendix A.3.

Example 5 (Uniform/Pareto/Exponential distributions). We first illustrate three distribu-

tions that have a constant PELVE.

(i) If X is uniformly distributed on some interval, then Πε(X) = 2 for ε 6 1/2.

(ii) If X is exponentially distributed, then Πε(X) = e for ε 6 1/e.

(iii) If X has a Pareto(α) distribution with shape parameter α > 1, that is, P(X > x) =

x−α, x > 1,11 then Πε(X) = ( α
α−1)α for ε 6 ( α

α−1)−α.

Figure 1 panel (a) reports the value of Πε(X) for Pareto(α) over α. By elementary calculus,

the function α 7→ ( α
α−1)α is decreasing in α, and

Πε(X) > lim
α→∞

(
α

α− 1

)α
= e ≈ 2.718. (8)

As its shape parameter increases, the PELVE of a Pareto distribution decreases to e, which is

that of an exponential distribution. Hence, the value e can be seen as a threshold of PELVE

which distinguishes empirically between power-like distributions and light-tailed distributions.

This observation will be discussed further in Section 4.2.

11Any other parametrization of the Pareto distribution, such as P(X > x) = (θ/(x + θ))−α, x > 0, where
θ > 0, has the same Πε(X) because of location-scale invariance.
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Example 6 (Normal/t/log-normal distributions). For normal, t and log-normal distributions,

PELVE does not admit an analytical formula, but it can be easily calculated from VaR and

ES formulas. We write t(ν) for the t-distribution with parameter (0, 1, ν), where ν > 1 is the

parameter of degrees of freedom, and LN(σ2) for the log-normal distributions with parameter

(0, σ2). Curves of PELVE for the above distributions are reported in Figure 1 panels (b)-(f).

Most PELVE values of the normal distribution are close to 2.5, consistent with the fact

that the normal distribution is a typical example of a light-tailed distribution. The Π0.01 curve

of t-distributions with ν > 1 is very similar to that of Pareto distributions with α > 1, and as

ν → ∞, Π0.01 of t(ν) approaches the corresponding value of a normal distribution (2.58), as

the t-distribution converges to a normal distribution.

The value Π0.01(X) = 3.13 for X ∼ LN(1) is relatively large, which is roughly equivalent

to that of Pareto(4). Using PELVE and the threshold e ≈ 2.718, for a practical value of

ε = 0.01, the log-normal distribution with σ2 = 1 behaves (practically) like a heavy-tailed

distribution, whereas the log-normal distribution with σ2 = 0.04 behaves like a light-tailed

distribution. The log-normal distributions, regardless of their parameters, are not categorized

as heavy-tailed distributions in theory; for instance, in McNeil et al. (2015), heavy-tailed

distributions have power-like survival functions. This suggests that PELVE can practically

(instead of asymptotically) distinguish distributions with moderate tails better than methods

based on the tail-index or moments; this point will be continued in Remark 7 below.

4.2 Limit of PELVE for heavy-tailed distributions

It is well known that financial return data show heavy tails (see e.g. Cont (2001); An-

dersen et al. (2021)), and hence it is common to model financial returns and portfolio losses

using heavy-tailed distributions. These heavy-tailed distributions are typically defined with a

regularly varying tail, a classic notion in Extreme Value Theory (EVT); for a general treat-

ment, we refer to Embrechts et al. (1997). In this section, we illustrate the role of PELVE in

the analysis of tail heaviness.

An eventually non-negative (that is, f(x) > 0 for x large enough) measurable function f

is said to be regularly varying (RV) with a regularity index γ ∈ R, if

lim
x→∞

f(tx)

f(x)
= tγ , for all t > 0.
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Figure 1: Values of Πε for various common distributions
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Denote this by f ∈ RVγ . For a distribution function F , let F (·) = 1 − F (·) denote its

survival function. Many heavy tailed distributions has an RV survival function, such as the t-

distribution or the Pareto distribution. The tail-index of a distribution F with an RV survival

function, is the constant ξ > 0 such that F ∈ RV−ξ. For instance, a Pareto distribution with

shape parameter α has a tail-index α, and a t-distribution with ν degrees of freedom has a

tail-index ν. A tail-index larger than 1 indicates a finite mean, and a tail-index larger than 2

indicates a finite variance.

Below we investigate the PELVE of distributions with a tail index α > 1. The condition

α > 1 is assumed to guarantee the existence of the mean; recall that Πε is defined on L1. Note

that an RV function only concerns its behaviour close to infinity, and as such we analyze the

limit of Πε as ε ↓ 0.

Theorem 3. Suppose that the function F (x) = P(X > x) is RV−α, α > 1. Then

lim
ε↓0

Πε(X) =

(
α

α− 1

)α
.

The limiting value in Theorem 3 coincides with the PELVE of Pareto distributions for

fixed ε > 0, which is of course not a surprise. Moreover, Theorem 3 suggests a monotonic

relationship between the limit of PELVE and the tail index. Indeed, the heavier the tail (i.e.,

smaller α), the larger the limit of the PELVE value. For heavy-tailed distributions, the limit

of their PELVE is larger than e ≈ 2.718, even if the tail index is very large; see Figure 1 (a)

and (8). This further supports that the value e ≈ 2.718 can be seen as a threshold for PELVE

to distinguish empirically heavy-tailed phenomenon and light-tailed phenomenon, as discussed

in Example 5. Recall that Π0.01(X) = 2.58 for a normally distributed X, showing that normal

distributions are indeed light-tailed, which is consistent to our common interpretation. On

the other hand, Π0.01(X) = 3.13 for a log-normally distributed X with parameter σ2 = 1 as

we have seen in Example 6.

Although the limit of PELVE and the tail index are linked by Theorem 3, they are

conceptually quite different, and PELVE has several practical advantages. First, the tail index

relies on the asymptotic behaviour of the distribution, as well as the technical assumption of

regular variation, whereas PELVE is well defined for all distributions with a finite mean,

regardless of the tail being regularly varying or not. Second, PELVE is well defined for
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random variables with a bounded support. Third, estimating the tail index typically involves

an ad-hoc choice of the threshold (such as in the Hill estimator; see Embrechts et al. (1997)),

whereas PELVE for a fixed ε can be estimated directly from empirical data with minimal model

assumptions (Section 5).12 Fourth, PELVE has the advantage of capturing diversification (see

the empirical results in Section 6) whereas the tail index remains the same for the average of

iid heavy tailed risks. Fifth, Π0.01 has a concrete meaning for banking regulation, which is the

probability multiplier to change from VaR to ES while maintaining the same capital level.

Remark 7. As PELVE depends on a small but fixed probability level ε, the heavy-tailed phe-

nomenon in this section should be interpreted as “empirically or practically heavy-tailed”,

meaning that the observed data have a similar pattern as those from a heavy-tailed distri-

bution, at a probability level of risk management relevance. The purpose of PELVE is not

to theoretically detect tail-heaviness in the classic sense (an asymptotic property), which is

typically defined via a regular varying tail or the existence of a moment generating function.

Theorem 3 has a practical implication for the choice of risk measure in the FRTB, where

the Basel Committee used the specific pair of q = 0.975 and p = 0.99, leading to a constant

multiplier of 2.5. Note that the limit of Πε as ε ↓ 0 is larger than e for heavy tailed distributions.

This means, by changing from VaR0.99 to ES0.975, the capital requirement will be increased

for heavy-tailed risks. To make the above statements precise, we give an approximation of

ES0.975(X)/VaR0.99(X) for heavy-tailed risk X.

Proposition 3. Suppose that the function F (x) = P(X > x) is RV−α, α > 1. Then, for

c > 1,

lim
ε↓0

ES1−cε(X)

VaR1−ε(X)
=

α

α− 1
c−1/α = lim

ε↓0

(
Πε(X)

c

)1/α

.

In particular,

lim
ε↓0

ES1−2.5ε(X)

VaR1−ε(X)
=

α

α− 1
2.5−1/α = lim

ε↓0

(
Πε(X)

2.5

)1/α

> 1.

The ratio α
α−12.5−1/α ≈ (Πε(X)

2.5 )1/α in Proposition 3 approximates the ratio between the

capital requirements of the same risk under ES0.975 and VaR0.99. This ratio is typically not

12Recall that in the context of our main motivation, ε is specified exogenously by a regulatory accord. On
the other hand, if one is interested in the asymptotic behaviour (e.g., tail heaviness), then the parameter ε may
be seen as a counterpart to the ad-hoc threshold in estimating the tail index.
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very far away from 1; for instance, it is 1.02 for α = 8, 1.06 for α = 4, and 1.26 for α = 2. Note

however that even the ratio is close to 1, Πε(X) may not be close to 2.5; instead, limε↓0 Πε(X)

goes to e as α→∞ by Theorem 3. For t-distributions, the value ε = 0.01 used by the FTRB

is sufficiently small for the approximation in Proposition 3 to be useful.

5 Non-parametric estimation of PELVE

5.1 Empirical PELVE estimator for iid data

Suppose that X1, X2, . . . are iid sample observations for X ∈ L1 with distribution F

satisfying Assumption 1, and denote by Fn the empirical distribution of X1, . . . , Xn. Here

we assume iid for tractability of the asymptotic variance formula; the more general case of

α-mixing sequences is analyzed in Section 5.2.

By construction, the estimation of PELVE involves estimating VaR and ES. The most

straightforward way to estimate VaR and ES is to directly use those of the empirical distri-

bution. Then, one can define the empirical PELVE estimator Π̂ε(n) by solving the equation

ÊS1−cε = V̂aR1−ε for c ∈ [1, 1/ε], (9)

where ÊS and V̂aR are the empirical ES and VaR, respectively, i.e., those of the empirical

distribution Fn from the data. Recall that the empirical VaR is the sample quantile given by

V̂aRp = X[i] for p ∈
(
i− 1

n
,
i

n

]
, i = 1, . . . , n,

where X[1] 6 . . . 6 X[n] are the order statistics of the data X1, . . . , Xn, and the empirical ES

is given by

ÊSp =
1

1− p

∫ 1

p
V̂aRqdq, p ∈ (0, 1).

We implicitly assume that c solving (9) is unique since Assumption 1 is almost always satisfied

for the empirical distribution. Consistency of Π̂ε(n) is a direct consequence of Theorem 2.

Corollary 1. Suppose that X,X1, X2, · · · ∈ L1 are iid, ε ∈ (0, 1), and Assumptions 1-2 hold.

Then Π̂ε(n)→ Πε(X) as n→∞.
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Remark 8. As an alternative to the empirical quantile, one may implement a smoothed quantile

estimator, such as the standard linearly interpolated VaR in McNeil et al. (2015, Section

9.2.6), to compute both VaR and ES estimates. This leads to the smoothed empirical PELVE

estimator which we treat in Appendix B. From the simulation results (see Appendix C), the

smoothed estimator does not improve the overall estimation quality and leads to a visible bias.

As such, we stick to the empirical estimator Π̂ε(n) in our main paper.

Next, we establish the asymptotic normality of Π̂ε(n) under a stronger condition than

Assumptions 1-2. For the consistency result in Corollary 1, it suffices if X has the first moment,

and hence, it works for Pareto(α) for α > 1; for the asymptotic normality result in Theorem

4, we need slightly more than the second moment (Assumption 4), and as such, for Pareto(α)

it is valid only for α > 2.

Assumption 4 (Regularity). X ∼ F has a density function f which is positive and continuous

at F−1(1− ε), and E[|X|2+δ] <∞ for some δ > 0.

In the next theorem, Π̃(n) is the smoothed empirical PELVE estimator explained in

Remark 8 and formally defined in Appendix B.

Theorem 4 (Asymptotic normality). Suppose that X,X1, X2, · · · ∈ L1 are iid, ε ∈ (0, 1), and

Assumptions 1 and 4 hold. Let c = Πε(X) and ĉn = Π̂(n) or ĉn = Π̃(n). Then, as n→∞

√
n(ĉn − c)

d−→ 1

F−1(p)− F−1(q)

(∫ 1

q

W (t)

εf(F−1(t))
dt− cW (p)

f
(
F−1(p)

)) ,
where p = 1 − ε, q = 1 − cε, and W is a standard Brownian bridge on [0, 1]. In particular,
√
n(ĉn − c)

d→ N(0, σ2) and σ2 can be computed as

σ2 =
1

b2

(
a2(ε− ε2) +

2

ε2

∫ ∞
F−1(q)

EF (x)F (x)dx− 2a

ε
Ep + 2a(Eq − b)

)
, (10)

where Et = E[(X − F−1(t))+] for t ∈ (0, 1), a = c/f(F−1(p)) and b = F−1(p)− F−1(q).

Two examples of σ2 for uniform and Pareto distributions are presented in Appendix A.5,

where we see that σ2 depends on ε and explodes at the rate of O(ε−1) as ε ↓ 0. This is because

the non-parametric estimators for ES1−cε and VaR1−ε effectively use cnε and nε data points,

respectively. In practice, a very small value of ε may lead to large estimation errors of Π̂ε,
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similar to the empirical estimation of VaR and ES. Fortunately, as shown in Table 1, Πε is

typically quite stable across values of ε, and hence one can get useful information on PELVE

without choosing ε too small.

Figure 2 below is produced with sample sizes n = 1000 and n = 5000 with losses sim-

ulated from Pareto(4), and the procedure is repeated 10,000 times. We observe that the

PELVE empirical estimates match quite well with the density functions of N(3.16, 0.0944) and

N(3.16, 0.0189), the respective theoretical limiting distributions. More simulation results are

put in Appendix C.
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Figure 2: Empirical PELVE estimators for Pareto(4), ε = 0.05

5.2 Non-parametric estimation for dependent data

Next, we analyze the empirical PELVE estimators for a dependent sequence of data. We

follow the notation in Section 5.1, without assuming that our observations comes from an iid

sample. Instead, we assume that the sequence13 {Xn}n∈Z is strictly stationary and α-mixing,

that is,

α(k) := sup
{∣∣P(A ∩B)− P(A)P(B)

∣∣ : A ∈ F i−∞, B ∈ F∞i+k,−∞ < i <∞
}
→ 0

13Here, Z is the set of integers, and we include Xn for negative n in the sequence to formally define an
α-mixing sequence. Only Xn for n ∈ N will be used for estimation.
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as k →∞, where Fba denotes the σ-field generated by {Xn}a6n6b. Certainly, an iid sequence

is a special case of α-mixing sequences, with α(k) = 0 for k > 1.

Assumption 5 (α-mixing observations). The sequence {Xn}n∈Z is strictly stationary and

α-mixing, and α(k) = O(ak) as k →∞ for some a ∈ (0, 1).

The definition of the empirical PELVE estimator Π̂(n) is the same as in Section 5.1, given

by (9). Recall that the data used for Π̂(n) are X1, . . . , Xn. The consistency of the estimator

Π̂(n) is guaranteed by Theorem 2, noting that the empirical distribution converges to the true

distribution for an α-mixing sequence of observations. Below, we establish the asymptotic

normality, which completes our theoretical analysis.

Proposition 4 (Asymptotic normality for α-mixing data). Suppose that Assumptions 1, 4

and 5 hold. Let c = Πε(X0) and ĉn = Π̂(n) or ĉn = Π̃(n). Then, as n→∞,

√
n(ĉn − c)

d−→ 1

F−1(p)− F−1(q)

(∫ 1

q

W (t)

εf(F−1(t))
dt− cW (p)

f
(
F−1(p)

)) , (11)

where p = 1−ε, q = 1−cε, and W is a Gaussian process on [0, 1] with mean 0 and covariance

Cov(W (t),W (s)) =
∑
i∈Z

(
P({F (X1) 6 s} ∩ {F (X1+i) 6 t})− ts

)
. (12)

In particular,
√
n(ĉn − c)

d→ N(0, σ2) where σ2 is the variance of the right-hand side of (11).

Unlike in Theorem 4, the asymptotic variance formula of the empirical PELVE estimator

for the α-mixing data is not explicit. Therefore, confidence intervals are not straightforward to

construct, and one may need to rely on other variance estimation techniques such as bootstrap.

In Section 6 below, we produce bootstrap confidence bands for our estimated PELVE curves.

5.3 Asymptotic variance estimation

To estimate the asymptotic variance σ2 of the estimator Π̂(n) in the setting of α-mixing

data, we implement a non-overlapping block-bootstrap method of Carlstein (1986). Other

common dependent bootstrap methods work similarly; see Lahiri (2003) for a comprehensive

treatment.
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Given a sample X1, . . . , Xn, we break it into k blocks of the form (Xim+1, . . . , X(i+1)m)

for i = 0, 1, . . . , k − 1, where k = n/m (which may hold only approximately). We assume

that m and k both tend to ∞ as n → ∞, as in the usual setting of block bootstrap; for

instance, one may choose m = O(n1/3) as suggested by Hall et al. (1995), which has an

asymptotically optimal efficiency for the block-bootstrap variance estimator. A bootstrap

sequence is constructed by sampling k blocks with replacement, and pasting them together to

form a sequence of length n.

Let F bn be the empirical distribution of the bootstrapped series for b = 1, . . . , B, and

define the bootstrap error Sb =
√
n(T (F bn)− T (Fn)). The block-bootstrap variance estimator

σ̂2
B is the empirical variance of Sb, b = 1, . . . , B. Letting B → ∞, σ̂2

B converges to the

bootstrap variance σ̂2
∗ conditional on the data. The following simple result shows that the

bootstrap variance converges to the asymptotic variance of the empirical PELVE estimator.

Proposition 5. Under the assumptions of Proposition 4, we have σ̂2
∗ → σ2 as m,n→∞ and

m = O(nδ) for some δ ∈ (0, 1/2).

The consistency result in Proposition 5 is obtained from classic results on the bootstrap

empirical process (Bühlmann (1994)) and the weak convergence in (11). A small simulation

example on the block-bootstrap variance estimator is reported in Table 7 in Appendix C.

6 Empirical analysis for financial data

With the theoretical attractions of PELVE discussed in the previous sections, we next

illustrate, using real data, the advantages and additional information provided by PELVE

beyond VaR and ES, by means of two empirical studies. To reflect the distributional feature

of realized losses and avoid imposing any model specification, we mainly focus on PELVE of

the empirical distributions of financial losses.

6.1 PELVE for asset return data

We gather the historical price movements, ranging from Jan 4, 1999 to Oct 9, 2020, of

the S&P 500 index and its constituents.14 For the index and each individual constituent, we

14The price data are obtained from Yahoo Finance.
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use its daily log-loss (negative log-return) data15 over the observation period with a moving

window of 500 days for daily estimations of VaR, ES and PELVE. For instance, an estimation

of PELVE on 01/02/2001 will use log-loss data roughly from Jan 1999 to Dec 2000.

We report in Figure 3 (a) the daily 5% empirical PELVE16 of log-losses from the index,

using the empirical estimator defined in Section 5. We also report 95% bootstrap confidence

bands, which are constructed by fitting an AR(1)-GARCH(1,1) model with t-innovations to

each window and resampling the residuals (see e.g., Section 4 of Asimit et al. (2019)).17 The

main observation here is that the S&P 500 index has a PELVE around e ≈ 2.72 over the entire

period (with mean 2.76).
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Figure 3: 5% PELVE of the S&P 500 index

Next, we calculate 5% empirical PELVE to examine tail-heaviness of different sectors of

S&P 500 from Jan 2001 to Oct 2020. We take the average PELVE value of stocks in each

sector of S&P 500 to obtain the sector-wise PELVE values on each observation day. In Figure

4, we report the 5% PELVE values of the Financials and IT sectors, as well as their average

99% VaR and 97.5% ES.18 For the remaining 9 sectors, see Figures 10 and 11 in Appendix

15We use log-loss instead of linear loss to be consistent with most studies on financial asset return data. In
Example 3, we have seen that using log-loss will likely increase the PELVE value compared to using linear loss.
We report the difference between the PELVE value of log-loss and that of linear loss for S&P 500 in Figure 9
in the Appendix. We can see that the difference is negligible. This is an advantage of PELVE over the tail
index, since a log transform will change the tail index drastically (at least in theory).

16We choose the level 5% for statistically reliable estimates of PELVE. For results on 1% and 2.5% PELVE,
which have more statistical errors, see Appendix D.3.

17We use 200 bootstrap samples in each daily estimation.
18The sector-wise bootstrap sample are constructed by fitting an AR(1)-GARCH(1,1) model with t-
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D. We make several observations by comparing the PELVE values across different sectors and

time periods.

1. We report an overall average estimated PELVE of 2.98 across all 11 sectors. Most point

estimates of sector-average PELVE curves lie between 2.8 and 3.5 prior to the COVID-

19 pandemic outbreak in the US (i.e., early 2020), and they are almost always above

e ≈ 2.72. These values are consistent with the common view that the daily log-loss

distributions are empirically heavy-tailed with a tail index typically between 3 and 5

(see e.g. Jansen and De Vries (1991); Cont (2001)), which suggests a PELVE value

between 3.05 and 3.38 according to Theorem 3 (at least for small ε).19 In contrast, the

PELVE values of the S&P 500 index are around e ≈ 2.72, which does not indicate a

heavy tail.

2. Spikes in PELVE are located around the 2008 subprime crisis and the COVID-19 period

for all sectors, and the same shock heightened the sector-wise tail distribution differently.

Overall, PELVE values are quite stable during the past 20 years except around 2008 and

2020.

3. By looking at the 20-year VaR/ES reported in Figure 4 (c) and (d) alone, the dot-com

bubble seems to be much more severe than both the 2008 subprime crisis and COVID-

19 in the IT sector, and the subprime crisis is much more severe than COVID-19 in

the Financials sector. In sharp contrast, empirical PELVE curves exhibit unprecedented

peaks during the COVID-19 period for almost all sectors of S&P 500, indicating extreme

turbulence in the financial market.

4. Comparing panels (a) and (b) in Figure 4, we observe that the sector-wise PELVE of Fi-

nancials fluctuates more than that of IT over time and with wider confidence bands. This

could possibly be explained by the fact that stocks in Financials are more correlated.20

innovations to each stock and resampling the vectors of residuals, so that the dependence among stocks within
the sector is reflected.

19Note however that the estimation of the tail index requires regular variation which may not be satisfied
by financial return distribution, whereas our PELVE does not require any extra assumption except for a finite
mean. This shows another technical advantage of using PELVE over the tail index.

20The average 20-year log-return correlation within S&P 500 Financials is 0.4905, and the average log-return
correlation within S&P 500 IT is 0.3616.
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Figure 4: Average 5% PELVE, 99% VaR and 97.5% ES

Raw log-loss data are used for the analysis above. To account for time-varying volatil-

ity commonly observed in financial data, one can use return series standardized by realized

volatility, as studied by Andersen et al. (2007) and Todorov and Tauchen (2014). We present

in Figures 3 (b) and 5 the S&P 500 PELVE estimates and sector-average PELVE estimates

computed using daily returns standardized by realized volatility from a moving window of 500

days (for other sectors, see Figure 10 in Appendix D). At time t, we compute standardized

return as r′t = rt/σ{[r(τ)]t−5006τ6t−1}, where rt is the unstandardized log-return at time t.

Thanks to the scale-invariance property of PELVE, we can directly compare PELVE of rt with

that of r′t. Both the standardized PELVE estimates for Financials and IT are very close to

the raw counterparts. As the standardized PELVE estimates still fall under the heavy-tailed
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region, our main qualitative observations remain unchanged.
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Figure 5: Comparison of standardized and raw 5% PELVE

Finally, we report in Figure 6 the PELVE of residuals from the fitted AR(1)-GARCH(1,1)

model with t-innovations. Similarly to PELVE of the empirical log-losses, the residuals from

the S&P 500 index have PELVE values around e ≈ 2.72, whereas the residuals from the

individual sectors have PELVE values mostly in the heavy-tailed region.

6.2 PELVE for well-diversified portfolios

Next, we analyze PELVE of well-diversified portfolios instead of individual assets, as

discussed briefly in Section 3.3. A classic method of constructing a well-diversified portfolio

is to use equal weights on a collection of N assets, which is known as the 1/N portfolio

(e.g. DeMiguel et al. (2009)). Using this idea, we construct a monthly rebalanced equally

weighted portfolio invested in N = 500 constituents of S&P 500 from Jan 4, 1999 to Oct 9,

2020.21 More precisely, the portfolio with value process (Vt)t=0,1,... is constructed by investing

the amount V0/N in each stock at month 0 and rebalance the portfolio weights to Vt/N at the

end of each month t. Since the constituents of S&P 500 change over time, we consider two

types of 1/N portfolios. Portfolio A replaces delisted constituents with new constituents, and

thus every month it rebalances among all current constituents (N = 500 always). Portfolio B

rebalances only within constituents remained in the index since Jan 1999 (N decreases over

21The dynamic S&P constituents list is obtained from Bloomberg.
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2005 2010 2015 2020

2.
5

3.
0

3.
5

4.
0

4.
5

P
E

LV
E

Raw PELVE

95% Confidence Interval

e = 2.718

(c) Average PELVE of S&P 500 IT residuals

Figure 6: Bootstrap confidence bands for 5% PELVE of AR(1)-GARCH(1,1) residuals

time to 183). Clearly, both portfolios are valid portfolio strategies without survival bias. Note

that the S&P 500 index itself can also be seen as a diversified portfolio but with survival bias.

Using the same method for asset return data in Section 6.1, we report in Figure 7 the

PELVE values of the two 1/N portfolios during the period 2001 - 2020 and the difference

between these PELVE values and those of the S&P 500 index. A summary of data is reported

in Table 2. We discover that the PELVE curves of the 1/N portfolios fluctuate around e ≈ 2.72,

similar to that of S&P 500. Recall that PELVE values for individual assets are usually between

2.8 and 3.5 with an average of 2.98 across all S&P 500 constituents. This shows that well-

diversified portfolios have a much smaller PELVE in general, often quite close to e.22

22From Table 2, we see that both 1/N portfolios have much higher return than S&P during the past 20
years. The combination of high return and low PELVE of the 1/N portfolios is consistent with its excellent
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Figure 7: 5% PELVE of 1/N portfolios (Jan 02, 2001 - October 9, 2020)

mean PELVE mean log-return # stocks

S&P 500 2.76 4.06% 500 (always)

1/N with repl. (A) 2.73 8.13% 500 (always)

1/N without repl. (B) 2.75 8.96% 183 (Oct 2020)

Table 2: 20-year summary of the 1/N portfolios and S&P 500

The above observation has a profound implication for portfolio risk management. For

a “good” (in the sense of diversification) portfolio, switching from 99% VaR to 97.5% ES is

not going to cause a drastic change in its regulatory capital requirement, whereas the same

statement does not hold for an arbitrary (or “bad”) portfolio or an individual asset. In other

words, if a well-diversified portfolio and a non-diversified one have the same VaR0.99, then the

well-diversified one will have a smaller ES0.975. Thus, the use of ES encourages and rewards

portfolio diversification more than the use of VaR, a latent feature of the current regulatory

transition from VaR to ES.

As explained in Section 3.3, a theoretical explanation of the above observation may be

that a well-diversified portfolio is more Gaussian-like, and hence its PELVE is closer to the

corresponding Gaussian value (≈ 2.5 for ε = 0.05). Note, however, that typically daily log-

returns of individual assets are highly correlated due to systematic risk (see e.g., McNeil et al.

(2015, Chapter 3)), and normality cannot be expected for daily returns of either individual

performance well documented in the literature (e.g. DeMiguel et al. (2009) and Guo et al. (2019)).

30



assets or well-diversified portfolios.23

7 Concluding remarks

The new risk management tool PELVE that we develop in this paper is motivated by the

recent transition from VaR to ES instructed by the Basel FRTB. According to our analysis

of PELVE for various loss distributions, the new capital requirement based on 97.5% ES will

increase for heavy-tailed returns where it will remain almost the same if returns are normally

distributed or have lighter tails. Applied to financial asset and portfolio data, we discovered

that the PELVE of individual stock returns in all sectors of S&P 500 during the period 2001

- 2020 lies above e ≈ 2.72, the threshold which distinguishes heavy tails and the light ones.

This suggests that the underlying loss distribution of US equity market appears to be heavy-

tailed, and hence the capital requirement for single-asset portfolios under a 97.5% ES will be

higher comparing to that under a 99% VaR. Intriguingly, the loss distribution of an equally

weighted (1/N) portfolio has a much smaller PELVE (close to e) compared all other financial

data sets that we considered. This observation suggests that for a well-diversified portfolio,

changing from 99% VaR to 97.5% ES does not lead to a significantly higher capital requirement.

Therefore, the implementation of 97.5% ES rewards portfolio diversification more than 99%

VaR which was used in the previous regulatory framework.

Our contributions in this paper expand far beyond the context of banking regulation,

as risk measures are widely used in many quantitative areas of economics and management.

PELVE enjoys many nice theoretical properties, and in particular, it is location-scale invariant,

decreasing under increasing concave transformation of the loss, and quasi-convex/concave for

comonotonic risks. Proper diversification techniques often reduce PELVE, and there is a

monotonic relationship between the limit of PELVE and the tail index of a regularly varying

distribution. Unlike measures of tail heaviness such as the tail-index, PELVE is well-defined

for all commonly used statistical models with finite mean, including bounded distributions,

without requiring asymptotic properties of the distribution functions, which can be difficult to

verify. Empirical estimation of PELVE is standard and as simple as estimating VaR and ES,

23On a related note, the sum of iid heavy tailed losses with tail index α has the same tail index α, whereas
its PELVE (at a fixed ε) will decrease due to the fact that the sum is more Gaussian-like (for α > 2, which is
the case of financial return data). This shows that PELVE is able to capture portfolio diversification whereas
the tail index cannot.
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and the asymptotic normality of the estimators is established under minimal assumptions.

There are several relevant questions of PELVE that lead to future research. We outline

a few directions below.24

(i) Implications of PELVE in backtesting ES. Since VaR is simpler to backtest than

ES, in practice one often backtests the quality of VaR forecasts from a predictive model instead

of directly backtesting ES; see e.g., Emmer et al. (2015, Section 5.1). If relatively accurate

and time-stable daily ε-PELVE estimates are available, then one can backtest VaR1−ε daily

forecasts to approximately backtest ES1−cε daily forecasts, where c is the estimated ε-PELVE.

This approach may have advantages over backtesting via averaging VaR forecasts; a thorough

study is needed for concrete conclusions.

(ii) PELVE for residuals. Asymptotic normality in Theorem 4 and Proposition 4 is

obtained for raw data. For financial data, one usually implements time-series models. Hence,

it is important to understand the asymptotic distribution of PELVE for residuals. In our

empirical study, we observe from Figure 6 that the PELVE values of residuals and those of the

unconditional distributions are quite similar. A comprehensive theory on PELVE of residuals

is left for future studies.

(iii) Measures of tail heaviness and skewness. As illustrated by Theorem 1 (ii)-(iii),

PELVE satisfies an axiom for measures of (right) skewness of Oja (1981). As such, PELVE can

be seen as either a measure of tail heaviness or a measure of skewness. A thorough comparison

of PELVE with other measures of tail heaviness and measures of skewness may reveal features

of PELVE relative to the existing measures.

(iv) Characterization of a distribution family. We wonder whether the PELVE curve

ε 7→ Πε(X) characterizes the distribution of X up to location-scale transforms. For instance,

if Πε(X) = e for all ε ∈ [0, 1/e], does X necessarily follow an exponential distribution up to

location-scale transforms? A related question is how to generate a distribution model from a

given PELVE curve. These questions turn out to be very challenging, and an answer would

help to understand the fundamental role of PELVE in distribution models.

24Directions (i)-(iii) are inspired by comments from anonymous referees.
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Appendices

A Technical details

A.1 Proofs for results in Section 2

Proof of Proposition 1. We use the simple fact that, for any random variable X ∈ L1, ESt(X)

is continuous and increasing in t ∈ (0, 1). This fact can be directly checked by definition of

ES. We will prove the proposition in the order (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).

1. (i)⇒(ii): As mentioned above, ESt(X) is continuous and increasing in t ∈ (0, 1). There-

fore, the infimum of c satisfying ES1−cε(X) 6 VaR1−ε(X), assuming such c exists,

satisfies ES1−cε(X) = VaR1−ε(X).

2. (ii)⇒(iii): From the fact that ESt(X) is increasing in t ∈ (0, 1), we have E[X] =

infc∈[1,1/ε] ES1−cε(X). If E [X] > VaR1−ε(X), then infc∈[1,1/ε] ES1−cε(X) > VaR1−ε(X),

making Πε(X) =∞. Therefore, Πε(X) <∞ implies E[X] 6 VaR1−ε(X).

3. (iii)⇒(iv): E[X] 6 VaR1−ε(X) implies that {c ∈ [1, 1/ε] : ES1−cε(X) 6 VaR1−ε(X)} is

non-empty, and hence Πε(X) <∞.

4. (iv)⇒(i): Since ES1−ε(X) > VaR1−ε(X) and ES0(X) 6 VaR1−ε(X), by the Intermediate

Value Theorem, there exists c ∈ [1, 1/ε] such that (1) holds.

Proof of Proposition 2. Existence of c is given by Proposition 1. For the uniqueness of c, it

suffices to notice that ESt(X), as the average of F−1
X (p) for p ∈ [t, 1), is a strictly increasing

function of t ∈ [0, 1− ε) if F−1
X (p) is not a constant on (1− ε, 1).

A.2 Proofs for results in Section 3

Proof of Theorem 1. We first show that (i) is implied by (ii). Let f : R → R, x 7→ λx + a

and g : R → R, y 7→ (y − a)/λ, which is the inverse of f . Both f and g are increasing linear

functions, which are concave. Hence, if (ii) holds, we have

Πε(f(X)) 6 Πε(X) = Πε(g ◦ f(X)) 6 Πε(f(X)).

Therefore, Πε(f(X)) = Πε(X) and (i) holds.

Next, we show (ii), which implies (i) by the above argument. Note that VaRp(h(Y )) =

h(VaRp(Y )) for all continuous and increasing function h, random variable Y and p ∈ (0, 1),

and concave functions on R are continuous. Hence,

VaRp(f(Y )) = f(VaRp(Y )). (A.1)
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Write c1 = Πε(X) and c2 = Πε(f(X)). If c1 =∞ then there is nothing to show. Next, assume

c1 is finite, which, by Proposition 1, implies

VaR1−ε(X) = ES1−c1ε(X). (A.2)

Using Jensen’s inequality, (A.1) and (A.2), we have

E[f(X)] 6 f(E[X]) 6 f(ES1−c1ε(X)) = f(VaR1−ε(X)) = VaR1−ε(f(X)).

Using Proposition 1 again, we obtain that c2 is finite.

For any p ∈ (0, 1), we can write ESp as its dual representation (see e.g., Lemma 3.14 of

Embrechts and Wang (2015)), that is, for some set of probability measures Q,

ESp(Y ) = sup
Q∈Q

EQ[Y ], Y ∈ L1.

By Jensen’s inequality, we have, for all p ∈ (0, 1),

ESp(f(X)) = sup
Q∈Q

EQ[f(X)] 6 sup
Q∈Q

f(EQ[X]) = f

(
sup
Q∈Q

EQ[X]

)
= f(ESp(X)).

Using the above inequality, (A.1) and (A.2), we get

ES1−c1ε(f(X)) 6 f(ES1−c1ε(X)) = f(VaR1−ε(X)) = VaR1−ε(f(X)). (A.3)

By definition of PELVE, c2 is the smallest value c such that

ES1−cε(f(X)) 6 VaR1−ε(f(X)).

Hence, (A.3) implies c2 6 c1, as desired.

For a proof of (iii), it suffices to note that, for a strictly increasing convex function g, its

inverse f is increasing and concave. Applying the result in (ii), we get

Πε(X) = Πε(f ◦ g(X)) 6 Πε(g(X)).

Finally, we prove (iv). Note that for any c, d ∈ [1, 1/ε] and any random variable Y , by

definition and noting that ESp is continuous in p, we have

d < Πε(Y ) 6 c ⇐⇒ ES1−cε(Y ) 6 VaR1−ε(Y ) < ES1−dε(Y ). (A.4)

Moreover, λf(X) and (1 − λ)g(X) are comonotonic, and VaR is comonotonic-additive (see
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e.g., Section 8.2 of McNeil et al. (2015)), implying

VaR1−ε(λf(X) + (1− λ)g(X)) = λVaR1−ε(f(X)) + (1− λ)VaR1−ε(g(X)). (A.5)

Let c1 = Πε(f(X)) and c2 = Πε(g(X)). First, if c1 = c2 =∞, then it suffices to prove

Πε(λf(X) + (1− λ)g(X)) =∞.

By Proposition 1, this is equivalent to

E[λf(X) + (1− λ)g(X)] > VaR1−ε(λf(X) + (1− λ)g(X)),

which is guaranteed by (A.5) and the fact (obtained also from Proposition 1) that

E[f(X)] > VaR1−ε(f(X)) and E[g(X)] > VaR1−ε(g(X)).

Next, suppose that at least one of c1 and c2 is finite. For any d < min{c1, c2}, by (A.4), we

have

VaR1−ε(f(X)) < ES1−dε(f(X)), and VaR1−ε(g(X)) < ES1−dε(g(X)). (A.6)

Together with (A.5) and noting that ES is also comonotonic-additive, (A.6) implies

VaR1−ε(λf(X) + (1− λ)g(X)) < ES1−dε(λf(X) + (1− λ)g(X)).

Using (A.4) again, we arrive at

Πε(λf(X) + (1− λ)g(X)) > d.

Since d < min{c1, c2} is arbitrary, we obtain

Πε(λf(X) + (1− λ)g(X)) > min{c1, c2}. (A.7)

If max{c1, c2} =∞, then (A.7) is sufficient for the conclusion in (iv). If max{c1, c2} <∞, by

taking c = max{c1, c2}, using a similar argument via (A.4), we have

ES1−cε(f(X)) 6 VaR1−ε(f(X)) and ES1−cε(g(X)) 6 VaR1−ε(g(X)).

As a consequence,

ES1−cε(λf(X) + (1− λ)g(X)) 6 VaR1−ε(λf(X) + (1− λ)g(X)).
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Using (A.4) again, we obtain

Πε(λf(X) + (1− λ)g(X)) 6 c = max{c1, c2}. (A.8)

Thus we obtain (iv).

Details of the assertion in Example 1. Here we give a detailed derivation of the assertion in

Example 1 that XC , XAC , XAP are all increasing concave functions of XA, and XAP is an

increasing concave function of XAC , regardless of any model assumptions.

Let St be the price of an asset S at time t in the future, S0 be its current price, and

XA = S0− St represents the loss random variable from investment in one unit of S. Consider

a European put option with current price P0, time-t payoff (K − St)+ and some strike price

K, and a European call option with current price C0, time-t payoff (St −K)+ and the same

strike. We analyze the following four portfolios in Example 1.

(a) Long one unit of the asset, with loss XA.

(b) Long a call option, with loss XC = C0 − (St −K)+ = C0 − (S0 −K −XA)+.

(c) Long one unit of the asset and a call option, with loss XAC = XA+C0− (S0−K−XA)+.

(d) Long one unit of the asset and a put option, with loss XAP = XA +P0− (K−S0 +XA)+.

First, XC is an increasing concave functions of XA. This implies XAC = XA +XC is also an

increasing concave functions of XA. Also note that

XAP = XA + P0 − (K − S0 +XA)+ = min{S0 −K,XA}+ P0,

which is again an increasing concave function ofX. Finally, let c = S0−K+C0, d = S0−K+P0,

and

f(x) =
1

2
min{x, c}+ d− c

2
, x ∈ R,

and it is clear that f is an increasing concave function. We can check

f(XAC) =
1

2
min{XAC , c}+ d− c

2

=
c

2
1{XA>S0−K} +

2XA + 2C0 − c
2

1{XA<S0−K} + d− c

2

= d1{XA>S0−K} + (X + d+ C0 − c)1{XA<S0−K}

= d+ (XA +K − S0)1{XA<S0−K}

= min{S0 −K,XA}+ P0 = XAP ,

which shows that XAP is an increasing concave function of XAC .
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Proof of Theorem 2. By the convergence in distribution of {Xn}n∈N to X, we know that

VaRt(Xn) → VaRt(X) for all t ∈ (0, 1) at which the quantile function of X is continuous.

Because {Xn}n∈N is uniformly integrable, ESt(Xn) → ESt(X) as n → ∞ for all t ∈ [0, 1).

As a consequence, the functions fn : [0, 1) → R, t 7→ ESt(Xn)− VaR1−ε(Xn) converge to the

function f : t 7→ ESt(X)−VaR1−ε(X) as n→∞ for each t ∈ (0, 1). Note that both fn and f

are increasing and continuous functions, and f is strictly increasing. This means that on the

compact interval [0, 1− ε], fn → f uniformly.

By Assumption 1, we know that for n sufficiently large, E[Xn] < VaR1−ε(Xn), and hence

Πε(Xn) ∈ [1, 1/ε] by Proposition 1. Thus, Πε(Xn) is the left-most root c of the equation

fn(1 − cε) = 0, and Πε(X) is the unique root c of the equation f(1 − cε) = 0. Since fn → f

uniformly, elementary analysis yields that Πε(Xn)→ Πε(X) as n→∞.

A.3 Proofs for results in Section 4

VaR and ES formulas in Examples 5 and 6. Here we collect some VaR1−t and ES1−t formulas

for t ∈ (0, 1), which, plugged in (1), give PELVE formulas and numerical values in Examples

5 and 6. These formulas are available by direct calculation, or one may see Section 2.3 of

McNeil et al. (2015).

1. X ∼ U[0, 1]: VaR1−t(X) = 1− t and ES1−t(X) = (2− t)/2.

2. X ∼ Pareto(α), α > 1: VaR1−t(X) = t−α and ES1−t(X) = α
α−1 t

−α.

3. X ∼ Exp(1): VaR1−t(X) = − log t and ES1−t(X) = − log t+ 1.

4. X ∼ N(0, 1): VaR1−t(X) = Φ−1(1− t) and ES1−t(X) = 1
tφ(Φ−1(1− t)), where φ and Φ

are the pdf and cdf of a standard normal distribution, respectively.

5. X ∼ t(ν), ν > 1: VaR1−t(X) = G−1
ν (1−t) and ES1−t(X) = 1

t gν(G−1
ν (1− t))(ν+(G−1

ν (1−t))2
ν−1 ),

where gν and Gν are the pdf and cdf of t(ν), respectively.

6. X ∼ LN(σ), σ > 0: VaR1−t(X) = eσΦ−1(1−t) and ES1−t(X) = e
σ2

2
1
tΦ(σ − Φ−1(1− t)).

Since PELVE is invariant in a location-scale family, the above values also give PELVE for

other distributions in the above families.

Proof of Theorem 3. We shall use some classic results in EVT, which can be found in Em-

brechts et al. (1997). First, the inverse of an RV function with index ξ 6= 0 is again RV, and

has index 1/ξ. Thus, for t > 0,

lim
ε↓0

VaR1−tε(X)

VaR1−ε(X)
= t−1/α. (A.9)
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The Karamata Theorem for VaR/ES gives

lim
ε↓0

ES1−ε(X)

VaR1−ε(X)
=

α

α− 1
. (A.10)

Combining (A.9) and (A.10), we obtain, for t > 0,

lim
ε↓0

ES1−tε(X)

VaR1−ε(X)
=

α

α− 1
t−1/α. (A.11)

Note that the right-hand side of (A.11), α
α−1 t

−1/α, is strictly decreasing in t, and α
α−1 t

−1/α = 1

if and only if t = ( α
α−1)α. Take arbitrary t1 < ( α

α−1)α and t2 > ( α
α−1)α. By (A.11), we have,

for ε close enough to 0,

ES1−t1ε(X) > VaR1−ε(X) > ES1−t2ε(X). (A.12)

Note since the mean of X is finite, and VaR1−ε(X)→∞ as ε ↓ 0, we know that Assumption

1 holds for ε close to 0. In this case, by Proposition 2, we know that c = Πε(X) ∈ [1, 1/ε]

satisfies (1). By (A.12), Πε(X) ∈ (t1, t2). Since t1 and t2 are arbitrarily close to ( α
α−1)α, we

know that Πε(X)→ ( α
α−1)α as ε ↓ 0. This completes the proof of the theorem.

Proof of Proposition 3. This proposition is a direct consequence of (A.11) and Theorem 3.

A.4 Proofs for results in Section 5

We will show Proposition 4 before showing Theorem 4, because the first statement of

Theorem 4 is a special case of Proposition 4, by noting that the iid model is a special case of

the α-mixing model, where W in Proposition 4 becomes a standard Brownian bridge.

Proof of Proposition 4. The proof is similar to Theorem 3.1 of Asimit et al. (2019). We only

consider the case ĉn = Π̂ε(n) as the case ĉn = Π̃ε(n) is analogous. We will use results on

weighted empirical processes. Let Un(t) = Fn(F−1(t)) and An(t) =
√
n(Un(t)− t) for t ∈ [0, 1]

as in Shao and Yu (1996). Let W be a Gaussian process with mean 0 and covariance in (12).

Under our assumptions, it follows from e.g., Theorem 2.2 of Shao and Yu (1996) that

An/β converges weakly in `∞[0, 1] to W/β as n→∞ (A.13)

for any weight function β with β(t) > C(t(1− t))δ for some C > 0 and δ ∈ (0, 1/2). Moreover,

for any δ ∈ (0, 1/2) and λ ∈ (0, 1),

sup
0<t<1

|An(t)|
tδ(1− t)δ

= Op(1), sup
1/nλ<t61−1/nλ

|
√
n(U−1

n (t)− t)|
tδ(1− t)δ

= Op(1); (A.14)
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see e.g., Proposition 4.4 of Berghaus et al. (2017).

Recall that p = 1 − ε, q = 1 − cε, and we write qn = 1 − ĉnε. By definition of PELVE,

we have

F−1(p) =
1

1− q

∫ 1

q
F−1(s)ds = F−1(q) +

1

1− q

∫ ∞
F−1(q)

(1− F (x))dx. (A.15)

and its empirical version

F−1
n (p) =

1

1− qn

∫ 1

qn

F−1
n (s)ds = F−1

n (q) +
1

1− qn

∫ ∞
F−1
n (qn)

(1− Fn(x))dx. (A.16)

Using (A.15) and (A.16), we get

0 =
1

1− qn

∫ 1

qn

F−1
n (s)ds− F−1

n (p)

=
1

1− qn

∫ 1

qn

F−1
n (s)ds− 1

1− q

∫ 1

q
F−1
n (s)ds︸ ︷︷ ︸

I1

+
1

1− q

∫ 1

q
F−1
n (s)ds− F−1

n (p)

= I1 +
1

1− q

∫ F−1(q)

F−1
n (q)

(
1− Fn(x)

)
dx︸ ︷︷ ︸

I2

+
1

1− q

∫ ∞
F−1(q)

(
1− Fn(x)

)
dx+ F−1

n (q)− F−1
n (p)

= I1 + I2 +
1

1− q

∫ ∞
F−1(q)

(
F (x)− Fn(x)

)
dx+ F−1(p)− F−1(q) + F−1

n (q)− F−1
n (p)

= I1 + I2 +
1

1− q

∫ 1

q

(
s− Un(s)

)
dF−1(s)︸ ︷︷ ︸

I3

+
(
F−1
n (q)− F−1(q)

)︸ ︷︷ ︸
I4

+
(
F−1(p)− F−1

n (p)
)︸ ︷︷ ︸

I5

.

Moreover, the mean-value theorem gives

I1 = (qn − q)
−(1− q̃)F−1

n (q̃) +
∫ 1
q̃ F

−1
n (s)ds

(1− q̃)2

for some q̃ between q and qn. By (A.13) and (A.14), all terms I2, . . . , I5 converge to 0 in

probability as n→∞. We have I1 → 0 as well, since

I1 + I2 + I3 + I4 + I5 = 0. (A.17)
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Hence, qn
p−→ q as n→∞. With the regularity condition in Assumption 4, this leads to

−(1− q̃)F−1
n (q̃) +

∫ 1
q̃ F

−1
n (s)ds

(1− q̃)2
=
−(1− q)F−1(q) +

∫ 1
q F

−1(s)ds

(1− q)2
+ op(1)

=
F−1(p)− F−1(q)

1− q
+ op(1). (A.18)

Using (A.14) and Assumption 4, we have

√
n(I2 + I4) =

√
n

1− q

∫ F−1(q)

F−1(U−1
n (q))

(1− F (s)− (1− q))ds = op(1). (A.19)

Assumption 4 and (A.13) guarantee the (joint) convergence

√
nI3

d−→ 1

1− q

∫ 1

q
W (s)dF−1(s) and

√
nI5

d−→ − W (p)

f(F−1(p))

where
d−→ is convergence in distribution, and as a consequence,

√
n(I3 + I5)

d−→ 1

1− q

∫ 1

q
W (s)dF−1(s)− W (p)

f(F−1(p))
. (A.20)

Putting (A.17), (A.18), (A.19) and (A.20) together, we obtain

√
n(qn − q)

d−→ 1

F−1(p)− F−1(q)

(∫ 1

q

W (s)

f(F−1(s))
ds− (1− q)W (p)

f(F−1(p))

)
,

and thus (11) holds.

Proof of Theorem 4. It suffices to show the second statement, that is, the formula (10) for

the asymptotic variance σ2. Recall that we set a = c/f(F−1(p)), b = F−1(p) − F−1(q) and

Et =
∫∞
F−1(t)(1− F (x))dx = E[(X − F−1(t))+] for t ∈ (0, 1). Using the covariance property of

a Brownian bridge, that is, E[W (s)W (t)] = min(s, t)− st, s, t ∈ [0, 1], we get

b2σ2 = E

[(∫ 1

q

W (t)

εf(F−1(t))
dt− aW (p)

)2
]

= E

(1

ε

∫ ∞
F−1(q)

W (F (x))dx− aW (p)

)2


= a2(ε− ε2) +
1

ε2
E

(∫ ∞
F−1(q)

W (F (x))dx

)2
− 2a

ε

∫ ∞
F−1(q)

E[W (p)W (F (x))]dx.
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Direct computation gives

E

(∫ ∞
F−1(q)

W (F (x))dx

)2
 = 2

∫ ∞
F−1(q)

∫ ∞
x

(1− F (y))F (x)dydx = 2

∫ ∞
F−1(q)

EF (x)F (x)dx

and ∫ ∞
F−1(q)

E[W (p)W (F (x))]dx = p

∫ ∞
F−1(p)

(1− F (x))dx− ε
∫ F−1(p)

F−1(q)
F (x)dx

= Ep + ε(Eq − b).

Therefore,

b2σ2 = a2(ε− ε2) +
2

ε2

∫ ∞
F−1(q)

EF (x)F (x)dx− 2a

ε
Ep + 2a(Eq − b), (A.21)

and we obtain the σ2 formula (10).

Proof of Proposition 5. In the proof of Proposition 4, we have seen that the convergence of

the empirical process An →W in (A.13) leads to the asymptotic result (11). By Theorem 4.3

of Lahiri (2003), the bootstrap empirical process, denoted by A∗n, also converges to W weakly.

Therefore, using the same arguments as in the proof of Proposition 4 gives that the bootstrap

empirical estimator has the same asymptotic variance σ2.

A.5 Two examples of the asymptotic variance in the iid case

We first look at a very simple example, X ∼ U[0, 1]. In this case, a = c = 2, F−1(t) = t,

and Et = (1− t)2/2, for t ∈ (0, 1). Using the σ2 formula (A.21), we get

σ2 =
1

(p− q)2

(
4ε(1− ε) +

1

ε2

∫ 1

q
x(1− x)2dx− 2

ε
(1− p)2 + 4(2ε2 − ε)

)
=

1

ε2

(
4ε− 4ε2 +

1

ε2

(1− q)3(3q + 1)

12
− 2ε+ 8ε2 − 4ε

)
=

1

ε2

(
−2ε+ 4ε2 +

8ε(4− 6ε)

12

)
=

2

3ε
.

We observe that, as ε ↓ 0, the asymptotic variance σ2 explodes at a rate of O(ε−1).

As a second example, we look at X ∼ Pareto(α) for α > 2, as required by Assumption

4. In this case, we study the asymptotic behaviour as ε ↓ 0, which means p, q ↑ 1. We can

calculate c = ( α
α−1)α, f(x) = αx−α−1 for x > 1, F−1(p) = ε−1/α, F−1(q) = (cε)−1/α =

α−1
α ε−1/α, a = c/f(F−1(p)) = cε−(α+1)/α/α, b = ε−1/α/α, Et = 1

α−1(1 − t)(α−1)/α, t ∈ (0, 1),

Ep = 1
α−1ε

(α−1)/α and Eq = 1
α−1ε

(α−1)/α( α
α−1)α−1. We analyze each term in the right-hand-
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side of (A.21) as ε ↓ 0. The first term is

a2(ε− ε2) ∼ a2ε =
( c
α

)2
ε−2/α−1;

the second term is

2

ε2

∫ ∞
F−1(q)

EF (x)F (x)dx =
2

ε2

∫ ∞
F−1(q)

1

α− 1
x1−α(1− x−α)dx

∼ 2

ε2

∫ ∞
F−1(q)

1

α− 1
x1−αdx

=
2

ε2

1

(α− 1)(α− 2)
(F−1(q))2−α

=
2

ε2

1

(α− 1)(α− 2)
c1−2/αε(α−2)/α

=
2

(α− 1)(α− 2)
c1−2/αε−2/α−1;

the third term is

−2a

ε
Ep = − 2a

α− 1
ε−1/α = − 2c

(α− 1)α
ε−2/α−1,

and finally, the fourth term is

2a(Eq − b) ∼ −2ab = − 2c

α2
ε−2/α−1.

Using the above four equations and (A.21), and noting that ε−2/α−1/b2 = α2ε−1, we get

σ2 ∼ α2

ε

(( c
α

)2
+

2

(α− 1)(α− 2)
c1−2/α − 2c

(α− 1)α
− 2c

α2

)
=

1

ε

(
c2 +

2c(α− 1)

α− 2
− 2αc

α− 1
− 2c

)
=
c

ε

(
c+

2

α− 2
− 2α

α− 1

)
. (A.22)

Once again, as ε→ 0, the asymptotic variance explodes at a rate of O(ε−1). In particular, if

α = 4, we have c = 3.16, and (A.22) gives

σ2 ≈ 3.16

ε

(
3.16 + 1− 8

3

)
= 4.71× ε−1.
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B The smoothed empirical PELVE estimator

The empirical ES function ÊSp in Section 5 is continuous in p, whereas the sample quantile

V̂aRp is a step function and it has jumps at p = i/n for integers i. This may create some

non-smoothness in the empirical PELVE estimator, as discussed in Remark 8. To overcome

this issue, one can use the smoothed empirical PELVE estimator denote by Π̃ε(n), based on

the standard linearly interpolated quantile. The standard linear interpolated estimator for

VaR in Section 9.2.6 of McNeil et al. (2015) is defined as

ṼaRp = λp,k,nX[n−k] + (1− λp,k,n)X[n−k+1], for p ∈
(
i− 1

n
,
i

n

]
, i = 1, . . . , n,

where k =
⌈
(n − 1)(1 − p)

⌉
and λp,k,n = (n − k) − (n − 1)p. The corresponding smoothed

empirical ES estimator is given by

ẼSp =
1

1− p

∫ 1

p
ṼaRqdq, p ∈ (0, 1).

We then define the smoothed empirical PELVE estimator Π̃ε(n) as the solution c ∈ [1, 1/ε] to

the equation

ẼS1−cε = ṼaR1−ε.

The consistency and asymptotic normality results in Section 5 remain valid for the

smoothed empirical PELVE estimator Π̃ε(n). Since a smoothed version of quantile differs

from the empirical quantile in an order of 1/n, |Π̃ε(n)− Π̂ε(n)| is also of order 1/n. In particu-

lar,
√
n(Π̃ε(n)−c) shares the same asymptotic limit as

√
n(Π̂ε(n)−c) in the proof of Theorem

4.

In Figure 8 we report histograms of Π̃ε(n) in the setting of Figure 2. The smoothed

empirical PELVE estimator Π̃ε(n) tends to slightly underestimate although its sample variance

is also slightly smaller. The tables in Appendix C contain more numerical results with similar

observations.

C Simulation of empirical PELVE estimators

In Tables 3-6 below we report simulation results for a numerical comparison of the em-

pirical PELVE estimators Π̂ε (standard) and Π̃ε (smoothed) and their theoretical limit for

normal, uniform and Pareto loss distributions. In the following, s2 denotes the sample vari-

ance of a PELVE estimator Π̂ε or Π̃ε, and σ2
n = σ2/n denotes the corresponding theoretical

limit derived from (A.21). As shown by Theorem 4, both Π̂ε and Π̃ε have a normal limit with

mean Πε(X) and variance σ2
n. We observe from the tables below that the sample variance of

Π̂ε or Π̃ε converges to the asymptotic formula as n increases. Note again that the effective
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(a) Histogram of Π̃ε(n), n = 1000
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Figure 8: Smoothed empirical PELVE estimators for Pareto(4), ε = 0.05

sample size is roughly nε for VaR1−ε, and hence the simulation results for ε = 0.01 are not

very close to the theoretical limit. We also find that the smoothed PELVE estimator has a

significant bias for Pareto(4) although its sample variance is smaller; a possible explanation is

that the smoothed ES estimator has a significant negative bias.

ε n
Πε (theoretical) Π̃ε (smoothed) Π̂ε (standard)
value σ2

n mean s2 mean s2

0.10
500 2.46 0.0242 2.44 0.0236 2.48 0.0242
1000 2.46 0.0121 2.45 0.0120 2.47 0.0121
5000 2.46 0.0024 2.45 0.0024 2.46 0.0024

0.05
500 2.51 0.0538 2.48 0.0522 2.56 0.0550
1000 2.51 0.0269 2.49 0.0263 2.53 0.0271
5000 2.51 0.0053 2.50 0.0052 2.51 0.0052

0.01
500 2.58 0.3028 2.50 0.2625 2.82 0.3239
1000 2.58 0.1514 2.51 0.1399 2.69 0.1575
5000 2.58 0.0302 2.55 0.0294 2.60 0.0304

Table 3: Empirical PELVE estimators for N(0, 1)

In Table 7, we consider an AR(1) model with Gaussian innovation, that is,

Xt+1 = aXt + Zt, t ∈ Z,

where Zt, t ∈ Z, are standard Gaussian noises, and a ∈ {−0.1, 0.3, 0.9}. For this model,

the stationary distribution of Xt is Gaussian, and we know the true value of PELVE of Xt

from Table 3. We simulate a sample path from this AR(1) model of length 10, 000. We

provide a point estimate Π̂ε and a block-bootstrap standard deviation estimator described
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ε n
Πε (theoretical) Π̃ε (smoothed) Π̂ε (standard)
value σ2

n mean s2 mean s2

0.10
500 2.00 0.0133 2.00 0.0136 2.03 0.0139
1000 2.00 0.0067 2.00 0.0067 2.02 0.0067
5000 2.00 0.0013 2.00 0.0013 2.00 0.0013

0.05
500 2.00 0.0266 2.00 0.0258 2.04 0.0265
1000 2.00 0.0133 2.00 0.0130 2.02 0.0132
5000 2.00 0.0027 2.00 0.0027 2.00 0.0027

0.01
500 2.00 0.1333 2.03 0.1273 2.23 0.1421
1000 2.00 0.0667 2.01 0.0631 2.11 0.0667
5000 2.00 0.0133 2.00 0.0131 2.02 0.0132

Table 4: Empirical PELVE estimators for U[0, 1]

ε n
Πε (theoretical) Π̃ε (smoothed) Π̂ε (standard)
value σ2

n mean s2 mean s2

0.10
500 3.16 0.0944 3.08 0.0785 3.18 0.0928
1000 3.16 0.0472 3.11 0.0415 3.17 0.0473
5000 3.16 0.0094 3.15 0.0092 3.15 0.0097

0.05
500 3.16 0.1888 3.04 0.1441 3.20 0.1811
1000 3.16 0.0944 3.08 0.0763 3.18 0.0911
5000 3.16 0.0189 3.13 0.0174 3.17 0.0191

0.01
500 3.16 0.9443 2.91 0.5858 3.38 0.9012
1000 3.16 0.4721 2.97 0.3287 3.27 0.4557
5000 3.16 0.0944 3.09 0.0783 3.19 0.0933

Table 5: Empirical PELVE estimators for Pareto(4)

in Section 5.3 based on parameters m = 20, k = 500 and B = 100, 000. We also include

the average of estimates and the standard deviation obtained from Monte Carlo simulation

of 10,000 independent paths, which can be approximately treated as the true PELVE and

the true standard deviation of Π̂ε. As we can see from Table 7, the block-bootstrap standard

deviation is reasonably close to the Monte Carlo standard deviation, consistent with the result

in Proposition 5.

D Additional figures

D.1 PELVE(log-loss) vs PELVE(loss)

In Figures 9, we compare the empirical PELVE values for S&P 500 log-loss and linear

loss. As implied by Example 3, PELVE of the log-loss is generally larger than PELVE of the

linear loss, but we can see that this difference is negligible (the average of the difference is

0.011, reported in the red curve in Figure 9).
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ε n
Πε (theoretical) Π̃ε (smoothed) Π̂ε (standard)
value σ2

n mean s2 mean s2

0.10
500 2.87 0.0515 2.83 0.0475 2.90 0.0511

1000 2.87 0.0257 2.84 0.0251 2.88 0.0263
5000 2.87 0.0051 2.86 0.0051 2.87 0.0051

0.05
500 2.87 0.1030 2.80 0.0951 2.92 0.1069
1000 2.87 0.0515 2.83 0.0496 2.89 0.0536
5000 2.87 0.0103 2.85 0.0099 2.87 0.0101

0.01
500 2.87 0.5153 2.71 0.3805 3.10 0.5201
1000 2.87 0.2576 2.75 0.2110 2.99 0.2594
5000 2.87 0.0515 2.82 0.0472 2.89 0.0508

Table 6: Empirical PELVE estimators for Pareto(10)

ε a Πε value Π̂ε est. BB std est. MC mean MC std

0.10
−0.1 2.46 2.426 0.0392 2.458 0.0346

0.3 2.46 2.438 0.0327 2.458 0.0349
0.9 2.46 2.435 0.0523 2.456 0.0461

0.05
−0.1 2.51 2.561 0.0470 2.513 0.0516

0.3 2.51 2.467 0.0524 2.513 0.0519
0.9 2.51 2.427 0.0763 2.509 0.0659

0.01
−0.1 2.58 2.499 0.1104 2.590 0.1229

0.3 2.58 2.517 0.1371 2.589 0.1242
0.9 2.58 2.599 0.1248 2.578 0.1436

Table 7: Block-bootstrap (BB) std estimates versus Monte Carlo (MC) std in an AR(1)
simulation

D.2 Empirical analysis for other asset classes

In Figure 10, we report the empirical average PELVE values for the other 9 sectors of

S&P 500, complementing the discussion in Section 6 where empirical average PELVE values

for Financials and IT are presented. We observe that the PELVE estimates of each sector are

almost always above e ≈ 2.72, indicating the presence of heavy tails empirically. Moreover,

most PELVE curves exhibit unprecedented peaks around the COVID-19 outbreak. We also

report the average 99% VaR and 97.5% ES of each sector in Figure 11.

D.3 Empirical PELVE estimates at levels 1% and 2.5%

Choosing a smaller ε close to 0 leads to more noisy estimation of PELVE since effectively

less data are used for a smaller level ε. We present 1%, 2.5% and 5% empirical PELVE point

estimates in Figure 12. We observe that 2.5% PELVE hovers around 5% PELVE estimates

computed using a fixed lookback window of size 500; on the other hand, 1% PELVE is more

noisy as expected. Nevertheless, the main qualitative conclusions in Section 6.1 that the
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Figure 9: 5% PELVE of S&P 500 log-loss vs linear loss (Jan 02, 2001 - October 9, 2020)

individual assets are heavier-tailed remain unchanged for PELVE with ε = 1%, 2.5%, 5%.
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(g) S&P 500 Communication Services
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Figure 10: Raw and standardized sector-wise 5% PELVE (Jan 02, 2001 - October 9, 2020)
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Figure 11: Sector-wise 99% VaR and 97.5% ES (Jan 02, 2001 - October 9, 2020)
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Figure 12: 1%, 2.5% and 5% empirical PELVE estimates
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