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Abstract

Inspired by the recent developments in risk sharing problems for the Value-at-Risk (VaR),

the Expected Shortfall (ES), or the Range-Value-at-Risk (RVaR), we study the optimization of

risk sharing for general tail risk measures. Explicit formulas of the inf-convolution and Pareto-

optimal allocations are obtained in the case of a mixed collection of left and right VaRs, and in

that of a VaR and another tail risk measure. The inf-convolution of tail risk measures is shown

to be a tail risk measure with an aggregated tail parameter, a phenomenon very similar to the

cases of VaR, ES and RVaR. Optimal allocations are obtained in the settings of elliptical models

and model uncertainty. In particular, several results are established for tail risk measures in the

presence of model uncertainty, which may be of independent interest outside the framework of

risk sharing. The technical conclusions are quite general without assuming any form of convexity

of the tail risk measures. Our analysis generalizes in several directions the recent literature on

quantile-based risk sharing.

Key-words: Risk sharing, Pareto optimality, Value-at-Risk, Range-Value-at-Risk, non-convex

optimization

1 Introduction

Over the past two decades, tail risk measures, in particular the Value-at-Risk (VaR) and the

Expected Shortfall (ES), play a prominent role as the standard risk metrics in global banking and
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insurance regulatory frameworks, such as Basel III/IV (BCBS (2019)) and Solvency II (EIOPA

(2011)). Recently, Embrechts et al. (2018) developed analytical formulas and equilibrium allo-

cations for risk sharing games with quantile-based risk measures, which are special cases of tail

risk measures, via the mathematical tool of inf-convolution. The inf-convolution of risk measures

ρ1, . . . , ρn on a domain X is defined as

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : X1, . . . , Xn ∈ X ,
n∑
i=1

Xi = X

}
, X ∈ X . (1)

See Section 2 for precise definitions of risk measures (including RVaR and VaR below) and inf-

convolution. Inf-convolution (or sup-convolution) is closely related to the problem of risk sharing;

see e.g., the monographs Starr (2011), Delbaen (2012) and Rüschendorf (2013). In particular, its

minimizers correspond to Pareto-optimal allocations in a risk sharing problem for finite monetary

risk measures, which are often also equilibrium allocations in non-cooperative games (see Remark

2).

A main result in Embrechts et al. (2018) is the RVaR inf-convolution formula

n
�
i=1

RVaRαi,βi = RVaRα,β, (2)

where α1, . . . , αn, β1, . . . , βn > 0, α =
∑n

i=1 αi, and β =
∨n
i=1 βi := max{β1, . . . , βn}; see Theorem

2 of Embrechts et al. (2018). A special case of (2), where β1 = · · · = βn = 0, is the following (left)

VaR inf-convolution formula (Corollary 2 of Embrechts et al. (2018)),

n
�
i=1

VaRL
αi = VaRL

α. (3)

In short, both RVaR and (left) VaR have the nice feature that their inf-convolution is again in

the same class, with the parameter being an aggregation (either sum or max) of the individual

parameters. Moreover, an optimal allocation always exists in explicit form if α+ β < 1.

In this paper, we generalize the formulas (2) and (3) in several directions within the context of

tail risk measures developed by Liu and Wang (2021). In particular, we aim to answer the following

natural questions arising from (2) and (3).

1. Embrechts et al. (2018) defined the risk measure VaR as the left-quantile in (3), denoted by

VaRL in this paper (we omit the probability level here). One naturally wonders whether the

nice formula (3) also holds for right-quantiles, which shall be denoted by VaRR, and more

generally, for a mixed collection of VaRL and VaRR. For the role of left and right quantiles

as risk measures, see the discussion in Acerbi and Tasche (2002). Moreover, the existence of
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an optimal allocation needs to be discussed, as neither VaRL nor VaRR is convex. Note that

even the simple case of VaRL�VaRR or VaRR�VaRR is not studied in the literature.

2. Is there an explicit formula for the inf-convolution of (left or right) VaR and a general tail

risk measure, and does an optimal allocation always exist? The inf-convolution of VaRL and

a tail distortion risk measure (defined in Appendix A) is obtained explicitly by Wang and Wei

(2020, Theorem 5.3), and it is not clear whether this result holds with greater generality.

3. Suppose that ρ1, . . . , ρn are generic tail risk measures. Is their inf-convolution �ni=1 ρi again

a tail risk measure? If yes, is the corresponding tail parameter (defined in Section 2) an

aggregation of the individual tail parameters, like in the cases of (2) and (3)?

4. The above three questions do not use any convexity assumptions on the risk measures, noting

that VaR and RVaR are generally not convex. Would some results above on the inf-convolution

of tail risk measures be improved if the underlying risk measures are convex, or the inf-

convolution is constrained to be comonotonic? Note that an unconstrained optimal allocation

is comonotonic if the risk measures are convex (e.g., Rüschendorf (2013, Theorem 10.52)),

and hence these two questions should share the same answer.

5. In risk management practice, a risk allocation often has some concrete structures for mod-

eling tractability. Would the additional imposed structure yield explicit formulas for the

inf-convolution and the optimal allocations?1

6. Model uncertainty is prevalent in risk management. If model uncertainty, in some form, is

incorporated in the risk sharing problem, meaning that the agents are uncertain about the

distributions of the random losses allocated to them, how would the optimal allocations and

the inf-convolution change?

This paper is dedicated to theoretical results which answer the above six questions. For the

economic interpretation of inf-convolution and risk sharing problems for risk measures, we refer

the reader to Embrechts et al. (2018), Baes et al. (2020), Ghamami and Glasserman (2019) and

the references therein. Some recent work on quantile-based risk sharing includes Weber (2018),

Embrechts et al. (2020), and Wang and Wei (2020). An application to insurance networks is

studied by Hamm et al. (2020).

1We are grateful to an anonymous referee for raising questions 5 and 6.
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Our main results in Theorems 1-6 provide answers to the above six questions, respectively.

Most notably, in the case of a mixed collection of VaRL and VaRR (Theorem 1), and the case

of VaRL or VaRR and another tail risk measure (Theorem 2), we obtain explicit forms of the inf-

convolution as well as the corresponding optimal allocations. In particular, for Λ1, . . . ,Λn ∈ {L,R},

we obtain the simple formula

n
�
i=1

VaRΛi
αi = VaRΛ

α , where Λ = L if Λ1 = · · · = Λn = L, and Λ = R otherwise,

and an optimal allocation of X has the form

Xi = (X −VaRΛ
α(X))1Ai +

1

n
VaRΛ

α(X), i = 1, . . . , n,

for some partition (A1, . . . , An) of the sample space. Moreover, an optimal allocation always exists

for VaRL and a tail risk measure, but generally not so for VaRR and a tail risk measure. From these

results, we discover the somewhat surprising fact that the roles of VaRL and VaRR are asymmetric

in risk sharing, and hence a separate analysis in this paper is necessary to fully understand risk

sharing problems involving quantiles.

There are many tail risk measures, as one can generate a tail risk measure from any law-

invariant risk measure. With such generality, explicit forms of the inf-convolution, or existence

results of the optimal allocation for generic tail risk measures are not available. Nevertheless, we

show that the inf-convolution of tail risk measures exhibits nice properties similar to those in (2)

and (3). Precisely, the tail parameter of the inf-convolution is an aggregation of those of individual

risk measures, and the aggregation is a summation (Theorem 3) in the case of unconstrained inf-

convolution, like the α-parameter in (2), whereas it is a maximum (Theorem 4) in the case of

constrained (comonotonic) inf-convolution, like the β-parameter in (2).

In case allocations have the additional structure of multivariate elliptical models, optimal allo-

cations for tail risk measures are obtained (Theorem 5). Two popular settings of model uncertainty

modeled by either bounds on likelihood ratios or Wasserstein metrics are analyzed with a worst-

case approach. In Table 2, we summarize how the two types of model uncertainty affect tail risk

measures. Model uncertainty induced by likelihood ratios can be analyzed with existing methods.

However, for non-convex risk measures (such as VaR), model uncertainty induced by Wasserstein

metrics is difficult to analyze. We obtain optimal allocations in a specific setting of comonotonic

allocations among several VaR agents (Theorem 6).

The rest of the paper is organized in a straightforward manner. In Section 2, we collect nec-

essary definitions and notation. Sections 3-8 contain our theoretical results which provide answers
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to the six questions posed above. Section 9 contains some concluding remarks. Some background

information on risk measures is put in Appendix A and the proofs of all lemmas, propositions and

corollaries are relegated to Appendix B.

2 Preliminaries

2.1 Notation

We work with an atomless probability space (Ω,F ,P). Let Lq be the set of all random variables

in (Ω,F ,P) with finite q-th moment, q ∈ (0,∞), L0 be the set of all random variables, and L∞ be

the set of essentially bounded random variables. Throughout, for any X ∈ L0, a positive (negative)

value of X represents a financial loss (profit), FX represents the distribution function of X, and its

left-continuous inverse is given by

F−1
X (p) = inf{x ∈ R : FX(x) > p}, p ∈ (0, 1], and F−1

X (0) = inf{x ∈ R : FX(x) > 0}.

Let UX be a uniform random variable on [0, 1] such that F−1
X (UX) = X almost surely (a.s.). The

existence of such uniform random variable UX for any X is given, for instance, in Lemma A.32 of

Föllmer and Schied (2016). The mappings ess-inf(·) and ess-sup(·) on L0 stand for the essential

infimum and the essential supremum of a random variable, respectively. We denote by X
d
= Y if

the random variables X and Y have the same distribution. For x, y ∈ R, x ∨ y = max{x, y} and

x ∧ y = min{x, y}.

2.2 Risk measures

Let X be a convex cone of random variables containing L∞. A risk measure ρ is a mapping

from X to [−∞,∞).2 Whenever a risk measure appears in this paper, its domain is X unless

otherwise specified. We assume that for X ∈ X , if Y
d
= X, then Y ∈ X . This is certainly satisfied

by commonly used domains of risk measures, such as X = Lq, q ∈ [0,∞].

For a risk measure ρ : X → [−∞,∞), we say that ρ is (i) law-invariant if ρ(X) = ρ(Y ) for

all X,Y ∈ X with X
d
= Y ; (ii) monotone if ρ(X) 6 ρ(Y ) for all X,Y ∈ X with X 6 Y a.s.; (iii)

translation-invariant if ρ(X −m) = ρ(X)−m for all m ∈ R and X ∈ X . Moreover, a risk measure

ρ is a monetary risk measure if it is monotone and translation-invariant. Some other commonly

used properties for risk measures are collected in Appendix A. For economic interpretations of these

2Typically, we are only interested in risk measures that take finite values. The reason that we include −∞ in the

range of a risk measure is to allow for an inf-convolution to be considered as a risk measure; see Section 2.3.
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properties, we refer to Artzner et al. (1999), Föllmer and Schied (2016) and Delbaen (2012). In this

paper, we would like to impose as little requirement on the risk measures as possible (except that

they are tail risk measures) to aim for great generality. In particular, we will not assume any form

of convexity or quasi-convexity in the majority of the paper.

Remark 1. Some researchers argue that “law dependence” is a more accurate term for “law invari-

ance”, and “translation equivariance” is a more accurate term for “translation invariance”; see e.g.,

Remark 39 of Delbaen (2012). In this paper, we stick to the most commonly used terminology in

the risk measure literature, bearing in mind that they may not be perfect.

The two most popular classes of risk measures used in banking and insurance practice are

the Value-at-Risk (VaR) and the Expected Shortfall (ES); for a general treatment of these risk

measures in risk management and optimization, we refer to Pflug and Römisch (2007) and McNeil

et al. (2015). For a confidence level α ∈ [0, 1], VaR has two versions: the right-quantile (VaRR
α ) and

the left-quantile (VaRL
α). The left-VaR at level α ∈ [0, 1] is defined as

VaRL
α(X) = inf{x ∈ R : FX(x) > 1− α}, X ∈ L0,

and the right-VaR at level α ∈ [0, 1] is defined as

VaRR
α (X) = inf{x ∈ R : FX(x) > 1− α}, X ∈ L0,

where inf(∅) = ∞. In addition, let ess-sup = VaRL
0 and ess-inf = VaRR

1 . In risk management

practice, one typically does not distinguish between VaRR
α and VaRL

α as they are identical for random

variables with a continuous inverse distribution function at α. However, their subtle difference leads

to interesting observations; see Remark 5 after Theorem 1. Both VaRR
α and VaRL

α will be referred

to as (1− α)-quantiles or VaRs in this paper.

Next we define the family of Range-Value-at-Risk (RVaR), introduced by Cont et al. (2010)

as a family of robust risk measures. Following the notation in Embrechts et al. (2018, 2020), the

RVaR at level (α, β) ∈ [0, 1]2 with α+ β 6 1 is defined as

RVaRα,β(X) =


1
β

∫ α+β
α VaRL

q (X) dq, if β > 0,

VaRL
α(X), if β = 0,

X ∈ L1.

For β ∈ [0, 1), the Expected Shortfall is defined as ESβ = RVaR0,β. Both VaRR
α and VaRL

α are

connected to ESα via an optimization formula; see Rockafellar and Uryasev (2000) and Pflug (2000).

Whenever RVaR and ES appear in this paper, their domain is set to X = L1 to guarantee finiteness.

In Embrechts et al. (2018), the parameters α and β of RVaR are allowed to be greater than 1 (leading

to RVaRα,β = −∞). For the results in our paper, it is sufficient to consider only the case α+β 6 1.
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2.3 Risk sharing and inf-convolution

In risk management and game theory, a risk sharing (or risk allocation) problem is typically

referred to distributing a given aggregate risk to multiple agents so that their own risk measures (or

utilities) are optimized. A popular tool for an analysis of the above problem is through minimizing

the aggregate risk value. Mathematically, given a random variable X ∈ X representing the total

random loss in the future, and a total number n of agents in this risk sharing game, we define the

set of allocations of X as

An(X) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = X

}
. (4)

For i = 1, . . . , n, agent i is equipped with a risk measure ρi : X → R. Each allocation from An(X)

represents a certain way of splitting the aggregate risk X among n agents, and the associated

aggregate risk value is
∑n

i=1 ρi(Xi). Using the notation (4), the inf-convolution of risk measures

(e.g. Delbaen (2012) and Rüschendorf (2013)) in (1) reads as

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}
, X ∈ X . (5)

Since the risk measures ρ1, . . . , ρn do not take the value ∞ on X , the infimum in (5) is well posed.

Note that �ni=1 ρi may take the value −∞; see e.g., the case of VaR agents in Corollary 2 of

Embrechts et al. (2018). An n-tuple (X1, . . . , Xn) ∈ An(X) is called an optimal allocation of X for

(ρ1, . . . , ρn) if
∑n

i=1 ρi(Xi) = �ni=1 ρi(X). If risk measures are interpreted as the capital charge for

a financial institution to take risky positions, as in Artzner et al. (1999) and BCBS (2019), then

�ni=1 ρi(X) represents the smallest possible aggregate capital for the total risk X in the financial

system.

Remark 2. Fix risk measures ρ1, . . . , ρn and a total risk X ∈ X . An allocation (X1, . . . , Xn) ∈

An(X) is Pareto-optimal with respect to (ρ1, . . . , ρn) if for any allocation (Y1, . . . , Yn) ∈ An(X),

ρi(Yi) 6 ρi(Xi) for all i = 1, . . . , n implies ρi(Yi) = ρi(Xi) for all i = 1, . . . , n. Pareto-optimal

allocations are closely related to the inf-convolution defined in (5). In particular, assuming that

each of ρi(Xi), i = 1, . . . , n is finite, (X1, . . . , Xn) is a Pareto-optimal allocation of X if and only if

(X1, . . . , Xn) is an optimal allocation of X (Proposition 1 of Embrechts et al. (2018)). Moreover, the

above optimal allocations are often equilibrium allocations in non-cooperative games. In particular,

such an equivalence is generally true in a convex setting, and also true in some non-convex settings;

see e.g., Xia and Zhou (2016) and Embrechts et al. (2018, 2020).
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2.4 Tail risk measures

We follow the mathematical framework of tail risk measures developed by Liu and Wang

(2021), where the following terminology for tail risks and tail risk measures is introduced. For a

random variable X ∈ X and p ∈ (0, 1], Xp presents the tail risk of X beyond its (1 − p)-quantile,

defined by

Xp = F−1
X (1− p+ pUX).

One can easily check

P(Xp 6 x) = P(X 6 x|UX > 1− p) =
(P(X 6 x)− (1− p))+

p
, x ∈ R. (6)

We assume that X ∈ X implies Xp ∈ X . This assumption is satisfied by common choices of X ,

such as X = Lq, q ∈ [0,∞].

Definition 1 (Liu and Wang (2021)). For p ∈ (0, 1), a risk measure ρ is a p-tail risk measure if

ρ(X) = ρ(Y ) for all X,Y ∈ X satisfying Xp
d
= Yp. In this case, we simply say that ρ is a tail risk

measure, and the value p is a tail parameter of ρ.3

Tail risk measures are risk measures that depend solely on the tail distribution. For a p-tail

risk measure ρ, there exists a law-invariant risk measure ρ∗ such that ρ(X) = ρ∗(Xp) for all X ∈ X .

Note that every number q in [p, 1) is a tail parameter of ρ, and thus the concept of p-tail risk

measure gets weaker as p increases. Therefore, we sometimes look for the smallest tail parameter

of a tail risk measure, if it exists.

It is immediate from Definition 1 that VaRs, ES and RVaR are generally tail risk measures.

In particular, for α, β > 0 and α + β < 1, VaRR
α has a smallest tail parameter α, VaRL

α has a tail

parameter γ for all γ > α but not γ = α, ESβ has a smallest tail parameter β, and RVaRα,β has a

smallest tail parameter α + β. In addition to VaRs, ES and RVaR, many other tail risk measures

are studied in the recent risk management literature, such as the Glue-VaR (Belles-Sampera et al.

(2014)) and the Gini Shortfall (Furman et al. (2017)); see the examples in Liu and Wang (2021).

The notions of tail risk measures and the VaR-type risk measures introduced by Weber (2018) are

complementary; see Appendix A.

3Here, we use a “small p” convention, which is different from Liu and Wang (2021), that a p-tail risk measure

is a (1 − p)-tail risk measure using the terminology of Liu and Wang (2021). The choice of “small p” convention

is in agreement with Embrechts et al. (2018), and it makes many results in the paper more concise. This choice is

suggested by two anonymous referees.
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3 Inf-convolution of several VaRs

In this section, we study the inf-convolution of several VaRs, which can be a mixed collection of

left- and right-quantiles. For this special case, explicit forms of the inf-convolution and the optimal

allocation are available.

First, Corollary 2 of Embrechts et al. (2018) gives, for α1, α2 > 0 with α1 + α2 < 1,

VaRL
α1
�VaRL

α2
= VaRL

α1+α2
. (7)

The inf-convolution of VaRL
α1

and VaRR
α2

and that of VaRR
α1

and VaRR
α2

are not available in the

literature, and they are technically trickier. In the next result, we will obtain a general formula for

the inf-convolution of several VaRs, which implies

VaRL
α1
�VaRR

α2
= VaRR

α1
�VaRL

α2
= VaRR

α1
�VaRR

α2
= VaRR

α1+α2
. (8)

Moreover, a corresponding optimal allocation can be constructed explicitly. Note from (8) that the

roles of left- and right-quantiles are indeed asymmetric in the problem of inf-convolution, and our

analysis on the general mixed case completes the full picture of this problem.

Theorem 1. Suppose that X ∈ X , α1, . . . , αn > 0 with α =
∑n

i=1 αi < 1, and Λ1, . . . ,Λn ∈ {L,R}.

(i) �ni=1 VaRΛi
αi = VaRΛ

α , where Λ = L if Λ1 = · · · = Λn = L, and Λ = R otherwise.

(ii) There exists an optimal allocation of X for (VaRΛ1
α1
, . . . ,VaRΛn

αn ) which has the form

Xi = (X −VaRΛ
α(X))1Ai +

1

n
VaRΛ

α(X), i = 1, . . . , n, (9)

for some partition (A1, . . . , An) of Ω.

(iii) For any partition (A1, . . . , An) of Ω independent of X with P(Ai) = αi/α, i = 1, . . . , n, (9)

gives an optimal allocation of X.

Proof. We first note that for any random variable Y and β ∈ (0, 1),

VaRR
β (Y ) 6 0 ⇐⇒ P(Y > ε) < β for all ε > 0, (10)

and

VaRL
β (Y ) 6 0 ⇐⇒ P(Y > 0) 6 β. (11)

Moreover, for any δ ∈ (0, α1), we have, by definition

VaRL
α1−δ > VaRR

α1
> VaRL

α1
. (12)

These facts will be used repeatedly in the proof.
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(i) We first show (8). Using (7) and (12), we have

VaRR
α1+α2−δ > VaRL

α1+α2−δ = VaRL
α1−δ�VaRL

α2
> VaRR

α1
�VaRL

α2
.

Since the right-quantile VaRR
β is left-continuous in β, we have

VaRR
α1
�VaRL

α2
6 lim

δ↓0
VaRR

α1+α2−δ = VaRR
α1+α2

. (13)

Next we show the inverse direction of the inequality in (13). Take any random variables

Y, Z ∈ X . For any ε > 0, using (10), we have

P(Y + Z > VaRR
α1

(Y ) + VaRL
α2

(Z) + ε) 6 P(Y > VaRR
α1

(Y ) +
ε

2
or Z > VaRL

α2
(Z) +

ε

2
)

6 P(Y > VaRR
α1

(Y ) +
ε

2
) + P(Z > VaRL

α2
(Z) +

ε

2
)

= P(Y −VaRR
α1

(Y ) >
ε

2
) + P(Z −VaRL

α2
(Z) >

ε

2
)

< α1 + α2.

Using (10) again, we obtain

VaRR
α1+α2

(Y + Z) 6 VaRR
α1

(Y ) + VaRL
α2

(Z).

This, together with (13), implies our desired statement

VaRR
α1
�VaRL

α2
= VaRR

α1+α2
. (14)

Next, using (12) and (14), we obtain

VaRR
α1+α2−δ = VaRL

α1−δ�VaRR
α2
> VaRR

α1
�VaRR

α2
> VaRR

α1
�VaRL

α2
= VaRR

α1+α2
.

Using again the fact that the right-quantile VaRR
β is left-continuous in β, we get

VaRR
α1
�VaRR

α2
= VaRR

α1+α2
.

Finally, by noting that inf-convolution is commutative, we have

VaRL
α1
�VaRR

α2
= VaRR

α2
�VaRL

α1
= VaRR

α1+α2
.

Therefore, all quantities in (8) are equal. By Lemma 2 of Liu et al. (2020),

n
�
i=1

VaRΛi
αi = VaRΛ1

α1
� . . .�VaRΛn

αn .

The statement �ni=1 VaRΛi
αi = VaRΛ

α , is obtained via a repeated application of (7) and (8).

10



(ii) If Λ = L, in which case Λ1 = · · · = Λn = L, the statement is shown by Embrechts et al.

(2018). It suffices to consider the case Λ = R.

Take a sequence {εk}k∈N with εk ↓ 0 as k → ∞. Let Bk = {X − VaRR
α (X) > εk} for k ∈ N,

and B0 = ∅. By (10), we have P(Bk) < α for all k, and {Bk}k∈N is an increasing sequence of

sets. Let (Ak1, . . . , A
k
n) be a partition of Bk \Bk−1 for each k ∈ N, satisfying

P(Aki ) =
αi
α
P(Bk \Bk−1), i = 1, . . . , n, k ∈ N.

The existence of such a sequence {(Ak1, . . . , Akn)}k∈N is guaranteed since the probability space

(Ω,F ,P) is atomless. Note that for each K ∈ N,

P

(
K⋃
k=1

Aki

)
=
αi
α
P(BK) < αi.

Let (C1, . . . , Cn) be an arbitrary partition of {X 6 VaRR
α (X)}, and Ai = (

⋃
k∈NA

k
i ) ∪ Ci for

i = 1, . . . , n. Note that by construction, (A1, . . . , An) is a partition of Ω. For all ε > 0, there

exists K ∈ N such that εK < ε, and we have, for i = 1, . . . , n,

P
(
(X −VaRR

α (X))1Ai > ε
)
6 P

(
(X −VaRR

α (X))1Ai > εK
)

= P(BK ∩Ai) = P

(
K⋃
k=1

Aki

)
< αi.

Thus, we obtain

P
(
(X −VaRR

α (X))1Ai > ε
)
< αi. (15)

Using (10), we get

VaRR
αi((X −VaRR

α (X))1Ai) 6 0. (16)

Next, define X1, . . . , Xn according to (9). We can easily check

n∑
i=1

Xi = (X −VaRR
α (X))

n∑
i=1

1Ai + VaRR
α (X) = X.

Thus (X1, . . . , Xn) ∈ An(X). Using (16), we have

n∑
i=1

VaRR
αi(Xi) 6

n∑
i=1

1

n
VaRR

α (X) = VaRR
α (X).

Using the result in part (i), we know that (X1, . . . , Xn) is an optimal allocation of X.
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(iii) If Λ = L, in which case Λ1 = · · · = Λn = L, the conclusion follows from the fact that

VaRL
αi(Xi) = 1

nVaRL
α(X), which is easy to check. Next we suppose that Λ = R. For each

i = 1, . . . , n, using (10), we obtain, for all ε > 0,

P
(
(X −VaRR

α (X))1Ai > ε
)

= P
(
X −VaRR

α (X) > ε
)
P(Ai) < α× αi

α
= αi.

Hence, (15) holds. Following the same argument as in part (ii), we conclude that (X1, . . . , Xn)

is an optimal allocation of X.

Remark 3. In Theorem 1 (iii), the existence of (A1, . . . , An) independent of X is guaranteed if there

exists a uniform random variable independent of X. The assumption that the probability space is

atomless is not necessary, as long as (A1, . . . , An) in the statement exists.

Theorem 1 (iii) directly gives the existence and the form of an optimal allocation under a

technical condition that there exists a uniform random variable independent of X, which we call

condition (E) below for simplicity. From its proof, we can see that Theorem 1 (ii) requires a much

more complicated construction of (A1, . . . , An) than (iii). Certainly, condition (E) is very weak,

and it is satisfied in all practical situations. In particular, if one is allowed to extend the underlying

probability space after X is specified (e.g., “throwing a die”), then (E) always holds.

Remark 4. We note that, as discussed in Liu et al. (2020), (E) cannot be taken for granted in general.

Indeed, in a standard probability space (i.e., a probability space isomorphic to ([0, 1],B([0, 1]), λ)

where λ is the Lebesgue measure), one can always find a (very special) random variable X such

that (E) does not hold; see Example 7 of Liu et al. (2020). In case that (E) is not satisfied, the

partition (A1, . . . , An) in the optimal allocation (9) may not be explicit.

Remark 5. As we mentioned above, the distinction between two α-quantiles is usually ignored in risk

management practice. Below we provide a motivation which leads to an interesting interpretation

of Theorem 1. The distinction between VaRL
α and VaRR

α arises when the distribution function of

the underlying risk is strictly flat across a certain range of outcomes at level α. Such a situation is

unlikely to arise in practice, but as risks are estimated from statistical models and data, it may well

happen that a risk distribution is approximately flat around α. In such a situation, taking model

uncertainty into account, there would be a fairly large interval (a “confidence interval”) of possible

values for the quantile, even if in theory it is unique. In this case, VaRL
α can be thought of as an

idealized representation of the left end-point of the confidence interval, whereas VaRR
α represents the

right end-point. A strict regulator can be expected to impose VaRR
α , whereas a lenient regulator

might accept VaRL
α. The result of Theorem 1 can be interpreted as that, if all agents in a risk
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sharing game are under a lenient regime, then effectively the same applies to the representative

agent, but if at least one of the agents has a strict regulator, then the strict regime effectively holds

for the representative as well.

Although an optimal allocation for a mixed collection of VaRs always exists, such an existence

result cannot be expected for general tail risk measures. This will be discussed in the next section,

where we will see the intriguing fact that an optimal allocation always exists for (VaRL
α, ρ) but not

necessarily for (VaRR
α , ρ), where ρ is a generic monetary tail risk measure.

4 Inf-convolution of VaR and another tail risk measure

In this section, we analyze the inf-convolution of VaR and another monetary tail risk measure.

Similar to the case in Section 3, we obtain explicit formulas for the inf-convolution and the optimal

allocation.

Theorem 2. Suppose that ε ∈ (0, 1) and ρ is a monetary ε-tail risk measure. For X ∈ X and

α ∈ (0, 1 − ε), write X [α] = X1{UX61−α} + VaRR
α+ε(X)1{UX>1−α}, and the following statements

hold.

(i) VaRL
α � ρ(X) = ρ(X [α]).

(ii) (X −X [α], X [α]) is an optimal allocation of X for (VaRL
α, ρ).

(iii) VaRR
α � ρ(X) = limδ↓0 ρ(X [α−δ]).

(iv) Both VaRR
α � ρ and VaRL

α � ρ are monetary (α+ ε)-tail risk measures.

Proof. We note that, for x ∈ R,

P(X [α] 6 x) =


FX(x), x < VaRR

α+ε(X)

FX(x) + α, VaRR
α+ε(X) 6 x < VaRL

α(X)

1, x > VaRL
α(X).

(17)

Moreover, by construction,

VaRR
ε (X [α]) = VaRR

α+ε(X). (18)

We will use these formulas in several parts of the proof.
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(i) Denote by X1 = X −X [α] = (X −VaRR
α+ε(X))1{UX>1−α}. Since

P(X1 > 0) 6 P(UX > 1− α) = α,

we have VaRL
α(X1) 6 0. It follows that

VaRL
α � ρ(X) 6 VaRL

α(X1) + ρ(X [α]) 6 ρ(X [α]).

Next, we show ρ(X [α]) 6 VaRL
α � ρ(X). For this, it suffices to prove ρ(X [α]) 6 ρ(X − Y ) for

all Y ∈ X with VaRL
α(Y ) = 0 due to translation-invariance of ρ. Since VaRL

α(Y ) = 0 implies

P(Y > 0) 6 α, we have

P(X − Y > x) > (P(X > x)− P(Y > 0))+ > (P(X > x)− α)+, for x ∈ R.

As a consequence, for x > VaRR
α+ε(X), using (17), we have

P(X − Y 6 x) 6 1− (P(X > x)− α)+

= (1− P(X > x) + α) ∧ 1

= (P(X 6 x) + α) ∧ 1 = P(X [α] 6 x),

that is, FX−Y (x) 6 FX[α](x) for all x > VaRR
α+ε(X). Since ρ is a monotone ε-tail risk measure

and VaRR
ε (X [α]) = VaRR

α+ε(X) by (18), we have ρ(X [α]) 6 VaRL
α � ρ(X). Therefore, we

conclude that ρ(X [α]) = VaRL
α � ρ(X).

(ii) The optimality of (X −X [α], X [α]) is obtained by ρ(X [α]) = VaRL
α � ρ(X) in part (i).

(iii) Note that VaRL
α 6 VaRR

α 6 VaRL
α−δ for all δ ∈ (0, α). Therefore, using part (i), we have

VaRR
α � ρ(X) 6 VaRL

α−δ � ρ(X) = ρ(X [α−δ]).

Noting that X [α−δ] ↓ X [α] a.s. as δ ↓ 0, and ρ is monotone, we know that the limit of ρ(X [α−δ])

as δ ↓ 0 exists, which gives the inequality VaRR
α � ρ(X) 6 limδ↓0 ρ(X [α−δ]). On the other hand,

we have

lim
δ↓0

ρ(X [α−δ]) = lim
δ↓0

VaRL
α−δ � ρ(X) = lim

δ↓0
inf
X1∈X

(
VaRL

α−δ(X1) + ρ(X −X1)
)

6 inf
X1∈X

(
lim
δ↓0

VaRL
α−δ(X1) + ρ(X −X1)

)
= inf

X1∈X

(
VaRR

α (X1) + ρ(X −X1)
)

= VaRR
α � ρ(X).

Therefore, we conclude that VaRR
α � ρ(X) = limδ↓0 ρ(X [α−δ]).

14



(iv) It is easy to check that the inf-convolution of monetary risk measures is still monetary. Take

Y, Z ∈ X such that Yα+ε
d
= Zα+ε (but Y

d
= Z may not hold). For δ ∈ [0, α), since

(FY (x)− (1− ε− α+ δ))+ = (FZ(x)− (1− ε− α+ δ))+, x ∈ R,

it is easy to check (Y [α−δ])ε
d
= (Z [α−δ])ε through the following argument

P((Y [α−δ])ε 6 x) =
1

ε
(P(Y [α−δ] 6 x)− (1− ε))+

=


0, x < VaRR

α+ε−δ(Y )

1
ε (FY (x)− (1− ε− α+ δ))+, VaRR

α+ε−δ(Y ) 6 x < VaRL
α−δ(Y )

1, x > VaRL
α−δ(Y ),

= P((Z [α−δ])ε 6 x).

Since ρ is an ε-tail risk measure, we have ρ(Y [α−δ]) = ρ(Z [α−δ]) for all δ ∈ [0, α). Using part (i)

and (iii), respectively, we know that VaRL
α�ρ and VaRR

α�ρ are (α+ ε)-tail risk measures.

Theorem 2 generalizes Theorem 5.3 of Wang and Wei (2020) where the inf-convolution of VaRL
α

and another distortion risk measure is studied (see Appendix A for the definition of distortion risk

measures). In Theorem 2, we do not need to assume that ρ is a distortion risk measure. As a direct

consequence of (i) and (iii), if ρ is continuous from above with respect to a.s. convergence, then

VaRR
α � ρ(X) = VaRL

α � ρ(X) = ρ(X [α]). (19)

Remark 6. In Theorem 2 (iii), in addition to being (α+ε)-tail risk measures, VaRR
α � ρ and VaRL

α � ρ

are also VaR-type risk measures with parameter α according to the terminology of Weber (2018);

see Appendix A.

From Theorem 2, we see that an optimal allocation always exists for (VaRL
α, ρ) where ρ is an

ε-tail risk measure and α < 1− ε. However, this is not the case for (VaRR
α , ρ), as we discuss below.

Let α, β > 0 with α+ β < 1. By direct calculation, Theorem 2 gives the following formula

VaRL
α�ESβ(X) = ESβ(X [α]) = RVaRα,β(X), X ∈ X ,

and an optimal allocation of X for (VaRL
α,ESβ); this result is also implied by Theorem 2 of Em-

brechts et al. (2018). Further, in the next proposition, we obtain a similar formula

VaRR
α�ESβ(X) = RVaRα,β(X), X ∈ X . (20)

Notably, an optimal allocation for (VaRR
α ,ESβ) often does not exist, in sharp contrast to the case

of (VaRL
α,ESβ), for which an optimal allocation always exists.
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Proposition 1. For α, β > 0 with α + β < 1, we have VaRR
α�ESβ = RVaRα,β. Moreover, an

optimal allocation of X ∈ X for (VaRR
α ,ESβ) exists if and only if VaRR

α+β(X) = VaRR
α (X). In

particular, if X is continuously distributed, then no optimal allocation exists.

The non-existence result in Proposition 1 requires a characterization (42) of all optimal allo-

cations for (VaRL
α,ESβ), which is technically quite complicated. The proof of Proposition 1 is put

in Appendix B. Below we illustrate the non-existence with a simple example.

Example 1. Take a Bernoulli random variable X with P(X = 1) = α ∈ (0, 1), and β ∈ (0, 1− α).

Suppose for the purpose of contradiction that X has an optimal allocation (X1, X2) ∈ A2(X)

such that VaRR
α (X1) + ESβ(X2) = RVaRα,β(X) = 0. Without loss of generality, we can assume

VaRR
α (X1) = ESβ(X2) = 0. Note that VaRR

α (X1) = 0 implies P(X1 > 0) 6 α, which in turn implies

P(X2 < 0) 6 α as {X2 < 0} ⊆ {X1 > 0}. Hence, VaRR
β (X2) > VaRR

1−α(X2) > 0, which, together

with ESβ(X2) = 0, yields VaRR
γ (X2) = 0 for all γ ∈ (0, β], and thus P(X2 6 0) = 1. Hence,

X1 = X −X2 > X a.s., which implies VaRR
α (X1) > VaRR

α (X) = 1, a contradiction.

Proposition 1 and Example 1 suggest that the existence of an optimal allocation for tail risk

measures cannot be taken for granted, especially when VaRR
α is involved. This makes the existence

result in Theorem 1 somewhat surprising, as the inf-convolution of a mixed collection of VaRs

always has an optimal allocation. This existence relies strongly on the specific functional form of

VaRs, and it is not guaranteed even in the simple case of VaRR
α and ESβ as shown in Proposition

1 and Example 1.

Remark 7. Similarly to (20), we can get, for α, β, γ > 0 with α+ β + γ < 1,

VaRR
α�RVaRγ,β = RVaRα+γ,β = VaRL

α�RVaRγ,β.

Therefore, we obtain formulas for the inf-convolution of all possible combinations of left-VaR,

right-VaR, RVaR and ES, and this completes the results in Embrechts et al. (2018) which exclude

right-VaR from risk sharing problems. Similarly to the case of (VaRR
α ,ESβ), an optimal allocation

for (VaRR
α ,RVaRγ,β) does not necessarily exist.

Remark 8. A risk measure ρ is normalized if ρ(0) = 0. Theorem 3.3 of Liu and Wang (2021) shows

that VaRR
α is the smallest normalized α-tail monetary risk measure. Combining this result with

Theorem 2, we have

VaRL
α � ρ(X) > VaRR

α+ε(X)

for all normalized ε-tail monetary risk measures ρ. The above inequality holds as an equality for

the choice ρ = VaRR
ε , as we have seen in Theorem 1.
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5 Inf-convolution of tail risk measures

In this section, we analyze the unconstrained inf-convolution of generic tail risk measures. As

shown by Liu et al. (2020), the inf-convolution of law-invariant risk measures is law-invariant under

some weak conditions. The following theorem shows that the inf-convolution of tail risk measure is

still a tail risk measure under some weak conditions, and the tail parameter is an aggregation of the

individual tail parameters. This result shows that the tail risk measures exhibit a similar property

to the cases of RVaR and VaR in (2) and (3).

In Theorem 3 below, continuity is defined with respect to the sup-norm, that is, for a sequence

(Xn)n∈N and a random variable X in X , ρ(Xn) → ρ(X) if ess-sup|Xn − X| → 0. Note that all

monetary risk measures on arbitrary domains are continuous with respect to the sup-norm, and

this requirement is very weak. Moreover, a 1-tail risk measure below simply means a law-invariant

risk measure, which is a natural extension of Definition 1 to p = 1.

Theorem 3. Suppose that ρi is a εi-tail risk measure for some εi ∈ (0, 1), i = 1, . . . , n. If one of

ρ1, . . . , ρn is monotone and (sup-norm) continuous from above, then �ni=1 ρi is a monotone ε-tail

risk measure, where ε = min{
∑n

i=1 εi, 1}.

Proof. The proof of Theorem 3 requires the following technical lemma. The proof of the lemma is

given in Appendix B.

Lemma 1. For X ∈ X and ε ∈ (0, 1), we have X ′ε
d
= Xε, where X ′ = max{X,m} and m ∈

[VaRL
ε (X),VaRR

ε (X)].

We continue the proof of Theorem 3. Take X ∈ X and (X1, . . . , Xn) ∈ An(X). Let X ′i =

max{Xi, xi}, where xi = VaRL
εi(Xi) for i = 1, . . . , n, and X ′ = max{X,x}, where x = VaRL

ε (X)

(here x may be −∞ if ε = 1). We have (X ′i)εi
d
= (Xi)εi by Lemma 1, and thus ρi(Xi) = ρi(X

′
i),

i = 1, . . . , n. Corollary 1 of Embrechts et al. (2018) implies

X ′1 + · · ·+X ′n > x1 + · · ·+ xn > x.
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Together with the observation that X ′1 + · · ·+X ′n > X, we know X ′1 + · · ·+X ′n > X
′. Thus

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}

= inf

{
n∑
i=1

ρi(X
′
i) : (X1, . . . , Xn) ∈ An(X)

}

> inf

{
n∑
i=1

ρi(Yi) : Y1, . . . , Yn ∈ X , Y1 + · · ·+ Yn > X
′

}

= inf

{
inf

{
n∑
i=1

ρi(Yi) : (Y1, . . . , Yn) ∈ An(Z)

}
: Z > X ′, Z ∈ X

}

= inf

{
n
�
i=1

ρi(Z) : Z > X ′, Z ∈ X
}
.

By Lemma 1 of Liu et al. (2020), as long as one of ρ1, . . . , ρn is monotone, �ni=1 ρi is monotone.

Hence,
n
�
i=1

ρi(X) > inf

{
n
�
i=1

ρi(Z) : Z > X ′, Z ∈ X
}

=
n
�
i=1

ρi(X
′).

Using the monotonicity of �ni=1 ρi again, we have �ni=1 ρi(X) 6 �ni=1 ρi(X
′), which eventually gives

n
�
i=1

ρi(X) =
n
�
i=1

ρi(X
′). (21)

Take Y ∈ X and Yε
d
= Xε, we have Y ′

d
= X ′ where Y ′ = max{Y,VaRL

ε (Y )}. Since ρi is εi-tail

risk measure, it is a law-invariant risk measure. Next, using Theorem 2 of Liu et al. (2020), we

know �ni=1 ρi is law-invariant. By (21), we have

n
�
i=1

ρi(Y ) =
n
�
i=1

ρi(Y
′) =

n
�
i=1

ρi(X
′) =

n
�
i=1

ρi(X).

Therefore, �ni=1 ρi is an ε-tail risk measure.

The tail parameter in Theorem 3 is generally sharp, as shown by the formula

n
�
i=1

VaRR
αi = VaRR∑n

i=1 αi

obtained from Theorem 1 (i). Recall that for α ∈ (0, 1), VaRR
α has a (smallest possible) tail

parameter of α. Therefore, the smallest tail parameter of the inf-convolution in this case is indeed

the sum of those of the individual risk measures, and the tail parameter obtained from Theorem 3

cannot be improved without specifying the tail risk measures; recall that a smaller tail parameter

is a stronger property.
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Example 2. Let revisit the formula (2) in the introduction, that is,

n
�
i=1

RVaRαi,βi = RVaR∑n
i=1 αi,

∨n
i=1 βi

,

where for simplicity we assume α1, . . . , αn, β1, . . . , βn > 0 and
∑n

i=1 αi +
∑n

i=1 βi < 1. Note that

for each i = 1, . . . , n, RVaRαi,βi is a (αi + βi)-tail risk measure. Applying Theorem 3 to the

risk measures RVaRα1,β1 , . . . ,RVaRαn,βn , we conclude that �ni=1 RVaRαi,βi has a tail parameter∑n
i=1 αi +

∑n
i=1 βi. By using the formula (2) directly, we know that �ni=1 RVaRαi,βi actually has a

tail parameter
∑n

i=1 αi +
∨n
i=1 βi, suggesting that the tail parameter obtained in Theorem 3 can be

improved in this case.

Remark 9. Let ρ be a monetary ε-tail risk measure. Theorem 3 implies that VaRR
α�ρ is an (α+ ε)-

tail risk measure for α ∈ (0, 1− ε). Theorem 2 (iii) further gives that VaRL
α�ρ is also a (α+ ε)-tail

risk measure, which is not covered by the result of Theorem 3, noting that VaRL
α is not a α-tail risk

measure.

6 Comonotonic inf-convolution of tail risk measures

In this section, we consider inf-convolution of tail risk measures constrained to comonotonic

allocations. In some situations, especially in an insurance context, it may be preferred or manda-

tory to allocate the aggregate risk in a comonotonic way. Two random variables X and Y are

comonotonic, denoted by X//Y , if there exists Ω0 ∈ F with P(Ω0) = 1 and

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0 for all ω, ω′ ∈ Ω0.

Comonotonicity of more than two random variables are defined via pair-wise comonotonicity. For

a review on comonotonicity and risk measures, see Dhaene et al. (2006). We further define the set

of comonotonic allocations as

A+
n (X) = {(X1, . . . , Xn) ∈ An(X) : Xi//X, i = 1, . . . , n} . (22)

The constrained inf-convolution of risk measures ρ1, . . . , ρn is defined as

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ A+
n (X)

}
. (23)

An n-tuple (X1, . . . , Xn) ∈ A+
n (X) is called an optimal constrained allocation of X for (ρ1, . . . , ρn)

if
∑n

i=1 ρi(Xi) = �ni=1 ρi(X).
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There are two main reasons to consider comonotonic allocations. First, comonotonic allocations

are closely connected with the concept of convex-order consistency. A risk measure ρ is convex-order

consistent if ρ(X) 6 ρ(Y ) for X ≺cx Y , X,Y ∈ X , where X ≺cx Y means that E[f(X)] 6 E[f(Y )]

for all convex functions f , provided that both expectations exist. The convex-order consistency

is equivalent to the notion of strong risk aversion in decision theory.4 Due to the well-known

result of comonotone improvement (see e.g. Carlier et al. (2012)), if the underlying risk measures

respect convex order, Pareto-optimal risk allocations can be constrained in the set of comonotonic

allocations. Second, the study on the constrained inf-convolution is especially useful in an insurance

context because an aggregate insurance risk is often distributed among insurers and the insured in

a comonotonic way. Comonotonicity of allocations is known as the no-sabotage or no-moral-hazard

condition in insurance; see e.g., Huberman et al. (1983) and Carlier and Dana (2003).

It is obvious by definition that �ni=1 ρi(X) 6 �ni=1 ρi(X). Hence, if an optimal allocation of

X is comonotonic, then it is also an optimal constrained allocation and �ni=1 ρi(X) = �ni=1 ρi(X).

For convex-order consistent risk measures, including all law-invariant convex risk measures (see

Appendix A for definition), optimal constrained allocations are also optimal allocations. However,

for risk measures that do not respect the convex order, such as VaR, optimal constrained allocations

are generally not optimal in the unconstrained case; for instance, this is the case for RVaR as in

Theorem 2 of Embrechts et al. (2018).

The next result shows that in the comonotonic risk sharing problem, the constrained inf-

convolution of tail risk measures is again a tail risk measure, similarly to the unconstrained case

in Theorem 3, although its tail parameter is not the summation, but the maximum, of those of

individual risk measures. An explicit formula of the constrained inf-convolution of tail risk measures

is available through the concept of p-generator. For p ∈ (0, 1) and a p-tail risk measure ρ, its p-

generator is a law-invariant risk measure ρ∗ satisfying ρ(X) = ρ∗(Xp) for all X ∈ X , which always

exists and is unique on the set of random variables in X bounded from below (Proposition 3.1 of

Liu and Wang (2021)). We also say that ρ is generated by ρ∗.

Theorem 4. Suppose that for i = 1, . . . , n, ρi is an εi-tail risk measure for some εi ∈ (0, 1), and

let ε =
∨n
i=1 εi.

(i) �ni=1 ρi(X) = �ni=1 ρ
∗
i (Xε) for all X ∈ X , where ρ∗i is the ε-generator of ρi, i = 1, . . . , n.

(ii) �ni=1 ρi is an ε-tail risk measure.

4Convex order is also known as mean-preserving spreads in the decision theoretic literature.
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(iii) If ρ1, . . . , ρn are convex-order consistent, then �ni=1 ρi = �ni=1 ρi, and hence �ni=1 ρi is an ε-tail

risk measure.

Proof. The proof of Theorem 4 relies on the following lemma, which connects an allocation of

the tail risk to the tail risks of components in an allocation. The proof of the lemma is given in

Appendix B.

Lemma 2. Suppose X ∈ X and ε ∈ (0, 1).

(a) For (X1, . . . , Xn) ∈ A+
n (X), there exists (Y1, . . . , Yn) ∈ A+

n (Xε) such that Yi
d
= (Xi)ε for i =

1, . . . , n.

(b) For (Y1, . . . , Yn) ∈ A+
n (Xε), there exists (X1, . . . , Xn) ∈ A+

n (X) such that (Xi)ε
d
= Yi for i =

1, . . . , n.

We continue the proof of Theorem 4 using Lemma 2. Since each ρi is an εi-tail risk measure,

it is an ε-tail risk measure. By (a) of Lemma 2, we know

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρ∗i ((Xi)ε) : (X1, . . . , Xn) ∈ A+
n (X)

}

> inf

{
n∑
i=1

ρ∗i (Yi) : (Y1, . . . , Yn) ∈ A+
n (Xε)

}
=

n
�
i=1

ρ∗i (Xε).

Similarly, by (b) of Lemma 2,

n
�
i=1

ρ∗i (Xε) = inf

{
n∑
i=1

ρ∗i (Yi) : (Y1, . . . , Yn) ∈ A+
n (Xε)

}

> inf

{
n∑
i=1

ρ∗i ((Xi)ε) : (X1, . . . , Xn) ∈ A+
n (X)

}
=

n
�
i=1

ρi(X).

Therefore, �ni=1 ρi(X) = �ni=1 ρ
∗
i (Xε), thus statement (i) holds. Statement (ii) follows directly

from statement (i). For the statement (iii), it suffices to note that according to the comonotonic

improvement, for convex-order consistent risk measures, we have �ni=1 ρi = �ni=1 ρi.

Theorem 4 implies that if risk sharing is constrained to be comonotonic, then the corresponding

inf-convolution has a tail parameter equal to the maximum of those of the individual risk measures.

Comparing this result with Theorem 3, where the (unconstrained) inf-convolution has a tail param-

eter equal to the sum of those of the individual risk measures, the constraint on comonotonicity

indeed reduces the tail parameter.
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Example 3. Let β1, . . . , βn ∈ (0, 1) and β =
∨n
i=1 βi. According to Theorem 4, the inf-convolution

of ESβ1 , . . . ,ESβn is a β-tail risk measure, since each of ESβ1 , . . . ,ESβn is convex-order consistent.

Indeed, Theorem 2 of Embrechts et al. (2018) gives �ni=1 ESβi = ESβ, which is clearly a β-tail risk

measure, and this example suggests that the tail parameter obtained in Theorem 4 is sharp.

Remark 10. Wang and Zitikis (2020) obtained inf-convolution formulas for VaRL (with a slightly

different setting) under a spectrum of weak comonotonicity constraints, which range from imposing

comonotonicity to imposing no constraints. Indeed, the results obtained by Wang and Zitikis (2020)

allow for the tail parameter of the inf-convolution of VaRL
ε1 , . . . ,VaRL

εn to be anything between∨n
i=1 εi (comonotonicity) and

∑n
i=1 εi (no constraints).

Remark 11. For distortion risk measures ρ1, . . . , ρn, their comonotonic inf-convolution can be writ-

ten explicitly; see Proposition 5 of Embrechts et al. (2018). From that result, one can easily check

that �ni=1 ρi is indeed a (
∨n
i=1 εi)-tail risk measure if the distortion risk measure ρi is an εi-tail risk

measure for i = 1, . . . , n. Therefore, Theorem 4 generalizes the above observation beyond distortion

risk measures.

7 Risk sharing for elliptical models

In this section, we consider risk sharing within the class of elliptical models. Elliptical models

are the most popular parametric risk models, and they appear prominently in both asset pricing

models (e.g., the classic Bachelier and Black-Scholes models) and time series analysis (e.g., GARCH

models); see McNeil et al. (2015) for a general background. Common special cases of the elliptical

models are the multivariate normal and the multivariate t-distributions; we refer to Chapter 6 of

McNeil et al. (2015) for details. Let En(ψ) be the class of all n-dimensional elliptically distributed

random vectors with a fixed characteristic generator ψ, i.e., for X ∈ En(ψ), there exist µ ∈ Rn and

a positive semi-definite matrix Σ ∈ Rn×n such that the characteristic function of X is

t 7→ eit
>µψ(t>Σt)

where t> is the transpose of t ∈ Rn. Assume throughout this section that X contains E1(ψ) and

X ∈ E1(ψ). We consider the risk sharing problem confined to the elliptical class En(ψ), namely,

n
⊕
i=1

ρi(X) = min

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X) ∩ En(ψ)

}
. (24)

In other words, the allocated risk positions in (24) have to be jointly elliptical. For instance, if X is

Gaussian (or t-distributed), then we require an allocation (X1, . . . , Xn) of X to be jointly Gaussian
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(or t-distributed). It turns out that for tail risk measures with tail parameter no larger than

1/2, such a risk sharing problem admits a simple solution, due to the nice structure of elliptically

distributed random vectors.

Theorem 5. Suppose that for i = 1, . . . , n, ρi is a monetary εi-tail risk measure,
∨n
i=1 εi 6 1/2

and ⊕ni=1 ρi(X) > −∞. An optimal allocations to (24) is comonotonic and given by X∗i = µi+c∗iX,

i = 1, . . . , n, where µ1 + · · ·+ µn = 0, and (c∗1, . . . , c
∗
n) is an optimizer to the following problem

minimize

n∑
i=1

ρi(ciX) (25)

subject to

n∑
i=1

ci = 1, ci > 0, i = 1, . . . , n.

Proof. Let X ∈ E1(ψ) with characteristic function

t 7→ eitµψ(σt2)

for some µ ∈ R and σ2 > 0. Note that for any X = (X1, . . . , Xn) ∈ En(ψ), there exist µ =

(µ1, . . . , µn) ∈ Rn, k > 1, and A = (a1, . . . ,an) ∈ Rk×n such that

X
d
= µ+A>S,

where S = (S1, . . . , Sk) follows the standard k-dimensional spherical distribution with characteristic

generator ψ.

Note that Xi = µi + a>i S
d
= µi + ‖ai‖S1 where ‖ · ‖ is the Euclidean norm (see e.g., Theorem

6.18 of McNeil et al. (2015)). By translation-invariance of ρi, we have

ρi(Xi) = µi + ρi (‖ai‖S1) , i = 1, . . . , n,

Note that by requiring X1 + · · · + Xn = X, we have
∑n

i=1 µi = µ. Hence, the problem (24) is

equivalent to

minimize

n∑
i=1

(
µi + ρi(a

>
i S)

)
= µ+

n∑
i=1

ρi (‖ai‖S1) (26)

subject to µ+

n∑
i=1

a>i S
d
= X. (27)

We have the following observations:

(i) The constraint (27) is equivalent to ‖
∑n

i=1 ai‖2 = σ2.
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(ii) The objective function ρi(a
>
i S) is increasing in ‖ai‖. To see it, note that S1 has symmetric

distribution and the tail risk of S1 beyond its (1 − εi)-quantile, denoted by (S1)εi , is non-

negative for εi 6 1/2. It then follows that x(S1)εi is increasing in x > 0, which implies that

ρi(xS1) is increasing in x > 0 since ρi is monotone. Hence, ρi(a
>
i S) is increasing in ‖ai‖ for

i = 1, . . . , n.

(iii) For any b ∈ Rk and c ∈ R+, the following problem

minimize ‖a‖ subject to ‖a + b‖2 = c (28)

admits an optimal solution a∗ satisfying a = c0b. This implies that each ai minimizing (26)

is a multiple of each other.

Summarizing the above three observations, we conclude that an optimal allocation to the problem

(24), denoted by (X∗1 , . . . , X
∗
n) must be comonotonic and the problem (24) is equivalent to

minimize
n∑
i=1

ρi(Xi)

subject to Xi = µi + ciX,
n∑
i=1

ci = 1, ci > 0, i = 1, . . . , n. (29)

Hence, we complete the proof.

If the risk measures ρ1, . . . , ρn are positively homogeneous, then ⊕ni=1 ρi(X) boils down to a

simple form, which follows directly from (25) and ρi(ciX) = ciρi(X).

Corollary 1. Suppose that for i = 1, . . . , n, ρi is a monetary and positively homogeneous εi-tail

risk measure,
∨n
i=1 εi 6 1/2, and ⊕ni=1 ρi(X) > −∞. We have

n
⊕
i=1

ρi(X) = min
i=1,...,n

ρi(X),

and an optimal allocation (X∗1 , . . . , X
∗
n) for (24) is given by X∗i∗ = X and X∗j = 0 for all j 6= i∗ for

any i∗ ∈ arg mini=1,...,n ρi(X).

We make the following further observations about Theorem 5.

(i) The comonotonicity of the optimal allocation in Theorem 5 is remarkable, because comono-

tonicity is often a consequence of convex-order consistency (see e.g., Theorem 4). Note that

convex-order consistency is not assumed in Theorem 5. The main reason for this is that the

tail risk with level ε 6 1/2 of the elliptical distribution becomes larger when scaled up, i.e.,
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λ(S1)ε > (S1)ε for λ > 1 and a spherically distributed random variable S1. This argument

also illustrates that the assumptions that ρi is monetary and εi 6 1/2 are important for the

result in Theorem 5.

(ii) From (25), the optimal solution does not depend on the generator ψ.

(iii) If ρi(cX) is strictly increasing in c > 0, then all optimal allocations to (24) are in the form of

Theorem 5.

(iv) Unlike �ni=1ρi and �ni=1 ρi(X), which are well defined on X , the mapping ⊕ni=1 ρi is only

properly defined on E1(ψ). For this reason, we fix X in this section, and do not discuss the

tail parameter of ⊕ni=1 ρi.

In the setting of Theorem 5, optimal allocations can be confined to A+
n (X). Hence, for risk

measures satisfying the conditions in Theorem 5, we have the general inequalities

n
�
i=1

ρi(X) 6
n
�
i=1

ρi(X) 6
n
⊕
i=1

ρi(X). (30)

In the following example, we compare the three inf-convolutions in (30) for risk measures being

VaR, ES and RVaR. To use the result in Theorem 5, we assume that all risk measures have tail

parameters less than 1/2.

Example 4. Since ES, VaR and RVaR are all positively homogenous, we can use Corollary 1 for

the value of ⊕ni=1 ρi(X). The values of �ni=1 ρi(X) and �ni=1ρi(X) are obtained by Theorem 2 and

Proposition 5 of Embrechts et al. (2018), and we omit the detailed calculations.

(i) For ES, it holds

n
�
i=1

ESαi(X) =
n
�
i=1

ESαi(X) =
n
⊕
i=1

ESαi(X) = ES∨n
i=1 αi

(X),

thus we have equalities in (30).

(ii) For VaR, it holds

n
�
i=1

VaRL
αi(X) = VaRL∑n

i=1 αi
(X) 6

n
�
i=1

VaRL
αi(X) =

n
⊕
i=1

VaRL
αi(X) = VaRL∨n

i=1 αi
(X),

and generally the inequality above is not an equality.

(iii) For RVaR, using Theorem 2 and Proposition 5 of Embrechts et al. (2018), we see that the

inequalities in (30), i.e.,

n
�
i=1

RVaRαi,βi(X) 6
n
�
i=1

RVaRαi,βi(X) 6
n
⊕
i=1

RVaRαi,βi(X),

are generally not equalities. Some numerical results are presented in Table 1.
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(α1, α2, α3, β1, β2, β3) �3
i=1 RVaRαi,βi �3

i=1 RVaRαi,βi ⊕3
i=1 RVaRαi,βi

X ∼ N(0, 1)
(.02, .08, .1, .2, .12, .08) 0.5319 1.0577 1.0863

(.01, .03, .1, .15, .13, .02) 0.7982 1.1928 1.2271

X ∼ t2(0, 1)
(.02, .08, .1, .2, .12, .08) 0.6357 1.4413 1.4882

(.01, .03, .1, .15, .13, .02) 1.0067 1.6974 1.7650

Table 1: Comparison of the three inf-convolutions. The total risk X has either a standard normal

distribution or a standard t-distribution with 2 degrees of freedom.

Example 5. For α, β ∈ (0, 1/2], λ ∈ (0, 1), γi > 0, i = 1, . . . , n, let Ri be a α-tail risk measure

with generator being the entropic risk measure ERγi(X) = γi logE[eX/γi ], and ρβ be a positively

homogeneous β-tail risk measure. We define

ρi(X) := λRi(X) + (1− λ)ρβ(X) = λERγi(Xα) + (1− λ)ρβ(X).

For instance, if ρβ = VaRL
β and ρi is used by a financial institution, then ρi may be interpreted as

a mixture of a common regulatory risk measure VaRL
β and an internal utility-based risk measure

Ri. Note that Ri is not convex in general, and the unconstrained or comonotonic inf-convolution

is difficult to solve. The inf-convolution confined to the elliptical class defined by (24) is

n
⊕
i=1

ρi(X) = min

{
n∑
i=1

λERγi(ciXα) + (1− λ)ρβ(X) :

n∑
i=1

ci = 1, ci > 0

}

= λER∑n
i=1 γi

(Xα) + (1− λ)ρβ(X),

and an optimal allocation is X∗i = γiX/(γ1 + · · · + γn), i = 1, . . . , n. The second equality above is

due to Theorem 3.9 of Barrieu and El Karoui (2005).

8 Risk sharing under model uncertainty

In this section, we bring model uncertainty into risk sharing. Instead of a fixed and known

probability measure P, we assume that each agent i has some uncertainty about the distribution

of the risk she is allocated to. Our framework can be seen as a natural extension of the framework

of Embrechts et al. (2020) where agents have heterogeneous beliefs modelled by different proba-

bility measures. The set describing model uncertainty for each agent will be induced either by

the likelihood ratio between probability measures (i.e., the Radon-Nikodym derivative) or by the

Wasserstein metric between random variables. We will treat these two cases separately.
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8.1 Model uncertainty induced by likelihood ratios

A popular way to incorporate model uncertainty into decisions is through a worst-case approach

axiomatized by Gilboa and Schmeidler (1989); see e.g., Zhu and Fukushima (2009) for worst-case

risk measures in the context of optimization. Let P be the set of all probability measures that are

absolutely continuous with respect to P, a pre-specified probability measure representing a common

benchmark for all agents. Let ρ be a law-invariant risk measure, such as VaRL
α, VaRR

α or ESα, where

law-invariance is defined with respect to distributions under P. Define ρQ(X) = ρ(XQ), where the

distribution of XQ (under P) is the distribution of X under Q. In other words ρQ is the risk measure

ρ evaluated under the probability measure Q instead of P. We consider the worst-case risk measure

ρQ := sup
Q∈Q

ρQ,

where Q is a subset of P. Optimization problems involving different uncertainty sets Q and different

tail risk measures such as VaR and ES are extensively studied in the literature; we refer to the recent

work of Blanchet et al. (2020), Chen et al. (2018), Xie (2021) and Ho-Nguyen et al. (2021).

For tractability, we will consider a particular choice of Q. For λ ∈ (0, 1], define the set

Pλ = {Q ∈ P : dQ/dP 6 1/λ}. Note that P ∈ Pλ. Here, λ is a parameter representing the degree

of uncertainty faced by an agent.5 In particular, λ = 1 corresponds to P1 = {P}, that is, there is

no uncertainty.

Proposition 2. For ε, λ ∈ (0, 1), let ρ be a monotone ε-tail risk measure generated by ρ∗.

(i) ρPλ is a monotone (ελ)-tail risk measure generated by ρ∗.

(ii) ρPλ is a monotone λ-tail risk measure generated by ρ.

(iii) If ρ is continuous from above with respect to a.s. convergence, then so is ρPλ.

(iv) If ρ or ρ∗ is convex-order consistent, then so is ρPλ.

Next, let us turn to the special case of VaR and ES. For Q ⊂ P, write

VaR
R,Q
α = sup

Q∈Q
(VaRR

α )Q, VaR
L,Q
α = sup

Q∈Q
(VaRL

α)Q, and ES
Q
α = sup

Q∈Q
ESQα .

Proposition 2 (ii) immediately gives the following formulas.

5Generally, we may consider the set induced by the φ-divergence, Pφ = {Q ∈ P : E[φ( dQ/ dP)] 6 1} where

φ : [0,∞] → [0,∞] is a convex function, which includes Pλ via φ(x) = ∞ × 1{x>1/λ} and the set induced by the

Kullback-Leibler divergence via φ(x) = βx log x for some β > 0. However, explicit results on ρPφ are not available

for general choices of φ.
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Corollary 2. For λ ∈ (0, 1] and α ∈ (0, 1),

VaR
R,Pλ
α = VaRR

αλ, VaR
L,Pλ
α = VaRL

αλ, and ES
Pλ
α = ESαλ. (31)

Using Proposition 2 and Corollary 2, we obtain parallel results to Theorems 1-4 in the setting

of the model uncertainty. For instance, Theorems 1 and 2 can be restated via

n
�
i=1

VaR
Λi,Pλi
αi =

n
�
i=1

VaRΛi
λiαi

and VaR
Λ,Pλ2
α � ρPλ1 = VaRΛ

λ2α� ρ0,

for an ε-tail risk measure ρ, where ρ0 = ρPλ1 is a monetary (ελ1)-tail risk measure. We omit

similar corollaries of Theorems 3 and 4 in this setting, which use (iii) and (iv) of Proposition 2. To

summarize, using model uncertainty sets Pλ for each agent endowed with a tail risk measure, the

risk sharing problems can be converted to the classic one without model uncertainty by adjusting

the tail parameters.

8.2 Model uncertainty induced by Wasserstein metrics

The Wasserstein metric is a popular notion used in mass transportation and distributionally

robust optimization; see e.g., Esfahani and Kuhn (2018). In the one-dimensional setting, the

Wasserstein metric has an explicit formula. For two random variables X and Y with respective

distributions F and G, the Wasserstein metric of order k > 1 is given by

Wk(X,Y ) = Wk(F,G) =

(∫ 1

0

∣∣F−1(x)−G−1(x)
∣∣k dx

)1/k

.

For a risk measure ρ and a constant δ > 0, we define its robust version [ρ]kδ via the Wasserstein

metric as

[ρ]kδ (X) := sup{ρ(Y ) : Wk(Y,X) 6 δ}, X ∈ X . (32)

For simplicity, we assume X = L∞, so that Wk is well defined for each k > 1. It is straightforward

to verify that [ρ]kδ is a monetary risk measure if ρ is a monetary risk measure. The following result

illustrates that the robust version of a tail risk measure is again a tail risk measure with the same

tail parameter, and its generator is a robust version of the original generator.

Proposition 3. Let ε ∈ (0, 1) and δ > 0. If ρ is a monotone ε-tail risk measure with generator ρ∗,

then

[ρ]kδ (X) = [ρ∗]k
ε−1/kδ

(Xε), X ∈ X ,

where Xε is the ε-tail risk of X. Moreover, [ρ]kδ is an ε-tail risk measure.
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Section model uncertainty tail parameter generator Proposition

- none ε ρ∗ -

8.1 likelihood ratios λε ρ∗ 2

8.2 Wasserstein metrics ε [ρ∗]k
ε−1/kδ

3

Table 2: Two formulations of model uncertainty for a monotone ε-tail risk measure ρ with generator

ρ∗.

Proposition 3 illustrates that, unlike the model uncertainty described in Section 8.1 via likeli-

hood ratios, the model uncertainty induced by Wasserstein metrics does not change the tail param-

eter of a tail risk measure. Instead, it changes the generator of the tail risk measure. We summarize

these findings in Table 2.

For the rest of the section, model uncertainty and robustness always refer to those induced by

Wasserstein metrics.

For a coherent distortion risk measure (see Appendix A for details), we obtain an explicit

formula for its robust version. Recall that a distortion function is a function h : [0, 1] → [0, 1]

which is increasing and satisfies h(0) = 0 and h(1) = 1, and in the case where h is continuous, the

distortion risk measure ρh can be written as

ρh(X) =

∫ 1

0
VaRΛ

u (X) dh(u), X ∈ X , (33)

where Λ ∈ {L,R}. We will assume that h is concave, implying that ρh is a coherent risk measure.

In this case,

ρh(X) =

∫ 1

0
VaRΛ

u (X)h′(u) du, X ∈ X ,

where h′ is the left-derivative of h on (0, 1).

Proposition 4. Suppose that X ∈ X , k > 1 and δ > 0.

(i) For a continuous and concave distortion function h,

[ρh]kδ (X) = ρh(X) + δ‖h′‖q,

where q = (1− 1/k)−1 with the convention 0−1 =∞, and || · ||q is the `q-norm.

(ii) For α ∈ (0, 1),

[ESα]kδ (X) = ESα(X) +
δ

α1/k
.
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(iii) For α ∈ (0, 1), we have [VaRL
α]kδ (X) = [VaRR

α ]kδ (X) = x, where x is the unique number

satisfying the equation ∫ α

0

(
x−VaRR

u (X)
)k

+
du = δk. (34)

Moreover,

[VaRR
α ]kδ (X) > VaRR

α (X) +
δ

α1/k
. (35)

By Proposition 4 (i), we can obtain explicit formulas for the inf-convolution of robust coherent

distortion risk measures. For n concave distortion functions h1, . . . , hn, we have

n
�
i=1

[ρhi ]
ki
δi

(X) := inf

{
n∑
i=1

[ρhi ]
ki
δi

(Xi) : (X1, . . . , Xn) ∈ An(X)

}

=
n
�
i=1

ρhi(X) +
n∑
i=1

δi‖h′i‖(1−1/ki)−1 ,

and the optimal allocations for robust coherent distortion risk measures are the same as those

without model uncertainty specified by Proposition 5 of Embrechts et al. (2018). In particular, we

have

n
�
i=1

[ESαi ]
ki
δi

(X) = ES∨n
i=1 αi

(X) +
n∑
i=1

δi

α
1/ki
i

.

In contrast, the optimal allocations become different for VaR when considering model uncertainty.

In general, it is challenging to obtain inf-convolution for robust VaR under model uncertainty

induced by Wasserstein metrics, since VaR lacks desirable convexity. We can obtain the following

bounds for inf-convolution of robust VaR using results in Theorem 1 and Proposition 4:

VaRR∑n
i=1 αi

(X) +
n∑
i=1

δi

α
1/ki
i

=
n
�
i=1

(
VaRR

αi +
δi

α
1/ki
i

)
(X)

6
n
�
i=1

[VaRR
αi ]

ki
δi

(X)

6
n
�
i=1

[ESαi ]
ki
δi

(X) = ES∨n
i=1 αi

(X) +

n∑
i=1

δi

α
1/ki
i

.

The above inequalities are generally not sharp, unless X has some special distribution; for instance,

both inequalities are equalities if VaRR
u (X) is constant for u ∈ (0,

∑n
i=1 αi).

Next, we look at a very specific setting, in which each agent uses [VaRΛ
αi ]

1
δi

, and the allowed

allocations are comonotonic as in the setting of Section 6. We further assume that either the pa-

rameters δ1, . . . , δn are identical or the parameters α1, . . . , αn are identical. In this special case, we

can obtain an explicit formula for the inf-convolution of VaR and the optimal allocation.
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Theorem 6. Suppose that X ∈ X and Λ ∈ {L,R}.

(i) If 0 < δ1 6 . . . 6 δn and α ∈ (0, 1), then

n
�
i=1

[VaRΛ
α ]1δi(X) = [VaRΛ

α ]1δ1(X) +
n∑
i=2

δi
α
. (36)

(ii) If 1 > α1 > . . . > αn > 0 and δ > 0, then

n
�
i=1

[VaRΛ
αi ]

1
δ(X) = [VaRΛ

α1
]1δ(X) +

n∑
i=2

δ

αi
. (37)

In either setting, an optimal allocation is given by (X, 0, . . . , 0).

Proof. (i) By Proposition 4, in the setting of robust VaR, Λ ∈ {L,R} is irrelevant, and we will

assume Λ = L. For simplicity, denote by

Vδ(Y ) = [VaRL
α]1δ(Y ), δ > 0, Y ∈ X .

It is straightforward to see that the allocation (X∗1 , . . . , X
∗
n) satisfies

n∑
i=1

Vδi(X
∗
i ) = Vδ∗(X) +

∑n
i=1 δi − δ∗

α
.

Therefore, it remains to show (36). Indeed, it suffices to show (36) for n = 2 and the general case

follows by induction. We assume δ1 6 δ2 and aim to show

Vδ1 � Vδ2(X) = Vδ1(X) +
δ2

α
. (38)

From now on, assume X∗1 = X + δ2/α and X∗2 = −δ2/α; there is a minor clash of notation with the

last statement of the theorem in which (X∗1 , X
∗
2 ) = (X, 0), but clearly the constant shift does not

affect optimality. We have Vδ1(X∗1 ) = Vδ1(X) + δ2/α and Vδ2(X∗1 ) = 0, which imply

Vδ1 � Vδ2(X) 6 Vδ1(X) +
δ2

α
. (39)

It remains to show the opposite direction of (39). Since all risk measures involved are translation-

invariant, so is their inf-convolution; see e.g., Section 4 of Mao and Wang (2020). Therefore, from

now on, we will assume that Vδ1 � Vδ2(X) 6 0, and it suffices to show Vδ1(X) + δ2/α 6 0.

Take (X1, X2) ∈ A+
n (X) such that Vδ1(X1) 6 0, Vδ2(X2) 6 0 and P(X2 > 0) 6 P(X1 > 0).

Let t = P(X2 > 0) and s = P(X1 > 0). We have 0 6 t 6 s 6 α as VaRR
α (X1) < Vδ1(X1) 6 0. By

Proposition 4, for any Y ∈ X and δ > 0,

Vδ(Y ) 6 0 ⇐⇒
∫ α

0
(−VaRL

u (Y ))+ du > δ. (40)
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By comonotonic additivity of VaRL and X∗2 ≡ −δ2/α, we have we know

VaRL
u (X1)−VaRL

u (X∗1 ) = VaRL
u (X∗2 )−VaRL

u (X2) = −δ2

α
−VaRL

u (X2),

which is increasing in u ∈ [0, α]. Note that∫ α

t
(−VaRL

u (X∗2 )) du =
α− t
α

δ2 6 δ2 6
∫ α

0
(−VaRL

u (X2))+ du =

∫ α

t
(−VaRL

u (X2)) du,

where the second inequality is due to (40) and Vδ2(X2) 6 0. Therefore,∫ α

t
(−VaRL

u (X∗1 )) du =

∫ α

t
(VaRL

u (X∗2 )−VaRL
u (X)) du

>
∫ α

t
(VaRL

u (X2)−VaRL
u (X)) du =

∫ α

t
(−VaRL

u (X1)) du.

Since
∫ α
t (VaRL

u (X1)−VaRL
u (X∗1 )) du > 0 and VaRL

u (X1)−VaRL
u (X∗1 ) is increasing in u, we have∫ α

x
(−VaRL

u (X∗1 )) du >
∫ α

x
(−VaRL

u (X1)) du

for all x ∈ [t, α]. Hence,∫ α

0
(−VaRL

u (X∗1 ))+ du >
∫ α

s
(−VaRL

u (X∗1 ))+ du

>
∫ α

s
(−VaRL

u (X∗1 )) du

>
∫ α

s
(−VaRL

u (X1)) du =

∫ α

0
(−VaRL

u (X1))+ du.

Using (40), we know that Vδ1(X∗1 ) 6 0. Hence, if Vδ1(X1) 6 0 and Vδ2(X2) 6 0, then V1(X∗1 ) 6 0

and V2(X∗2 ) 6 0. Using translation-invariance of Vδ1 and Vδ2 , we obtain

Vδ1(Y1) + Vδ2(Y2) > V1(X∗1 ) + V2(X∗2 ) = Vδ1(X) +
δ2

α

for any (Y1, Y2) ∈ A+
2 (X) with P(Y2 > 0) 6 P(Y1 > 0). By symmetry,

Vδ1(Y1) + Vδ2(Y2) > V1(X∗1 ) + V2(X∗2 ) = Vδ2(X) +
δ1

α

for any (Y1, Y2) ∈ A+
2 (X) with P(Y2 > 0) > P(Y1 > 0). Therefore,

Vδ1 � Vδ2(X) > min

{
Vδ1(X) +

δ2

α
, Vδ2(X) +

δ1

α

}
= Vδ1(X) +

δ2

α
,

where the last equality is due to Proposition 4 and the assumption δ1 6 δ2. Together with (39) we

obtain (38) which holds for X satisfying Vδ1�Vδ2(X) 6 0. Using translation-invariance of Vδ1�Vδ2 ,

we know that (38) holds for all X ∈ X .
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(ii) We first show that for λ > 1, we have

[VaRΛ
α ]1δ(Y ) > [VaRΛ

λα]1λδ(Y ), Y ∈ X . (41)

This follows from (34) by noting that for any x ∈ R,∫ λα

0

(
x−VaRR

u (Y )
)

+
du = λδ =⇒

∫ α

0

(
x−VaRR

u (Y )
)

+
du 6 δ.

Using (41), by letting α = α1 and δi = αδ/αi > δ for each i = 1, . . . , n, we have

[VaRΛ
α ]1δi 6 [VaRΛ

αi ]
1
δ on X .

Therefore, (36) yields

[VaRΛ
α ]1δ1(X) +

n∑
i=2

δi
α

=
n
�
i=1

[VaRΛ
α ]1δi(X) 6

n
�
i=1

[VaRΛ
αi ]

1
δ(X).

On the other hand, the allocation (X, 0, . . . , 0) attains the lower bound above, and hence (37)

holds.

Assume that in a risk sharing problem with model uncertainty, each agent i uses [VaRαi ]
1
δi

as

her risk measure. The parameter αi represents the agent’s attitude towards risk, and the parameter

δi represents the agent’s attitude towards uncertainty. More specifically, a smaller αi represents

more sensitivity towards risk, and a larger δi represents more sensitivity towards uncertainty. The

results in Theorem 6 illustrate the following observations in a comonotonic risk sharing problem for

these agents.

1. If all agents have the same risk attitude (i.e., identical αi), then an optimal allocation is to

allocate all random loss to the agent who is the least sensitive to uncertainty (the smallest

δi). Agents may make side-payments in cash to maintain individual rationality; see e.g.,

Embrechts et al. (2018).

2. If all agents have the same uncertainty attitude (i.e., identical δi), then an optimal allocation

is to allocate all random loss to the agent who is the least sensitive to risk (the largest αi).

3. In the case all agents have the same risk parameter α and uncertainty parameter δ, the equally

weighted allocation (X/n, . . . ,X/n) is generally not optimal. Indeed, one can verify that

(X, 0, . . . , 0), which is optimal by Theorem 6, usually strictly outperforms (X/n, . . . ,X/n).

On the other hand, if all agents use the same convex risk measure, then (X/n, . . . ,X/n) is
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always optimal due to convexity; note that the robust version of a convex risk measure is again

convex. Hence, in the context of model uncertainty, VaR still exhibits the “all or nothing”

feature observed by Embrechts et al. (2018, 2020), in sharp contrast to the optimal allocations

for convex risk measures, which are often proportional (see e.g., Theorem 3.9 of Barrieu and

El Karoui (2005)).

4. If agents have neither identical uncertainty attitude nor identical risk attitude, then the prob-

lem becomes quite difficult to analyze and this seems to require different techniques to be

developed in the future.

9 Concluding remarks

Motivated by several questions related to the RVaR and VaR formulas in (2) and (3) discovered

by Embrechts et al. (2018), the inf-convolution of tail risk measures is analyzed in detail. Because

every tail risk measure corresponds one-to-one a law-invariant risk measure (its generator), analyt-

ical results for the inf-convolution or its optimal allocation cannot be expected in general without

specifying the form of the tail risk measures. For the special setting of several VaRs, or that of a

VaR and another tail risk measure, we are able to obtain the inf-convolution and the corresponding

optimal allocation in explicit forms. Moreover, we found that tail risk measures exhibit similar

properties to the RVaR and VaR formula, and in particular their inf-convolution is still a tail risk

measure. Explicit allocations are found in the setting of elliptical models, and several results are

obtained for tail risk measures and risk sharing problems in the presence of model uncertainty.

Results in this paper complement the work by Embrechts et al. (2018) on risk sharing problems for

VaR, ES and RVaR.

Risk sharing with model uncertainty, studied in Section 8, gives rise to many open questions

that are not addressed with current techniques. For instance, in the setting of model uncertainty

induced by general φ-divergences or Wasserstein metrics, optimal allocations are unclear in either

the constrained or the unconstrained setting, even for VaR agents. These challenging questions

require future work.
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A Some background on risk measures

In this section we collect some common terminology and results on risk measures, which are

briefly mentioned in the text of the paper, but not essential to the presentation of our main results.

First, some standard properties of risk measures, in addition to (i) law-invariance, (ii) mono-

tonicity and (iii) translation-invariance, are listed below.

(iv) Convexity : ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ) for λ ∈ [0, 1] and X,Y ∈ X .

(v) Positive homogeneity : ρ(λX) = λρ(X) for λ > 0 and X ∈ X .

(vi) Subadditivity : ρ(X + Y ) 6 ρ(X) + ρ(Y ) for X,Y ∈ X .

(vii) Comonotonic additivity : ρ(X + Y ) = ρ(X) + ρ(Y ) if X,Y ∈ X are comonotonic.

Using the standard terminology in Föllmer and Schied (2016), a risk measure ρ is a convex risk

measure if it is monetary and convex, and it is a coherent risk measure if it is monetary, convex,

and positively homogeneous. It is well known that a law-invariant convex risk measure on L∞ is

convex-order consistent; see e.g., Föllmer and Schied (2016, Corollary 4.65). The risk measures

ESα, α ∈ [0, 1) belong to the RVaR family, and they are the only ones in that family that are

coherent, convex, or convex-order consistent (see e.g., Wang et al. (2020)).

The class of distortion risk measures is defined by

ρh(X) =

∫ ∞
0

h ◦ P(X > x) dx−
∫ 0

−∞
(1− h ◦ P(X > x)) dx, X ∈ X ,

for some non-decreasing function h : [0, 1] → [0, 1] satisfying h(0) = limx↓0 h(x) = 0 and h(1) =

limx↑0 h(x) = 1, such that the above integral is finite. Here h is called a distortion function. Via

a quantile representation (e.g., Dhaene et al. (2012)), all of VaRL, VaRR, ES and RVaR belong
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to the class of distortion risk measures; indeed, all comonotonic-additive monetary risk measures

are distortion risk measures (e.g., Theorem 1 of Wang et al. (2020)). For p ∈ (0, 1), a distortion

risk measure ρh is a p-tail risk measure if and only if it dominates VaRR
p , which is equivalent to

h(p) = 1. If h is continuous, then ρh has a representation (33).

Using the terminology of Weber (2018), a risk measure ρ is VaR-type with parameter α ∈ (0, 1)

if it satisfies

ρ(X) = ρ
(
X1{X6VaRLα(X)} + VaRL

α(X)1{X>VaRLα(X)}

)
, X ∈ X .

In other words, such a risk measure ρ ignores the tail part of the distribution with probability α.

It is easy to check that ρ is VaR-type with parameter α if and only if X 7→ ρ(−X) is a (1− α)-tail

risk measure.

B Proofs of all propositions, lemmas, and corollaries

Proof of Proposition 1. Noting that ESβ is continuous from above with respect to a.s. convergence,

(19) leads to

VaRR
α�ESβ(X) = ESβ(X [α]) = RVaRα,β(X), X ∈ X .

Next we analyze the existence of an optimal allocation. First assume VaRR
α+β(X) = VaRR

α (X). As

in Theorem 2, we take

X [α] = X1{UX61−α} + VaRR
α+β(X)1{UX>1−α}.

It is easy to check that VaRL
α(X − X [α]) = 0, ESβ(X [α]) = RVaRα,β(X), and by Theorem 2,

(X −X [α], X [α]) is an optimal allocation of X for (VaRL
α,ESβ). For any δ > 0, (10) leads to

P
(
X −X [α] > δ

)
6 P

(
X −VaRR

α+β(X) > δ
)

= P
(
X > VaRR

α (X) + δ
)
< α,

which implies VaRR
α (X −X [α]) 6 0. It follows that

VaRR
α (X −X [α]) + ESβ(X [α]) 6 RVaRα,β(X) = VaRR

α�ESβ(X).

Therefore, (X −X [α], X [α]) is an optimal allocation of X for (VaRR
α ,ESβ).

In the following, we show that, if VaRR
α+β(X) < VaRR

α (X), then there is no optimal allocation

for (VaRR
α ,ESβ). Suppose that (X1, X2) is an optimal allocation of X for (VaRR

α ,ESβ). We have

RVaRα,β(X) = VaRR
α�ESβ(X) = VaRR

α (X1) + ESβ(X2) > VaRL
α(X1) + ESβ(X2).
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Noting that

RVaRα,β(X) = VaRL
α�ESβ(X) 6 VaRL

α(X1) + ESβ(X2),

we obtain RVaRα,β(X) = VaRL
α(X1) + ESβ(X2), and therefore, (X1, X2) is an optimal allocation of

X for (VaRL
α,ESβ). We use Theorem 4.8 of Wang and Wei (2020), which gives a full characterization

of all optimal allocations (X1, X2) for (VaRL
α,ESβ) as follows:

X1 = Y 1B − Z + c, X2 = X −X1

where B ∈ F satisfies {X > VaRL
α(X)} ⊂ B, P(B) = α,

and moreover B ⊂ {X > VaRL
α(X)} if VaRR

α+β(X) 6= VaRL
α(X),

Y > X −VaRR
α+β(X), 0 6 Z 6 (VaRR

α+β(X)−X + Y 1B)+, and c ∈ R.

(42)

Since both VaRL
α and ESβ are monetary risk measures, the constant c does not matter for the

optimality of (X1, X2), and we can set c = 0 for simplicity. It is easy to verify that VaRL
α(X1) = 0

and ESβ(X2) = RVaRα,β(X). Consequently, we have VaRR
α (X1) = RVaRα,β(X) − ESβ(X2) = 0,

which implies

P(X1 > ε) < α, for all ε > 0. (43)

Note that, for X1 in (42) and ε > 0, we have

P(X1 > ε) > P
(
Y 1B − (VaRR

α+β(X)−X + Y 1B)+ > ε
)

= P
(
min

{
Y 1B, X −VaRR

α+β(X)
}
> ε
)

> P
(
(X −VaRR

α+β(X))1B > ε
)
. (44)

If VaRR
α+β(X) = VaRL

α(X) < VaRR
α (X), we can take ε1 = VaRR

α (X) − VaRL
α(X) − δ for some

0 < δ < VaRR
α (X)−VaRL

α(X). Plugging ε = ε1 in (44), and noting that {X > VaRL
α(X)+ε1} ⊂ B,

we obtain

P(X1 > ε1) > P
(
X > VaRL

α(X) + ε1

)
= P

(
X > VaRR

α (X)− δ
)
> α,

which contradicts (43). If VaRR
α+β(X) < VaRL

α(X), we take 0 < ε2 < VaRL
α(X) − VaRR

α+β(X).

Plugging ε = ε2 in (44), and noting that B ⊂ {X > VaRL
α(X)}, we obtain

P (X1 > ε2) > P
(
B ∩ {X −VaRR

α+β(X) > VaRL
α(X)−VaRR

α+β(X)}
)

= P(B) = α,

which contradicts (43). Therefore, as long as VaRR
α+β(X) < VaRR

α (X), we can conclude that

(VaRR
α ,ESβ) does not have an optimal allocation.
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Proof of Lemma 1. We first prove the case X ′ = max{X,VaRR
ε (X)}. It is easy to check that

P(X 6 VaRR
ε (X)) > 1 − ε, and the distribution functions of Xε and X ′ε are respectively given by,

for t ∈ R,

P(Xε 6 t) =
(FX(t)− (1− ε))+

ε
and P(X ′ε 6 t) =

(FX′(t)− (1− ε))+

ε
.

For t < VaRR
ε (X), we have P(X ′ 6 t) = 0 and P(X 6 t) 6 1−ε, which imply that both P(X1−ε 6 t)

and P(X ′1−ε 6 t) are zero. For t > VaRR
ε (X), we also have

P(X ′ 6 t) = P(max{X,VaRR
ε (X)} 6 t) = P(X 6 t).

Therefore X ′ε
d
= Xε.

Next, consider the case X ′ = max{X,m} for some m ∈ [VaRL
ε (X),VaRR

ε (X)). Note that

X 6 X ′ 6 X ′′ where X ′′ = max{X,VaRR
ε (X)}. Using the result Xε

d
= X ′′ε obtained above and (6),

we know that X ′ε
d
= Xε.

Proof of Lemma 2. (a) Let Yi = F−1
Xi

(1− ε+ εUX) for i = 1, . . . , n. Note that Y1, . . . , Yn are

comonotonic. Comonotonicity of X1, . . . , Xn implies F−1
X =

∑n
i=1 F

−1
Xi

(this is because quantiles

are comonotonic-additive; see e.g., Proposition 7.20 of McNeil et al. (2015)), and hence we have∑n
i=1 Yi = Xε. Moreover, it is clear from the definition that Yi

d
= (Xi)ε for i = 1, . . . , n.

(b) Note again from comonotonicity that F−1
Xε

=
∑n

i=1 F
−1
Yi

. This implies that F−1
Yi

(0) > −∞ for

each i = 1, . . . , n, since F−1
Xε

(0) = VaRR
ε (X) > −∞. For i = 1, . . . , n, let

Xi = F−1
Yi

(
UX − (1− ε)

ε

)
1{UX>1−ε} +

(
X −VaRR

ε (X)

n
+ F−1

Yi
(0)

)
1{UX61−ε}.

It is easy to check that Xi//X for i = 1, ..., n. Moreover,

n∑
i=1

Xi = F−1
Xε

(
UX − (1− ε)

ε

)
1{UX>1−ε} +

(
X −VaRR

ε (X) + F−1
X1−ε

(0)
)
1{UX61−ε}

= F−1
X (UX)1{UX>1−ε} +

(
X −VaRR

ε (X) + VaRR
ε (X)

)
1{UX61−ε}

= F−1
X (UX)1{UX>1−ε} +X1{UX61−ε} = X.

Thus, (X1, . . . , Xn) ∈ A+
n (X). By definition (Xi)ε = F−1

Xi
((1− ε) + εUXi). Also note that, by

construction, VaRR
ε (Xi) = F−1

Yi
(0). For x > F−1

Yi
(0), we have

F(Xi)1−ε(x) =
FXi(x)− (1− ε)

ε
=

1

ε
P
(
F−1
Yi

(
UX − (1− ε)

ε

)
6 x, UX > 1− ε

)
=

1

ε
P (1− ε 6 UX 6 εFYi(x) + (1− ε)) = FYi(x).

That is (Xi)ε
d
= Yi for i = 1, . . . , n.
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Proof of Proposition 2. (i) First note that, given a random variable X and Q ∈ Pλ, we have

Q(A) 6 P(A)/λ for A ∈ F and thus,

P((XQ)ε 6 x) =
(ε−Q (X > z))+

ε
>

(
ε− 1

λP (X > z)
)

+

ε
= P(Xλε 6 z).

It follows from the law-invariance and monotonicity of ρ∗ inherited from ρ that

ρPλ(X) = sup
Q∈Pλ

ρ∗((XQ)ε) 6 ρ
∗(Xλε). (45)

On the other hand, for any X, define a probability measure Q′ as dQ′/ dP = 1{UX>1−λ}/λ.

We have

P((XQ′)ε > z) =
(ε−Q′(X > z))+

ε

=
(ε− P(X > z,UX > 1− λ)/λ)+

ε

=
(λε− P(X > z))+

ελ
= P(Xελ > z),

where the third equality is due to P(X > z,UX > 1−λ) = min{P(X > z), λ} and (ε−λ/λ)+ =

0. Therefore,

ρ∗(Xλε) = ρ∗((XQ′)ε) = ρQ
′
(X) 6 sup

Q∈Pλ
ρQ(X) = ρPλ(X). (46)

Combining (45) and (46), we have that ρPλ is an (ελ)-tail risk measure generated by ρ∗.

Finally, the monotonicity of ρ∗ implies the monotonicity of ρPλ .

(ii) It follows immediately from (i) that

ρPλ(X) = ρ∗(Xλε) = ρ∗((Xλ)ε) = ρ(Xλ).

(iii) Suppose ρ is continuous from above with respect to a.s. convergence. Take Yn ↓ X a.s. with

respect to P as n→∞. Then (Yn)λ ↓ Xλ a.s. with respect to P. By (ii), we have

ρPλ(Yn) = ρ((Yn)λ) ↓ ρ(Xλ) = ρPλ(X), n→∞,

i.e., ρPλ is also continuous from above with respect to a.s. convergence under P. If ρ is

continuous from above with respect to a.s. convergence, then so is ρPλ .

(iv) We only consider the case that ρ is convex-order consistent. Note that for any pair of random

variables X and Y , X ≺cx Y implies Xλ ≺icx Yλ, where X ≺icx Y means that E[f(X)] 6
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E[f(Y )] for all increasing convex functions f , provided that both expectations exist. By

Theorem 4.A.6 of Shaked and Shanthikumar (2007), there exists Z such that Xλ 6 Z ≺cx Yλ.

It then follows from the monotonicity of ρ that

ρPλ(X) = ρ(Xλ) 6 ρ(Z) 6 ρ(Yλ) = ρPλ(Y ).

This completes the proof.

Proof of Corollary 2. The case λ = 1 is trivial. For λ < 1, the first and the third equalities in (31)

follow directly from Proposition 2. To show VaR
L,Pλ
α = VaRL

αλ, note that (VaRR
α+δ)

Q 6 (VaRL
α)Q 6

(VaRR
α )Q for all δ ∈ (0, 1− α) and probability measure Q. Using the first equality in (31), we have

VaR
L,Pλ
α > VaR

R,Pλ
α+δ = VaRR

(α+δ)λ > VaRL
(α+δ)λ.

Since VaRL
q is right-continuous with respect to q, taking δ ↓ 0, we have

VaR
L,Pλ
α > lim

δ↓0
VaRL

(α+δ)λ = VaRL
αλ.

On the other hand, if a constant z satisfies P(X > z) 6 αλ, then Q(X > z) 6 α for all Q ∈ Pλ.

Thus, (VaRL
α)Q 6 VaRL

αλ for all Q ∈ Pλ. This implies VaR
L,Pλ
α 6 VaRL

αλ.

Proof of Proposition 3. Let R be a monotone risk measure. In this proof, we employ the notation

R(F ) = R(X), where F is the distribution of X, and denote by Fε the distribution function of Xε.

Note that for any distribution G such that Wk(F,G) 6 δ, let G∗ be a distribution function satisfying

(G∗)−1 := max{G−1, F−1}. One can verify that Wk(G
∗, F ) 6 Wk(G,F ) 6 δ and R(G∗) > R(G).

Therefore, we have

[R]kδ (F ) = sup {R(G) : Wk(G,F ) 6 δ, F > G} . (47)

It follows that

[ρ∗]k
ε−1/kδ

(Fε) = sup{ρ∗(G) : Wk(G,Fε) 6 ε
−1/kδ}

= sup{ρ∗(G) : Wk(G,Fε) 6 ε
−1/kδ, Fε > G}

= sup{ρ∗(Gε) : Wk(Gε, Fε) 6 ε
−1/kδ, Fε > Gε}

> sup{ρ(G) : Wk(G,F ) 6 δ, F > G} (48)

= [ρ]kδ (F ),
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where the third equality follows from that any random variable bounded from below can be viewed

as an ε-tail risk of some random variable, and the inequality (48) follows from that Wk(F,G) 6 δ

and F > G imply Wk(Fε, Gε) 6 ε−1/kδ and Fε > Gε.

We next show [ρ∗]k
ε−1/kδ

(Fε) 6 [ρ]kδ (F ). It suffices to show the inequality (48) can be reversed.

Note that for any distribution G with Wk(Fε, Gε) 6 ε−1/kδ and Fε > Gε, define G∗ as

(G∗)−1(x) = G−1(x)1{x>1−ε} + F−1(x)1{x61−ε}, x ∈ (0, 1),

which is a well-defined distribution as F−1 6 G−1. One can verify that F > G∗, Gε = G∗ε, and

Wk(G
∗, F ) = ε1/kWk(Gε, Fε) 6 δ. As a consequence,

sup{ρ∗(Gε) : Wk(Gε, Fε) 6 ε
−1/kδ, Fε > Gε} 6 sup{ρ(G) : Wk(G,F ) 6 δ, F > G}

and thus the inequality in (48) is an equality. The other statement of the proposition is straight-

forward from (48).

Proof of Proposition 4. (i) Note that for any random variable Y ∼ G such that Wk(Y,X) 6 δ, let

Y ∗ be a random variable with distribution function G∗ given by (G∗)−1 = max{G−1, F−1}. We

can verify that Wk(Y
∗, X) 6Wk(Y,X) 6 δ and ρh(Y ∗) > ρh(Y ). Therefore, we have

[ρh]kδ (X) = sup
{
ρh(Y ) : E[(Y −X)k] 6 δk, Y > X a.s.

}
. (49)

By subadditivity and comonotonic additivity of ρh, we have [ρh]kδ (X) = ρh(X) + c, where

c = sup
{
ρh(Z) : E[Zk] 6 δk, Z > 0 a.s.

}
. (50)

It suffices to show c = δ‖h′‖q, which will follow from Hölder’s inequality. More specifically, we

consider two cases separately.

(a) If k = 1, then ρh(Z) 6 ‖h′‖∞
∫ 1

0 VaRL
u (Z) du = δ‖h′‖∞ for any Z satisfying (50) which implies

c 6 δ‖h′‖∞. For ε ∈ (0, 1), take Zε satisfying P(Zε = δ/ε) = ε = 1 − P(Zε = 0). We have

limε↓0 ρh(Zε) = limε↓0
∫ ε

0 VaRL
u (Zε)h

′(u) du = δ‖h′‖∞. Hence, c = δ‖h′‖∞.

(b) If k > 1, then by Hölder’s inequality, we have c 6 δ‖h′‖q. Take a random variable Z∗ with

quantile function given by VaRu(Z∗) = δ(h′(u))q−1/‖h′‖q/kq , u ∈ [0, 1]. We have ρh(Z∗) =

δ‖h′‖q which implies c = δ‖h′‖q.

Statement (ii) follows immediately from (i).
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(iii) Note that for any random variable Y ∼ G such that Wk(Y,X) 6 δ, define Y ∗ ∼ G∗ such

that its quantile function is

(G∗)−1(x) := F−1(x)1{x<1−α} +
(
G−1(1− α) ∨ F−1(x)

)
1{x>1−α}, x ∈ (0, 1). (51)

It is straightforward to verify that Wk(Y
∗, X) 6 Wk(Y,X) 6 δ and VaRΛ

α(Y ∗) > VaRΛ
α(Y ) with

Λ ∈ {L,R}. Hence, an optimal distribution for the problem sup{VaRΛ
α(Y ) : Wk(Y,X) 6 δ} satisfies

(51), and thus the optimal value is the solution to (34).

To show (35), it suffices to see that by plugging x∗ = VaRR
α (X) + δ/α1/k in the left-hand side

of (34), we can see ∫ α

0
(x∗ −VaRR

u (X))k+ du 6
∫ α

0
(x∗ −VaRR

α (X))k+ du = δk,

and hence [VaRR
α ]kδ (X) > x∗. This completes the proof.
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