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Abstract

We theoretically compare variances between the Infinitesimal Perturbation
Analysis (IPA) estimator and the Likelihood Ratio (LR) estimator to Monte
Carlo gradient for stochastic systems. The results presented in [1] on vari-
ance comparison between these two estimators are substantially improved.
We also prove a practically interesting result that the IPA estimators to Eu-
ropean vanilla and arithmetic Asian options’ Delta, respectively, have smaller
variance when the underlying asset’s return process is independent with the
initial price and square integrable.
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1. Introduction

The need to evaluate system performance in the face of uncertainty often
arises in applications of various stochastic systems, including the queuing sys-
tem, manufacturing and service system, transportation system, and financial
system. This calls for stochastic simulation, which refers to the analysis of
stochastic processes through the generation of sample paths (realizations) of
the processes. Sometimes it is important to evaluate how the stochastic sys-
tem evolves when there is a small change/perturbation in input parameters,
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in order to test the robustness of the system to the input data. This is com-
monly referred to as stochastic gradient or sensitivity estimation problem.

The central question therein is to estimate the derivative of an expectation
of a random performance measure. In particular, in a stochastic simulation
setting, assume that we want to estimate the gradient of the expected value
of some objective function of the underlying stochastic process with respect
to a parameter θ of interest, i.e., ∇θα(θ), where α(θ) := E[Y (θ)] for θ ∈ Θ,
and here Θ is an open subset of R. We are interested in finding a random
function ξ(θ) such that its expected value is equal to the gradient of α(·),
i.e., E[ξ(θ)] = ∇θα(θ).

To estimate this stochastic gradient by simulation, there are two pre-
vailing methods in the literature that can both yield unbiased estimators,
i.e., the infinitesimal perturbation analysis (IPA) estimator and the likeli-
hood ratio (LR) estimator. The basic idea behind IPA is to simply propose
∇θY (θ) as the random function or equivalently the estimator. This is a
very intuitive construction, and stems from the validity of the interchange
E[∇θY (θ)] = ∇θE[Y (θ)] under some suitable technical conditions, which has
motivated a significant amount of research in the subsequent literature (see,
e.g., [2, 3]). The basic idea behind the LR estimator is based on the rep-
resentation of the expectation as an integral with respect to the probability
density function, which depends on the parameter of interest. Thus we can
differentiate the probability density function and then construct the LR esti-
mator through weighting the payoff by this derivative of the density function.
[4] provide an excellent and comprehensive up-to-date survey for all existing
stochastic gradient estimators, including the above two, in various applica-
tion domains including operations research and machine learning.

Since both estimators are unbiased if they exist, the natural mathematical
question to consider is to compare their variances. It has been documented
in the numerical examples in the literature (see for example [5] and [6]) that
the IPA estimator, whenever it exists, almost always yields smaller variance
than an LR estimator. Thus it is empirically recommended to use the IPA
estimator as much as possible whenever it exists. However, there was no
theoretical foundation justifying the variance comparison until the recent
work [1], in which some sufficient conditions are provided that guarantee the
variance of the LR estimator is higher than that of the IPA estimator. They
also develop several counter examples where the IPA estimator has larger
variance than its LR counterpart.

In this paper, we contribute to the literature by substantially extending
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the theoretical results of variance comparison in [1]. More specifically, we
find that the original sufficient conditions in [1] can actually yield a sharper
inequality in variance comparison. We further provide a simple and elegant
sufficient condition to guarantee the variance of the IPA estimator is smaller
by relaxing the conditions in [1]. A surprising result is found that the variance
of the LR estimator is at least four times larger than that of the IPA estimator
under some structural specifications only imposed on the objective function.
Proceeding along this line, we finally obtain important results for financial
derivatives practitioners that the IPA estimator to Delta of European vanilla
and Asian options has smaller variance than the LR one, only requiring
that the log return process of the underlying asset is independent of the
initial price and square integrable. This requirement is highly non-restrictive
since most of the popular financial models on the underlying asset’s dynamics
satisfy it, including but not limited to, e.g., the exponential Lévy models and
stochastic volatility models with some mild conditions on the parameters to
ensure the return process’s square-integrability.

The structure of the paper is organized as follows. Section 2 describes
the main theoretical comparison result. Section 3 focuses on the results on
option’s delta. Section 4 concludes the paper. All proofs are collected in the
Appendix.

2. General Results

The goal of the stochastic gradient estimation problem is to seek an es-
timator to the quantity ∇θα(θ) := ∇θE[Y (θ)]. Here θ is the parameter of
interest, Y (·) is a random function or random payoff of the underlying ran-
dom variable X(θ), and fX(x; θ) is the probability density function (pdf) of
X(θ).

Assume uniform differentiability for both Y (θ) and fX(x; θ) with respect
to θ in a neighborhood Θ ∈ R of some value of interest, and finiteness and
exchangeability of all integrals that we subsequently encounter. The IPA
estimator IY and the LR estimator LY are respectively given by

IY :=
d

dθ
Y (θ) = Y ′(θ) and

LY := Y (θ)
∂
∂θ
fX(X(θ); θ)

fX(X(θ); θ)
= Y (θ)

∂
∂θ
fX(x; θ)

fX(x; θ)

∣∣∣∣∣
x=X(θ)

.
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It is straightforward to verify that both estimators are unbiased when
they exist. If we have both unbiased estimators available, then a natural
selection criteria will be based on the variances, or equivalently, the second-
order moments, of the estimators. Their second-order moments are denoted
by v1 and v2 respectively, i.e.,

v1 = E[(Y ′(θ))2] and v2 = E

(Y (θ)
∂
∂θ
fX(X(θ); θ)

fX(X(θ); θ)

)2
 .

We can first show that the sufficient condition to guarantee v2 > v1, as
stated in Assumption 1 of [1], can in fact yield a much sharper inequality on
the variance comparison, i.e., the variance of the LR estimator is at least two
times larger than that of the IPA estimator under their conditions.

Proposition 1. If Y ′′(θ)Y (θ) > 0 and ∂2

∂θ2
log fX(x; θ) 6 0 hold, then v2 >

2v1 and Var(LY ) > 2Var(IY ).

On the other hand, if we are only interested in the condition to guar-
antee v2 > v1, as considered in [1], then we can further weaken the current
assumption that fX(x; θ) is log-concave in θ. We only need to require that
the reciprocal of fX(x; θ) is convex in θ, which is summarized in the following
result.

Proposition 2. If Y ′′(θ)Y (θ) > 0 holds, and 1/fX(x; θ) is convex in θ, then
v2 > v1 and Var(LY ) > Var(IY ).

The above general results for variance comparison depend on some re-
quirements on the pdf of X. It is possible to further relax such assumptions
if we have some specific structure on the form of Y (θ), as shown in the
following Proposition 3, which needs a sharp inequality first.

Lemma 1. Let Z be a positive random variable with differentiable probability
density function fZ, and n > 0 such that E[Zn] <∞. Then

E

[
Zn+2

(
f ′Z(Z)

fZ(Z)

)2
]
> (n+ 1)2E[Zn], (1)

and here the constant (n+ 1)2 is sharp and can not be further improved.
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It turns out that this lemma is new to the literature with a mathematically
quite tricky proof which should be of independent interest. A special case of

this result is related to the comparison between E
[
Z4
(
f ′Z(Z)

fZ(Z)

)2]
and E[Z2].

It can provide us a surprising result that the variance of the LR estimator
could be at least four times larger than that of the IPA estimator in some
specific settings.

Proposition 3. If Y (θ) = g(θ)Z for a differentiable function g with g(θ)g′(θ) 6=
0 and a positive random variable Z, where Z doesn’t depend on θ and has a
differentiable pdf satisfying E[Z2] <∞, then we have Var(LY ) > 4Var(IY ).

3. On Financial Option’s Delta Estimators

In financial derivatives markets, practitioners typically need to calculate
the so-called Delta of financial options in their daily job. Delta is the first-
order partial derivative of the option price with respect to the initial price
of the option’s underlying asset. We focus on a European call option with
a maturity T , while a European put option’s Delta can then be obtained
by the put-call parity. Let St denote the underlying asset’s price at time t
(0 6 t 6 T ). In the setting of Section 2, we can view the option payoff at
T as Y (θ) with the parameter θ = S0, i.e., the initial price. Most standard
call options popularly traded in the market have the payoff with the form
Y (θ) := (X(θ)−K)+ where X(θ) is some functional of the underlying asset’s
prices at certain time spots, K is a constant denoting the strike price, and
x+ := max{x, 0}. For example, at maturity the European vanilla option has
the payoff Y = (ST − K)+ and the arithmetic Asian option has the payoff
Y = ( 1

m

∑m
i=1 Sti−K)+ where 0 < t1 < · · · < tm = T . We have the following

results for the general setting of this practical problem.

Proposition 4. Suppose that Y (θ) = (X(θ)−K)+ with 1 > p := P(X(θ) >
K) > 0 for a constant K > 0 and X(θ) = g(θ)Z for a differentiable function
g with g(θ)g′(θ) 6= 0 and a positive random variable Z with a differentiable
pdf satisfying E[Z2] <∞. We have

Var(LY )

Var(IY )
> min

{
4,

3δ2 + 2δ + (1− p)(1 + δ)2

(1− p)(1 + δ)2

}
> 1, (2)

where δ := E[(X(θ)−K)/K|X(θ) > K].
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Note that the general results presented in Section 2 depend on some re-
quirements on the probability density function of X. However, the above
Proposition 4 reveals that, for a large domain of financial models, as long as
the underlying asset’s log return process does not depend on its initial price
and is square integrable, the IPA estimator to Delta has smaller variance than
the LR one. In other words, we actually do not need specific assumption on
the shape of the probability function density for the purpose of variance
comparison of the two Delta estimator. Such models (subject to parameter
restrictions to guarantee the square integrability of the log return) include,
e.g., the Black-Scholes model, Merton’s jump diffusion model ([7]), Kou’s
double exponential jump diffusion model ([8]), and variance gamma model
([9]), or generally, the exponential Lévy processes as asset prices models. Our
results also hold for the stochastic volatility model, e.g., the Heston model
([10]). This demonstrates the advantage of the IPA estimator in practical
task of Delta estimation, and justifies to some extent the wide-spread empir-
ical findings (or, the rule-of-thumb proposed in [6]) that the IPA estimator
is usually preferred whenever it is applicable.

Proposition 4 also substantially strengthens the variance comparison re-
sults for Delta of Asian options as documented in the Example 2 of Section
4.2 in [1]. They only considered the arithmetic Asian option with Black-
Scholes model for the stock price. Directly applying Proposition 4 in the
setting of Example 2 in [1], it is straightforward to verify that the IPA es-
timator has smaller variance than that of the LR estimator for Delta of an
arithmetic Asian option case with underlying asset belonging to the models
(with parameter restrictions) mentioned above.

4. Conclusion and Future Work

We mainly theoretically advance the comparison problem between vari-
ances of IPA and LR estimators in this paper. The sufficient conditions we
propose to guarantee that the IPA estimator has smaller variance are easy to
verify in concrete applications. For the Delta estimation problem in financial
engineering, we assert the smaller variance of IPA estimator for European
vanilla and arithmetic Asian options within a large class of underlying as-
set’s dynamics whose log return process does not depend on the initial value
and square integrable. Future work may include sufficient and necessary
conditions for this variance comparison problem and comparing the variance
of IPA estimator with other types of unbiased estimators in the literature
rather than the LR one, e.g., the Malliavin estimator ([11]).
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Appendix

This appendix section collects the technical proofs of Propositions 1-4
and Lemma 1 in the main text.

Proof of Proposition 1.
Note that we have the following identity(

y
∂
∂θ
fX(x; θ)

fX(x; θ)

)2

= y2

(
∂
∂θ
fX(x; θ)

fX(x; θ)

)2

= y2

(
∂2

∂θ2
fX(x; θ)

fX(x; θ)
− ∂2

∂θ2
log fX(x; θ)

)
.

Therefore, we can express

v2 = E

(Y (θ)
∂
∂θ
fX(X(θ); θ)

fX(X(θ); θ)

)2
 = E

[
Y 2(θ)

∂2

∂θ2
fX(X(θ); θ)

fX(X(θ); θ)
− Y 2(θ)

∂2

∂θ2
log fX(X(θ); θ)

]
.

(3)

We note that

E

[
Y 2(θ)

∂2

∂θ2
fX(X(θ); θ)

fX(X(θ); θ)

]
=

∂2

∂x2
E
[
Y 2(θ)

fX(X(θ), x)

fX(X(θ); θ)

]∣∣∣∣
x=θ

=
∂2

∂x2
EQ(x)

[
Y 2(x)

] ∣∣∣
x=θ

= 2E[Y ′(θ)2] + 2E[Y ′′(θ)Y (θ)]

= 2v1 + 2E[Y ′′(θ)Y (θ)], (4)

where in the second equality we have used the following measure change
argument: By defining a new probability measure Q(x) with the Radon-

Nikodym derivative given by dQ(x)
dP

:= fX(X(θ),x)
fX(X(θ);θ)

where P is the probability

measure underlying the expectation operator E, we then have E[·] ≡ EQ(θ)[·]
and (4) holds.
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As a consequence of (4), and noting the identity (3), we have

v2 − 2v1 = 2E[Y ′′(θ)Y (θ)]− E
[
Y 2(θ)

∂2

∂θ2
log fX(X(θ); θ)

]
, (5)

and it is clear that with the given (sufficient) assumptions, we have v2 > 2v1.
Furthermore, we have the following result

Var(LY ) = v2−(E[Y ′(θ)])2 > 2v1−(E[Y ′(θ)])2 > 2v1−2(E[Y ′(θ)])2 = 2Var(IY ).

This completes the proof.

Proof of Proposition 2.
Note that by (5) we have

v2 − v1 = E[Y ′(θ)2] + 2E[Y ′′(θ)Y (θ)]− E
[
Y 2(θ)

∂2

∂θ2
log fX(X(θ); θ)

]
. (6)

Given the assumption that Y ′′(θ)Y (θ) > 0 holds, there is

E[Y ′(θ)2]+2E[Y ′′(θ)Y (θ)] > E[Y ′(θ)2]+E[Y ′′(θ)Y (θ)] =
1

2
E

[
Y 2(θ)

∂2

∂θ2
fX(X(θ); θ)

fX(X(θ); θ)

]
,

(7)
where the last equality is based on (4) in the proof of Proposition 1.

In order for v2 > v1, by (6) and (7), it suffices to have

E
[
Y 2(θ)

∂2

∂θ2
log fX(X(θ); θ)

]
6

1

2
E

[
Y 2(θ)

∂2

∂θ2
fX(X(θ); θ)

fX(X(θ); θ)

]
,

which can be implied if we have,

∂2

∂θ2
log fX(x; θ) 6

1

2

∂2

∂θ2
fX(x; θ)

fX(x; θ)
. (8)

Because

∂2

∂θ2
log fX(x; θ) =

∂2

∂θ2
fX(x; θ)

fX(x; θ)
−

(
∂
∂θ
fX(x; θ)

fX(x; θ)

)2

,

9



we know that (8) can be further implied by the following condition

∂2

∂θ2
log fX(x; θ) 6

(
∂
∂θ
fX(x; θ)

fX(x; θ)

)2

. (9)

On the other hand, we have

∂2

∂θ2
1

fX(x; θ)
=

∂2

∂θ2
e− log fX(x;θ)

=

(
− ∂2

∂θ2
log fX(x; θ) +

(
∂

∂θ
log fX(x; θ)

)2
)
e− log fX(x;θ)

=

− ∂2

∂θ2
log fX(x; θ) +

(
∂
∂θ
fX(x; θ)

fX(x; θ)

)2
 e− log fX(x;θ)

> 0,

if and only if (9) holds. This completes the proof.

Proof of Lemma 1. Assume E
[
Zn
(
Zf ′Z(Z)

fZ(Z)

)2]
< ∞ in the following,

since there is nothing to show otherwise. If n = 0, then Jensen’s inequality
yields

E

[(
Zf ′Z(Z)

fZ(Z)

)2
]
>

(
E
[
Zf ′Z(Z)

fZ(Z)

])2

=
(
zfZ(z)

∣∣∣∞
0
− 1
)2

= 1,

where we have used the fact that zfZ(z)
∣∣∞
0

= 0, which is guaranteed by

E
[
Zf ′Z(Z)

fZ(Z)

]
< ∞; see the explanation below. Thus in the sequel, we shall

assume n > 0.
For α ∈ R and α 6= 0 (note that α can be negative), let W = Z1/α, or

equivalently, Z = Wα. For z > 0, we can calculate

fZ(z) = fW (z1/α)
1

|α|
z1/α−1.
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Furthermore, we can calculate its derivative

f ′Z(z) =
1

|α|

(
1

α
(z1/α−1)2f ′W (z1/α) +

(
1

α
− 1

)
z1/α−2fW (z1/α)

)
.

Therefore, by noticing that Z1/α = W , we have

f ′Z(Z)

fZ(Z)
=

1
α
WZ−1f ′W (W ) +

(
1
α
− 1
)
Z−1fW (W )

fW (W )
=
Wf ′W (W ) + (1− α) fW (W )

ZαfW (W )
.

It follows that

E

[
Zn

(
Zf ′Z(Z)

fZ(Z)

)2
]

= E

[
Zn

(
Wf ′W (W ) + (1− α) fW (W )

αfW (W )

)2
]

= E

[
Zn

(
Wf ′W (W )

αfW (W )

)2
]

+ E
[

2 (1− α)ZnWf ′W (W )

α2fW (W )

]
+

(
1− α
α

)2

E [Zn] .

Note that both E
[
Zn
(
Zf ′Z(Z)

fZ(Z)

)2]
and E[Zn] are finite, therefore we have that

E

[
Zn

(
Wf ′W (W )

αfW (W )

)2
]

= E

[
Zn

(
Zf ′Z(Z)

fZ(Z)
−
(

1− α
α

))2
]

is finite. As a consequence, E
[
2(1−α)ZnWf ′W (W )

α2fW (W )

]
is also finite.

Let us choose α = −1/n, which is actually the optimal choice of α as we
shall later demonstrate. It follows that

E

[
Zn

(
Zf ′Z(Z)

fZ(Z)

)2
]

= E

[
Zn

(
Wf ′W (W )

αfW (W )

)2
]

+ E
[

2 (1− α) f ′W (W )

α2fW (W )

]
+ (n+ 1)2 E [Zn] .

Note that

E
[
f ′W (W )

fW (W )

]
= fW (w)

∣∣∣∞
0

= fZ(z)zn+1
∣∣∣0
∞
,

which is a finite number as analyzed above; that is, fZ(z)zn+1 has a limit both
as z → 0 and as z →∞. The integrability condition E[Zn] <∞ guarantees
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that this limit has to be zero in both cases. Therefore, E
[
f ′W (W )

fW (W )

]
= 0 and

E

[
Zn

(
Zf ′Z(Z)

fZ(Z)

)2
]

= E

[
Zn

(
Wf ′W (W )

αfW (W )

)2
]

+ (n+ 1)2 E [Zn] .

Moreover, the random variable M =
Wf ′W (W )

fW (W )
is not almost surely zero, since

E[M ] = −1, assuming that it is integrable. As a consequence, we have

E

[
Zn

(
Wf ′W (W )

αfW (W )

)2
]
> 0,

which implies

E

[
Zn

(
Zf ′Z(Z)

fZ(Z)

)2
]
> (n+ 1)2E [Zn] ,

which is the inequality (1).
Next we demonstrate that this inequality obtained is actually sharp, i.e.,

the constant (n+ 1)2 can not be further improved upon. Note that the ratio
(n+ 1)2 is achieved asymptotically by choosing fZ(z) = c(z+d)−β for z > 0,
where c, d > 0 are constants and β > n+ 1. In this case,

E

[
Zn

(
Zf ′Z(Z)

fZ(Z)

)2
]

= E

[
Zn

(
Zβ(Z + d)−β−1

(Z + d)−β

)2
]

= β2E
[

Zn+2

(Z + d)2

]
6 β2E [Zn] .

By letting β ↓ n+ 1 and using (1), one obtains

E
[
Zn
(
Zf ′Z(Z)

fZ(Z)

)2]
E[Zn]

→ (n+ 1)2.

Thus (n+1)2 is the sharp lower bound for the ratio between E
[
Zn
(
Zf ′Z(Z)

fZ(Z)

)2]
and E[Zn]. Note that β = n+ 1 is the critical point for E[Zn] =∞.

Below we explain why the choice in the proof above, e.g., α = −1/n, is
optimal, and how we have arrived at this value. Note that, via integration
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by parts, there is

E
[
W nα+1f ′W (W )

fW (W )

]
= wnα+1fW (w)

∣∣∣∞
0
−
∫ ∞
0

(nα+1)wnαfW (w)dw = −(nα+1)E [W nα] ,

where we rely on the fact that wnα+1fW (w) → 0 as w → ∞ and as w → 0,
which can be shown using a similar argument for zn+1fZ(z) → 0 as in the
proof of (1) above. It follows that

E
[

2 (1− α)ZnWf ′W (W )

α2fW (W )

]
=

2 (1− α)

α2
E
[
W nα+1f ′W (W )

fW (W )

]
=

2 (α− 1)

α2
(nα + 1)E [W nα] =

α− 1

α2
(2nα + 2)E [Zn] .

Therefore there is

E

[
Zn

(
Z
f ′Z(Z)

fZ(Z)

)2
]

= E

[
Zn

(
Wf ′W (W )

αfW (W )

)2
]

+ E [Zn]

((
1− α
α

)2

+
α− 1

α2
(2nα + 2)

)

= E

[
Zn

(
Wf ′W (W )

αfW (W )

)2
]

+
(α− 1)((2n+ 1)α + 1)

α2
E [Zn] .

Note that α can be arbitrarily chosen. If we write β = 1/α, then we have

(α− 1)((2n+ 1)α + 1)

α2
= (1− β)(2n+ 1 + β) = 2n+ 1− 2nβ − β2.

The function β 7→ 2n + 1 − 2nβ − β2 has a maximum value at β = −n, or
equivalently, when α = −1/n, which gives a value of (n + 1)2. This estab-
lishes the optimality of α = −1/n. This completes the proof.

Proof of Proposition 3. We define h(θ) = 1/g(θ), and divide the
discussion into the following two sub-cases.

• If h(θ) > 0, then one can calculate fY (y; θ) = h(θ)fZ(h(θ)y) for y ∈ R.
Therefore,

∂

∂θ
fY (y; θ) = h(θ)h′(θ)yf ′Z(h(θ)y) + h′(θ)fZ(h(θ)y).
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• If h(θ) < 0, then fY (y; θ) = −h(θ)fZ(h(θ)y) for y ∈ R, and

∂

∂θ
fY (y; θ) = −h(θ)h′(θ)yf ′Z(h(θ)y)− h′(θ)fZ(h(θ)y).

In both cases, the LR estimator is

Y (θ)
∂
∂θ
fY (Y (θ); θ)

fY (Y (θ); θ)
= Y (θ)

h(θ)h′(θ)Y (θ)f ′Z(h(θ)Y (θ)) + h′(θ)fZ(h(θ)Y (θ))

h(θ)fZ(h(θ)Y (θ))

= Y (θ)
h′(θ)

h(θ)

Zf ′Z(Z) + fZ(Z)

fZ(Z)

=
h′(θ)

h2(θ)

Z2f ′Z(Z) + ZfZ(Z)

fZ(Z)
= −g′(θ)

(
Z2f ′Z(Z)

fZ(Z)
+ Z

)
,

(10)

with the second moment given by

v2 = (g′(θ))2E

[
Z4

(
f ′Z(Z)

fZ(Z)

)2

+ 2Z3f
′
Z(Z)

fZ(Z)
+ Z2

]

= (g′(θ))2

(
E

[
Z4

(
f ′Z(Z)

fZ(Z)

)2
]
− 5E[Z2]

)
.

The IPA estimator has the second moment

v1 = (g′(θ))2E[Z2].

Observe the following equivalence:

v1 6 v2 ⇔ 6E[Z2] 6 E

[
Z4

(
f ′Z(Z)

fZ(Z)

)2
]
, (11)

which is independent of the choice of g. Moreover, because g′(θ) 6= 0, we
have

v2
v1

=

E
[
Z4
(
f ′Z(Z)

fZ(Z)

)2]
E[Z2]

− 5. (12)

Using (11), (12), and Lemma 1 for n = 2, one can deduce that v2 > 4v1,
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and consequently, Var(LY ) > 4Var(IY ). This completes the proof.

Proof of Proposition 4. Fix θ. If p = 0, then there is nothing to show.
Below we assume p > 0. First, we note that

IY = g′(θ)Z1{X(θ)>K},

and

LY = (X(θ)−K)1{X(θ)>K}

∂
∂θ
fX(X(θ); θ)

fX(X(θ); θ)
.

Using (10) in the proof of Proposition 3 with Y (θ) replaced by X(θ), we get

LY = (X(θ)−K)1{X(θ)>K}
−g′(θ)
g(θ)

(
Zf ′Z(Z)

fZ(Z)
+ 1

)
.

Write m := K/g(θ). We have

E[I2Y ] = (g′(θ))2E[Z21{Z>m}], (13)

and

E[L2
Y ] = (g′(θ))2E

[
(Z −m)2

(
Zf ′Z(Z)

fZ(Z)
+ 1

)2

1{Z>m}

]
. (14)

Next, let W1 be a random variable distributed as (Z−m|Z > m). Note that
W1 is positive and it has a density and a finite second moment. Noting that
f ′W1

(W1)/fW1(W1) = f ′Z(Z)/fZ(Z) conditional on Z > m, we can rewrite
(13) and (14) as

a :=
E[I2Y ]

p(g′(θ))2
= E

[
(W1 +m)2

]
= E[W1

2] + 2mE[W1] +m2,

and

b :=
E[L2

Y ]

p(g′(θ))2
= E

[
W1

2

(
(W1 +m)f ′W1

(W1)

fW1(W1)
+ 1

)2
]
.
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We can further derive

b = E

[
(W 4

1 +W 2
1m

2 + 2W 3
1m)

(
f ′W1

(W1)

fW1(W1)

)2

+ 2W 3
1

f ′W1
(W1)

fW1(W1)
+ 2W 2

1m
f ′W1

(W1)

fW1(W1)
+W 2

1

]

= E

[
(W 4

1 +W 2
1m

2 + 2W 3
1m)

(
f ′W1

(W1)

fW1(W1)

)2
]
− 5E[W 2

1 ]− 4mE[W1].

Applying Lemma 1 to the random variable W1, we get

E

[
(W 4

1 +W 2
1m

2 + 2W 3
1m)

(
f ′W1

(W1)

fW1(W1)

)2
]
> 9E[W 2

1 ] +m2 + 8mE[W1].

Therefore,

b > 9E[W 2
1 ] +m2 + 8mE[W1]− 5E[W 2

1 ]− 4mE[W1] = 4E[W 2
1 ] + 4mE[W1] +m2 > a.

Then we have v2 = E[L2
Y ] > E[I2Y ] = v1, and Var(LY ) > Var(IY ) follows.

Next, we show the last statement. Note that E[W1] = δm, and

E[LY ] = E[IY ] = pg′(θ)(E[W1] +m).

We have

Var(IY )

p(g′(θ))2
= E[W 2

1 ] + 2mE[W1] +m2 − p((E[W1])
2 + 2mE[W1] +m2)

= E[W 2
1 ] +m2(2δ + 1− p(1 + δ)2)

= (E[W 2
1 ]− δ2m2) +m2((1− p)(1 + δ)2),

and

Var(LY )

p(g′(θ))2
= 4E[W 2

1 ] + 4mE[W1] +m2 − p((E[W1])
2 + 2mE[W1] +m2)

= 4(E[W 2
1 ]− δ2m2) +m2(3δ2 + 2δ + (1− p)(1 + δ)2).

Noting that E[W 2
1 ]−δ2m2 = Var(W1) > 0, the desired inequality (2) follows.

This completes the proof.

16


	Introduction
	General Results 
	On Financial Option's Delta Estimators 
	Conclusion and Future Work 

