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Abstract

Two natural and potentially useful properties for capital allocation rules are top-down con-

sistency and shrinking independence. Top-down consistency means that the total capital is

determined by the aggregate portfolio risk. Shrinking independence means that the risk capital

allocated to a given business line should not be affected by a proportional reduction of exposure

in another business line. These two properties are satisfied by, respectively, the Euler allocation

rule and the stress allocation rule. We prove an impossibility theorem that states that these two

properties jointly lead to the trivial capital allocation based on the mean. When a subadditive

risk measure is used, the same result holds for weaker versions of shrinking independence, which

prevents the increase in risk capital in one line, when exposure to another is reduced. The

impossibility theorem remains valid even if one assumes strong positive dependence among the

risk vectors.
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1 Capital allocation rules

Capital allocation is an active topic for researchers in risk management and practitioners in the

financial industry. Capital allocation problems are often studied in the context of risk measures, as

in the axiomatic settings of Denault (2001) and Kalkbrener (2005). We refer to Dhaene et al. (2012)

and Furman and Zitikis (2008) for overviews of capital allocation methods based on risk measures,

and to Scaillet (2004), Targino et al. (2015), Boonen et al. (2019) and Asimit et al. (2019) for

examples of statistical studies.
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We first explain the mathematical setting for capital allocation. Fix a probability space

(Ω,F ,P) and some q ∈ [1,∞]. Let X be the set Lq of random variables X with finite q-th moment,

i.e., E[|X|q] <∞ if q ∈ [1,∞) and ess-sup(X) <∞ if q =∞.

Each random vector X = (X1, . . . , Xd) ∈ X d represents risks from multiple business lines;

positive outcomes of each Xi are understood as losses. An allocation rule Λ is a mapping from X d

to Rd. For X ∈ X d and an allocation rule Λ, we denote by Λ(X) = (Λ1(X), . . . ,Λd(X)) where Λi(X)

represents the amount of capital allocated to line i ∈ {1, . . . , d}. Capital allocation is intimately

linked to risk measures. A risk measure in this paper is a continuous and law-invariant mapping

ρ : X → R. We do not require anything beyond continuity and law invariance, which is satisfied

by all risk measures in the literature and risk management practice.1 Even law invariance can be

easily relaxed; see Section 4.3.

Examples of capital allocation rules include the proportional allocation, the Euler allocation,

the Aumann-Shapley capital allocation, and those based on stress scenarios. Formal definitions of

some capital allocation rules are put in Appendix A; below we give two specific examples which are

sufficient to illustrate our main message. These two examples share the general form

Λ(X) = EQX [X], i.e., Λi(X) = EQX [Xi] for i = 1, . . . , d, (1)

where QX is a probability measure determined by the risk vector X.

1. The Euler allocation based on the Expected Shortfall (ES) (also known as the CTE allocation)

is one of the most popular rules in capital allocation; see e.g., Kalkbrener (2005). It is defined

as a special case of (1) by

Λ(X) = EQX [X] and
dQX

dP
=

1

1− p
1{

∑n
i=1Xi>sp}, for some p ∈ (0, 1), (2)

where sp is the p-quantile of S :=
∑n

i=1Xi. Here we assume that S is continuously distrib-

uted.2 This leads to Λi(X) = E[Xi|S > sp], i = 1, . . . , d. The total capital is
∑d

i=1 Λi(X) =

E[S|S > sp], which is the ES of the total risk S at level p.

2. The mixture-stress allocation proposed by Millossovich et al. (2021) is based on stress scenarios

1Continuity is with respect to the norm on X = Lq. A mapping ρ is law invariant if ρ(X) = ρ(Y ) for identically

distributed X,Y ∈ X . All law-invariant convex risk measures are continuous on Lq for q > 1; see Rüschendorf (2013).

Moreover, all cash-subadditive risk measures, including the Value-at-Risk, are continuous on L∞; see Cerreia-Vioglio

et al. (2011).
2More precisely, we require {S > sp} to have probability 1− p. If this does not hold, then we need to replace the

event {S > sp} with a p-tail event of S introduced by Wang and Zitikis (2021).
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generated directly by the risk vector X. It is defined as a special case of (1) by

Λ(X) = EQX [X] and
dQX

dP
=
θ + 1

d

d∑
i=1

(Fi(Xi))
θ, for some θ > 0, (3)

where each Xi is assumed to have a continuous distribution function Fi.
3 The total capital

for the stress allocation rule is given by
∑d

i=1 Λi(X) = EQX [S]. The mixture-stress allocation

rule belongs to the class of stress allocation rules of Millossovich et al. (2021); see Appendix

A.

Our main result does not need to assume any specific form of allocation rules such as (1), (2) or

(3); the above examples are introduced only to motivate the two important properties in the next

section.

2 Three properties for an allocation rule

We introduce three properties for an allocation rule Λ. All statements are meant to hold for

all X = (X1, . . . , Xd) ∈ X d.

(i) Vanishing continuity : Λ(εX)→ 0 as ε ↓ 0.

(ii) Top-down consistency :
∑n

i=1 Λi(X) = ρ(
∑n

i=1Xi) for some risk measure ρ with ρ(1) = 1.

(iii) Shrinking independence: Λi(X1, . . . , Xj−1, aXj , Xj+1, . . . , Xd) = Λi(X) for all j 6= i and a ∈

(0, 1).

Vanishing continuity (i), meaning that the allocated capital shrinks to 0 for a vanishing risk, is

satisfied by any sensible capital allocation rule. For instance, it is weaker than positive homogeneity:

Λ(εX) = εΛ(X) for ε > 0, and positive homogeneity is satisfied by almost all capital allocation

rules, including the ones mentioned in Section 1 and Appendix A.

Top-down consistency (ii)4 means that the total capital requirement can be calculated from

a risk measure that depends solely on the model of the aggregate position. All top-down methods

generated from a pre-specified risk measure satisfy this property. Indeed, it is the starting point

of many studies on capital allocation; see e.g., Denault (2001), Kalkbrener (2005) and Tsanakas

(2009), where this property is part of the definition of an allocation based on a risk measure. In

3The case of discontinuity can be addressed using a suitable uniform transform; see Millossovich et al. (2021).
4This property is also referred to as the full allocation requirement or, particularly in a game theoretic context,

as efficiency ; see e.g., Lemaire (1991).
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particular, it is satisfied by the Euler allocation rules, including the ES-based Euler allocation in

(2). Nevertheless, in risk management practice, the total capital requirement is not necessarily

calculated by any specific risk measure of a portfolio loss, but could indeed be exogenous to the

allocation problem as in the settings of Zaks et al. (2006), Dhaene et al. (2012) and Centrone and

Rosazza Gianin (2018); see also Remark 2.4 of Asimit et al. (2019). We do not take top-down

consistency as granted in this paper.

Shrinking independence (iii) reflects the requirement that decreases in the exposure to one

line of business do not lead to changes in the capital allocated to another line, and it may require

some more explanation. In this context, we may assume that each business line operates separately,

and they are pooled together by the overarching structure of the firm. Shrinking independence

has a clear organizational rationale, as a stability property of capital allocations. If shrinking

independence does not hold, the manager of a line of business may see their allocated capital change

(even increase), in response to portfolio changes outside their control. Indeed, this is a reason why

insurance practitioners are often reluctant to operationalize Euler allocations, as mentioned by the

respondents of Cabantous and Tsanakas (2019). At the same time, this property is very restrictive.

Hence, two relaxations of shrinking independence, one replacing the equality by an inequality and

one requiring the property only for positive dependence, are discussed in Sections 4.1 and 4.2. To

simplify exposition, we will illustrate our main result using the stronger formulation (iii).

Shrinking independence is satisfied by any allocation rule induced by an invariant stressing

mechanism of the type introduced by Millossovich et al. (2021), including the mixture-stress alloc-

ation in (3); see also the ones in Appendix A. Indeed, the mixture-stress allocation rule satisfies the

stronger property:

(iv) Strong independence: for each i, Λi(X1, . . . , Xj−1, g(Xj), Xj+1, . . . , Xd) = Λi(X) for j 6= i and

a strictly increasing function g.

Strong independence thus ensures robustness of allocated risk capital not only to reductions in

exposure, but also to more general monotonic risk reductions, e.g., by the purchasing of reinsurance.

See also the discussions and a real-data example in Millossovich et al. (2021).5

Shrinking independence does not conflict with the idea of diversification and risk reduction,

since it takes dependence into consideration. Indeed, the allocation rule (3) reflects diversification

by penalizing positive dependence and rewarding negative dependence. For instance, for a fixed

5A much weaker stability requirement is implicit in the approach of Major (2018), whose capital allocation reflects

fully sensitivity to portfolio weights, but only partially to reinsurance parameters, as the latter are not included in

the Radon-Nikodym derivative that generates the risk functional considered.
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i = 1, . . . , d, dQX/dP puts more weights on large value of Xi if X1, . . . , Xn are comonotonic as

compared to the case that X1, . . . , Xn are independent.

To understand the role of dependence of X for the allocation rules, we briefly discuss another

property based on copulas, which are a powerful tool to model the dependence structure of a random

vector separately from its marginal distributions.6

(v) Copula decomposition: for each i, Λi(X) is determined by the distribution of Xi and the

(possibly non-unique) copulas of X.

Since copulas are invariant under strictly increasing transforms, copula decomposition (v) implies

strong independence (iv). Therefore, strong independence can reflect the intuitive idea of modeling

individual business lines and their dependence structure separately. The mixture-stress allocation

rule (3) satisfies copula decomposition.

Remark 1. Properties (iii), (iv) and (v) are also satisfied in the case that the risk capital of each

business line is individually computed by a risk measure; that is, each Λi(Xi) solely depends on

Xi. Such individual allocations are not of further interest to us, as they ignore aggregation or

diversification effects.

Remark 2. We do not impose continuity of Λ in X d. In this way we can include capital allocation

rules such as those based on invariant stressing mechanisms in Millossovich et al. (2021), which are

not necessarily continuous when handling discrete risk factors. For instance, discontinuity may arise

in (3) when a sequence of continuous risk vectors (Xn)n∈N converges to a risk vector X with some

discrete components. Instead, we only require the vanishing continuity, a much weaker requirement.

3 An impossibility theorem

We establish an impossibility theorem to show that shrinking independence and top-down

consistency conflict in the sense that, together with vanishing continuity, they jointly force the

allocation rule to be the trivial one based on the mean. This result is an impossibility theorem

because in practice, the total capital requirement cannot be computed using the mean.

Theorem 1. An allocation rule Λ satisfies properties (i)-(iii) if and only if Λ(X) = E[X] for all

X ∈ X d.
6A d-copula is a joint distribution function on Rd with standard uniform marginals. Sklar’s theorem implies that

the joint distribution F of any random vector X can be expressed by a copula C of X through F (x1, . . . , xd) =

C(F1(x1), . . . , Fd(xd)) where F1, . . . , Fd are the marginals of F . The copula C is unique if F1, . . . , Fd are continuous.

See Joe (2014) for a general treatment of copulas.
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Proof. The “if” statement is straightforward, and we only show the “only if” statement. Take an

arbitrary X = (X1, . . . , Xd) ∈ X d. For ε ∈ (0, 1) and i = 1, . . . , d, let

Xε
−i = (εX1, . . . , εXi−1, Xi, εXi+1, . . . , εXd),

that is, the risk vector X multiplied by ε except for the i-th component. Applying shrinking

invariance (iii) repeatedly leads to

Λi(X
ε
−i) = Λi(X) for each i. (4)

Top-down consistency (ii) implies

∑
j 6=i

Λj(X
ε
−i) + Λi(X

ε
−i) =

d∑
j=1

Λj(X
ε
−i) = ρ

ε∑
j 6=i

Xj +Xi

 for each i. (5)

Putting (4) and (5) together, we have

Λi(X) = ρ

ε∑
j 6=i

Xj +Xi

−∑
j 6=i

Λj(X
ε
−i) for each i. (6)

Moreover, (iii) also implies that for j 6= i, we have Λj(X
ε
−i) = Λj(εX). By using vanishing continuity

(i) and continuity of ρ,

∑
j 6=i

Λj(X
ε
−i) =

∑
j 6=i

Λj(εX)→ 0 and ρ

ε∑
j 6=i

Xj +Xi

→ ρ(Xi) as ε ↓ 0. (7)

Therefore, (6) and (7) lead to Λi(X) → ρ(Xi). Noting that Λi(X) does not depend on ε, we have

Λi(X) = ρ(Xi) i.e., the allocation Λi(X) depends only on the individual loss Xi. Moreover, using

(ii) again,
d∑
i=1

ρ(Xi) =

d∑
i=1

Λi(X) = ρ

(
d∑
i=1

Xi

)
,

i.e., ρ is additive. Since ρ is continuous, additive and law invariant with ρ(1) = 1, we get from

Lemma 1 below that ρ(X) = E[X] for all X ∈ X . Hence, the allocation rule Λ has to be the

mean.

Remark 3. While somewhat troubling, it is not in itself surprising that different potentially useful

allocation properties may be in conflict; for an impossibility result in the context of cooperative
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game theory, see Csóka and Pintér (2016). Furthermore, Mohammed et al. (2021) characterized

multivariate distributions of risk vectors, for which Euler allocations based on ES collapse to ex-

pected values.

The following lemma contains a known result used in the proof of Theorem 1, although we did

not find an explicit statement; such a result appeared in, for instance, the proof of Lemma A.1 of

Wang and Zitikis (2021). We provide a simple proof for the reader familiar with techniques in the

theory of risk measures.

Lemma 1. A mapping ρ : X → R is continuous, additive, and law invariant if and only if ρ(X) =

ρ(1)E[X] for all X ∈ X .

Proof. The proof is adapted from that of Lemma A.1 of Wang and Zitikis (2021). The “if” part is

trivial to check, and we thus only prove the “only if” part. Let λ = ρ(1). Continuity and additivity

gives ρ(c) = λc for c ∈ R. Continuity and additivity also imply that ρ(aX) = aρ(X) for a > 0,

which further implies convexity of ρ. Hence, ρ is a finite coherent risk measure multiplied by λ on

Lq; the arguments below show that ρ is Fatou continuous (Definition 7.23 of Rüschendorf (2013)).

1. If q ∈ [1,∞), then, ρ is a finite convex risk measure (multiplied by λ), which is Fatou con-

tinuous by Rüschendorf (2013, Theorem 7.24).

2. If q =∞, then law invariance of ρ implies Fatou continuity by Theorem 30 of Delbaen (2012).

In both cases, Fatou continuity holds for ρ, and hence it admits a representation

ρ(X) =

∫
XdQ (8)

for a measure Q on (Ω,F); see e.g., Rüschendorf (2013, Theorem 7.20) and Föllmer and Schied

(2016, Exercise 4.2.1). Since ρ is law invariant, Q has to be equal to P multiplied by a constant.

Among other consequences of Theorem 1, we notice that, assuming vanishing continuity and

top-down consistency, an allocation rule Λ that satisfies copula decomposition (v), must ignore

dependence. This is because the copula decomposition property is stronger than shrinking inde-

pendence and the trivial expectation-based allocation in Theorem 1 does not involve the dependence

structure of X. Hence, while shrinking independence is not intrinsically inconsistent with diversi-

fication, it becomes so when top-down consistency is assumed.

7



4 Relaxations of the properties

In this section we discuss three possible relaxations of properties (ii) and (iii). The main

message is that with reasonable relaxations and some other additional assumptions, we arrive at

the same conclusion of the impossibility theorem.

4.1 Relaxing shrinking independence

Shrinking independence (iii) may be seen as quite strong, as it requires that the allocated

capital to line i with risk Xi remains unchanged, when reducing another line with risk Xj for j 6= i.

A natural relaxation of this property is

(iii’) Weak shrinking independence: Λi(X1, . . . , Xj−1, aXj , Xj+1, . . . , Xd) 6 Λi(X) for all j 6= i and

a ∈ (0, 1).

Weak shrinking independence (iii’) means that if another line of business reduces their risk exposure,

then the allocated capital for an unchanged business line does not increase (but may decrease). This

property is much weaker than (iii), and it is arguably quite natural in an insurance context. As a

reduction in exposure to Xj would be expected to reduce the risk of the portfolio, (iii’) only requires

that this change has no adverse impact on other lines of business i 6= j.

The property (iii’) in place of shrinking independence (iii) is too weak to establish the im-

possibility theorem.7 In the literature of capital allocation, one often considers a coherent risk

measure which calculates the total capital; see e.g., Kalkbrener (2005).8 In such a setting, we can

strengthen (ii) to:

(ii’) Top-down consistency with a subadditive risk measure:
∑n

i=1 Λi(X) = ρ(
∑n

i=1Xi) for some

subadditive risk measure ρ with ρ(1) = 1.

We also modify the continuity in (i), which says that if the exposure in one business line vanishes,

then so is its allocated capital. This natural assumption is technically slightly stronger than (i).

(i’) Component-wise vanishing continuity : Λ(εX)→ 0 and Λj(X1, . . . , Xj−1, εXj , Xj+1, . . . , Xd)→

0 for each j = 1, . . . , d as ε ↓ 0.

The next result states that the impossibility theorem holds with the above modifications.

7Although we do not have a concrete counter-example, getting an impossibility theorem for (i), (ii) and (iii’) does

not seem to be possible at least with the proof techniques in this paper.
8A coherent risk measure of Artzner et al. (1999) is defined to satisfy four properties: monotonicity, translation

invariance, positive homogeneity, and subadditivity. The only property we need here is subadditivity: ρ(X + Y ) 6

ρ(X) + ρ(Y ) for X,Y ∈ X .
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Theorem 2. An allocation rule Λ satisfies properties (i’), (ii’) and (iii’) if and only if Λ(X) = E[X]

for all X ∈ X d.

Proof. We follow the same logic and the same notation as in the proof of Theorem 1, and it is clear

that we only need to show the “only if” statement. By continuity of ρ, we have, as in (7),

ρ

ε∑
j 6=i

Xj +Xi

→ ρ(Xi) as ε ↓ 0. (9)

With weak shrinking invariance (iii’) replacing (iii), the equality in (6) becomes an inequality, giving

rise to

Λi(X) > ρ

ε∑
j 6=i

Xj +Xi

−∑
j 6=i

Λj(X
ε
−i) for each i. (10)

Next, we verify

lim
ε↓0

Λj(X
ε
−i)→ 0 for j 6= i. (11)

For a fixed δ > 0 and ε ∈ (0, δ), we have, by using (iii’),

Λj(X
ε
−i) 6 Λj(ε1X1, . . . , εi−1Xi−1, Xi, εi+1Xi+1, . . . , εdXd) (12)

where εk = δ for k 6∈ {i, j} and εj = ε. For fixed δ, the right-hand side of (12) goes to 0 by (i’).

Hence, lim supε↓0 Λj(X
ε
−i) 6 0. Moreover, using (iii’) again, we have

∑
j 6=i

Λj(X
ε
−i) >

∑
j 6=i

Λj(εX)→ 0 > lim sup
ε↓0

∑
j 6=i

Λj(X
ε
−i).

This gives (11). Putting (9), (10) and (11) together leads to Λi(X) > ρ(Xi). This inequality

together with (ii’) and subadditivity of ρ gives

d∑
i=1

ρ(Xi) 6
d∑
i=1

Λi(X) = ρ

(
d∑
i=1

Xi

)
6

d∑
i=1

ρ(Xi).

Thus, ρ is additive and Λi(X) = ρ(Xi). Using Lemma 1 we know that ρ is the mean.

Remark 4. Assume that top-down consistency (ii) holds. In this setting, Kalkbrener (2005) further

imposed a property called diversification, which implies that Λi(X) 6 ρ(Xi) for each i, meaning

that the risk capital for the sub-portfolio Xi of portfolio X does not exceed the risk capital if Xi

is considered as a stand-alone portfolio.9 It is clear that this property, together with top-down

9Otherwise the business line i may be disadvantaged by being part of the portfolio X. There is certainly a
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consistency, implies subadditivity and thus is stronger than requiring ρ to be subadditive. Hence,

such an enhancement of (ii) in place of (ii’), requiring the diversification property, is also sufficient

for Theorem 2. This also reveals that weak shrinking independence property conflicts not just with

subadditivity, but also with the implications of such a property for rational behaviour.10

4.2 Shrinking independence for only positive dependence

In case the risk vector X = (X1, . . . , Xd) has some hedging effect among its components,

shrinking independence or weak shrinking independence may not be appealing. In such a case,

shrinking the exposure of one business line may lead to a reduction in the hedging effect to another

business line. Then, it could be reasonable that the capital allocated to the business line that is

now less hedged indeed faces an increase.

Nevertheless, weak shrinking independence would be natural if the risk vector is strongly

positively dependent in some sense, as there is no hedging effect in such a situation. In view of

this, we will discuss a much weaker version of shrinking independence, where the property is only

imposed on very positively dependent risk vectors. For this relaxation, we first define what we mean

by positive dependence. Let R be the Spearman rank correlation of a bivariate vector, defined as

R(X,Y ) = Corr(F (X), G(Y )), X, Y ∈ X ,

where Corr(·) is Pearson’s correlation coefficient, and F and G are the distribution functions of

X and Y , respectively. If one of X and Y is degenerate, then we set R(X,Y ) = 1.11 We define

positive dependence in the following sense: for r ∈ [−1, 1], we say that the random vector X is

r-positively dependent, if R(Xi, Xj) > r for all i 6= j. Clearly, if X has continuous marginals,

then 1-positive dependence is equivalent to comonotonicity.12 Hence, the property of r-positive

game-theoretic flavour to it, relating to the concept of the core of co-operative games and ideas of individual ration-

ality ; see e.g., Lemaire (1991); Denault (2001). At the same time, note that the desirability of such properties is

context-dependent; for example, Kim and Hardy (2009) challenge the diversification property from a solvency-option

perspective.
10On the other hand, if top-down consistency is not assumed, a property similar to diversification could be obtained

for the mixture stress allocation; see Proposition 5 of Millossovich et al. (2021). Top-down consistency is also relaxed

by Centrone and Rosazza Gianin (2018), in the context of (non-coherent) convex and quasi-convex risk measures, as

the price to pay for requiring the diversification property without subadditivity; see also Canna et al. (2021).
11This convention does not affect our discussion or results. If one of X and Y is degenerate, then X and Y are

comonotonic. As comonotonicity is the strongest form of positive dependence, it is natural to set the rank correlation

to 1.
12Two random variables X and Y are comonotonic if X = f(X+Y ) and Y = g(X+Y ) a.s. for increasing functions

f and g. Comonotonicity of a random vector means pair-wise comonotonicity. For more on comonotonicity and other
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dependence gets stronger as r increases, and it forms a continuum from arbitrary dependence

(r = −1) to comonotonicity (r = 1). We denote by X dr the set of all r-positively dependent random

vectors with continuous marginals.

Remark 5. The dependence measure R may be replaced by another measure of concordance (see

McNeil et al. (2015)), which may either be a joint concordance measure or a bivariate concordance

measure, such as (joint or bivariate) Kendall’s tau. From the proof of Theorem 3 below, it will be

clear that such a choice is irrelevant to our discussion.

We are now ready to further relax weak shrinking independence to the following version.

(iii’)r Weak shrinking independence under r-positive dependence:

Λi(X1, . . . , Xj−1, aXj , Xj+1, . . . , Xd) 6 Λi(X) for all j 6= i, a ∈ (0, 1) and X ∈ X dr .

Theorem 3. Suppose that an allocation rule Λ satisfies properties (i’) and (ii’). For r ∈ (0, 1), Λ

satisfies (iii’)r if and only if Λ(X) = E[X] for all X ∈ X dr . Moreover, if (iii’)r holds, then the risk

measure ρ used to calculate the total capital must be the mean for any risk vector in X d.

Proof. The “if” statement is straightforward, and we will only show the “only if” statement below.

Take X ∈ X dr . Note that all random vectors like Xε
−i and X share the same pair-wise values of

the dependence measure R. The same argument as in the proof of Theorem 2 carries through and

leads to

Λi(X) = ρ(Xi) for each i and ρ

(
d∑
i=1

Xi

)
=

d∑
i=1

ρ(Xi);

that is, ρ is additive for components of a risk vector in X dr . Lemma 2 below guarantees that ρ has

to be the mean for all random variables in X .

By taking r < 1 close to 1 in Theorem 3, we know that the allocation rule is, once again, the

trivial one if weak shrinking independence holds for very positive dependence. We note that the

statement in Theorem 3 is made only for X ∈ X dr because (iii’)r is also only formulated for X ∈ X dr .

As such, Theorem 3 does not say anything about the form of Λ(X) for X outside X dr . Nevertheless,

the total capital has to be the mean of the aggregate position, that is, ρ(
∑d

i=1Xi) = E[
∑d

i=1Xi]

for all X ∈ X d (not only those in X dr ), and this contradicts risk management practice; so the

interpretation of the impossibility theorem remains valid.

The proof of Theorem 3 uses the following lemma which characterizes risk measures with

additivity for random vectors in X 2
r . As far as we are aware, this lemma is the first of its sort in

dependence concepts, see Dhaene et al. (2002) and Puccetti and Wang (2015).
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the literature, and it may be of independent interest.13 We remark that a key step in the proof

of Lemma 2 is that the risk measure needs to be additive for comonotonic risks. This means that

the proof would not hold if we considered r-positive dependence with respect to the usual linear

correlation, since linear correlation equal to 1 does not guarantee comonotonicity, given the impact

of marginal distributions.

Lemma 2. Fix r ∈ (0, 1). A mapping ρ : X → R is continuous, subadditive, additive for (X,Y ) ∈

X 2
r , and law invariant if and only if ρ(X) = ρ(1)E[X] for all X ∈ X .

Proof. Without loss of generality, assume ρ(1) = 1.

First, we will consider the case of X = Lq for q ∈ [1,∞). Since any comonotonic random

vector with continuous marginals is in X 2
r , and ρ is continuous, we know that ρ is additive for any

pair of comonotonic random variables in X , thus comonotonic-additive. A comonotonic-additive

and continuous risk measure is always positively homogeneous, meaning that ρ(αX) = αρ(X) for

α ∈ (0,∞) and X ∈ X . This can be checked from the equality ρ(nX) = nρ(X) for any natural

number n and X ∈ X , together with continuity. Using ρ(1) = 1, comonotonic-additivity and

positive homogeneity, we further get ρ(X +m) = ρ(X) +m for all m ∈ R and X ∈ X. Denote by

ρ̃(X) = ρ(X) − E[X], X ∈ X . It follows from properties of ρ that ρ̃ is subadditive, comonotonic-

additive, law invariant, positively homogeneous, and satisfying ρ̃(X + m) = ρ̃(X) for all m ∈ R

and X ∈ X . Therefore, ρ̃ is a comonotonic-additive coherent measure of variability in the sense of

Furman et al. (2017), and by the representation result in Theorem 2.1 of Furman et al. (2017), we

can write

ρ̃(X) =

∫ 1

0
F−1X (t)dh(t), X ∈ X ,

where h : [0, 1] → R is left-continuous, convex, and satisfies h(0) = h(1) = 0, and F−1X is the left

quantile function of X. Right-continuity of h is shown in the proof of Theorem 2.1 of Furman et

al. (2017). Hence, h is continuous since ρ̃ is finite on Lq.

Next, we show that h has to be the constant 0. Suppose for the purpose of contradiction that

h is not always 0. Since h is convex and h(0) = h(1) = 0, it must be non-positive, and there exists

a smallest minimal point s = min(arg mint∈[0,1] h(t)) with h(s) < 0. Note that h is convex and

nonlinear in any neighbourhood of s. Hence, for any ε > 0 with [s− ε, s+ ε] ⊆ [0, 1],

∫ s+ε

s−ε
(t− s)dh(t) = εh(s+ ε) + εh(s− ε)−

∫ s+ε

s−ε
h(t)dt > 0. (13)

13This lemma may be seen as a special result on functionals that collapse to the mean; see e.g., Bellini et al. (2021)

for other results on such functionals.
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Denote by A = [s− ε, s+ ε]. Let U be a uniform random variable on [0, 1], and

V = (2s− U)1{U∈A} + U1{U 6∈A}.

We take ε > 0 small enough so that R(U, V ) > r. This is possible since R(U, V )→ 1 as ε ↓ 0. We

can easily check that U + V = 2s1{U∈A} + 2U1{U 6∈A}. Using (13), we have

ρ(2U)− ρ(U +V ) =

∫ 1

0
2tdh(t)−

∫ 1

0

(
2t1{t6∈A} + 2s1{t∈A}

)
dh(t) =

∫ s+ε

s−ε
(2t− 2s)dh(t) > 0. (14)

On the other hand, note that ρ(U) = ρ(V ) because V is uniformly distributed on [0, 1], and ρ is

law invariant. Since ρ is additive on X 2
r , we have

ρ(U + V ) = ρ(U) + ρ(V ) = ρ(U) + ρ(U) = ρ(2U).

This leads to a contradiction. Hence, h is a constant 0, which implies that ρ̃ is also 0. Therefore,

ρ(X) = E[X] for all X ∈ X .

The case of X = L∞ is analogous. The only difference in the L∞ case is that one needs to

further argue that, if h jumps at 0, then equation (14) holds. If h has a jump at 0, then h is not a

constant on the interval [0, 2ε] for any ε > 0. Since h is not a constant on [0, 2ε], and h is convex,

we get that (14) holds with s = ε. This violates the additivity of ρ on X 2
r . The case that h jumps

at 1 is similar. Therefore, h has no jump at 0 or 1. The rest of the proof is the same as in the case

of Lp for p ∈ [1,∞).

Lemma 2 also reveals the reason why r = 1 is not included in Theorem 3. Indeed, assum-

ing continuity, additivity on X 2
1 is precisely comonotonic-additivity. This property is satisfied by

distortion risk measure (Wang et al., 1997) – more broadly: for any signed Choquet integral, e.g.,

Wang et al. (2020) – not necessarily equal to the mean. For instance, the ES-based Euler alloca-

tion principle leads to the risk measure ρ being an ES, which is additive for comonotonic random

variables.

4.3 Relaxing law invariance

Next, we relax law invariance in the assumption of the risk measure ρ appearing in top-down

consistency. Absence of law invariance means that the total capital can be assessed not only based

on the distribution of the total risk, but also on other characteristics, such as scenario-based analysis;

see Wang and Ziegel (2021) for a theory of non-law invariant risk measures in risk management. In
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the next result, we will see that allowing for this extra flexibility in the risk assessment does not

give rise to more choices of capital allocation rules; we return to the case of the mean, with respect

to a probability measure possibly different from P. Below, Q � P means that Q is absolutely

continuous with respect to P.

Theorem 4. Let X = Lq for some q ∈ [1,∞), and do not assume that the risk measure ρ is

necessarily law invariant. An allocation rule Λ satisfies properties (i)-(iii) if and only if Λ(X) =

EQ[X] on X d for some probability measure Q� P.

The proof of Theorem 4 follows from similar arguments as in that of Theorem 1, and we only

mention the differences. Law invariance appears in the proof of Theorem 1 through the application

of Lemma 1. Lemma 3 below is a variant of Lemma 1 which does not rely on law invariance. Having

Lemma 3 (a) in place of Lemma 1 leads to a proof of Theorem 4.

Lemma 3. (a) A mapping ρ : Lq → R where q ∈ [1,∞) is continuous and additive if and only if

ρ(X) = ρ(1)EQ[X] on Lq for some probability measure Q� P.

(b) A mapping ρ : L∞ → R is continuous and additive if and only if ρ(X) = ρ(1)EQ[X] on L∞ for

some finitely additive measure Q� P with total mass 1.

Proof. The proof is identical to that of Lemma 1, with the exception that, continuity on L∞ without

law invariance is not sufficient to guarantee Fatou continuity. As a consequence, Q in (8) is not

necessarily a probability measure; instead, Q is only finitely additive. Absolute continuity of Q

with respect to P is obviously necessary; otherwise EQ is not finite.

Remark 6. In the statements of Theorem 4 and Lemma 3, there is an implicit requirement for Q

that EQ is finite on X . This is because Λ and ρ in these results are assumed to take real values. Since

finitely additive measures are not an easy object to work with, we did not include the case q =∞

in Theorem 4, although it is clear that the result holds similarly, and the economic interpretation

remains the same.

5 Concluding remarks

The main result in this short paper reveals a profound conflict between two operational con-

siderations in capital allocation rules: top-down consistency and shrinking independence. Both

properties are potentially useful in different contexts for the design of capital allocation rules. Un-

fortunately, as shown from our impossibility theorem, they do not live well together, and this result

still holds true when we relax some of the conditions in the two properties.
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We do not argue that either property is desirable or not, as desirability clearly depends on

the context. Based on our impossibility theorem, if top-down consistency is required, then (weak)

shrinking independence cannot be achieved, and vice versa. For researchers who take top-down

consistency as granted (which is reasonable in some applications), our main result advises that

hoping for shrinking independence is futile. If top-down consistency is not required, then shrinking

independence can be used, while at the same time upholding diversification properties.

The two properties encode different organizational requirements. On the one hand, top-down

consistency requires capital to be calculated by a centralized approach; the performance of each

line of business is solely understood through its contribution to portfolio risk. On the other hand,

shrinking independence relates to a bottom-up view of the capital allocation process, recognizing

some autonomy to business lines – while diversification should still be reflected in allocated capital,

the risk of individual lines should also be understood in its own right. This tension between top-

down and bottom-up approaches to insurance operations is already foreshadowed in a premium

calculation context by Bühlmann (1985).

Hence, our impossibility theorem adds evidence to the view that there are no universally good

methods for capital allocation; one always needs to carefully consider context-specific priorities in

given applications when designing allocation rules. This observation may also partially explain

why capital allocation has remained an active field of study in finance and insurance, with rich

theoretical and applied research findings; see e.g., the recent advances in Boonen et al. (2017),

Centrone and Rosazza Gianin (2018), Boonen et al. (2020) and Bauer and Zanjani (2021).
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A Two classes of capital allocation rules

In this appendix, we formally define two classes of capital allocation rules. The first class is

based on Euler’s principle. The Euler allocation rule is a top-down method, in which the aggregate

capital is computed via a positively homogeneous risk measure ρ. For λ ∈ Rd, write rρ,X(λ) =

ρ(λ ·X) and let S =
∑d

i=1Xi = 1 ·X. The ρ-based Euler allocation rule is defined as

Λi(X) =
∂rρ,X
∂λi

(1), i = 1, . . . , d.
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The Euler allocation satisfies top-down consistency (ii), due to Euler’s principle for positively ho-

mogeneous functions. More precisely, the function rρ,X is positively homogeneous, meaning that

rρ,X(tλ) = trρ,X(λ) for t > 0 and λ ∈ Rd. Euler’s principle gives

ρ(S) = rρ,X(1) =
d∑
i=1

∂rρ,X
∂λi

(1) =
d∑
i=1

Λi(X).

For a positively homogeneous risk measure, the Aumann-Shapley capital allocation is equival-

ent to the Euler allocation; see e.g., Denault (2001). In case ρ is the standard deviation, the Euler

allocation becomes the covariance principle, defined as

Λi(X) =
Cov(Xi, S)√

Var(S)
, i = 1, . . . , d.

In case ρ is ES at level p, we arrive at the ES-based Euler allocation (2).

The second class of allocation rules is based on stress scenarios. The stress allocation rule of

Millossovich et al. (2021) is defined as Λ(X) = EQX [X] in (1), under the assumption that the Radon-

Nikodym density dQX
dP is invariant under strictly increasing marginal transforms on X. Invariance

is a natural property in stress testing since the choice of the counting units or a transform e.g.,

from asset returns to log-returns, should not affect stress scenarios, as discussed by Millossovich et

al. (2021). Clearly, any stress allocation rule satisfies shrinking independence (iii); indeed, strong

independence (iv) holds.

Examples of stress allocation rules include the mixture-stress allocation in (3), the Spearman

allocation, and the dual Spearman allocation. Assume that each Xi has a continuous distribution

function Fi and write Ui = Fi(Xi). The Spearman allocation is defined via the stress scenario in

(1) as

dQX

dP
=

∏d
i=1 U

θ
i

E[
∏d
i=1 U

θ
i ]

for some θ > 0,

and the dual Spearman allocation is defined via the stress scenario in (1) as

dQX

dP
=

∏d
i=1(1− Ui)−θ

E[
∏d
i=1(1− Ui)−θ]

for some θ ∈ (0, 1),

The name “Spearman” comes from the fact that E[
∏d
i=1 Ui] is a linear transform of the multivariate

Spearman’s rank correlation of X. The Spearman and dual Spearman allocation rules enjoy several

useful properties, including an independence-preserving property, meaning that an independent

vector X under P remains independent under QX.
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