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Abstract

In this paper, we study an optimal insurance problem for a risk-averse individual who

seeks to maximize the rank-dependent expected utility (RDEU) of her terminal wealth, and

insurance is priced via a general distortion-deviation premium principle. We prove necessary

and sufficient conditions satisfied by the optimal solution and consider three orders between the

distortion functions for the buyer and the seller to further determine the optimal indemnity.

Finally, we analyze examples under three distortion-deviation premium principles to explore

the specific conditions under which no insurance or deductible insurance is optimal.
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1 Introduction

Optimal insurance design is an important topic in insurance economics and has been studied for

decades. To reduce the non-hedgeable claim risk X, the buyer of insurance can transfer part of the
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claim I(X) (called the indemnity) to the insurer by paying a premium to the insurer, which is a

functional of I(X). The optimal insurance design problem is to determine the optimal indemnity

I∗(X) that maximizes some measure of the buyer’s well-being.

The optimal insurance design problem was first studied by Arrow [1, 2], in which the insurer

is assumed to be risk neutral and the buyer is assumed to be risk averse, as characterized, for

instance, by having a concave utility. The buyer finds the optimal indemnity to maximize her

expected utility (EU) when premium equals an increasing function of the indemnity’s expectation,

and the optimal indemnity is deductible insurance. See, for instance, the discussion in Promislow

and Young [20], Wang [28, 29], and Chi and Zhou [9], among many other papers.

The literature on optimal insurance design with EU preferences is large. However, some re-

search reveals that EU theory fails to explain numerous common phenomena; therefore, Quiggin

[21] proposed rank-dependent expected-utility theory (RDEU), which overcomes some drawbacks

of EU theory. Recently, a number of researchers considered RDEU preferences in an insurance

setting. For example, Bernard et al. [4] solved an optimal insurance design problem under RDEU

theory with a concave utility function and an inverse-S shaped probability distortion function. By

applying the technique of quantile formulation, they solve the problem and find that the optimal

contract is the classical deductible one for both large and small losses. But, their results failed

to exclude the situations that the buyer might misreport actual losses. In order to rule out this

severe moral hazard problem, Xu et al. [30] revisited the problem of Bernard et al. [4] by adding

an incentive-compatibility constraint, which requires the indemnity and retention functions to be

increasing with respect to the loss. Ghossoub [12] extended Bernard et al. [4] and Xu et al. [30]

by including a cost for state verification.

In the actuarial literature, researchers also use distorted probabilities when computing pre-

miums. Young [31] studied an expected utility maximization problem under Wang’s premium

principle (that is, a Choquet integral with a non-decreasing concave distortion function).1 Wang

et al. [26, 27] explored a class of risk functionals, called signed Choquet integrals. As compared

with the more usual increasing Choquet integrals, a signed one is not necessarily monotone. They

proved various properties of signed Choquet integrals, and found that many useful mathemati-

cal results for traditional risk functionals continue to hold for the signed Choquet integrals, that

is, they do not depend on the property of monotonicity. We note that some popular premium

principles, such as the mean-variance and the mean-standard deviation principles, are indeed not

monotone.

In this paper, we study an optimal insurance problem for an individual who seeks to maximize

the rank-dependent expected utility (RDEU) of her terminal wealth. Motivated by Wang et al.

[26, 27], we assume that insurance is priced via a non-monotone premium principle. In Theorem

1We emend Theorem 3.6 in Young [31] by the work in this paper, specifically, in Corollary 3.5.
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3.1, we provide necessary and sufficient conditions satisfied by the optimal solution. Furthermore,

we define order relations between the distortions of the buyer and the seller based on those from

the classic literature of stochastic orders, namely, first-order stochastic dominance, hazard rate

order, and likelihood ratio order. We determine properties of the optimal insurance based on these

orderings of the distortion functions. Finally, we revisit examples from Young [31] and extend them

to explore the specific conditions under which no insurance or deductible insurance is optimal.

The approach in our paper is closely related to Chi and Zhuang [8], who focused on heteroge-

neous beliefs about the loss distributions in an optimal insurance design problem. We extend their

model to consider a general premium principle without monotonicity under a risk-averse rank-

dependent expected utility. Our premium principle not only includes the traditional expectation

measure, expected shortfall, but also other non-monotone deviation measures, such as the Gini

deviation and the mean-median deviation, which can be seen as an analog of the mean-standard

deviation premium principle.2 Our work differs from Chi and Zhuang [8] in that we use (1) a more

general premium principle, that is, we introduce the distortion-deviation premium principle; (2) a

more general measure of risk aversion of the buyer, as measured by risk-averse RDEU; and, (3) a

broader class of allowable indemnity policies. That said, the proofs of the results in Section 3 for

our more general model closely follow those of corresponding results in Chi and Zhuang [8].

The remainder of this paper is organized as follows. In Section 2, we formulate the model

of our problem. In Section 2.1, we introduce the distortion-deviation premium principle, and in

Section 2.2, we propose the buyer’s problem under rank-dependent expected utility. By invoking

the Comonotonic Improvement Theorem (see Landsberger and Meilijson [18]), we show that we

can restrict our attention to indemnities I(X) such that I(X) and X − I(X) are comonotonic,

and we prove the existence of an optimal indemnity I∗. We also prove necessary and sufficient

conditions for the uniqueness of I∗. Section 3 contains our main results, beginning with Theorem

3.1, which characterizes an optimal indemnity. By considering three orders between the distortion

functions of the buyer and the seller, we further determine the form of an optimal indemnity.

Section 4 contains specific examples to illustrate our results, and Section 5 ends the paper.

2 Model

Throughout the paper, let (Ω,F ,P) be a probability space. An individual faces a random loss

X, with X ≥ 0 almost surely on Ω and with EX < ∞, and she wishes to indemnify her loss via

insurance. We assume that she chooses an indemnity from the following set of functions on R+:

I =
{
I : I maps R+ to R+, 0 ≤ I(x) ≤ x for all x ∈ R+

}
, (2.1)

2See Example 3 in Wang et al. [27], who proved that the standard deviation can be shown to equal a supremum

over a collection of signed Choquet integrals.
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Consider the L1 norm on I; specifically, if FX is the cumulative distribution function of X, then

the L1(FX) norm of I ∈ I equals

||I||1 =

∫ ∞
0

∣∣I(x)
∣∣ dFX(x). (2.2)

(I, || · ||1), modulo the set of null functions, those for which their L1(FX) norm equals 0, or

equivalently, those that are equal to 0 almost everywhere with respect to the measure induced by

FX , forms a closed subset of the complete, normed vector space L1(FX). Note that ||I||1 ≤ EX <

∞ for all I ∈ I.

In the next section, we describe the principle that the insurer uses to compute its premium; in

the section after that, we describe the optimization problem faced by the buyer of insurance.

2.1 Distortion-deviation premium principle

We assume that the insurer computes premium for insurance according to the so-called distortion-

deviation premium principle. We introduce this premium principle as an analog of the mean-

standard deviation premium principle, which computes premiums as follows:

(1 + θ)EY + α
√

VarY , (2.3)

for some constants θ ≥ 0 and α ≥ 0, and for any non-negative random variable Y with finite

second moment. In the following, we describe the two components of this new distortion-deviation

premium principle; each component creates an analogy of (1 + θ)EY and α
√

VarY , in turn.3

Wang [29] introduced the well-known distortion premium principle as a generalization of his

work with the proportional hazards transform in [28]. Let D denote the collection of continuous,

concave distortions; specifically,

D =
{
j : j maps [0, 1] to R+, j continuous and concave, j(0) = 0

}
.

Note that we do not require j ∈ D to be monotone. Then, for a distortion j ∈ D, define ρj on the

set of random variables X = {X : P-ess inf X > −∞
}

by

ρj(Y ) =

∫ 0

−∞

(
j(SY (t))− j(1)

)
dt+

∫ ∞
0

j(SY (t)) dt, (2.4)

3In research related to variance or standard deviation premium principles, Gajek and Zagrodny [11] found the

optimal insurance under the standard premium principle to minimize the variance of retained losses; they showed that

the optimal indemnity is deductible insurance with a constant proportion for losses over the deductible. Kaluszka

[16, 17] derived the optimal reinsurance indemnity to minimize the variance of retained losses, under more general

variance-related premium principles, and obtained the same form of indemnity as did Gajek and Zagrodny [11].

When minimizing the probability of insurer ruin or drawdown, Liang et al. [19] and Azcue et al. [3] showed that the

same form of per-loss reinsurance is optimal under the mean-variance premium principle and under the diffusion

approximation to the classical Cramér-Lundberg risk model.
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in which SY is the survival function of Y , that is, SY (t) = P(Y > t).4 In writing these integrals,

we assume they are finite.

The risk measure ρg(Y ) generalizes (1 + θ)EY . Indeed, if g is given by g(p) = (1 + θ)p for

p ∈ [0, 1], then ρg(Y ) = (1+θ)EY . We use ρg(Y ) to generalize the term (1+θ)EY in our premium

principle, and we assume that g ∈ D is non-decreasing because EY is non-decreasing in Y . One

usually assumes that g(1) ≥ 1, but we will allow g(1) < 1 for more generality.

Rockafellar et al. [22] introduced the idea of deviation measures, and Wang et al. [27] and Wang

et al. [26] unified risk measures (such as the distortion premium principle) and deviation measures

into a common framework called distortion riskmetrics. To create an analog of α
√

VarY , which is

itself a type of deviation measure, we consider ρh(Y ) for h ∈ D with h(0) = h(1), which necessarily

equals 0 because h ∈ D implies h(0) = 0. Note that h(0) = h(1) = 0 implies that probabilities

that are certain (either 0 or 1) are not distorted by h because it is impossible to deviate from a

probability of 0 or 1. We label such an h a deviation distortion. Recall that h is concave because

it is in D.

We can obtain a symmetric deviation distortion h by starting with any non-decreasing distor-

tion h̃ ∈ D and defining h by

h(p) = h̃(p) + h̃(1− p)− h̃(1), (2.5)

for all p ∈ [0, 1]. The distortion h ∈ D defined by (2.5) is symmetric with respect to p = 1/2, and

ρh(Y ) = ρh̃(Y ) + ρh̃(−Y ). Nevertheless, we wish to allow for non-symmetric deviation distortions

h, so we do not assume the form in (2.5).

In the following example, we present two concave distortions h ∈ D that are symmetric with

respect to p = 1/2, which implies h(0) = h(1). Thus, these two distortions yield deviation measures

via h 7→ ρh.

Example 2.1. Suppose h(p) = p− p2, which yields the Gini deviation measure defined by

ρh(Y ) =
1

2
E
∣∣Y − Y ′∣∣, (2.6)

in which Y ′ is an i.i.d. copy of Y . If we define h̃ by

h̃(p) =
3

2
p− 1

2
p2,

then h̃ is increasing, concave with h̃(1) = 1, that is, h̃ is a traditional distortion, and h and h̃

satisfy (2.5).

4We assume that distortions are concave from the outset so that ρj preserves convex order, which is equivalent

to second-order stochastic dominance (SSD) with equal means; see, for example, Wang and Young [25]. Specifically,

if Y1 �cx Y2, then ρj(Y1) ≤ ρj(Y2). The consistency between the concavity of j and ρj preserving convex order does

not require j ∈ D to be monotone; see Theorem 3 in Wang et al. [26].
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Another useful symmetric distortion is given by h(p) = p∧ (1−p) for p ∈ [0, 1]. This distortion

yields the mean-median deviation measure defined by

ρh(Y ) = min
y∈R

E
∣∣Y − y∣∣. (2.7)

Based on the discussion preceding Example 2.1, we define the distortion-deviation premium

principle π for Y ∈ X as follows:

π(Y ) = ρg(Y ) + ρh(Y ), (2.8)

in which g, h ∈ D are such that g is non-decreasing and h is a deviation distortion. Throughout

this paper, we assume that X, g, and h are such that π(I(X)) is finite for all I ∈ I.

The representation of π in (2.8) is not unique; however, there is a unique representation of g+h

as the sum of a linear function and a deviation distortion, as we prove in the following proposition.

Proposition 2.1. For π given in (2.8), define θ > −1 by

θ = g(1)− 1, (2.9)

and define k ∈ D by

k(p) = g(p) + h(p)− (1 + θ)p. (2.10)

Then, k(0) = k(1) = 0, and

π(Y ) = (1 + θ)EY + ρk(Y ), (2.11)

for all Y ∈ X . Moreover, the representation of g+h as the sum of a linear function and a deviation

distortion is unique.

Proof. The line (1 + θ)p is a secant of the graph of g + h. Because g + h is concave, then it lies

above this secant, which implies that k defined in (2.10) is non-negative. It is easy to see that k

is concave, and the definition of θ in (2.9) implies k(0) = k(1) = 0, so k is a deviation distortion.

It is also straightforward to show that the representation g(p) + h(p) = (1 + θ)p+ k(p), with k a

deviation distortion, is unique.

We call the representation of π in (2.11) the canonical representation, and we use it in the

remainder of this paper.5 The canonical representation in (2.11) highlights the parallel between

the distortion-deviation premium principle and the mean-standard deviation premium principle in

(2.3) because the first terms match (except that we naturally require θ > −1) and because ρk is a

measure of deviation. We remark that in case h ≡ 0, that is, in the absence of the deviation term

5Throughout this paper, we will use ρj as in (2.4) to represent a distortion risk measure or deviation measure,

and we will use π to specifically mean the distortion-deviation premium principle given in (2.11).
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in (2.8), the distortion premium itself can be decomposed into an expected-value premium and a

non-zero distortion deviation according to Proposition 2.1.

The following lemma lists some useful properties of π. We present the lemma without proof

because the proof is standard in the literature on distortions; see Wang et al. [26] or Wang et al.

[27] for a proof of this lemma when the distortion is not necessarily monotone.

Lemma 2.1. The distortion-deviation premium principle given in (2.11) satisfies the following:

1. For all Y ∈ X and c ∈ R, π(Y + c) = π(Y ) + (1 + θ)c.

2. For all Y ∈ X and c ≥ 0, π(cY ) = cπ(Y ).

3. For all Y,Z ∈ X and λ ∈ [0, 1], π(λY + (1− λ)Z) ≤ λπ(Y ) + (1− λ)π(Z).

4. If Y,Z ∈ X are such that Y �cx Z, then π(Y ) ≤ π(Z).

5. If Y,Z ∈ X are comonotonic, that is, if (Y (ω)− Y (ω′))(Z(ω)−Z(ω′)) ≥ 0 almost surely on

Ω× Ω, then π(Y + Z) = π(Y ) + π(Z).

2.2 Buyer’s problem

The individual, who faces the non-negative random loss X, chooses an indemnity from I to max-

imize her rank-dependent expected utility of terminal wealth:

ρb
(
u(w −X + I(X)− πI)

)
=

∫ 0

−∞

(
b ◦ P

(
u(w −X + I(X)− πI) > t

)
− b(1)

)
dt

+

∫ ∞
0

b ◦ P
(
u(w −X + I(X)− πI) > t

)
dt, (2.12)

in which πI = π(I(X)). In (2.12), u ∈ C2(R) is a strictly increasing, concave utility function, b

is a continuously differentiable, strictly increasing, convex distortion function with b(0) = 0 and

b(1) = 1, w is the individual’s initial wealth, and πI is computed according to the distortion-

deviation premium principle in (2.11).6 One can think of u and b as measuring the buyer’s risk

aversion concerning wealth and uncertainty, respectively.7 Throughout this paper, we assume that

b and u are such that ρb
(
u(w − I − πI)

)
is finite for all I ∈ I.

6If X has finite support, then we will not need u to be defined on all of R. Also, assuming b(1) = 1 is without

loss of generality because, if we were to scale b by any positive constant, then ρb would scale by that same constant,

which would not affect the optimality of a given indemnity. Finally, because we assume the distortion b is convex,

we do not include inverse-S shaped distortions, as studied by Bernard et al. [4].
7Putting our model in the format of Table 2 in Ghossoub and He [13], the buyer of insurance (that is, Party

A) has a concave utility u and a concave probability weighting via the convex distortion b. Furthermore the seller

of insurance (that is, Party B) has a linear utility and a concave probability weighting via the concave distortion

(1 + θ)p+ k(p), but the seller’s distortion is not necessarily monotone.
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We prove the following lemma that will allow us to restrict our attention to indemnities I such

that I(X) and X − I(X) are comonotonic, that is, the set of functions defined by

Ic =
{
I ∈ I : 0 ≤ I(x)− I(y) ≤ x− y, for all 0 ≤ y ≤ x

}
. (2.13)

Lemma 2.2. Because ρb
(
u(w −X + I(X)− πI)

)
in (2.12) is decreasing in convex order,

sup
I∈I

ρb
(
u(w −X + I(X)− πI)

)
= sup

I∈Ic
ρb
(
u(w −X + I(X)− πI)

)
.

Proof. By the Comonotonic Improvement Theorem (see, for example, Theorem 10.50 in Rüschendorf

[23]), because EX <∞, for any allocation (I(X), X−I(X)), with I ∈ I, there exists a comonotonic

allocation (Ic(X), X − Ic(X)), with Ic ∈ Ic, such that

Ic(X) �cx I(X),

and

X − Ic(X) �cx X − I(X).

Then, because g and h are concave, π is increasing in convex order (see Property 4 in Lemma 2.1),

which implies

πIc ≤ πI ,

from which it follows (because u is increasing)

u(w −X + I(X)− πIc) ≥ u(w −X + I(X)− πI), a.s.,

and taking expectations with respect the distorted (non-additive) measure b ◦ P as in (2.12) gives

us

ρb
(
u(w −X + I(X)− πIc)

)
≥ ρb

(
u(w −X + I(X)− πI)

)
.

Moreover, because u is concave and b is convex, ρb(u(·)) is decreasing in convex order (see, for

example, Chew et al. [7]), which implies

ρb
(
u(w −X + Ic(X)− πIc)

)
≥ ρb

(
u(w −X + I(X)− πIc)

)
.

By combining the previous two inequalities, we obtain

ρb
(
u(w −X + Ic(X)− πIc)

)
≥ ρb

(
u(w −X + I(X)− πI)

)
,

and the lemma follows.

Remark 2.1. There are two approaches to modeling in the optimal-insurance problem: (1) Allow

risk preferences, as modeled by (1 + θ)p + k(p) for the seller of insurance and by b and u for the

buyer of insurance, to be as general as possible, but restrict the set of possible indemnities in such
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a way so that one gets meaningful results. (2) Restrict risk preferences (in our case, by requiring

that b be convex), but allow the set of possible indemnities to be rather general, again, in such a

way so that one gets meaningful results. We chose to do the latter, and we use the convexity of

b in the proof of Lemma 2.2 to prove that we can restrict our attention to indemnities in Ic. By

contrast, we could have restricted our attention to indemnities in Ic from the outset and allowed

b to be strictly increasing, but not necessarily convex. Indeed, in the following, all our results hold

if we had restricted indemnities to lie in Ic and had assumed b is strictly increasing, instead of

strictly increasing and convex, unless otherwise stated in the proposition.

Lemma 2.2 implies that the individual’s problem is equivalent to the following:
sup
I∈Ic

ρb
(
u(w −X + I(X)− πI)

)
,

in which πI = π(I(X)) = (1 + θ)EI(X) + ρk(I(X)),

(2.14)

with θ > −1 and k ∈ D satisfying k(0) = k(1) = 0. In the next proposition, we prove that (2.14)

has a solution in Ic, and we need the following lemma in the proof of that proposition.

Lemma 2.3. (Ic, || · ||1) is a compact subset of the complete, normed vector space L1(FX), in

which || · ||1 is given in (2.2).

Proof. We prove this lemma via information from the survey paper by Hanche-Olsen and Holden

[14]. First, a subset of a metric space is compact if and only if it is complete and totally bounded.

Ic is a closed subset of the complete space L1(FX); therefore, Ic is complete. To prove that Ic is

totally bounded, we rely on Lemma 1 of Hanche-Olsen and Holden [14].

First, because for any I ∈ Ic, || · ||1 ≤ EX <∞; thus, Ic is bounded by EX. For ε > 0, because

EX < ∞, there exists M > 0 such that
∫∞
M x dFX(x) < ε. Then, because 0 ≤ I(x) ≤ x for all

x ≥ 0 and for all I ∈ Ic, it follows that
∫∞
M I(x) dFX(x) < ε for all I ∈ Ic.

Next, choose N =
⌊
M
ε

⌋
+ 1, and define Q =

⋃N
i=1Qi, in which Qi =

(
(i− 1)ε, iε

]
. We see that

the Qi, for i = 1, . . . , N are mutually non-overlapping and of equal length ε. Moreover, Q ⊃ (0,M ]

and for any x, y ∈ Qi, we have |x − y| < ε. Let P : Ic → R+ denote the projection mapping of

L1(FX) onto the linear span of the characteristic functions of Qi given by

(
P (I)

)
(x) =


1

ε

∫ iε

(i−1)ε
I(y)dy, x ∈ Qi, for some i = 1, . . . , N,

0, otherwise.

Then, we have for I ∈ Ic,

||I − P (I)||1 =

∫ ∞
0

∣∣I(x)−
(
P (I)

)
(x)
∣∣dFX(x) =

∫ Nε

0

∣∣I(x)−
(
P (I)

)
(x)
∣∣dFX(x) +

∫ ∞
Nε

I(x)dFX(x)
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≤
N∑
i=1

∫ iε

(i−1)ε

∣∣∣∣∣I(x)− 1

ε

∫ iε

(i−1)ε
I(y)dy

∣∣∣∣∣ dFX(x) +

∫ ∞
M

I(x)dFX(x)

≤
N∑
i=1

∫ iε

(i−1)ε

1

ε

∫ iε

(i−1)ε
|I(x)− I(y)| dy dFX(x) + ε

≤ ε
(
FX(Nε) + 1

)
≤ 2ε,

in which the third inequality follows from |I(x)− I(y)| ≤ |x− y| < ε, for any x, y ∈ Qi.
Moreover, if I1, I2 ∈ Ic and ||P (I1)− P (I2)||1 < ε, then ||I1 − I2||1 < 5ε. Indeed, by using the

triangle inequality in L1-norm, we obtain

||I1 − I2||1 =
∣∣∣∣(P (I1)− I1

)
−
(
P (I2)− I2

)
−
(
P (I1)− P (I2)

)∣∣∣∣
1

≤
∣∣∣∣P (I1)− I1

∣∣∣∣
1

+
∣∣∣∣P (I2)− I2

∣∣∣∣
1

+
∣∣∣∣P (I1)− P (I2)

∣∣∣∣
1

≤ 2ε+ 2ε+ ε = 5ε.

Furthermore, P (Ic) is bounded; indeed, for any I ∈ Ic,

||P (I)||1 =

N∑
i=1

∫ iε

(i−1)ε

∣∣(P (I)
)
(x)
∣∣dFX(x) =

N∑
i=1

∫ iε

(i−1)ε

1

ε

∫ iε

(i−1)ε
I(y) dy dFX(x)

=
N∑
i=1

P(X ∈ Qi)
ε

∫ iε

(i−1)ε
I(y) dy ≤

N∑
i=1

1

ε

∫ iε

(i−1)ε
y dy =

1

2
N2ε <∞.

Also, because P (Ic) is finite dimensional, it follows that P (Ic) is totally bounded. Finally, Lemma

1 in Hanche-Olsen and Holden [14] implies that Ic is totally bounded.

Proposition 2.2. There exists I∗ ∈ Ic such that

sup
I∈Ic

ρb
(
u(w −X + I(X)− πI)

)
= ρb

(
u(w −X + I∗(X)− πI∗)

)
. (2.15)

Proof. From Lemma 2.3, we know that Ic is compact under the || · ||1-norm. Also, ρb
(
u(w −X +

I(X) − πI)
)

is continuous in I with respect to this metric and bounded above by ρb(u(w)) =

b(1)u(w) <∞. Thus, among other things, the supremum in (2.14) is finite.

Now, define a sequence in Ic as follows: for n ∈ N, there exists In ∈ Ic such that

ρb
(
u(w −X + In(X)− πIn)

)
+

1

n
≥ sup

I∈Ic
ρb
(
u(w −X + I(X)− πI)

)
. (2.16)

Because Ic is a compact metric space, the sequence {In} has a subsequence {Ink} that converges to

a function I∗ in Ic. Also, convexity of b and concavity of u guarantee that ρb
(
u(w−X+I(X)−πI)

)
is continuous in I, which implies

lim
nk→∞

ρb
(
u(w −X + Ink(X)− πInk )

)
= ρb

(
u(w −X + I∗(X)− πI∗)

)
.

This limit and inequality (2.16) imply (2.15).
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Remark 2.2. The existence result of Proposition 2.2 slightly extends Part 1 of Lemma 2.1 of Chi

and Zhuang [8]. In their proof, Chi and Zhuang [8] use the L∞ norm because they assume their

random variables are bounded, while we use the L1(FX) norm. Note that any random variable in

L∞ is automatically in L1(FX).

In the next section, we solve the optimization problem in (2.14), and we need the following

results, so we present them here. Because I ∈ Ic is Lipschitz continuous, there exists a function

I ′ such that

I(x) =

∫ x

0
I ′(t) dt =

∫ ∞
0

I ′(t)1{x>t} dt, (2.17)

Also, we can rewrite π = π(I(X)), for any I ∈ Ic, via the following sequence of equalities, in which

we define S−1Y by

S−1Y (p) = inf
{
t ∈ R : SY (t) ≤ p

}
,

for 0 ≤ p ≤ 1, and in which we use S−1I(X) = I(S−1X ) (except at a countable number of points) from

Proposition 4.1 of Denneberg [10]:

π(I(X)) =

∫ ∞
0

[
(1 + θ)SI(X)(t) + k(SI(X)(t))

]
dt

=

∫ 1

0
S−1I(X)(p) d((1 + θ)p+ k(p))

=

∫ 1

0
I(S−1X (p)) d((1 + θ)p+ k(p))

= −
∫ ∞
0

I(t) d
(
(1 + θ)SX(t) + k(SX(t))

)
=

∫ ∞
0

I ′(t)
(
(1 + θ)SX(t) + k(SX(t))

)
dt. (2.18)

We can similarly rewrite ρb
(
u(w−X + I(X)− πI)

)
in (2.12), as we prove in the following lemma.

Lemma 2.4. The following identity holds:

ρb
(
u(w −X + I(X)− πI)

)
=

∫ 1

0
u(w −R(S−1X (1− p))− πI) db(p)

=

∫ ∞
0

u(w −R(x)− πI) db(FX(x)), (2.19)

in which R(x) = x− I(x).

Proof. From pages 61f of Denneberg [10], we know that the expression for ρb
(
u(w−X+I(X)−πI)

)
in (2.12) equals ∫ b(1)

0
Šb◦P, u(w−R(X)−πI)(p

′) dp′, (2.20)
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in which Šµ,f(X) denotes any (pseudo-)inverse of Sµ,f(X)(·) := µ(f(X) > · ); see, page 5 of Den-

neberg [10] for the definition of a (pseudo-)inverse of a non-increasing function. Now, let p′ = b(p)

in (2.20) to obtain ∫ 1

0
Šb◦P, u(w−R(X)−πI)(b(p)) db(p). (2.21)

Next, from Proposition 4.1 of Denneberg [10], because u is increasing, (2.21) equals∫ 1

0
u
(
Šb◦P, w−R(X)−πI (b(p))

)
db(p), (2.22)

and because b is increasing, (2.22) simplifies to∫ 1

0
u
(
ŠP, w−R(X)−πI (p)

)
db(p). (2.23)

Moreover, because R(·) is a non-decreasing function, we can rewrite (2.23) as∫ 1

0
u(w −R(S−1X (1− p))− πI) db(p),

which is the first expression for ρb
(
u(w − X + I(X) − πI)

)
in (2.19). Recall that we can use

any (pseudo-)inverse of SR(X) in this integral, including R ◦ S−1X , which equals S−1R(X), except at

countably many points. Finally, if we let x = S−1X (1 − p), then we get the second expression in

(2.19).

We end this section with a proposition that gives two conditions under which I∗ ∈ Ic in (2.15)

is unique, in which uniqueness means that if I1, I2 ∈ Ic are optimal, then I1(X) = I2(X), P-a.s.

We rely on the expression for ρb
(
u(w −X + I(X)− πI)

)
in (2.19).

Proposition 2.3. Assume the utility function u is strictly concave. Then, the optimal indemnity

I∗ ∈ Ic is unique if and only if at least one of the following two conditions holds:

1. θ 6= 0, in which θ equals the proportional loading factor in the distortion-deviation premium

principle given in (2.11).

2. ess inf X = 0, in which ess inf is the P-essential infimum of X.

Proof. Proof of the if statement: Let M denote max
I∈Ic

ρb
(
u(w − X + I(X) − πI)

)
. Suppose

I1, I2 ∈ Ic are such that, for i = 1, 2,

ρb
(
u(w −X + Ii(X)− πi)

)
=M,

in which πi = π(Ii(X)). Then, for λ ∈ [0, 1], we know Iλ := λI1 + (1 − λ)I2 ∈ Ic, and from

Property 3 of Lemma 2.1, we have

πIλ ≤ λπ1 + (1− λ)π2,
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which implies, because u is increasing and concave,

M≥ ρb
(
u(w −X + Iλ(X)− πIλ)

)
≥ ρb

(
u(w −X + Iλ(X)− (λπ1 + (1− λ)π2))

)
=

∫ ∞
0

u(w − x+ λ(I1(x)− π1) + (1− λ)(I2(x)− π2)) db(FX(x))

≥ λ
∫ ∞
0

u(w − x+ I1(x)− π1) db(FX(x)) + (1− λ)

∫ ∞
0

u(w − x+ I2(x)− π2) db(FX(x))

=M.

Thus,

ρb
(
u(w −X + Iλ(X)− πIλ)

)
=M,

for all λ ∈ [0, 1], which implies, because u is strictly concave,

w −X + I1(X)− π1 = w −X + I2(X)− π2,

almost surely with respect to the distorted (non-additive) measure b ◦ P, or equivalently, because

b is strictly increasing,

I1(X)− π1 = I2(X)− π2, P-a.s. (2.24)

Now, suppose θ 6= 0, as in Condition 1; then,∫ 1

0
S−1I1(X)−π1(p) d((1 + θ)p+ k(p)) =

∫ 1

0
S−1I2(X)−π2(p) d((1 + θ)p+ k(p)),

which implies∫ 1

0
S−1I1(X)(p) d((1 + θ)p+ k(p))− (1 + θ)π1 =

∫ 1

0
S−1I2(X)(p) d((1 + θ)p+ k(p))− (1 + θ)π2,

which reduces to

θπ1 = θπ2.

Thus, because θ 6= 0, we have π1 = π2, and (2.24) implies I1(X) = I2(X), P-a.s.

Next, suppose ess inf X = 0, as in Condition 2, that is,

sup
{
t ∈ R : P(X < t) = 0

}
= 0. (2.25)

Define a sequence {xn : n ∈ N} ⊂ R+ as follows: for n ∈ N, because equation (2.25) implies

P(X < 1/n) > 0, then there exists xn ∈ [0, 1/n) at which (2.24) holds with X = xn. Indeed, if

there were no value of x ∈ [0, 1/n) at which equation (2.24) holds with X = x, then (2.24) would

not hold with at least probability P(X < 1/n) > 0, a contradiction. Then, we have, for n ∈ N,

π1 − π2 = I1(xn)− I2(xn).
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Because each Ii is continuous with Ii(0) = 0, and because limn→∞ xn = 0, we have

π1 − π2 = lim
n→∞

(
I1(xn)− I2(xn)

)
= I1(0)− I2(0) = 0,

or equivalently, π1 = π2, which again implies I1(X) = I2(X), P-a.s.

Proof of the only if statement: Suppose neither condition holds, that is, θ = 0 and a :=

ess inf X > 0. Let I∗ be an optimal indemnity, which we know exists from Proposition 2.2.

If I∗(a) = 0, then define an indemnity function I∗a by

I∗a(x) = min
(
I∗(x) + a, x

)
, x ≥ 0.

Because I∗ ∈ Ic is non-decreasing and 1-Lipschitz (specifically, 0 ≤ I∗(x) − I∗(y) ≤ x − y for all

0 ≤ y ≤ x), we have, for x ≥ a,

I∗(x) + a ≤ I∗(a) + x = x.

Hence,

I∗a(x) = min
(
I∗(x) + a, x

)
= x1{x<a} + (I∗(x) + a)1{x≥a}, x ≥ 0.

Because both I∗ + a and x are non-decreasing and 1-Lipschitz, so is their minimum. Also, from

the definition of I∗a , we clearly have 0 ≤ I∗a(x) ≤ x for x ≥ 0. We have, thus, shown I∗a ∈ Ic.
On the other hand, I∗a(X) = I∗(X)+a (P-)almost surely, because X ≥ a almost surely. Because

θ = 0, Property 1 in Lemma 2.1 implies πI∗a = πI∗ + a. Hence, I∗a(X)− πI∗a = I∗(X)− πI∗ almost

surely, which implies

ρb
(
u(w −X + I∗a(X)− πI∗a )

)
= ρb

(
u(w −X + I∗(X)− πI∗)

)
,

or equivalently, I∗a is an optimal indemnity, distinct from I∗ because a > 0.

If I∗(a) > 0, then define another indemnity function I∗a by

I∗a(x) =
(
I∗(x)− I∗(a)

)
+
, x ≥ 0.

It is straightforward to verify I∗a ∈ Ic. Moreover, I∗a(X) = I∗(X) − I∗(a) almost surely. Again,

θ = 0 implies πI∗a = πI∗ − I∗(a). Hence, I∗a(X) − πI∗a = I∗(X) − πI∗ almost surely, and I∗a is an

optimal indemnity, distinct from I∗ because I∗(a) > 0.

In either case, I∗ is not the unique optimal indemnity.

Remark 2.3. The if statement of Proposition 2.3 is similar to Part 2 of Lemma 2.1 of Chi and

Zhuang [8], and the only if statement is new. Note that the proof of the only if statement relies

heavily on I ∈ Ic.
To interpret the results in Proposition 2.3, assume θ = 0 and essinfX > 0. Hypothetically,

imagine that the condition 0 ≤ I(x) ≤ x is not required by an indemnity I. In such a setting,
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adjusting an optimal indemnity function I∗ ∈ Ic by a small amount ε > 0 to a new indemnity

I∗ + ε or I∗ − ε does not change the buyer’s RDEU, since θ = 0. The condition essinfX > 0 gives

some room to further adjust I∗+ε or I∗+ε to a new function Ĩ in Ic, i.e., satisfying 0 ≤ Ĩ(x) ≤ x,

which is also optimal and thus the optimal indemnity is not unique. On the other hand, such an

adjustment is prohibited if essinfX = 0, and it is no longer optimal if θ > 0.

3 Optimal insurance

3.1 Main theorem and orders between distortion functions

We begin this section with the following theorem that characterizes optimal solutions of (2.14),

which we know exist because of Proposition 2.2. Recall that Proposition 2.3 gives necessary and

sufficient conditions for the uniqueness of the optimal indemnity.

Theorem 3.1. An indemnity I∗ ∈ Ic is an optimal solution of (2.14) if and only if it satisfies,

for t ≥ 0,

(I∗)′(t) =


0, L(t) < 0,

v(t), L(t) = 0,

1, L(t) > 0,

(3.1)

almost surely with respect to Lebesgue measure, in which v is some function on R+ taking values

in [0, 1], and L is defined by

L(t) =

∫∞
0 u′(w −R∗(x)− π∗)1{x>t} db(FX(x))∫∞

0 u′(w −R∗(x)− π∗)db(FX(x))
−
(
(1 + θ)SX(t) + k(SX(t))

)
, (3.2)

for t ∈ R+, with R∗(x) = x− I∗(x) and π∗ = π(I∗(X)).

Proof. Suppose I∗ ∈ Ic is the buyer’s optimal indemnity; then, for any I ∈ Ic, the indemnity Iε

defined by

Iε(x) = (1− ε)I∗(x) + εI(x),

for ε ∈ (0, 1), is also in Ic because Ic is closed under convex combinations. Because the premium

principle π is convex (recall Property 3 in Lemma 2.1), we have

πε := π(Iε(X)) = π((1− ε)I∗(X) + εI(X))

≤ (1− ε)π(I∗(X)) + επ(I(X))

=: (1− ε)π∗ + επ.

Because I∗ is optimal,

ρb
(
u(w −Rε(X)− πε)

)
≤ ρb

(
u(w −R∗(X)− π∗)

)
,
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in which Rε(x) = x− Iε(x) and R∗(x) = x− I∗(x). Because u and b are increasing, this inequality

and πε ≤ (1− ε)π∗ + επ imply

ρb
(
u(w −Rε(X)− (1− ε)π∗ − επ)

)
≤ ρb

(
u(w −R∗(X)− π∗)

)
,

or equivalently,

ρb
(
u((w −R∗ − π∗)− ε((R−R∗) + (π − π∗)))

)
≤ ρb

(
u(w −R∗ − π∗)

)
,

which we rewrite, by using (2.19), as∫ ∞
0

u
(
(w −R∗(x)− π∗)− ε((R(x)−R∗(x)) + (π − π∗))

)
db(FX(x))

≤
∫ ∞
0

u(w −R∗(x)− π∗) db(FX(x)). (3.3)

Because u is differentiable and concave and because R−R∗ = I∗ − I, inequality (3.3) implies∫ ∞
0

u(w −R∗(x)− π∗)db(FX(x))

− ε
∫ ∞
0

u′
(
(w −R∗(x)− π∗)− ε((R(x)−R∗(x)) + (π − π∗))

)
×
(
(I∗(x)− I(x)) + (π − π∗)

)
db(FX(x))

≤
∫ ∞
0

u(w −R∗(x)− π∗)db(FX(x)).

After we cancel the term
∫∞
0 u(w −R∗(x)− π∗)db(FX(x)) from each side, divide by ε, and take a

limit as ε→ 0+, we obtain8∫ ∞
0

u′(w −R∗(x)− π∗)
(
(I∗(x)− I(x)) + (π − π∗)

)
db(FX(x)) ≥ 0. (3.4)

Thus, by using (2.17) and (2.18), inequality (3.4) becomes

0 ≤
∫ ∞
0

u′(w −R∗(x)− π∗)
∫ ∞
0

(
(I∗)′(t)− I ′(t)

){
1{x>t} −

(
(1 + θ)SX(t) + k(SX(t))

)}
dt db(FX(x))

=

∫ ∞
0

(
(I∗)′(t)− I ′(t)

) ∫ ∞
0

u′(w −R∗(x)− π∗)
{
1{x>t} −

(
(1 + θ)SX(t) + k(SX(t))

)}
db(FX(x)) dt

=

∫ ∞
0

u′(w −R∗(x)− π∗)db(FX(x)) ·
∫ ∞
0

(
(I∗)′(t)− I ′(t)

)
L(t)dt, (3.5)

in which L is given in (3.2). Because u is increasing, u′(w − R∗ − π∗) > 0 almost surely, which

implies that inequality (3.5) is equivalent to∫ ∞
0

(
(I∗)′(t)− I ′(t)

)
L(t)dt ≥ 0. (3.6)

8It is legitimate to switch the order of integration and limit by the Dominated Convergence Theorem, and we

can take the limit “inside” u′ because u is continuously differentiable.
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Because I ∈ Ic is arbitrary, we deduce that I∗ necessarily satisfies (3.1).

Conversely, suppose I∗ satisfies (3.1); then, the above calculations imply, for any I ∈ Ic,

ρb
(
u(w −R∗ − π∗)

)
− ρb

(
u(w −R− π)

)
≥
∫ ∞
0

u′(w −R∗(x)− π∗)
(
(I∗(x)− I(x)) + (π − π∗)

)
db(FX(x))

=

∫ ∞
0

u′(w −R∗(x)− π∗)db(FX(x)) ·
∫ ∞
0

(
(I∗)′(t)− I ′(t)

)
L(t)dt ≥ 0,

which implies that I∗ is optimal.

Remark 3.1. Theorem 3.1 is parallel to Theorem 3.1 in Chi and Zhuang [8]. The expectation

EP and the probability function t 7→ Q(X > t) in their theorem correspond to expectation with

respect to the b-distorted probability measure and the (possibly non-monotone) distorted probability

function t 7→ (1 + θ)SX(t) + k(SX(t)) in (3.2), respectively.

In corollaries of Theorem 3.1, we consider three orders between the distortion functions to

determine optimal solutions of (2.14). One can loosely think of (1 + θ)SX(x) + k(SX(x)) and

1 − b(FX(x)) as defining survival functions of two random variables. We say loosely because

(1 + θ)p + k(p) is not necessarily monotone. If we use law-invariant orders to compare these

random variables, this amounts to comparing the distortions (1 + θ)p+ k(p) and 1− b(1− p). For

ease of notation, we first define distortions corresponding to these two functions.

Definition 3.1. Let k̃, b̃ ∈ D denote the distortions defined by, respectively,

k̃(p) = (1 + θ)p+ k(p), (3.7)

and

b̃(p) = 1− b(1− p), (3.8)

for all p ∈ [0, 1]. Note that b̃ is concave because b is convex; also, k̃ is concave because k ∈ D is

concave.

We, next, define orders between members of D that correspond to the usual definitions between

random variables. We will apply these orders to compare k̃ and b̃. For an introduction to stochastic

orders, we recommend Shaked and Shanthikumar [24].

Definition 3.2. Let j1, j2 ∈ D be two distortions.

1. If j1(p) ≤ j2(p) for all p ∈ [0, 1], then we say that j1 is less than j2 in first-order stochastic

dominance (FSD) and write j1 �fsd j2.
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2. If
j1(p)

j2(p)
(3.9)

is non-decreasing with respect to p ∈ (0, 1), then we say that j1 is less than j2 in hazard rate

(HR) order and write j1 �hr j2.

3. If
j′1(p)

j′2(p)
(3.10)

is non-decreasing with respect to p ∈ (0, 1), then we say that j1 is less than j2 in likeli-

hood ratio (LR) order and write j1 �lr j2. Here, we assume j1 and j2 are continuously

differentiable.

In Chapter 1, Shaked and Shanthikumar [24] prove

j1 �lr j2 =⇒ j1 �hr j2,

and

j1 �hr j2 and j1(1) ≤ j2(1) =⇒ j1 �fsd j2.

Note that j1 �fsd j2 if and only if the ratio in (3.9) is uniformly bounded above by 1.

3.2 Optimal insurance when k̃ �fsd b̃ or k̃ �hr b̃

In this section, we prove two corollaries of Theorem 3.1 when k̃ �fsd b̃ or k̃ �hr b̃. For the first

corollary, we consider a slightly weaker version of the relation k̃ �fsd b̃. In this case, full insurance

is optimal, as we show in the following corollary.

Corollary 3.1. Full insurance is an optimal solution of (2.14) if and only if k̃(p) ≤ b̃(p) for all

p ∈ [0, SX(0)].9

Proof. If we set R∗ ≡ 0 and π∗ = π(X) in the expression for L in (3.2), then we get

L{R∗≡0}(x) =
(
1− b(FX(x))

)
−
(
(1 + θ)SX(x) + k(SX(x))

)
= b̃(SX(x))− k̃(SX(x)).

It follows from Theorem 3.1 that full insurance is optimal if and only if L{R∗≡0}(x) ≥ 0 for all

x ≥ 0, which is equivalent to k̃(p) ≤ b̃(p) for all p ∈ [0, SX(0)].

Remark 3.2. Corollary 3.1 is consistent with Theorem 4.1(ii) of Ghossoub and He [13], who

proved that if the underwriter/insurer has a linear utility function and if k̃ and b̃ are concave, then

optimal insurance is full coverage (a so-called firm-commitment contract) if and only if k̃ ≤ b̃,

modulo a technical detail concerning the reservation utility of the insurer.

9If SX(0) = 1, then k̃(p) ≤ b̃(p) for all p ∈ [0, SX(0)] is equivalent to k̃ �fsd b̃.
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For the second corollary, we suppose k̃ �hr b̃, which implies

k̃′(SX(x))

k̃(SX(x))
≥ b̃′(SX(x))

b̃(SX(x))
, (3.11)

an inequality between generalized hazard rate functions (modulo X’s probability density function,

if it has one), hence, the name: hazard rate order. Note that inequality (3.11) requires, among

other things, that k̃ be strictly increasing on [0, SX(0)] because b̃ is automatically strictly increasing

in that interval. In this case, we show that a deductible insurance is optimal.

Corollary 3.2. If k̃ �hr b̃, then there exists d ≥ 0 such that I∗(x) = (x − d)+ is an optimal

solution of (2.14).

Proof. Consider deductible insurance with indemnity Id(x) = (x − d)+ and retention Rd(x) =

min(x, d) for some d ≥ 0. Let πd denote the corresponding premium for this insurance, which

equals

πd =

∫ ∞
d

k̃(SX(x))dx.

Define the function J on R+ × R+ by

J(d, t) =

∫∞
t+ u′(w −Rd(x)− πd) db(FX(x))

1−b(FX(t))∫∞
0 u′(w −Rd(x)− πd)db(FX(x))

− k̃(SX(t))

1− b(FX(t))
, (3.12)

in which∫ ∞
t+

u′(w −Rd(x)− πd)
db(FX(x))

1− b(FX(t))

=


∫ d
t+ u

′(w − x− πd)db(FX(x)) + u′(w − d− πd)(1− b(FX(d)))

1− b(FX(t))
, 0 ≤ t < d,

u′(w − d− πd), t ≥ d.
(3.13)

We assert that J(d, t) is a non-decreasing function of t; because the ratio k̃(SX(t))/(1− b(FX(t)))

is non-increasing with respect to t ≥ 0, we only need to show that the expression in (3.13) is

non-decreasing with respect to t when 0 ≤ t < d. To show this monotonicity, first, use integration

by parts to rewrite the numerator in the first line of (3.13):∫ d

t+
u′(w − x− πd)db(FX(x)) + u′(w − d− πd)(1− b(FX(d)))

=

∫ d

t+
u′′(w − x− πd)b(FX(x))dx+ u′(w − d− πd)− u′(w − t− πd)b(FX(t)).

Then, the expression in (3.13) is non-decreasing with respect to t when 0 ≤ t < d if and only if

the following is non-negative:

− (1− b(FX(t)))u′(w − t− πd)b′(FX(t))
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+

{∫ d

t+
u′′(w − x− πd)b(FX(x))dx+ u′(w − d− πd)− u′(w − t− πd)b(FX(t))

}
b′(FX(t))

∝
∫ d

t+
u′′(w − x− πd)b(FX(x))dx+ u′(w − d− πd)− u′(w − t− πd)

=

∫ d

t+
u′′(w − x− πd)(b(FX(x))− 1)dx,

which is non-negative for t < d because u is concave and b(p) ≤ 1. (The symbol ∝ means non-

negatively proportional to.) Thus, we have shown that J(d, t) is non-decreasing with respect to

t.

Now, consider J evaluated at (d, d) for any d ≥ 0:

J(d, d) =
u′(w − d− πd)∫∞

0 u′(w −Rd(x)− πd)db(FX(x))
− k̃(SX(d))

1− b(FX(d))
.

If k̃(SX(d)) ≤ 1, then we assert that J(d, d) is non-decreasing with respect to d. As before, because

the ratio in k̃(SX(d))/(1− b(FX(d))) is non-increasing, we only need to show that

u′(w − d− πd)∫∞
0 u′(w −Rd(x)− πd)db(FX(x))

is non-decreasing with respect to d. Equivalently, we only need to show that κ(d) in non-increasing

with respect to d when k̃(SX(d)) ≤ 1, in which κ is defined by

κ(d) =

∫∞
0 u′(w −Rd(x)− πd)db(FX(x))

u′(w − d− πd)
,

which equals (via integration by parts)

κ(d) = 1 +

∫ d
0 u
′′(w − x− πd)b(FX(x))dx− u′(w − πd)b(FX(0))

u′(w − d− πd)
.

Now,

κ′(d) ∝
{∫ d

0
u′′′(w − x− πd)b(FX(x))dx− u′′(w − πd)b(FX(0))

}
u′(w − d− πd)k̃(SX(d))

+ u′(w − d− πd)u′′(w − d− πd)b(FX(d))

−
{∫ d

0
u′′(w − x− πd)b(FX(x))dx− u′(w − πd)b(FX(0))

}
× u′′(w − d− πd)(−1 + k̃(SX(d)))

=

{∫ d

0
u′′(w − x− πd)db(FX(x))− u′′(w − d− πd)b(FX(d))

}
× u′(w − d− πd)k̃(SX(d)))

+ u′(w − d− πd)u′′(w − d− πd)b(FX(d))
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−
{∫ d

0
u′(w − x− πd)db(FX(x))− u′(w − d− πd)b(FX(d))

}
× u′′(w − d− πd)(−1 + k̃(SX(d)))

= u′(w − d− πd)k̃(SX(d))

∫ d

0
u′′(w − x− πd)db(FX(x))

− u′′(w − d− πd)(−1 + k̃(SX(d)))

∫ d

0
u′(w − x− πd)db(FX(x))

≤ −u′′(w − d− πd)(−1 + k̃(SX(d)))

∫ d

0
u′(w − x− πd)db(FX(x))

≤ 0,

in which the last inequality follows from k̃(SX(d)) ≤ 1. Thus, we have shown that J(d, d) is

non-decreasing with respect to d when k̃(SX(d)) ≤ 1. Moreover, when k̃(SX(d)) > 1, we have

J(d, d) ≤ 1

1− b(FX(d))
− k̃(SX(d))

1− b(FX(d))
< 0.

Next, define d∗ by

d∗ = inf
{
d ≥ 0 : J(d, d) ≥ 0

}
,

with d∗ = ∞ if J(d, d) < 0 for all d ≥ 0. If d∗ < ∞, then J(d∗, t) ≤ 0 for t < d∗ and J(d∗, t) ≥ 0

for t > d∗, which implies that

L{I∗=Id∗}(t) = J(d∗, t)(1− b(FX(t)))

satisfies the conditions of Theorem 3.1. Thus, Id∗ is an optimal indemnity. If d∗ =∞, then

L{I∗≡0}(t) = lim
d→∞

J(d, t)(1− b(FX(t)) ≤ lim
d→∞

J(d, d)(1− b(FX(t)) ≤ 0,

which implies that no insurance (d∗ =∞) is optimal.

Remark 3.3. If k̃(SX(0)) ≤ b̃(SX(0)) in Corollary 3.2, then d∗ = 0, which means full insurance is

optimal. Note that k̃(SX(0)) ≤ b̃(SX(0)) and k̃ �hr b̃ imply k̃(p) ≤ b̃(p) for all p ∈ [0, SX(0)], and

Corollary 3.1 implies full insurance is optimal. Thus, Corollaries 3.1 and 3.2 are consistent.

Remark 3.4. Corollary 3.2 extends the theorem of Arrow [1], which we stated in the Introduction,

to the case for which premium is computed according to a distorted-deviation premium principle.

By contrast, Arrow assumed that the premium was an increasing function of EI(X). Furthermore,

b(p) = p in Arrow’s work.

3.3 Optimal insurance when b̃ �hr k̃ or b̃ �lr k̃

In Section 3.2, we assume that k̃ precedes b̃, and in this section, we consider the case for which b̃

precedes k̃. For the next corollary, we assume that b̃ �hr k̃ under the special case of u representing
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risk-neutral preferences, that is, u(y) = y for all y ∈ R. In this case, insurance with a maximum

limit is an optimal solution of (2.14), which we prove in the following.

Corollary 3.3. If b̃ �hr k̃, and if u is the identity function on R, then there exists m ∈ [0,∞]

such that I∗(x) = min(x,m) is an optimal solution of (2.14).

Proof. Because u(y) = y for all y ∈ R, then∫∞
0 u′(w −R∗(x)− π∗)1{x>t} db(FX(x))∫∞

0 u′(w −R∗(x)− π∗)db(FX(x))
=

∫ ∞
t

db(FX(x)) = 1− b(FX(t)),

independent of I∗ ∈ Ic. Thus, we have

L(t)

1− b(FX(t))
= 1− k̃(SX(t))

1− b(FX(t))
= 1− k̃(SX(t))

b̃(SX(t))
,

and the relation b̃ �hr k̃ implies this expression is non-increasing with respect to t ≥ 0. Define m

by

m = inf
{
t ≥ 0 : L(t) ≤ 0

}
,

in which m = ∞ if L(t) > 0 for all t ≥ 0. Note that L(t) ≥ 0 for all t < m and L(t) ≤ 0 for all

t > m, which implies I∗(x) = min(x,m) is an optimal solution of (2.14).

As a specific application of Corollary 3.3, we present the following example.

Example 3.1. Suppose k̃(p) = (1 + θ)p + α(p ∧ (1 − p)) and b̃(p) = p for p ∈ [0, 1]. Recall in

Example 2.1, the distortion h(p) = p∧ (1− p) yields the mean-median deviation measure. We see

in this case b̃ �hr k̃, because

k̃(p)

b̃(p)
= (1 + θ) + α(1 ∧ (1/p− 1))

is non-increasing with respect to p ∈ (0, 1). According to Corollary 3.3, if u is the identity function

on R, then I∗(x) = min(x,m) is an optimal solution. Furthermore, by the proof of Corollary 3.3,

one can derive m = 0. Thus, no insurance is optimal, that is, I∗ ≡ 0.

For the remainder of the paper, we impose the following conditions on our model.

Assumption 3.1. (a) u is strictly concave.

(b) X’s distribution has a point mass 1 − q ∈ [0, 1) at 0 with a continuous density fX(x) for

x > 0, that is, for x ≥ 0,

FX(x) = P(X ≤ x) = (1− q) +

∫ x

0
fX(t)dt,

in which
∫∞
0 fX(t)dt = q.
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(c) There exists M > 0 such that fX(x) > 0 for all x ∈ (0,M) and fX(x) = 0 for all x > M ; M

might equal infinity.

Under Assumption 3.1, Proposition 2.3 implies that that I∗ is unique on [0,M). Use X’s model

in Assumption 3.1(b) to rewrite L(t) and to compute L′(t): for t ≥ 0,

L(t) =

∫M
t u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

u′(w − π∗)b(1− q) +
∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

− k̃(SX(t)), (3.14)

and

L′(t) = fX(t)b̃′(SX(t))φ(t). (3.15)

in which φ is given by

φ(t) =
k̃′(SX(t))

b̃′(SX(t))
− u′(w −R∗(t)− π∗)
u′(w − π∗)b(1− q) +

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

. (3.16)

For the fourth corollary, we assume that b̃ �lr k̃, with θ ≥ 0. In this case, optimal insurance

has a deductible d, which could equal 0 or ∞, with partial insurance above that.

Corollary 3.4. Suppose Assumption 3.1 holds. If θ ≥ 0 and b̃ �lr k̃, then L(t) ≤ 0 for all t ≥ 0,

in which L is given in (3.14).

Proof. The ratio b̃′(p)

k̃′(p)
is non-decreasing with respect to p if and only if k̃′(p)

b̃′(p)
is non-increasing with

respect to p, and the later is automatically non-increasing at any point for which k̃′(p) ≤ 0, which

at most occurs in a left-neighborhood of 1.

On the contrary, suppose L(x0) > 0 for some x0 ∈ (0,M); then, define

x1 = inf
{
x ∈ [0, x0] : L(y) > 0, ∀y ∈ (x, x0]

}
,

and

x2 = sup
{
x ∈ (x0,M) : L(y) > 0, ∀y ∈ [x0, x)

}
.

If x1 > 0, then L′(x1−) ≥ 0, which is equivalent to

k̃′(SX(x1))

b̃′(SX(x1))
− u′(w −R∗(x1)− π∗)
u′(w − π∗)b(1− q) +

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

≥ 0. (3.17)

Because L is continuous on R+, the interval (x1, x2) is non-empty, and for all t ∈ (x1, x2), we have

L(t) > 0, which implies (I∗)′(t) = 1, or R∗(t) = R∗(x1). Thus, for all t ∈ (x1, x2), we have

L′(t) = fX(t)b̃′(SX(t))

(
k̃′(SX(t))

b̃′(SX(t))
− u′(w −R∗(t)− π∗)
u′(w − π∗)b(1− q) +

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

)

= fX(t)b̃′(SX(t))

(
k̃′(SX(t))

b̃′(SX(t))
− u′(w −R∗(x1)− π∗)
u′(w − π∗)b(1− q) +

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

)
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≥ fX(t)b̃′(SX(t))

(
k̃′(SX(x1))

b̃′(SX(x1))
− u′(w −R∗(x1)− π∗)
u′(w − π∗)b(1− q) +

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

)
≥ 0,

in which the first inequality follows from b̃ �lr k̃; the second, from (3.17). It follows that L(x2) > 0,

so x2 is not the maximal point x for which L(y) > 0 for all y ∈ [x0, x). By iterative analysis, we

must have L(t) > 0 for all t ∈ (x1,M), which implies R∗(x) = R∗(x1) for all x ∈ [x1,M) and

0 <

∫M
t u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

u′(w − π∗)b(1− q) +
∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

− k̃(SX(t))

=
u′(w −R∗(x1)− π∗)b̃(SX(t))

u′(w − π∗)b(1− q) +
∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

− k̃(SX(t)−)

= b̃(SX(t))

(
u′(w −R∗(x1)− π∗)

u′(w − π∗)b(1− q) +
∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

− k̃(SX(t))

b̃(SX(t))

)

≤ b̃(SX(t))

(
u′(w −R∗(x1)− π∗)

u′(w − π∗)b(1− q) +
∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

− k̃′(SX(t))

b̃′(SX(t))

)

≤ b̃(SX(t))

(
u′(w −R∗(x1)− π∗)

u′(w − π∗)b(1− q) +
∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

− k̃′(SX(x1))

b̃′(SX(x1))

)
,

in which the second inequality follows from k̃(SX(t))

b̃(SX(t))
≥ k̃′(SX(t))

b̃′(SX(t))
when the latter is non-decreasing

with respect to t,10 and the third inequality follows from b̃ �lr k̃, which is equivalent to the ratio
k̃′(SX(t))

b̃′(SX(t))
non-decreasing with respect to t. The positivity of the expression in square brackets

contradicts inequality (3.17), from which we deduce that x1 = 0 if L(x0) > 0 for some x0 ∈ (0,M).

Now, consider x1 = 0. If q = 1 and θ > 0, then L(0) = −θ < 0, which contradicts x1 = 0

because L is continuous. If q = 1 and θ = 0, then L(0) = 0, and x1 = 0 implies L′(0) ≥ 0 because

L > 0 in a right-neighborhood of 0. Otherwise, if q < 1 and x1 = 0, then we have

0 ≤ L(0) =

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

u′(w − π∗)b(1− q) +
∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

− k̃(q)

= 1− k̃(q)− u′(w − π∗)b(1− q)
u′(w − π∗)b(1− q) +

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

,

10Here is a short proof of that fact: Suppose k̃′(SX (t))

b̃′(SX (t))
is non-decreasing with respect to t, or equivalently, k̃′(p)

b̃′(p)
is

non-increasing with respect to p. Then, for 0 ≤ p̂ ≤ p ≤ 1, b̃′ > 0 and k̃′(p̂)
b̃′(p̂)

≥ k̃′(p−)

b̃′(p)
implies

k̃′(p̂)b̃′(p) ≥ k̃′(p)b̃′(p̂) =⇒
∫ p

0

k̃′(p̂)dp̂ · b̃′(p) ≥
∫ p

0

b̃′(p̂)dp̂ · k̃′(p)

=⇒ k̃(p)b̃′(p) ≥ b̃(p)k̃′(p) =⇒ k̃(p)

b̃(p)
≥ k̃′(p)

b̃′(p)
.
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which implies

L′(0) = fX(0)b̃′(q)

(
k̃′(q)

b̃′(q)
− u′(w − π∗)
u′(w − π∗)b(1− q) +

∫M
0 u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x)dx

)

≥ fX(0)b̃′(q)

(
k̃′(q)

b̃′(q)
− 1− k̃(q)

b(1− q)

)

= fX(0)b̃′(q)

(
k̃′(q)

b̃′(q)
− 1− k̃(q)

1− b̃(q)

)

= fX(0)b̃′(q)

(
k̃′(q)

b̃′(q)
− k̃(1)− k̃(q)

b̃(1)− b̃(q)
+

θ

b(1− q)

)

≥ fX(0)b̃′(q)
θ

b(1− q)
≥ 0,

in which the second inequality follows from b̃ �lr k̃ via a proof similar to the one in the most

recent footnote. Thus, for all q ∈ (0, 1], we have L′(0) ≥ 0, and the contradiction we obtained in

the case for which x1 > 0 also occurs when x1 = 0. It follows that L ≤ 0 on [0,M).

Remark 3.5. The model in Young [31] satisfies the conditions in Corollary 3.4 because, in that

paper, b = b̃ is the identity, and k̃ is an increasing, concave distortion with k̃(0) = 0 and k̃(1) = 1,

which implies θ = 0 and b̃ �lr k̃.

Consider the condition L(x) = 0. If L(x) = 0 holds on a non-empty interval, then, for all x in

that interval, we have∫ M

x
u′(w −R∗(t)− π∗)b̃′(SX(t))fX(t)dt = k̃(SX(x))Υ,

in which Υ equals the constant

Υ = u′(w − π∗)b(1− q) +

∫ M

0
u′(w −R∗(t)− π∗)b̃′(SX(t))fX(t)dt. (3.18)

By differentiating the above equation under the hypotheses of Corollary 3.4, we get

−u′(w −R∗(x)− π∗)b̃′(SX(x))fX(x) = −fX(x)k̃′(SX(x))Υ,

or equivalently,

u′(w −R∗(x)− π∗) = `(x)Υ, (3.19)

in which we define `, the analog of the likelihood ratio, by

`(x) =
k̃′(SX(x))

b̃′(SX(x))
. (3.20)

Equation (3.19) generalizes equation (3.5) in Young [31]. Thus, we have the following corollary (of

both Theorem 3.1 and Corollary 3.4), and this corollary emends Theorem 3.6 of Young [31].
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Corollary 3.5. Suppose Assumption 3.1 holds. If θ ≥ 0 and b̃ �lr k̃, then for any x ≥ 0, either

(I∗)′(x) = 0 or (3.19) holds.

Propositions 4.3 and 4.4 in Chi and Zhuang [8] give sufficient conditions that ensure (3.19)

holds at most on a single interval (a, b) ⊂ R+. We state the conditions in the following corollary

without proof because the proofs of Propositions 4.3 and 4.4 in Chi and Zhuang [8] apply to our

model.

Corollary 3.6. Suppose Assumption 3.1 holds. Furthermore, suppose θ ≥ 0 and that either of

following sets of conditions holds:

1. u′′′ ≥ 0, and ` in (3.20) is increasing and concave.

2. u exhibits hyperbolic absolute risk aversion (HARA), that is, −u′′(x)
u′(x) = 1

ax+m for some a ≥ 0

and m ∈ R, and ln(`) is increasing and concave.

Then, I∗ is given by

I∗(x) =


0, 0 ≤ x ≤ d,

x− w + π∗ + (u′)−1(`(x)Υ), d < x ≤ m,

m− w + π∗ + (u′)−1(`(m)Υ), x > m,

(3.21)

for some 0 ≤ d ≤ m ≤M .

Note that ` depends both on the distortions b̃ and k̃ and on the distribution of X; thus, ` or

ln(`) increasing and concave is not a distribution-free statement relating b̃ and k̃, as opposed to

the three distribution-free orders in Definition 3.2.

We refer to an indemnity such as the one given in (3.21) deductible insurance with a maximum

limit (DIML). Note that we will not necessarily have (I∗)′(x) = 1 for d < x < m as in a standard

DIML policy, so we are extending the notion of DIML.

In the next section, we revisit some of the examples from Young [31] and emend or confirm

them.

4 Examples

Recall that the seller’s distortion k̃ is continuous and concave. Throughout this section, we further

assume that k̃(1) = 1 + θ ≥ 1, that is, θ ≥ 0. Initially, assume the buyer’s distortion function b

equals the identity, but in Section 4.1, we also consider a non-trivial, convex function b. Young

[31] assumes θ = 0, k̃ is increasing, and b equals the identity, so we generalize the examples in that

paper.
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Suppose the buyer’s utility function u is such that u′(x) = e−γx for x ∈ R and for some

parameter γ > 0; then, γ equals the (constant) absolute risk aversion, a special case of HARA

preferences. For all the examples in this section, assume the positive part of X has the probability

density function

fX(x) = qλe−λx, x ≥ 0,

for some parameter λ > 0. Then,

L(t) =
qλ
∫∞
t eγR

∗(x)−λx dx

ξ
− k̃
(
qe−λt

)
, (4.1)

in which ξ equals the constant

ξ = (1− q) + qλ

∫ ∞
0

eγR
∗(x)−λx dx. (4.2)

Because the essential infimum of X equals 0, Proposition 2.3 implies that the optimal indemnity I∗

is unique. Thus, throughout this section, we refer to the optimal solution determined by Theorem

3.1.

4.1 Power distortion

Suppose k̃ is a power distortion with k̃(p) = (1 + θ)pc for p ∈ [0, 1], and for some parameters

0 < c < 1 and θ ≥ 0. Also, suppose b is the identity function; at the end of this section, we

consider a non-trivial convex b. Then, ` in (3.20) equals

`(x) = c(1 + θ)qc−1 eλ(1−c)x. (4.3)

The function ln(`) is linear with a positive slope, so ln(`) is increasing and concave. Corollary 3.6

implies that optimal insurance is the following DIML policy:

I∗(x) =



0, 0 ≤ x ≤ d,

x− 1

γ
ln(`(x)ξ), d < x ≤ m,

m− 1

γ
ln(`(m)ξ), x > m,

(4.4)

for some 0 ≤ d ≤ m ≤ ∞. For d < x ≤ m, we have

I∗(x) =

(
1− λ(1− c)

γ

)
x− 1

γ
ln(c(1 + θ)qc−1ξ),

a linear function of x. Continuity of I∗ requires I∗(d) = 0, or equivalently,(
1− λ(1− c)

γ

)
d =

1

γ
ln(c(1 + θ)qc−1ξ),
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which implies

I∗(x) =

(
1− λ(1− c)

γ

)
(x− d),

for d < x ≤ m, which only makes sense if the coefficient of (x−d) is positive. Indeed, if λ(1−c) ≥ γ,

then no insurance is optimal, as we prove in the following proposition.

Proposition 4.1. If λ(1− c) ≥ γ for the model in this section, then I∗ ≡ 0.

Proof. If we show L{I∗≡0}(t) ≤ 0 for all t ≥ 0, then the proposition follows from Theorem 3.1. We

compute

L{I∗≡0}(t) =
qλe−(λ−γ)t

λ− (1− q)γ
− (1 + θ)qce−λct,

which is less than or equal to 0 for all t ≥ 0 if and only if L{I∗≡0}(0) ≤ 0, which is equivalent to

q1−cλ ≤ (1 + θ)
(
λ− (1− q)γ

)
.

Because θ ≥ 0, this inequality holds if it holds when θ = 0, that is, if

q1−cλ ≤ λ− (1− q)γ, (4.5)

and the right side of (4.5) equals

λ− (1− q)γ = (λ(1− c)− γ)(1− q) + λ(c+ (1− c)q),

with (λ(1− c)− γ)(1− q) ≥ 0. So, inequality (4.5) holds if the following stronger inequality holds:

q1−c ≤ c+ (1− c)q, (4.6)

for all 0 ≤ q ≤ 1. Because 0 < c < 1, q1−c is a concave function of q, so its graph lies below its

tangent lines, and c + (1 − c)q is its tangent line at q = 1. Thus, inequality (4.6) holds, and we

have proved this proposition.

Essentially, Proposition 4.1 says that if the coefficient of absolute risk aversion γ is small

enough, then it is optimal for the individual not to buy insurance. It is interesting that “small

enough” only depends on λ and c; it is independent of both the proportional risk loading θ and

the probability of a positive loss q.

Henceforth, in this section, assume λ(1− c) < γ, which implies that the slope of I∗ on (d,m)

is strictly between 0 and 1. In that case, optimal insurance is deductible insurance with a con-

stant rate of coinsurance and no maximum limit, that is, m∗ = ∞, as we prove in the following

proposition.
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Proposition 4.2. If λ(1− c) < γ for the model in this section, then

I∗(x) =

(
1− λ(1− c)

γ

)
(x− d∗)+,

in which d∗ ≥ 0 uniquely solves
e(γ−λ)d

{
q1−ceλcd − (1 + θ)q

γ − λ(1− c)
γ − λ

}
= c(1 + θ)

(
1− qγ

γ − λ

)
, λ 6= γ,

q1−ceλcd − (1 + θ)qλcd = (1 + θ)
(
c+ (1− c)q

)
, λ = γ.

(4.7)

Furthermore, d∗ > 0 if and only if either q < 1 or θ > 0.

Proof. We prove this proposition when λ 6= γ because the proof when λ = γ is similar. We begin

by demonstrating that (4.7) has a unique solution. Let G = G(d) denote the left side of (4.7)

minus the right; thus, we wish to show that G has a unique non-negative zero d∗. To that end,

note that

G(0) = q1−c − (1 + θ)
(
c+ (1− c)q

)
≤ 0,

in which the inequality follows from θ ≥ 0 and inequality (4.6). Also,

lim
d→∞

G(d) =∞,

because the term e(γ−λ(1−c))d dominates G for d large. Finally,

G′(d) =
(
γ − λ(1− c)

)
e(γ−λ)d

(
q1−ceλcd − (1 + θ)q

)
,

which implies that, as d increases from 0 to infinity, either (i) G first decreases from a non-positive

number and then increases to infinity or (ii) G increases monotonically to infinity. In either case,

G has a unique non-negative zero d∗, and d∗ is strictly positive if and only if G(0) < 0, which is

true if and only if either q < 1 or θ > 0.

If we show that L(t) ≤ 0 for all t ≥ 0, in which L = L{I∗(x)=α(x−d∗)+} and α = 1− λ(1− c)/γ,

then the optimality of I∗ follows from Theorem 3.1. For t > d∗, L(t) = 0, so it is enough to show

that L(t) ≤ 0 for all 0 ≤ t ≤ d∗ with L(d∗) = 0.

First, calculate ξ, writing d in place of d∗ for simplicity:

ξ = (1− q) + qλ

∫ d

0
eγxe−λx dx+ qλ

∫ ∞
d

eγ(1−α)x+γαde−λx dx

= (1− q) + qλ

∫ d

0
e(γ−λ)x dx+ qλe(γ−λ)d

∫ ∞
d

e−λc(x−d) dx

= (1− q) + qλ
e(γ−λ)d − 1

γ − λ
+
q

c
e(γ−λ)d.
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For 0 ≤ t ≤ d (= d∗), by using the expression for d = d∗ in (4.7) when λ 6= γ, one can show that

L(t) =
1

ξ

[
qλ

γ − λ

(
e(γ−λ)d − e(γ−λ)t

)
+
q

c
e(γ−λ)d

]
− (1 + θ)qce−λct ≤ 0,

if and only if H(t) ≤ 0, in which H is defined by

H(t) = e(γ−λ)d
(

1− eλc(d−t)
)
− λc

γ − λ

(
e(γ−λ)t − e(γ−λ)d

)
.

Note that H(d) = 0, and H ′(t) is positively proportional to

e(γ−λ(1−c))d − e(γ−λ(1−c))t,

which is non-negative for 0 ≤ t ≤ d. Thus, L(t) ≤ 0 for 0 ≤ t ≤ d∗ with L(d∗) = 0, and we have

proved this proposition.

Now, suppose b(p) = 1− (1− p)a, in which c < a < 1, then

b(FX(x)) = 1−
(
qe−λx

)a
= 1− qae−λax,

so we essentially replace X with a different mixture X ′ of a point mass at zero and an exponential

random variable such that q′ = qa and λ′ = λa. Also, we replace k̃ with a different power distortion

k̂ = (1 + θ)pc
′

such that c′ solves

k̃(SX(x)) = k̂(SX′(x)) ⇐⇒
(
qe−λx

)c
=
(
qae−λax

)c′
or equivalently, c′ = c/a < 1. Then, Propositions 4.1 and 4.2 hold with b(p) = p and (q, λ, c)

replaced by b(p) = 1− (1− p)a and (qa, λa, c/a), respectively.

4.2 Dual power distortion

Suppose k̃ is a dual power distortion with k̃(p) = (1 + θ)(1− (1− p)c) for p ∈ [0, 1], and for some

parameters c > 1 and θ ≥ 0. Also, suppose b is the identity function. Then, ` in (3.20) equals

`(x) = c(1 + θ)
(
1− qe−λx

)c−1
, (4.8)

and

ln `(x) = ln c+ ln(1 + θ) + (c− 1) ln
(
1− qe−λx

)
,

(ln `(x))′ =
(c− 1)qλe−λx

1− qe−λx
> 0,

(ln `(x))′′ = − (c− 1)qλ2e−λx

(1− qe−λx)2
< 0,
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that is, ln(`) is increasing and concave. Corollary 3.6, then, implies that optimal insurance is a

DIML policy, as in (4.4), for some 0 ≤ d ≤ m ≤ ∞. For d < x ≤ m, we have

I∗(x) = x− 1

γ
ln(`(x)ξ)

= x− 1

γ
ln
(
c(1 + θ)(1− qe−λx)c−1ξ

)
= x− c− 1

γ
ln
(
1− qe−λx

)
− 1

γ
ln(c(1 + θ)ξ)

Continuity of I∗ at x = d requires I∗(d) = 0, that is,

d− c− 1

γ
ln
(
1− qe−λd

)
=

1

γ
ln(c(1 + θ)ξ)

which implies

I∗(x) = x− d− c− 1

γ
ln

(
1− qe−λx

1− qe−λd

)
,

for d < x ≤ m.

As for the power-distortion model in Section 4.1, we consider when no insurance or deductible

insurance might be optimal in the following two propositions.

Proposition 4.3. I ≡ 0 is never optimal for the model in this section.

Proof. First, if λ ≤ γ, then the marginal utility ξ is infinite when we evaluate it at I ≡ 0, that

is, it is optimal to increase coverage above I ≡ 0. Thus, if λ ≤ γ, then no insurance cannot be

optimal.

Second, if λ > γ, then L{I≡0} equals

L{I≡0}(t) =
qλe−(λ−γ)t

λ− (1− q)γ
− (1 + θ)

{
1− (1− qe−λt)c

}
=

e−(λ−γ)t

λ− (1− q)γ

[
qλ− (1 + θ)(λ− (1− q)γ)e(λ−γ)t

{
1− (1− qe−λt)c

}]
=

e−(λ−γ)t

λ− (1− q)γ
[
qλ− (1 + θ)(λ− (1− q)γ)f(t)

]
,

in which f is defined by

f(t) = e(λ−γ)t
{

1− (1− qe−λt)c
}
> 0.

From Theorem 3.1, we know that no insurance is optimal if and only if L{I≡0}(t) ≤ 0 for all t ≥ 0.

However,

lim
t→∞

f(t) = lim
t→∞

1− (1− qe−λt)c

e−(λ−γ)t
= lim

t→∞

qcλe−λt(1− qe−λt)c−1

(λ− γ)e−(λ−γ)t

= lim
t→∞

qcλ(1− qe−λt)c−1

(λ− γ)eγt
= 0,

which implies that, for t large enough, L{I≡0}(t) > 0. Thus, if λ > γ, then no insurance cannot be

optimal.
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If the risk aversion parameter γ is large enough, then optimal insurance has no maximum limit,

as we show in the following proposition.

Proposition 4.4. If γ(1− q) > qλ(c− 1) for the model in this section, then

I∗(x) =


0, 0 ≤ x ≤ d∗,

(x− d∗)− c− 1

γ
ln

1− qe−λx

1− qe−λd∗
, x > d∗,

(4.9)

in which d∗ ≥ 0 uniquely solves
eγd

(1 + θ)(1− qe−λd)c − θ
(1− qe−λd)c−1

= c(1 + θ)

(
1− q +

qλ(e(γ−λ)d − 1)

γ − λ

)
, λ 6= γ,

eλd
(1 + θ)(1− qe−λd)c − θ
(1 + θ)(1− qe−λd)c−1

= c(1 + θ)
(
1− q + qλd

)
, λ = γ.

(4.10)

Furthermore, d∗ > 0 if and only if either q < 1 or θ > 0.

Proof. We prove this proposition when λ 6= γ because the proof when λ = γ is similar. We begin

by demonstrating that (4.10) has a unique solution. Let G = G(d), in which

G(d) = eγd
{

(1 + θ)(1− qe−λd)c − θ
}
− c(1 + θ)(1− qe−λd)c−1

(
1− q +

qλ(e(γ−λ)d − 1)

γ − λ

)
,

which equals left side of (4.10) minus the right, all multiplied by (1− qe−λd)c−1. We wish to show

G has a unique non-negative zero d∗. To that end, note that

G(0) = −θ − (1 + θ)(c− 1)(1− q)c ≤ 0,

and

lim
d→∞

G(d) =∞,

from which it follows that G has at least one non-negative zero. Let d0 denote a zero of G. By

differentiating G and using G(d0) = 0, we obtain

G′(d0) = γeγd0
{

(1 + θ)(1− qe−λd0)c − θ
}

− c(c− 1)(1 + θ)qλe−λd0(1− qe−λd0)c−2

{
1− q +

qλ(e(γ−λ)d0 − 1)

γ − λ

}

= γc(1 + θ)(1− qe−λd0)c−1

{
1− q +

qλ(e(γ−λ)d0 − 1)

γ − λ

}

− c(c− 1)(1 + θ)qλe−λd0(1− qe−λd0)c−2

{
1− q +

qλ(e(γ−λ)d0 − 1)

γ − λ

}
∝ γ(1− qe−λd0)− qλ(c− 1)e−λd0 ≥ γ(1− q)− qλ(c− 1) > 0,
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in which the last inequality follows from the hypothesis of the proposition. Therefore, G has a

unique non-negative zero d∗, and d∗ is strictly positive if and only if G(0) < 0, which is true if and

only if either q < 1 or θ > 0.

If we show L(t) ≤ 0 for all t ≥ 0, in which L = LI∗ and I∗ is defined in (4.9), then the

optimality of I∗ follows from Theorem 3.1. For t > d∗, L(t) = 0, so it is enough to show that

L(t) ≤ 0 for all 0 ≤ t ≤ d∗ with L(d∗) = 0.

First, we calculate the following integral for 0 ≤ t ≤ d∗, writing d in place of d∗ for simplicity:∫ ∞
t

eγR
∗(x)−λxdx =

∫ ∞
t

e(γ−λ)x−γI
∗(x)dx

=

∫ d

t
e(γ−λ)xdx+ eγd

∫ ∞
d

e−λx
(

1− qe−λx

1− qe−λd

)c−1
dx

=
1

γ − λ

(
e(γ−λ)d − e(γ−λ)t

)
+
eγd

qλc
· 1− (1− qe−λd)c

(1− qe−λd)c−1
,

from which we deduce

ξ = (1− q) + qλ

∫ ∞
0

eγR
∗(x)−λx dx

= (1− q) + qλ
e(γ−λ)d − 1

γ − λ
+
eγd

c
· 1− (1− qe−λd)c

(1− qe−λd)c−1
.

Then, L(t), for 0 ≤ t ≤ d (= d∗), equals

L(t) =
1

ξ

[
qλ

γ − λ

(
e(γ−λ)d − e(γ−λ)t

)
+
eγd

c

1− (1− qe−λd)c

(1− qe−λd)c−1

]
− (1 + θ)

(
1−

(
1− qe−λt

)c)
,

and by using the expression for d = d∗ in (4.10), one can show that L(t) ≤ 0 if and only if H(t) ≤ 0,

in which H equals

H(t) =
qλ

γ − λ

(
e(γ−λ)d − e(γ−λ)t

)
+
eγd

c
· 1− (1− qe−λd)c

(1− qe−λd)c−1

{
1−

1−
(
1− qe−λt

)c
1− (1− qe−λd)c

}
. (4.11)

Note that H(d) = 0, and

H ′(t) = −qλe(γ−λ)t + qλe−λteγd
(

1− qe−λt

1− qe−λd

)c−1
∝ −1 + eγ(d−t)

(
1− qe−λt

1− qe−λd

)c−1
. (4.12)

Denote the right side of (4.12) by h, then h(d) = 0 and

h′(t) = −γeγ(d−t)
(

1− qe−λt

1− qe−λd

)c−1
+ eγ(d−t)(c− 1)qλe−λt

(1− qe−λt)c−2

(1− qe−λd)c−1

∝ −γ(1− qe−λt) + (c− 1)qλe−λt

≤ −γ(1− q) + (c− 1)qλ < 0,
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in which the last inequality follows from the hypothesis of the proposition. Thus, h(t) is non-

negative for 0 ≤ t ≤ d, which implies H ′(t) ≥ 0 for 0 ≤ t ≤ d. Because H(d) = 0, we deduce that

H(t) ≤ 0 for all 0 ≤ t ≤ d. Hence, L(t) ≤ 0 for all 0 ≤ t ≤ d∗ with L(d∗) = 0, and we have proved

this proposition.

4.3 Gini deviation

Suppose k̃(p) = (1 + θ)p+α(p− p2) for p ∈ [0, 1], and for some parameters θ ≥ 0 and α ≥ 0. From

Example 2.1, recall that the term p− p2 yields the Gini deviation measure. We also see that k̃ is

concave but not increasing. Also, suppose b is the identity function. Then, ` in (3.20) equals

`(x) = (1 + θ) + α(1− 2qe−λx), . (4.13)

By differentiating `, we obtain

`′(x) = 2αqλe−λx > 0,

and

`′′(x) = −2αqλ2e−λx < 0,

which shows that ` is increasing and concave. Also, u′′′(x) ≥ 0, and it follows from Corollary 3.6

that optimal insurance is a DIML policy, as in (4.4), for some 0 ≤ d ≤ m ≤ ∞. For d < x ≤ m,

we have

I∗(x) = x− 1

γ
ln(`(x)ξ)

= x− 1

γ
ln((1 + θ)ξ + α(1− 2qe−λx)ξ)

Continuity of I∗ at x = d requires I∗(d) = 0, that is,

d =
1

γ
ln((1 + θ)ξ + α(1− 2qe−λd)ξ),

which implies

ξ =
eγd

(1 + θ) + α(1− 2qe−λd)
.

Thus,

I∗(x) = x− d− 1

γ
ln

(1 + θ) + α(1− 2qe−λx)

(1 + θ) + α(1− 2qe−λd)
,

for d < x ≤ m.

As in the previous two sections, we consider when no insurance or deductible insurance might

be optimal in the following two propositions.

Proposition 4.5. I ≡ 0 is never optimal for the model in this section.
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Proof. First, if λ ≤ γ, then the marginal utility ξ is infinite when we evaluate it at I ≡ 0, that

is, it is optimal to increase coverage above I ≡ 0. Thus, if λ ≤ γ, then no insurance cannot be

optimal.

Second, if λ > γ, then L{I≡0} equals

L{I≡0}(t) =
qλe−(λ−γ)t

λ− (1− q)γ
− (1 + θ)qe−λt − α

(
qe−λt − q2e−2λt

)
= qe−λt

{
λeγt

λ− (1− q)γ
− (1 + θ)− α

(
1− qe−λt

)}
.

From Theorem 3.1, we know that no insurance is optimal if and only if L{I≡0}(t) ≤ 0 for all t ≥ 0.

However,

lim
t→∞

λeγt

λ− (1− q)γ
− (1 + θ)− α

(
1− qe−λt

)
=∞,

which implies that, for t large enough, L{I≡0}(t) > 0. Thus, if λ > γ, then no insurance cannot be

optimal.

If the risk aversion parameter γ is large enough, then optimal insurance has no maximum limit,

as we show in the following proposition.

Proposition 4.6. If γ
(
(1 + θ) + α(1− 2q)

)
> 2αqλ for the model in this section, then

I∗(x) =


0, 0 < x ≤ d∗,

x− d∗ − 1

γ
ln

1 + θ + α(1− 2qe−λx)

1 + θ + α(1− 2qe−λd∗)
, x > d∗.

(4.14)

in which d∗ ≥ 0 uniquely solves
eγd(1− αq2e−2λd)

(1 + θ) + α(1− 2qe−λd)
= 1 + qγ

e(γ−λ)d − 1

γ − λ
, λ 6= γ,

eλd = (1 + qλd)
(
(1 + θ) + α(1− 2qe−λd)

)
+ αq2e−λd, λ = γ.

(4.15)

Furthermore, d∗ > 0 if and only if either θ > 0 or both q < 1 and α > 0.

Proof. We prove this proposition when λ 6= γ because the proof when λ = γ is similar. We begin

by showing that (4.15) has a unique solution. Let G = G(d) denote the left side of (4.15) minus

the right, all times the denominator (1 + θ) +α(1−2qe−λd). We wish to show that G has a unique

non-negative zero d∗. To that end, note that

G(0) = −θ − α(1− q)2 ≤ 0,

and

lim
d→∞

G(d) =∞,
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from which it follows that G has at least one non-negative zero. Let d0 denote a zero of G. By

differentiating G and by using G(d0) = 0, we obtain

G′(d0) = γeγd0
(
1− αq2e−2λd0

)
+ eγd0 · 2αq2λe−2λd0

− qγe(γ−λ)d0
(
(1 + θ) + α(1− 2qe−λd0)

)
−

(
1 + qγ

e(γ−λ)d0 − 1

γ − λ

)
2αqλe−λd0

=

(
1− q +

qλ(e(γ−λ)d0 − 1)

γ − λ

)(
γ
(
(1 + θ) + α(1− 2qe−λd0)

)
− 2αqλe−λd0

)
∝ γ

(
(1 + θ) + α(1− 2qe−λd0)

)
− 2αqλe−λd0

≥ γ
(
(1 + θ) + α(1− 2q)

)
− 2αqλ > 0,

in which the last inequality follows from the hypothesis of the proposition. Therefore, G has a

unique non-negative zero d∗, and d∗ is strictly positive if and only if G(0) < 0, which holds if and

only if either θ > 0 or both q < 1 and α > 0.

If we show L(t) ≤ 0 for all t ≥ 0, in which L = LI∗ and I∗ is defined in (4.14), then the

optimality of I∗ follows from Theorem 3.1. For t > d∗, L(t) = 0, so it is enough to show that

L(t) ≤ 0 for all 0 ≤ t ≤ d∗ with L(d∗) = 0.

First, we calculate the following integral for 0 ≤ t ≤ d∗, writing d in place of d∗ for simplicity:∫ ∞
t

eγR
∗(x)−λxdx =

∫ ∞
t

e(γ−λ)x−γI
∗(x)dx

=

∫ d

t
e(γ−λ)xdx+

eγd

(1 + θ) + α(1− 2qe−λd)

∫ ∞
d

{
(1 + θ + α)e−λx − 2αqe−2λx

}
dx

=
1

γ − λ

(
e(γ−λ)d − e(γ−λ)t

)
+
e(γ−λ)d

λ
· (1 + θ) + α(1− qe−λd)

(1 + θ) + α(1− 2qe−λd)
,

from which we deduce

ξ = (1− q) + qλ

∫ ∞
0

eγR
∗(x)−λx dx

= (1− q) + qλ
e(γ−λ)d − 1

γ − λ
+ qe(γ−λ)d

(1 + θ) + α(1− qe−λd)
(1 + θ) + α(1− 2qe−λd)

. (4.16)

Then, L(t), for 0 ≤ t ≤ d (= d∗), equals

L(t) =
1

ξ

[
qλ

γ − λ

(
e(γ−λ)d − e(γ−λ)t

)
+ qe(γ−λ)d

(1 + θ) + α(1− qe−λd)
(1 + θ) + α(1− 2qe−λd)

]
− qe−λt

(
(1 + θ)− α(1− qe−λt)

)
,

and by using the expression for d = d∗ in (4.15), one can show L(d∗) = 0,

L(t) =
qλ

ξ

e(γ−λ)d − e(γ−λ)t

γ − λ
+ qe−λd

(
(1 + θ) + α(1− qe−λd)

)
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− qe−λt
(
(1 + θ) + α(1− qe−λt)

)
,

and

ξ =
eγd

(1 + θ) + α(1− 2qe−λd)
> 0. (4.17)

By differentiating L with respect to t, we obtain

L′(t) = − qλ
ξ
e(γ−λ)t + qλe−λt

(
(1 + θ) + α(1− 2qe−λt)

)
∝ − e

γt

ξ
+
(
(1 + θ) + α(1− 2qe−λt)

)
∝ eγd

(1 + θ) + α(1− 2qe−λd)
− eγt

(1 + θ) + α(1− 2qe−λt)
, (4.18)

which one can show is positive for t < d because (4.18) decreases with respect to t and equals 0 at

t = d. Indeed, by differentiating the expression in (4.18), we see

− d

dt

(
eγt

(1 + θ) + α(1− 2qe−λt)

)
∝ −γ

(
(1 + θ) + α(1− 2qe−λt)

)
+ 2αqλe−λt

≤ −
[
γ
(
(1 + θ) + α(1− 2q)

)
− 2αqλ

]
< 0,

in which the last inequality follows from the hypothesis of the proposition. Thus, L(t) ≤ 0 for all

0 ≤ t ≤ d∗ with L(d∗) = 0, and we have proved this proposition.

5 Conclusion

In this paper, in Theorem 3.1, we found necessary and sufficient conditions that the optimal

indemnity satisfies for an RDEU maximizer subject to a distortion-deviation premium principle

with a concave distortion k̃(p) = (1 + θ)p + k(p), p ∈ [0, 1]. We modeled the RDEU maximizer’s

preferences via a concave utility function u and a strictly increasing, concave distortion b̃(p) =

1− b(1− p), p ∈ [0, 1]. We determined conditions under which optimal insurance is full insurance

(Corollary 3.1), deductible insurance (Corollary 3.2), insurance with a maximum limit (Corollary

3.3), and insurance with a possible deductible and coinsurance above the deductible (Corollaries

3.4, 3.5, and 3.6).

As we discussed in Remark 2.1, the convexity of b and the concavity of k are only used to obtain

Lemma 2.2, and those requirements can be relaxed if we work with Ic as the set of indemnities ex

ante. Note that the distortion function k is not monotone in our setting. From a mathematical

point of view, our techniques can be applied when monotonicity of b is dispensed with, although

such a relaxation is less relevant in the RDEU model.

As for future research directions, it would be of interest to study RDEU and the distortion-

deviation premiums in the context of Pareto-optimal contracts for the insured and the insurer (see,

for example, Cai et al. [6]) and that of optimal contracts in bargaining models such as the Nash

and Kalai–Smorodinsky bargaining models (see, for example, Jiang et al. [15]).

37



References

[1] Arrow, Kenneth J. (1963). Uncertainty and the welfare economics of medical care. American

Economic Review, 53(5): 941-973.

[2] Arrow, Kenneth J. (1971). Essays in the Theory of Risk-Bearing. Markham Publishing Com-

pany, Chicago.

[3] Azcue, Pablo, Xiaoqing Liang, Nora Muler, and Virginia R. Young (2021). Minimizing the

probability of drawdown via reinsurance: asymptotic analysis, working paper, Department of

Mathematics, University of Michigan.

[4] Bernard, Carole, Xuedong He, Jia-an Yan, and Xun Yu Zhou (2015). Optimal insurance design

under rank-dependent expected utility. Mathematical Finance, 25(1): 154-186.

[5] Cai, Jun and Yichun Chi (2020). Optimal reinsurance designs based on risk measures: a review.

Statistical Theory and Related Fields, 4(1): 1-13.

[6] Cai, Jun, Haiyan Liu, and Ruodu Wang (2017). Pareto-optimal reinsurance arrangements

under general model settings. Insurance: Mathematics and Economics, 77: 24-37.

[7] Chew, Soo Hong, Edi Karni, and Zvi Safra (1987). Risk aversion in the theory of expected

utility with rank dependent probabilities. Journal of Economic Theory, 42(2): 370-381.

[8] Chi, Yichun and Sheng Chao Zhuang (2020). Optimal insurance with belief heterogeneity and

incentive compatibility. Insurance: Mathematics and Economics, 92: 104-114.

[9] Chi, Yichun and Ming Zhou (2017). Optimal reinsurance design: a mean-variance approach.

North American Actuarial Journal, 21(1): 1-14.

[10] Denneberg, Dieter (1994). Non-additive Measure and Integral, volume 27 in Series B: Mathe-

matical and Statistical Methods. Kluwer Academic Publishers, Dordrecht, The Netherlands.

[11] Gajek, Les law and Dariusz Zagrodny (2000). Insurer’s optimal reinsurance strategies. Insur-

ance: Mathematics and Economics, 27(1): 105-112.

[12] Ghossoub, Mario (2019). Optimal insurance under rank-dependent expected utility. Insurance:

Mathematics and Economics, 87: 51-66.

[13] Ghossoub, Mario and Xue Dong He (2021). Comparative risk aversion in RDEU with applica-

tions to optimal underwriting of securities issuance, Insurance: Mathematics and Economics,

101: 6-22.

38



[14] Hanche-Olsen, Harald and Helge Holden (2010). The Kolmogorov-Riesz compactness theorem.

Expositiones Mathematicae, 28(4): 385-394.

[15] Jiang, Wenjun, Jiandong Ren, Chen Yang, and Hanping Hong (2019). On optimal reinsur-

ance treaties in cooperative game under heterogeneous beliefs. Insurance: Mathematics and

Economics, 85: 173-184.

[16] Kaluszka, Marek (2001). Optimal reinsurance under mean-variance premium principles. In-

surance: Mathematics and Economics, 28(1): 61-67.

[17] Kaluszka, Marek (2004). Mean-variance optimal reinsurance arrangements. Scandinavian Ac-

tuarial Journal, 2004(1): 28-41.

[18] Landsberger, Michael and Isaac Meilijson (1994). Co-monotone allocations, Bickel-Lehmann

dispersion and the Arrow-Pratt measure of risk aversion. Annals of Operations Research, 52(2):

97-106.

[19] Liang, Xiaoqing, Zhibin Liang, and Virginia R. Young (2020), Optimal reinsurance under the

mean-variance premium principle to minimize the probability of ruin. Insurance: Mathematics

and Economics, 92: 128-146.

[20] Promislow, S. David and Virginia R. Young (2005). Unifying framework for optimal insurance.

Insurance: Mathematics and Economics, 36(3): 347-364.

[21] Quiggin, John (1982). A theory of anticipated utility. Journal of Economic Behavior and

Organization, 3(4): 323-343.

[22] Rockafellar, R. Tyrrell, Stan Uryasev, and Michael Zabarankin (2006). Generalized deviations

in risk analysis. Finance and Stochastics, 10(1): 51-74.
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