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Abstract

Two notions of fractional stochastic dominance (SD) were recently proposed by Müller et al.

(2017) and Huang et al. (2020) based on mean-reducing spreads and the coefficient of absolute

risk aversion, respectively. We formulate a general class of fractional SD generated by a convex

transform, which includes those built from absolute or relative risk aversion as special cases, and

this serves as a convenient technical tool for construction of new notions of fractional SD. We

obtain equivalent conditions for a preference modelled by rank-dependent utility or cumulative

prospect theory to be consistent with each notion of fractional SD. Furthermore, we provide an

empirical estimator for the parameters in fractional SD relationships, and we illustrate this with

a financial data analysis.
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1 Introduction

Two notions of fractional stochastic dominance (SD) were recently proposed by Müller et al.

(2017) and Huang et al. (2020), respectively. Fractional SD was introduced because the classic
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notions of first-order SD (FSD) and second-order SD (SSD) are too often coarse and they could not

capture, e.g., local convexity of a utility function in the expected utility (EU) model. Studies of

stochastic dominance help to analyze decisions for a class of heterogeneous decision makers sharing

some similarity in their risk attitude, without specifying the preference of a particular decision

maker. The first notion of Müller et al. (2017) is based on γ-spread for γ ∈ [0, 1],1 and will

henceforth be referred to as (1 + γ)S-SD; see also Müller et al. (2021). The second notion of Huang

et al. (2020) is based on the Arrow-Pratt coefficient of absolute risk aversion, and will be referred to

as (1 + c)A-SD for c ∈ [0, 1]. Precise definitions are put in Section 2. For comprehensive discussions

on the relevance of these notions, we refer to Müller et al. (2017) and Huang et al. (2020).

Risk aversion has been a critical concept in decision making since Pratt (1964) and Arrow

(1974). Various notions of risk aversion were proposed, observed and tested from empirical studies

by Harrison (1986), Tversky and Kahneman (1992), Kimball (1993), Rabin (2000), Rabin and

Thaler (2001) and Schmidt and Traub (2002), amongst others. As the most classic notion, a

preference relation is strongly risk averse (Hadar and Russell (1969), Hanoch and Levy (1969) and

Rothschild and Stiglitz (1970)) if it is monotone in SSD. Since fractional SD bridges SSD and FSD,

monotonicity in fractional SD can be seen as a property of fractional risk aversion.

Our main contribution is a characterization of monotonicity in fractional SD for the behavioral

decision models of rank-dependent utility (RDU) of Quiggin (1982)2 and cumulative prospect theory

(CPT) of Tversky and Kahneman (1992). The considered notions of fractional SD include (1+γ)S-

SD, (1 + c)A-SD and the latter’s analogue based on relative risk aversion. Both RDU and CPT are

generalizations of the EU model and the dual utility theory (DT) of Yaari (1987). Although RDU

can be seen as a special case of CPT, conditions for fractional SD in RDU are more mathematically

concise and economically interpretable, and hence we will present RDU and CPT results separately

in Section 3.

To explain our motivation for studying fractional SD in behavioral models, we look again at

FSD and SSD, which are limits of fractional SD. FSD and SSD were traditionally formulated based

on EU, although these properties are model free. For instance, SSD can be equivalently formulated

via mean-preserving spread (Rothschild and Stiglitz (1970)), conditional expectations (Strassen

(1965)), dual utility (Yaari (1987)), and aversion to positive dependence (Wang and Wu (2020));

the case of FSD is similar. Likewise, the notions of fractional SD are suitable for study beyond EU,

and in particular, we are interested in their implication for the popular descriptive decision models

1Müller et al. (2017) used the term “γ-transfer”. We use “γ-spread” (i.e., the inverse of a γ-transfer) as this notion
closely resembles the mean-preserving spreads of Rothschild and Stiglitz (1970). Indeed, γ-spreads are mean-reducing
spreads.

2As shown by Chew et al. (1987), a necessary condition for monotonicity in SSD for RDU is a concave probability
perception function. The functons originally used by Quiggin (1982) is not concave.
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of RDU and CPT.

Equivalent characterization of strong risk aversion in different decision models has been studied

by Pratt (1964) and Arrow (1974) for EU, Yaari (1987) for DT, Chew et al. (1987) for RDU, and

Schmidt and Zank (2008) for CPT. Our results generalize the above results to several formulations

of fractional SD, including (1 + γ)S-SD and (1 + c)A-SD. Moreover, characterization results are

obtained for a class of fractional SD connected to SSD via a transform v, called v-SD, which

includes (1 + c)A-SD as special cases.

As we will see in Section 2, (1+c)A-SD is closely related to an exponential transformation. More

precisely, X is dominated by Y in (1+c)A-SD if and only if eλX is dominated by eλY in SSD, where

λ = 1/c− 1. Therefore, many results and convenient properties of SSD can be translated to those

of (1 + c)A-SD. A negative result (Proposition 2) implies that there does not exist a risk transform

or probability distortion such that (1 + γ)S-SD can be associated with SSD. To be more precise,

(1 + γ)S-SD between X and Y cannot be equivalently described by SSD between v(X) and v(Y )

for any transform v, and this remains so if we further allows for probability distortions as in RDU.

This nonexistence illustrates that the mathematical basis of (1 + γ)S-SD is fundamentally different

from SSD and (1 + c)A-SD, which also explains why technical results such as a characterization in

RDU and CPT are much more complicated for (1 + γ)S-SD than that for (1 + c)A-SD.

To better understand applications of fractional SD in behavioral decision models outside EU,

we proceed to study further technical properties of fractional SD in Section 4, empirical estimators

of parameters of fractional SD between two distributions in Section 5, and a real-data analysis in

Section 6. These additional results illustrate what we can analyze when fractional SD is brought

outside EU.

All proofs are relegated to Appendix A. Some simulation results for estimating the parameters

γ and c, complementing Section 6, are put in Appendix B.

2 Notions of fractional stochastic dominance

Similarly to Müller et al. (2017) and Huang et al. (2020), we use a unified notation [a, b] where

a < b to denote an interval containing the support of the random variables, which encompasses

[a,∞) if b = ∞, (−∞, b] if a = −∞, and (−∞,∞) if both. All utility functions are elements of

U = {u : [a, b]→ R | u is increasing and twice differentiable}.3 In all the statements below, X and

Y are arbitrary random variables taking values in [a, b], and inequalities on expectations are meant

to hold when both sides are well defined.

3In this paper, the term “increasing” is in the non-strict sense. The differentiability condition can be safely relaxed
without changing the corresponding fractional SD defined in this paper; see e.g., Müller et al. (2017) and Huang et
al. (2020).
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The first notion of fractional SD is (1 + γ)S-SD of Müller et al. (2017). Throughout, random

variables X and Y represent random payoffs (prospects) to be compared via notions of SD. For

γ ∈ [0, 1], define the set U S
γ of utilities by

U S
γ = {u ∈ U | γu′(y) 6 u′(x) for all a 6 x 6 y 6 b}.

Definition 1 (Müller et al. (2017)). For fixed γ ∈ [0, 1], Y dominates X by (1 + γ)S-SD, denoted

by X 6S
γ Y, if E[u(X)] 6 E[u(Y )] for all u ∈ U S

γ . The subscript/superscript “S” here represents

that the notion is defined via γ-spread.

Huang et al. (2020) proposed (1 + c)A-SD based on utility functions with a lower bound on

the Arrow-Pratt coefficient of absolute risk aversion. For a twice continuously differentiable utility

function u, the coefficient of absolute risk aversion is defined as

ρA
u (x) = −u

′′(x)

u′(x)
.

For c ∈ [0, 1], define the set U A
c of utilities by

U A
c =

{
u ∈ U | u′(x) > 0 and ρA

u (x) > −1

c
+ 1 for all x ∈ [a, b]

}
.

Definition 2 (Huang et al. (2020)). For fixed c ∈ [0, 1], Y dominates X by (1 + c)A-SD, denoted

by X 6A
c Y, if E[u(X)] 6 E[u(Y )] for all u ∈ U A

c . The subscript/superscript “A” here represents

that the notion is defined via the coefficient of absolute risk aversion.

Replacing the coefficient of absolute risk aversion ρA
u by the coefficient of relative risk aversion

ρR
u (x) = −xu

′′(x)

u′(x)
,

we arrive at another notion of fractional SD, which is briefly discussed in the concluding remarks of

Huang et al. (2020). Because of its connection to relative risk aversion, this notion is only defined

for nonnegative random variables. For r ∈ [0, 1], define the set U R
r of utilities by

U R
r =

{
u ∈ U | u′(x) > 0 and ρR

u (x) > −1

r
+ 1 for all x ∈ [a, b]

}
.

Definition 3. For fixed r ∈ [0, 1], 0 6 a < b 6 ∞, Y dominates X by (1 + r)R-SD, denoted by

X 6R
r Y, if E[u(X)] 6 E[u(Y )] for all u ∈ U R

r . The subscript/superscript “R” here represents that

the notion is defined via the coefficient of relative risk aversion.

By definition, 1S-SD, 1A-SD and 1R-SD are all equivalent to the classic FSD (denoted by 6FSD)
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and 2S-SD, 2A-SD and 2R-SD are all equivalent to the classic SSD (denoted by 6SSD).

The notions of (1 + c)A-SD and (1 + r)R-SD can be unified under the umbrella of v-SD, which

was first studied by Meyer (1977). Let v ∈ U be a convex function with v′ > 0. Define the set Uv

of utility functions by

Uv =
{
u ∈ U | u′(x) > 0, ρA

u (x) > ρA
v (x), x ∈ [a, b]

}
. (1)

Taking v(x) = e(1/c−1)x leads to ρA
v (x) = −(1/c − 1) and Uv = U A

c . Similarly, taking

v(x) = x1/r gives ρA
v (x) = −(1/r− 1)/x such that Uv = U R

r . Therefore, (1 + c)A-SD and (1 + r)R-

SD are both special cases of the fractional SD generated by Uv for a specific function v.

Definition 4. For a convex function v ∈ U with v′ > 0, Y dominates X by v-SD, denoted by

X 6v Y, if E[u(X)] 6 E[u(Y )] for all u ∈ Uv.

Although v-SD is defined with EU conditions, it can be used together with decision models

other than EU, just like any partial order between random variables. For instance, SSD and FSD

are often defined with EU conditions, and they are applied to a wide range of decision models. For

alternative formulations of (1 + γ)S-SD and (1 + c)A-SD without using EU conditions, see Müller

et al. (2017) and Huang et al. (2020).

As shown by Pratt (1964, Theorem 1), ρA
u > ρA

v is equivalent (up to differentiability) to

u = w ◦ v for some increasing concave function w (here, ◦ is the composition of two functions), and

hence Uv can be safely replaced by

U ∗
v = {u ∈ U | u(x) = w(v(x)), x ∈ [a, b] for some increasing concave function w} . (2)

This reformulation immediately allows us to translate between v-SD and SSD by noting that

E[w(v(X))] 6 E[w(v(Y ))] for all strictly increasing concave w is equivalent to v(X) 6SSD v(Y ).

Proposition 1 (Meyer (1977)). Take any convex function v ∈ U with v′ > 0. For all X and Y ,

X 6v Y if and only if v(X) 6SSD v(Y ).

Proposition 1 leads to the following SSD-based formulation of (1 + c)A-SD and (1 + r)R-SD.

Corollary 1. For any X,Y and c, r ∈ (0, 1),

X 6A
c Y ⇐⇒ e(1/c−1)X 6SSD e(1/c−1)Y and X 6R

r Y ⇐⇒ X1/r 6SSD Y 1/r.

Since (1+c)A-SD and (1+r)R-SD, as well as v-SD in general, are both connected to SSD via a

transformation, an immediate question that emerges concerns the existence of a similar translation
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between (1+γ)S-SD and SSD. The answer is negative even if we allow for both shape transforms and

probability distortions (i.e., F 7→ h◦F◦v for some h and v), which are two fundamental distributional

transforms characterized by Liu et al. (2021). This suggests some fundamental difference between

(1 + γ)S-SD and v-SD. A precise statement of this negative result is given below.

Proposition 2. For any γ < 1, there do not exist v : R→ R and h : [0, 1]→ [0, 1] such that for all

X,Y taking values on [a, b],

X 6S
γ Y ⇐⇒ (v(X))h 6SSD (v(Y ))h. (3)

where Zh represents a random variable having the distribution function h ◦H and H is the distri-

bution of Z.

For each given function v > 0, we can build a continuum of fractional SD via (vt)-SD indexed

by t ∈ (t0,∞), that is, to consider the set of utility functions (where vt means v raised to the power

of t)

Uv,t =
{
u ∈ U | u(x) = w

(
vt(x)

)
, x ∈ [a, b], w is an increasing concave function

}
,

and t0 is such that vt is convex for t > t0. To obtain the class of (1 + c)A-SD, we choose t0 = 0 and

v(x) = ex. To obtain the class of (1 + r)R-SD, we choose t0 = 1 and v(x) = x. The property of

(vt)-SD in this continuum becomes stronger as t increases (Remark 1 below), and one can employ

a decreasing transform from (t0,∞) to (0, 1) if it is desirable to index the class by a parameter in

(0, 1). Because of the economic relevance of (1 + c)A-SD and (1 + r)R-SD, we will be primarily

interested in these two special cases of v-SD, although all our results in Section 3 are presented for

general v-SD.

Remark 1. Monotonicity of v-SD with respect to the coefficient of absolute risk aversion of v is

straightforward. That is, if ρA
v1

6 ρA
v2

, then >v1 is stronger than >v2 . In particular, >vr is stronger

than >vs for t > s.

One may naturally wonder whether the class of vt-SD recovers FSD and SSD as its limiting

cases in the sense that ρA
vt(x) → −∞ as t → ∞, and ρA

vt(x) → 0 as t ↓ t0 for all x ∈ [a, b],

respectively. The next proposition shows that this is true only in the two cases of (1 + c)A-SD and

(1 + r)R-SD.

Proposition 3. For a positive and twice differentiable function v with v′ > 0 and t0 > 0, the family

of (vt)-SD always recovers FSD as t→∞. The family of (vt)-SD covers SSD as t ↓ t0 if and only

if (vt)-SD is one of (1 + c)A-SD or (1 + r)R-SD for some c, r ∈ [0, 1].
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As a consequence of Proposition 3, the function v which guarantees that the family of (vt)-SD

recovers FSD and SSD is a linear transform of a power or exponential function.

3 Fractional stochastic dominance in RDU and CPT

Below we present our results on fractional SD in the popular behavioral decision models of

RDU and CPT. Since CPT can be seen as a generalization of RDU, we only need to prove the

characterization results for CPT; nevertheless, since the formulas and conditions in RDU are more

concise and easier to interpret, we first present the RDU results, followed by the CPT results.

In the RDU model, each decision maker is characterized by a utility function u : R→ R and a

probability perception function h : [0, 1]→ [0, 1] with h(0) = 0, h(1) = 1. Both u and h are assumed

to be increasing and continuous. For given u and h, the rank-dependent utility of a prospect X is

defined by

Vu,h(X) =

∫
R
u(x) dh(F (x)), (4)

where F is the distribution function of X. An RDU(u, h) preference - is given by

X - Y ⇐⇒ Vu,h(X) 6 Vu,h(Y ). (5)

A preference - (a total preorder on random variables supported in [a, b]) is monotone in the

partial order 6S
γ (or 6v) if X 6S

γ Y (or X 6v Y) implies X - Y . Strong risk aversion corresponds

to monotonicity in SSD. As shown by Chew et al. (1987), an RDU(u, h) preference is strongly risk

averse if and only if both u and h are concave. This statement is generalized to (1 + γ)S-SD and

v-SD in the following theorem.

Theorem 1. For a convex function v ∈ U with v′ > 0 and γ ∈ (0, 1), the following statements

hold for any utility u function and probability perception function h.

(i) An RDU(u, h) preference is monotone in 6v if and only if u(v−1(y)) is concave in y ∈ R and

h is concave. In particular,

(a) for c ∈ (0, 1), an RDU(u, h) preference is monotone in 6A
c if and only if u( c

1−c log y) is

concave in y ∈ R+ and h is concave;

(b) for r ∈ (0, 1), an RDU(u, h) preference is monotone in 6R
r if and only if u(yr) is concave

in y ∈ R+ and h is concave.
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(ii) An RDU(u, h) preference is monotone in 6S
γ if and only if Ph > γG

[a,b]
u , where

Ph = inf
06p1<p26p3<p461

h(p2)− h(p1)

p2 − p1

/h(p4)− h(p3)

p4 − p3
, (6)

and

G[a,b]
u = sup

a6x1<x26x3<x46b

u(x4)− u(x3)

x4 − x3

/u(x2)− u(x1)

x2 − x1
. (7)

Taking v(x) = x in (i) or γ = 1 in (ii) yields the condition for strong risk aversion in RDU of

Chew et al. (1987) that h and u are both concave. Note that G
[a,b]
u > 1 > Ph, Ph = 1 if and only if

h is concave, and G
[a,b]
u = 1 if and only if u is concave on [a, b].

The quantities G
[a,b]
u and Ph are called the index of greediness and the index of pessimism,

respectively, by Chateauneuf et al. (2005). Therefore, a simple interpretation of Theorem 1 (ii) is

that monotonicity in (1 + γ)S-SD in RDU means a balance between greediness and pessimism. On

the other hand, Theorem 1 (i) says that for (1 + c)A-SD and (1 + r)R-SD, the requirement on the

probability perception function h is the same as SSD, and the utility function u needs to be “not

too convex”; if u is twice differentiable, then this means it needs to be in U A
c or U R

r .

If the utility function u is the identity, the RDU model reduces to Yaari’s DT, denoted by

DT(h).

(i) A DT(h) preference is monotone in v-SD if and only if h is concave. Hence, monotonicity in

v-SD for any choice of v is equivalent to strong risk aversion in DT. This shows that DT is

not able to distinguish, for instance, different values of the parameter c in (1 + c)A-SD.

(ii) A DT(h) preference is monotone in 6S
γ if and only if Ph > γ, where Ph is defined by (6). This

condition allows for some h that is not concave, and thus monotonicity in 6S
γ is genuinely

different from strong risk aversion. Indeed, 6S
γ may be alternatively defined using DT instead

of EU, and this is not the case for (1 + c)A-SD.

As we see in Theorem 1, in order to determine whether an RDU preference is monotone in 6v,

it suffices to check whether h is concave and u ◦ v−1 is concave. In case of 6A
c , this corresponds to

RDU with the utility functions in Huang et al. (2020) plus a concave h.

To determine whether an RDU preference is in 6S
γ , we need to compute Ph and G

[a,b]
u . We

present Ph and G
[a,b]
u for some examples u and h.

Example 1 (Utility functions). (i) Consider the piece-wise linear utility function u(x) = αx+−

βx−, x ∈ R, where α, β > 0, and a < 0 < b. If α 6 β (risk-neutral or risk-averse), then

G
[a,b]
u = 1. If α > β (risk-seeking), then G

[a,b]
u = α/β.
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(ii) Consider the exponential utility function u(x) = 1
β (1− e−βx), x ∈ R, where β 6= 0. We have

G[a,b]
u = max

{
1, eβ(b−a)

}
.

Note that if β > 0 then u is concave, and if β < 0 then u is convex.

(iii) Consider the power utility function u(x) = (w0 + x)β, x > −w0, where β > 0 and w0 ∈ R

represents the initial wealth of this decision-maker. Then for a > −w0,

G[a,b]
u = max

{
1,

(
w0 + b

w0 + a

)β−1
}
.

Note that if β 6 1 then u is concave, and if β > 1 then u is convex.

(iv) Consider the utility function of Tversky and Kahneman (1992),

u(x) = xα1{x>0} − ν(−x)β1{x<0}, x ∈ R,

where α, β, ν > 0. The function u is an inverse-S-shaped utility function and u′+(0) = ∞ if

0 < β < 1 < α. We exclude the case that α = β = 1, which was discussed in (i). We have

G[a,b]
u =


max{(b/a)α−1, 1}, 0 6 a < b,

max{(b/a)β−1, 1}, a < b < 0,

∞, otherwise.

Example 2 (Probability perception functions). (i) Consider the hyperbolic perception function

of Chateauneuf et al. (2005), defined by h(p) = p/(p + ν(1 − p)), p ∈ [0, 1], for some ν > 1.

The function h is convex, and we can calculate Ph = h′(0)/h′(1) = 1/ν2.

(ii) Consider the power perception function h(p) = pα, p ∈ [0, 1], where α > 0. We can calculate

P [a,b] = 1{α∈(0,1]}.

(iii) Consider the inverse-S-shaped probability perception function introduced by Tversky and

Kahneman (1992),

h(p) =
pδ

(pδ + (1− p)δ)1/δ
, p ∈ [0, 1],

where δ ∈ (0, 1). One can calculate Ph = 0.

Combining some u and h in Examples 1 and 2 we obtain some RDU preferences monotone in

6S
γ but not in SSD. An example is provided below.
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Example 3. Fix b > a > 0. Consider the power utility function u(x) = xβ and the hyperbolic

perception function h(p) = p/(p+ ν(1− p)) with β, ν > 1. Examples 1 and 2 yield that Ph = 1/ν2

and G
[a,b]
u = (b/a)β−1, and we let γ0 := Ph/G

[a,b]
u = ν−2(b/a)1−β. Then, by Theorem 1, the

RDU(u, h) preference is monotone in 6S
γ with γ 6 γ0 but monotonicity fails to hold for γ > γ0.

For instance, if ν = β = 3/2 and b/a = 4, then γ0 = 2/9. Also note that γ0 ↑ 1 as ν, β ↓ 1. On the

other than, this RDU(u, h) preference cannot be monotone in 6A
c or 6R

r for any c, r ∈ (0, 1], since

h is not concave.

Next, we turn to the cumulative prospect theory (CPT) of Tversky and Kahneman (1992). In

the CPT model, for an increasing continuous function u : R → R, two distortion functions h1, h2,

and a risk X, the expected loss/utility based on CPT is defined as

Vu, h1, h2(X) =

∫ 0

−∞
u(x) dh1(F (x)) +

∫ ∞
0

u(x) dh2(F (x)), (8)

where F is the distribution function of X. A CPT(u, h1, h2) preference - is given by

X - Y ⇐⇒ Vu, h1, h2(X) 6 Vu, h1, h2(Y ). (9)

If h1 = h2 = h, then CPT(u, h1, h2) is an RDU preference. Moreover, we will assume a < 0 < b;

that is, the reference point 0 of CPT is contained in [a, b]; otherwise (8) again reduces to (4).

Theorem 2. (i) A CPT(u, h1, h2) preference is monotone in 6v if and only if u(v−1(y)) is both

concave in y ∈ [0, v(0)] and y ∈ [v(0),∞), h1, h2 are concave, and they satisfy

u′+(0)

u′−(0)
6 inf

p∈(0, 1)

(h1)′−(p)

(h2)′+(p)
. (10)

(ii) A CPT(u, h1, h2) preference is monotone in 6S
γ if and only if γG

[a,0]
u 6 Ph1 , γG

[0,b]
u 6

Ph2 and γG
∗[a,b]
u 6 Ph1,h2 , where Ph and G

[a,b]
u are defined by (6) and (7), respectively,

and

Ph1,h2 = inf
06p1<p26p3<p461

h1(p2)− h1(p1)

p2 − p1

/h2(p4)− h2(p3)

p4 − p3
, (11)

G∗[a,b]u = sup
a6x1<x2606x3<x46b

u(x4)− u(x3)

x4 − x3

/u(x2)− u(x1)

x2 − x1
. (12)

Theorem 2 generalizes the characterization result of risk aversion in CPT by Schmidt and Zank

(2008). An empirically observed feature in CPT is loss aversion, which means u′(−x) > u′(x) for

all x > 0 where the derivatives exist; see e.g., Baucells and Heukamp (2006). Note that the limit of

u′(x)/u′(−x) as x ↓ 0, if it exists, yields the left-hand side of (10). Similarly to the interpretation
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of Theorem 1, monotonicity in (1 + γ)S-SD in CPT means a subtle balance between greediness and

pessimism for both the positive part [0, b] and the negative part [a, 0], and monotonicity in v-SD

implies that u is “not too convex” and h1 and h2 are concave.

4 Operational properties and applicability for specific models

We proceed to compare the three notions of fractional SD in terms of operational proper-

ties. These properties further illustrate the differences between these notions of fractional SD in

behavioral models beyond EU.

We first state three invariance properties, where (i) and (ii) are shown by Müller et al. (2017)

and Huang et al. (2020). For any prospects X and Y and γ, c, r ∈ [0, 1],

(i) X 6S
γ Y if and only if αX + β 6S

γ αY + β for all α > 0 and β ∈ R;

(ii) X 6A
c Y if and only if αX + β 6A

αc/(1−c+αc) αY + β for all α > 0 and β ∈ R.

(iii) X 6R
r Y if and only if αX + β 6R

r αY + β for all α > 0 and β > 0.

We briefly show (iii). Note that 6R
r is invariant to positive scaling. It suffices to show (iii) for α = 1.

The⇐ implication is trivial. For the⇒ implication, note that the function x 7→ (xr+β)1/r is concave

on [0,∞). Using Corollary 1, we have X1/r 6SSD Y 1/r, which leads to (X + β)1/r 6SSD (Y + β)1/r

because of the concavity of x 7→ (xr + β)1/r. Using Corollary 1 again, we obtain X + β 6R
r Y + β.

Below we present a slightly stronger result on the translation property of (1 + r)R-SD than

(iii) above, allowing for a possibly negative location shift. Proposition 4 will be useful in the proof

of Theorem 3.

Proposition 4. Let X and Y be two random variables taking values on [a, b]. Then X 6R
r Y if

and only if X + β 6R
s(β) Y + β for all β > −a where

s(β) = max

{
ra

a+ β − rβ
,

rb

b+ β − rβ

}
6 1.

A preference - is scale invariant if for all X,Y , X - Y implies αX - αY for all α > 0. A

preference - is translation invariant if for all X,Y , X - Y implies X + β - Y + β for all β ∈ R.

The preference - is lower semi-continuous if |Xn − X| → 0 uniformly and Xn - Y for each n

implies X - Y and it is upper semi-continuous if |Yn − Y | → 0 uniformly and X - Yn for each n

implies X - Y .

Theorem 3. Let - be a lower or upper semi-continuous preference on the set of bounded random

variables, denoted by X .

11



(i) Suppose that the preference - is scale invariant. For each c ∈ (0, 1], - is monotone in 6A
c if

and only if it is monotone in SSD.

(ii) Suppose that the preference - is translation invariant. For each r ∈ (0, 1], - is monotone in

6R
r if and only if it is monotone in SSD.

Theorem 3 implies, in particular, that monotonicity in (1 + c)A-SD (or (1 + c)R-SD) is equiv-

alent to monotonicity in SSD for any preference on X modeled by Yaari’s dual utility, which is

scale/translation invariant and lower/upper semi-continuous. Note that translation invariance is

not compatible with CPT or RDU unless the associated utility function is linear. We have seen

this equivalence in Section 3. The next result concerns a comparison of (1 + c)A-SD and (1 + γ)S-

SD for prospects that do not have a finite expected loss (these prospects cannot be compared by

(1 + r)R-SD since they are not non-negative).

Proposition 5. For any random variable X with E[X−] =∞,

(i) X 6S
γ Y for all γ ∈ (0, 1] and Y .

(ii) For 0 6 c′ < c < 1, there exists Y such that X 6A
c Y and X 66A

c′ Y .

Proposition 5 shows that (1 + c)A-SD is able to distinguish between prospects with infinite

expected losses, whereas (1+γ)S-SD is completely blind in such situations, just like SSD. In contrast,

any heavy-tailed random variable X and any constant d ∈ R cannot be compared by (1 + c)A-SD

unless d 6 X, which is the case of FSD.

Proposition 6. For any random variable X and d ∈ R, if E[eλX ] = ∞ for some λ > 0, then X

and d do not dominate each other in (1 + c)A-SD for c 6 1/(1 + λ) unless d 6 X.

In what follows, for notational convenience, we will write fractional SD between distribution

functions F and G, which should be understood as the fractional SD between the corresponding

random variables with these distributions.

Example 4. We will see that, in contrast to (1+γ)S-SD, (1+c)A-SD cannot distinguish log-normal

distributions or Pareto distributions except for the case of FSD. Technical details of the statements

here are given in Section A.3.

(1) (Log-normal distribution.) The log-normal distribution is widely used in both finance and

income/wealth modeling. Let Xk = exp(µk + σkZ), k = 1, 2, where Z is a standard normal

distributed prospect with distribution Φ, σ1 > σ2, and µ2− µ1 > (σ2
1 − σ2

2)/2, which guarantee

12



that X1 6SSD X2; see e.g., Theorem 5 of Levy (1973). In the case σ1 = σ2, either X1 6FSD X2

or X2 6FSD X1. If σ1 > σ2, then X1 6S
γ X2 for γ > γmin where

γmin =

∫∞
t0
ex
(

Φ
(
x−µ2

σ2

)
− Φ

(
x−µ1

σ1

))
dx∫ t0

−∞ e
x
(

Φ
(
x−µ1

σ1

)
− Φ

(
x−µ2

σ2

))
dx

with t0 =
µ1σ2 − µ2σ1

σ2 − σ1
;

moreover, X1 6R
r X2 if and only if σ1 > σ2, and r(µ2 − µ1) > (σ2

1 − σ2
2)/2. In contrast,

X1 66A
c X2 for any c < 1 in this case.

(2) (Pareto/Lomax distribution.) Let Fk be a distribution given by

Fk(x) = 1−
(

1 +
x

µk

)−αk
, x > 0, k = 1, 2,

where µk > 0, k = 1, 2, α1 > α2 > 0. If α1 = α2, then either F1 6FSD F2 or F2 6FSD F1

depending on µ1 6 µ2 or µ1 > µ2. Next, we assume α1 > α2 and consider the following cases.

(i) If µ1 6 µ2 or µ1 > µ2, α1µ2 − α2µ1 > 0, then F1 6FSD F2.

(ii) µ1 > µ2, α1µ2 − α2µ1 < 0.

(ii.a) If 1 > α2 or α2 > 1, µ1/(α1 − 1) < µ2/(α2 − 1), then F1 66SSD F2 and F2 66SSD F1.

(ii.b) If α2 > 1, µ1/(α1 − 1) > µ2/(α2 − 1), then F2 6S
γ F1 for γ > γmin where

γmin =

∫∞
x0

µ
α2
2

(x+µ2)α2
− µ

α1
1

(x+µ1)α1
dx∫ x0

0
µ
α1
1

(x+µ1)α1
− µ

α2
2

(x+µ2)α2
dx
.

We also have F2 6R
r F1 for r > rmin where rmin is the solution to the equation

∫ ∞
0

(
1 +

xr

µ1

)−α1

−
(

1 +
xr

µ2

)−α2

dx = 0.

In contrast, for any α1 > α2 > 0 and c ∈ (0, 1), F2 66A
c F1.

5 Estimation of the parameter in a fractional SD relationship

In this and the next sections, we study the estimations and real-data applications of the indexes

γ in (1 + γ)S-SD and c in (1 + c)A-SD. The index r in (1 + r)R-SD shares some similarity with that

of c and is omitted. Since both relations (1 + c)A-SD and (1 + γ)S-SD become stronger as c and

γ decrease, it is natural to identify the smallest values (or infima) of γ and c such that F 6S
γ G

and F 6A
c G hold for two given distributions F and G. We denote these two numbers by γmin and

cmin, respectively, assuming that they exist (if they do not, then we use the infima). In practice,
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we often need to determine estimates of γmin and cmin based on observations X1, . . . , Xn ∼ F and

Y1, . . . , Ym ∼ G. Denote by Fn and Gm the empirical cumulative distributions (cdfs) of X1, . . . , Xn

and Y1, . . . , Ym, respectively. We assume that Fn → F and Gm → G as n,m → ∞ in probability.

Clearly, this is the minimum requirement of any meaning approximation of the true distributions

using the empirical ones, and it is satisfied by, for instance, iid or α-mixing stationary data.

We first give an equivalent characterization of (1 + c)A-SD. We say that two distributions F

and G are single-crossing at x0 ∈ R if either F −G 6 0 on (−∞, x0) and F −G > 0 on (x0,∞), or

F −G > 0 on (−∞, x0) and F −G 6 0 on (x0,∞). If, in addition, F 6SSD G, then only the latter

case is possible. For a random variable X, define

Xp = F−1(pU), p ∈ [0, 1],

where F is the distribution function of X. If p is small, the random variable Xp can be interpreted

as the tail risk of X; see Liu and Wang (2021).

Proposition 7. For random variables X and Y with respective distributions F and G and finite

exponential moments, X 6A
c Y if and only if c > cmin = 1/(1 + λmax), where

λmax = sup{λ > 0 : g(λ) > 0}, g(λ) = inf
p∈(0,1)

(
E[eλYp ]− E[eλXp ]

)
. (13)

In particular, if F and G are single-crossing at some point, then λmax is the unique solution λ > 0

of the equation E[eλX ] = E[eλY ].

By Proposition 7, we propose an estimator of cmin as follows,

ĉmin = (1 + λ̂max)−1 and λ̂max = sup{λ > 0 : ĝ(λ) > 0},

where

ĝ(λ) = inf
p∈(0,1)

(
EY∼Gm [eλYp ]− EX∼Fn [eλXp ]

)
.

For a given dataset, computation and properties of ĉmin may not be easy to analyze in general

since two layers of optimization are involved when finding the largest λ > 0 such that eλZ 6SSD

eλW holds for Z ∼ Fn and W ∼ Gm. We are not aware of a simple and efficient procedure

for accomplishing this task for general underlying distributions. Technically, due to the possibly

complicated relationship between F and G, it is not obvious how to establish consistency of the

estimator ĉmin. For the above reason, we will investigate the simpler case of single-crossing, a

popular setup for distributions satisfying an SSD relationship.

Suppose that F and G are single-crossing. We can set ĉmin = (1 + λ̂max)−1, where λ̂max is

14



the largest (usually unique) λ satisfying EFn [eλX ] = EGm [eλY ], and we set λ̂max = 0 if there is no

solution to the above equation. Under suitable regularity conditions, the probability that Fn and

Gm are single-crossing tends to 1 as n,m→∞.

Below, we say that F and G are strictly single-crossing if they are single-crossing, and there

exists t0 ∈ (0, 1) such that for any ε > 0, there exists δ > 0 such that |F−1(t)−G−1(t)| > ε for all

x with |t− t0| > δ. That is, the curves of F and G cross at one point, and they depart before and

after that point.

Proposition 8. Let F and G be two strictly single-crossing and compactly supported continuous

distributions. Then ĉmin is a consistent estimator of cmin; that is, ĉmin → cmin in probability as

n,m→∞.

Estimating γmin is simpler than estimating cmin. We follow the equivalent characterization

given by Theorem 2.4 of Müller et al. (2017). Given two distributions F and G, F 6S
γ G if and only

if the following statement holds∫ t

−∞
(G(x)− F (x))+dx 6 γ

∫ t

−∞
(F (x)−G(x))+dx for all t ∈ R.

This implies that4

γmin = sup
t∈R

∫ t
−∞(G(x)− F (x))+dx∫ t
−∞(F (x)−G(x))+dx

.

Based on this observation, we propose the following γ̂min as one estimation of γmin:

γ̂min = min{γ̃min, 1}, γ̃min = max
t∈R

∫ t
0 (Gm(x)− Fn(x))+ dx∫ t
0 (Fn(x)−Gm(x))+ dx

.

In contrast to ĉmin, the consistency of γ̂min is easy to establish as it involves only one layer of

optimization.

Proposition 9. Let F and G be two compactly supported continuous distributions, and let `F and

`G be the left endpoints of the supports of F and G, respectively. If `F < `G, then γ̂min is a consistent

estimator of γmin, that is, γ̂min → γmin in probability as n,m→∞.

Simulations of γ̂min and ĉmin for normal distributions are presented in Appendix B. Although

normal distributions do not satisfy the condition of compact support in Propositions 8 and 9, they

satisfy the single-crossing property, and γmin and cmin have explicit formulas. The simulation results

confirm that estimators γ̂min and ĉmin work quite well in this setting.

4A similar index called the measure for partial stochastic dominance α(F,G) is defined by Eq. (10) in Kamihigashi
and Stachurski (2020).
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6 Real data example

We compare the log-return and the daily change5 in the S&P500 index, the Dow Jones In-

dustrial (DJI), and NASDAQ of 2005 (251 data points) with those of 2008 (252 data points). For

each index, we denote the empirical cdfs of the 2005 and 2008 samples by F05 and F08, respectively.

As shown in Figure 1, for each index, F05 and F08 are single-crossing and F05 has a larger mean

than F08, which implies that F08 66FSD F05 and F08 6SSD F05
6. Similarly, we also compare the

log-return and daily change of S&P500, DJI and NASDAQ of 2019 (Q1-Q2, 123 data points from

January 3, 2019 to June 28, 2019) and 2020 (Q1-Q2, 124 data points from January 3, 2020 to June

30, 2020). For each index, we denote these distributions by F19 and F20, respectively. In Figure 2,

for each index, F19 and F20 are single-crossing and F19 has a larger mean than F20, which implies

that F20 66FSD F19 and F20 6SSD F19. We choose the pairs 2005-2008 and 2019-2020 because the

preference of 2005 over 2008 and 2019 over 2020 is arguably intuitive, and they satisfy the single-

crossing property and a mean inequality, which implies an SSD order. In Table 1, we report the

estimated values of γmin and cmin for the 2005-2008 data and 2019-2020 data using the methods

outlined in Section 5.

From the results on (1 + γ)S-SD, we observe that, either in log-returns or in absolute value,

compared to 2008, the log-return distributions in 2005 are preferred by all investors who are mono-

tone in (1 + 0.75)S-SD, and compared to 2020, the log-return distributions in 2019 are preferred by

all investors who are monotone in (1 + 0.9)S-SD. Between the two pairs 2005-2008 and 2019-2020

(Q1-Q2), the strength of dominance is comparable for S&P500 and DJI, and the dominance in

2005-2008 is stronger than 2019-2020 for NASDAQ.

From results on (1 + c)A-SD, the results are either very close to 0 (using log-return) or very

close to 1 (using daily change). Since the estimates of cmin are sensitive to scaling, it is not clear to

us how conclusions can be drawn from these numbers.

7 An application of portfolio selection

We present an application of Theorem 1 in a portfolio selection problem, similar to the setting

considered by Chew et al. (1987). For simplicity, we consider an investor with a DT(h) preference,

and we denote the numerical representation of DT(h) by Dh, i.e., Dh(X) =
∫
x dh(F (x)) where F

5The daily change is the difference between the indices on two consecutive trading days. These data are not iid,
but the methods in Section 5 do not require an iid assumption.

6For two cdfs F and G, the dominance between F and G means the dominance between X and Y , where X and
Y are two random variables having cdfs F and G, respectively.
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Figure 1: Empirical cdfs of 2005 versus 2008. Left panel: log-return; right panel: daily change.

is the distribution of X. Suppose that the investor has an optimal portfolio problem

α∗(X) = arg max
α∈[0,α0]

Dh(w + αX − c(α))

where w ∈ [0,∞) is the initial wealth of the investor, X is the future price of an asset, α0 ∈ (0,∞),

and c : [0,∞) → [0,∞) is a cost function. The value c(α) of the cost function represents the

price paid to purchase α units of the asset. We assume that c is increasing and strictly convex; an

example is c(x) = ax2 for some a > 0. These assumptions are consistent with the intuition that

the marginal cost is increasing due to transaction fees or limited liquidity (e.g., Föllmer and Schied

(2002)). In what follows, two assets are normalized so that they share the same cost function.

Proposition 10. If γ ∈ (0, 1), Ph > γ where Ph is given by (6), and X1 6S
γ X2, then α∗(X1) 6

α∗(X2).

To interpret the result in Proposition 10, we take the example in Section 6 by assuming that

X1 and X2 represent the return of 1 unit of the S&P 500 index using the distributions F08 and F05,

respectively. As we have seen in Section 6, we have X1 6S
0.7 X2. If a DT(h) decision maker satisfies

Ph > 0.7 (see examples of such h in Example 2), then she would invest more in the index if the

market follows the empirical distribution in 2005 and invest less if the market follows the empirical
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Figure 2: Empirical cdfs of 2019 versus 2020, Q1-Q2. Left panel: log-return; right panel: daily
change.

distribution in 2008. This conclusion holds true for some risk-seeking investors, as Ph > 0.7 allows

for some risk-seeking DT models, i.e., those with a convex h.

8 Concluding remarks

As we have seen from Corollary 1, the concepts of (1 + c)A-SD and (1 + r)R-SD can be roughly

seen as a logarithmic version and a power version of SSD, respectively, which have a clear connection

to the classic framework of risk aversion, in particular, to coefficients of risk aversion. On the other

hand, (1 + γ)S-SD offers a significantly different technical framework than the classic ones, thus

allowing for applications in more situations of behavioral decision analysis. Both (1 + c)A-SD and

(1 + r)R-SD are included in the class of v-SD, which allows for construction of more general notions

of fractional SD.

If behavioral decision models involving (subjective) probability distortion such as RDU or

CPT are used, then (1 + γ)S-SD is more suitable than v-SD, as it correctly reflects the role of the

probability distortion in the comparison of risks. On the other hand, (1 + c)A-SD and (1 + r)R-SD

are, in the sense of Theorem 1, blind to probability distortion.

One could nevertheless construct fractional SD directly from RDU (or DT, CPT) preferences.
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2005 vs 2008 2019 vs 2020 (Q1-Q2)
γmin cmin γmin cmin

S&P500 log-return 0.6871 0.1184 0.6593 0.0824
daily change 0.6688 0.9918 0.6706 0.9961

DJI log-return 0.7424 0.1380 0.6806 0.1000
daily change 0.7348 0.9999 0.6582 0.9997

NASDAQ log-return 0.7077 0.1206 0.8309 0.1980
daily change 0.6992 0.9958 0.8958 0.9997

Table 1: Estimated values of γmin and cmin.

For instance, analogously to (2), let

Rv,g = {(u, h) | u = w ◦ v, h = f ◦ g for some increasing concave w and f} ,

and we can define (v, g)-SD by X 6v,g Y ⇔ Vu,h(X) 6 Vu,h(Y ) for all (u, h) ∈ Rv,g. With

this formulation, the roles of the utility function and the probability perception function become

symmetric. It is a bit surprising that for (1 + γ)S-SD, the roles of the utility function and the

probability perception function in RDU are indeed symmetric, although the formulation of (1+γ)S-

SD only involves utility functions; the same holds true for the SSD conditions of RDU.

Our paper is the first to connect the important behavioral models of RDU and CPT in decision

theory and the recent notions of fractional stochastic dominance. As a potential benefit, our results

allow for an economist to know what kind of decision models to use when fractional SD is assumed or

empirically observed. Using these relations, one can pin down optimal choices in some applications

without specifying the preference model. To present a concise analysis in this paper, we did not

include other types of SD, such as the prospect SD of Baucells and Heukamp (2006) and the

continuum of SD of Fishburn (1976, 1980). These generalizations can be studied in the future.

Fractional SD is also studied in other decision models by Yang et al. (2022).

Some other comparisons between the three notions of fractional SD are drawn from our further

analyses in Sections 4-6. If the risk comparison is naturally scalable, such as monetary amounts

possibly via exchange rates, then (1 + γ)S-SD and (1 + r)R-SD are better to use (Theorem 3).

On the other hand, if it is desirable that the risk comparison is invariant to location shift, then

(1+γ)S-SD and (1+c)A-SD are more suitable. If the risks to compare do not have a finite expected

loss (statistically, this means the situation that the first moment is difficult to estimate, even if it

exists), then (1 + c)A-SD is useful whereas (1 + γ)S-SD is not (Proposition 5). For prospects that

take both positive and negative values, (1 + r)R-SD is not properly defined. For distributions of

prospects with no exponential moments such as log-normal or Pareto distributions, (1+γ)S-SD and
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(1 + r)R-SD are more useful than (1 + c)A-SD (Proposition 6 and Example 4). When it comes to

estimation of the parameters c and γ from real data, (1 + γ)S-SD is often more convenient to work

with, and its estimates are easier to interpret, at least in our examples in Sections 5 and 6.
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A Proofs of all results

A.1 Proof of Propositions 2 and 3 in Section 2

We first present the proof of Proposition 2, which says that unlike the other notions of fractional

SD considered in this paper, (1 + γ)S-SD of Müller et al. (2017) cannot be formulated via SSD.

Proof of Proposition 2. We show the result by contradiction. Denote by M[a,b] the set of all cdfs

with support in [a, b] and F and G the cdfs of X and Y , respectively. For γ < 1, suppose there

exists a v : R → R and h : [0, 1] → [0, 1] such that (3) holds. Let Tγ : M[a,b] → M be Tγ(F ) =

h ◦ F ◦ v, where M is the set of distributions. Since both 6S
γ and 6SSD are reflexive, we have that

the transform Tγ is a one-to-one transform, that is, h and v are two one-to-one functions. First

consider the distribution δx representing for the point-mass at x ∈ R, we have Tγ(δx) = h(δx ◦ v) =

h(1{v(·)>x}) = h(0)1{v(·)<x}+h(1)1{v(·)>x} ∈M. Hence, we have {h(0), h(1)} = {0, 1}. Comparing

δx and δy, a 6 x < y 6 b, by (3), we have that either one of the following two cases holds: (1)

v(x) < v(y), h(0) = 0 and h(1) = 1; (2) v(x) > v(y), h(0) = 1 and h(1) = 0. Without loss of

generality (wlog), assume that case (1) holds, that is, v is strictly increasing, h(0) = 0 and h(1) = 1.

Define u : [a, b] → R as u(x) = v−1(x) = inf{y : v(y) > x}. Then by that the transform Tγ is a

one-to-one transform, and Tγ(δx) is the point mass at u(x), we have u is strictly increasing. Hence,

we have v is continuous and thus, v and u are both increasing and continuous.

Consider the distribution Fp = pδ0 + (1− p)δ1, p ∈ [0, 1]. Note that Fp is decreasing in p with

respect to SSD and thus, we have Tγ(F ) = h(p)δu(0) + (1−h(p))δu(1) is decreasing in p with respect

to (1 + γ)S-SD. Hence, h is also strictly increasing. For p ∈ (0, 1), define Gn = pnδ1/n + (1− pn)δ1,

where pn = p+γp/(n−1) ∈ (p, 1) for n large enough. Then Fp 6γ Gn each n such that pn ∈ (p, 1).

By (3), we have Tγ(Fp) 6SSD Tγ(Gn), that is, h(p)δu(0) + (1 − h(p))δu(1) 6SSD h(pn)δu(1/n) +

(1 − h(pn))δu(1). Note that u is continuous at 0 and h(pn)δu(1/n) + (1 − h(pn))δu(1) converges to

h(p+)δ0 + (1 − h(p+))δu(1) in distribution and the expectation also converges as n → ∞, where

h(p+) = limq↓p h(p). Since 6SSD is continuous with respect to the above convergence, we conclude

that h(p)δu(0) + (1−h(p))δu(1) 6SSD h(p+)δu(0) + (1−h(p+))δu(1). This implies that h(p+) 6 h(p).

Similarly, we can show h(p−) = limq↑p h(p) > h(p). Hence, we have h is continuous on (0, 1). We

also can similarly show h is continuous on [0, 1].

Define g = h−1 and Uγ(F ) = T−1
γ (F ) = g ◦F ◦ u. Then g is increasing and continuous in [0, 1]

with g(0) = 0, g(1) = 1, and Uγ is a transform from M to M[a,b]. For x ∈ [−2, 2], let Fx be the

distribution of a random variable Xx which is uniformly distributed on {x − 1, x + 1}. Obviously,
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Fx 6SSD δx, and thus, Uγ(Fx) 6γ Uγ(δx). Hence, for x ∈ R,

∆u(x)g1/2 6 γ with ∆u(x) =
u(x+ 1)− u(x)

u(x)− u(x− 1)
, g1/2 =

1− g(1/2)

g(1/2)
.

If ∆u(x)g1/2 < γ, then there exists x0 < x such that ∆u(x0)g1/2 = γ. This implies that Uγ(Fx) 6γ

Uγ(δx0). Then by (3), we have Fx 6SSD δx0 which yields a contradiction with that E[Xx] = x > x0.

Therefore, we have ∆u(x)g1/2 = γ. Similarly, compare the distributions (Fx +G)/2 and (δx +G)/2

with G = δ−4, δ4 and (δ−4 + δ4)/2, respectively, we have

∆u(x) · g(1/2)− g(1/4)

g(1/4)
= ∆u(x) · g(3/4)− g(1/2)

g(1/2)− g(1/4)
= ∆u(x) · g(1)− g(3/4)

g(3/4)− g(1/2)
= γ.

Those imply g(1/2)−g(1/4)
g(1/4) = g(3/4)−g(1/2)

g(1/2)−g(1/4) = g(1)−g(3/4)
g(3/4)−g(1/2) = 1−g(1/2)

g(1/2) and thus, g(x) = x for x =

0, 1/4, 1/2, 3/4, 1. Similarly, we can show g(k/2n) = k/2n, k = 1, . . . , 2n, n ∈ N. By monotonicity,

we have g(x) = x for x ∈ [0, 1], and thus, h(x) = x for x ∈ [0, 1]. This then implies ∆u(x) = γ

for x ∈ [−2, 2]. Define Z such that P(Z = x − 1) = 1 − P(Z = x + 2) = 2/3. Then we have

Z 6SSD x which is equivalent to u(Z) 6γ u(x) for x ∈ R by (3), that is, u(x+2)−u(x)
2(u(x)−u(x−1)) = γ 1+γ

2 6 γ,

where the equality follows from ∆u(x) = γ for each x ∈ [−2, 2]. This implies γ = 1 which yields a

contradiction.

Next, we present the proof of Proposition 3, which says that (vt)-SD has a limit of FSD, and

it has a limit of SSD if only if it is one of (1 + c)A-SD and (1 + r)R-SD.

Proof of Proposition 3. Note that for t > 0,

ρA
vt(x) = −(vt(x))′′

(vt(x))′
= −

(
v′′(x)

v′(x)
+ (t− 1)

v′(x)

v(x)

)
.

Since v′ > 0, it is clear that ρA
vt(x) → −∞ as t → ∞. Using the equivalence between (1) and (2),

we know that vt-SD can be formulated via the set

{
u ∈ U | u′(x) > 0, ρA

u (x) > ρA
vt(x), x ∈ [a, b]

}
.

Therefore, FSD is a limiting case of vt-SD as t→∞. On the other hand, to recover SSD, it means

ρA
vt(x)→ 0 as t ↓ t0, which is the oridinary differential equation

v′′v + (t0 − 1)(v′)2 = 0. (14)

If t0 6= 0, then (14) is equivalent to (vt0)′′ = 0, leading to the linearity of vt0 . This corresponds
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to the case of (1 + r)R-SD, by choosing, for instance, v(x) = x and t0 = 1; the choice of t0 is

irrelevant here. If t0 = 0, then (14) is equivalent to (log v)′′ = 0, leading to the linearity of log v.

This corresponds to the case of (1 + c)A-SD, by choosing, for instance v(x) = ex and t0 = 0.

A.2 Proofs of Theorems 1 and 2 in Section 3

Next, we present proofs of Theorems 1 and 2. Since Theorem 1 follows from Theorem 2

by setting h1 = h2 = h, we will show Theorem 2 below. Before proving Theorem 2, we need the

following lemma, similar to Lemma 1 of Chateauneuf et al. (2005) which shows that in the definition

of index of greediness, the supremum can be obtained by choosing (x4 − x3)/(x2 − x1) as a fixed

constant. The proof is similar and hence is omitted.

Lemma 1. For a utility function u, a < b and α > 0, denote by R
[a,b]
α = {(x1, . . . , x4) ∈ R4 : a 6

x1 < x2 6 x3 < x4 6 b, x4 − x3 = α(x2 − x1)} and R
∗[a,b]
α = {(x1, . . . , x4) ∈ R4 : a 6 x1 < x2 6

0 6 x3 < x4 6 b, x4 − x3 = α(x2 − x1)}. Then

G[a,b]
u = sup

(x1,...,x4)∈R[a,b]
α

u(x4)− u(x3)

x4 − x3

/u(x2)− u(x1)

x2 − x1

and G∗[a,b]u = sup
(x1,...,x4)∈R∗[a,b]α

u(x4)− u(x3)

x4 − x3

/u(x2)− u(x1)

x2 − x1
.

Proof of Theorem 2. (i) Without loss of generality we can assume v(0) = 0. One can verify that

for any random variable X,

Vu,h1,h2(X) =

∫ v(0)

−∞
u(v−1(y)) dh1(Fv(y)) +

∫ ∞
v(0)

u(v−1(y)) dh2(Fv(y)) = Vu(v−1),h1,h2
(v(X)),

where Fv is the cdf of v(X). By Proposition 1, Vu,h1,h2 is consistent with 6v if and only if Vu(v−1),h1,h2

is consistent with SSD. By Theorem 1 of Schmidt and Zank (2008), we have that a CPT(u, h1, h2)

preference is monotone in 6v if and only if u(v−1(x)) is both concave in x ∈ [0, v(0)] and x ∈

[v(0),∞), h1, h2 are concave, and they satisfy (10).

(ii) Assume that γ > 0 since the case of γ = 0 is trivial. We first show the necessity. Suppose

for the purpose of contradiction that γG
[a,0]
u > Ph1 , γG

[0,b]
u > Ph2 , or γG

∗[a,b]
u > Ph1,h2 . We shall

show that a CPT(u, h1, h2) preference is not monotone in 6S
γ in the two cases that γG

[a,0]
u > Ph1

and γG
∗[a,b]
u > Ph1,h2 , since the case γG

[0,b]
u > Ph2 can be shown similarly. We write V = Vu,h1,h2

for simplicity.

(a) If γG
[a,0]
u > Ph1 , then from the definition of Ph1 , there exist 0 6 p1 < p2 6 p3 < p4 6 1 such

that γG
[a,0]
u > h1(p2)−h1(p1)

p2−p1

/
h1(p4)−h1(p3)

p4−p3
. Next, by Lemma 1 with α = γ(p2 − p1)/(p4 − p3),
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there exist a 6 x1 < x2 6 x3 < x4 6 0 such that (x4 − x3)(p4 − p3) = γ(x2 − x1)(p2 − p1) and

u(x4)− u(x3)

u(x2)− u(x1)
>
h1(p2)− h1(p1)

h1(p4)− h1(p3)
. (15)

Define two random variables X and Y such that

P(X = x1) = p2, P(X = x2) = q − p2, P(X = x3) = p3 − q, P(X = x4) = 1− p3;

P(Y = x1) = p1, P(Y = x2) = q − p1, P(Y = x3) = p4 − q, P(Y = x4) = 1− p4,

where q ∈ [p2, p3] is a constant. We can verify that Y is obtained from X via a γ-transfer, and

V (X)− V (Y ) = (u(x4)− u(x3))(h1(p4)− h1(p3))− (u(x2)− u(x1))(h1(p2)− h1(p1)) > 0

in view of (15). This yields a contradiction. The argument in case γG
[0,b]
u > Ph2 is similar.

(b) If γG
∗[a,b]
u > Ph1,h2 , then from the definition of Ph1,h2 , there exist 0 6 p1 < p2 6 p3 < p4 6 1

such that γG
∗[a,b]
u > h1(p2)−h1(p1)

p2−p1

/
h2(p4)−h2(p3)

p4−p3
. Next, by Lemma 1 with α = γ(p2−p1)/(p4−p3),

there exist x1 < x2 6 0 6 x3 < x4 such that (x4 − x3)(p4 − p3) = γ(x2 − x1)(p2 − p1) and

u(x4)− u(x3)

u(x2)− u(x1)
>
h1(p2)− h1(p1)

h2(p4)− h2(p3)
. (16)

Define two random variables X and Y as in Case (a). Then we have that Y is obtained from

X via a γ-transfer, and

V (X)− V (Y ) = (u(x4)− u(x3))(h2(p4)− h2(p3))− (u(x2)− u(x1))(h1(p2)− h1(p1)) > 0

in view of (16). This yields a contradiction.

Combining the above cases, we obtain the necessity statement.

Next, we show sufficiency. Without loss of generality, we assume that u(0) = 0. By Theorems

2.7 and 2.8 of Müller et al. (2017), it suffices to show that V is monotone in γ-transfers. Let X

and Y satisfy (1) P(Y = xt) = pt − pt−1 for t = 1, . . . , n, with x1 < · · · < xn, 0 = p0 6 p1 6

. . . 6 pn = 1; (2) P(X = xt) = P(Y = xt) for all t 6∈ {i, k, `, j}, where 1 6 i < k < ` < j 6 n;

and (3) for η1 > 0 and η2 > 0, P(X = xi) = pi − pi−1 + η1, P(X = xk) = pk − pk−1 − η1,

P(X = x`) = p`− p`−1− η2, P(X = xj) = pj − pj−1 + η2, with γη1(xk − xi) = η2(xj − x`). Denote

s = max{t : xt < 0 6 xt+1, t = 1, . . . , n} with s = 0 if xt < 0 for all t = 1, . . . , n, and s = n + 1 if
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xt > 0 for all t = 1, . . . , n. Then it holds that

V (Y ) =
s∑
t=1

u(xt)(h1(pt)− h1(pt−1)) +
n∑

t=s+1

u(xt)(h2(pt)− h2(pt−1)).

To calculate V (X), we need to consider the following four subcases.

(a) s 6 i, that is, xt > 0 for any t ∈ {i, k, `, j}. In this case, we have that

V (X) =
s∑

ν=1

u(xν)(h1(pν)− h1(pν−1)) +

 i−1∑
ν=s+1

+
`−1∑

ν=k+1

+
n∑

ν=j+1

u(xν)(h2(pν)− h2(pν−1))

+ u(xi)(h2(pi + η1)− h2(pi−1)) +
k−1∑
ν=i+1

u(xν)(h2(pν + η1)− h2(pν−1 + η1))

+ u(xk)(h2(pk)− h2(pk−1 + η1)) + u(x`)(h2(p` − η2)− h2(p`−1))

+ u(xj)(h2(pj)− h2(pj−1 − η2)) +

j−1∑
ν=`+1

u(xν)(h2(pν − η2)− h2(pν−1 − η2)).

This implies that

V (Y )− V (X) =

k∑
ν=i+1

(u(xν)− u(xν−1))(h2(pν−1 + η1)− h2(pν−1))

−
j∑

ν=`+1

(u(xν)− u(xν−1))(h2(pν−1)− h2(pν−1 − η2)).

Choose k0 and `0 such that h2(pk0 + η1)− h2(pk0) = mini6t<k{h2(pt + η1)− h2(pt)} and h2(p`0)−

h2(p`0 − η2) = max`<t6j{h2(pt−1)− h2(pt−1 − η2)}. Then

V (Y )− V (X)

> (u(xk)− u(xi))(h2(pk0 + η1)− h2(pk0))− (u(xj)− u(x`))(h2(p`0)− h2(p`0 − η2))

sgn
=

u(xk)− u(xi)

xk − xi
· h2(pk0 + η1)− h2(pk0)

η1
− γ u(xj)− u(x`)

xj − x`
· h2(p`0)− h2(p`0 − η2)

η2

sgn
=

h2(pk0 + η1)− h2(pk0)

η1

/h2(p`0)− h2(p`0 − η2)

η2
− γ u(xj)− u(x`)

xj − x`

/u(xk)− u(xi)

xk − xi

> Ph2 − γG[0,b]
u > 0,

where the first equality in sign
sgn
= follows from that γη1(xk−xi) = η2(xj−x`) and in the second

sgn
= ,

we used the fact u(xk) > u(xi) (otherwise, we have u(xk) = u(xi) which implies u(xj) = u(x`) or

G
[0,b]
u = ∞. If u(xj) = u(x`), then V (Y ) > V (X) holds trivially. If G

[0,b]
u = ∞, then the condition
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G
[0,b]
u 6 Ph2 implies Ph2 = 1, that is, h2(p) = 1{p>0}. It follows that h2(p`0)− h2(p`0 − η2) = 0 and

thus, V (Y )− V (X) > 0.).

(b) i < s 6 k, that is, xi < 0 < xk 6 x` < xj . In this case,

V (X) =

i−1∑
ν=1

u(xν)(h1(pν)− h1(pν−1)) +

 `−1∑
ν=k+1

+

n∑
ν=j+1

u(xν)(h2(pν)− h2(pν−1))

+ u(xi)(h(pi + η1)− h(pi−1)) +
s∑

ν=i+1

u(xν)(h1(pν + η1)− h1(pν−1 + η1))

+
k−1∑
ν=s+1

u(xν)(h2(pν + η1)− h2(pν−1 + η1))

+ u(xk)(h2(pk)− h2(pk−1 + η1)) + u(x`)(h2(p` − η2)− h2(p`−1))

+ u(xj)(h2(pj)− h2(pj−1 − η2)) +

j−1∑
ν=`+1

u(xν)(h2(pν − η2)− h2(pν−1 − η2)).

As a consequence,

V (Y )− V (X) =

s∑
ν=i+1

(u(xν)− u(xν−1))(h1(pν−1 + η1)− h1(pν−1))

− u(xs)(h1(ps + η1)− h1(ps)) + u(xs+1)(h2(ps + η1)− h2(ps))

+

k∑
ν=s+2

(u(xν)− u(xν−1))(h2(pν−1 + η1)− h2(pν−1))

−
j∑

ν=`+1

(u(xν)− u(xν−1))(h2(pν−1)− h2(pν−1 − η2)).

Choose k1, k2 and `0 such that h1(pk1 + η1) − h1(pk1) = mini6t6s{h1(pt + η1) − h1(pt)}, h2(pk2 +

η1) − h2(pk2) = mins6t<k{h2(pt + η1) − h2(pt)} and h2(p`0) − h2(p`0 − η2) = max`<t6j{h2(pt−1) −

h2(pt−1 − η2)}. Then we have

V (Y )− V (X)

> −u(xi)(h1(pk1 + η1)− h1(pk1)) + u(xk)(h2(pk2 + η1)− h2(pk2))

− (u(xj)− u(x`))(h2(p`0)− h2(p`0 − η2))

sgn
=
−u(xi)

xk − xi
· h1(pk1 + η1)− h1(pk1)

η1
+

u(xk)

xk − xi
· h2(pk2 + η1)− h2(pk2)

η1

− γ u(xj)− u(x`)

xj − x`
· h2(p`0)− h2(p`0 − η2)

η2

27



= λ

(
u(0)− u(xi)

0− xi
· h1(pk1 + η1)− h1(pk1)

η1
− γ u(xj)− u(x`)

xj − x`
· h2(p`0)− h2(p`0 − η2)

η2

)
+ (1−λ)

(
u(xk)−u(0)

xk − 0
· h2(pk2 +η1)− h2(pk2)

η1
− γ u(xj)− u(x`)

xj − x`
· h2(p`0)− h2(p`0−η2)

η2

)
=: λI1 + (1− λ)I2, (17)

where λ = −xi/(xk − xi) > 0. Here, the first inequality follows from u(xs+1) > u(0) = 0 and

u(xs) 6 u(0) = 0. Note that

I2 =
u(xk)− u(0)

xk − 0
· h2(pk2 + η1)− h2(pk2)

η1
− γ u(xj)− u(x`)

xj − x`
· h2(p`0)− h2(p`0 − η2)

η2

sgn
=

(h2(pk2 + η1)− h2(pk2))

η1

/h2(p`0)− h2(p`0 − η2)

η2
− γ u(xj)− u(x`)

xj − x`

/u(xk)− u(0)

xk − 0

> Ph2 − γG[0,b]
u > 0,

where the first inequality follows from that 0 6 xk < x` < xj . We also used u(xk) > u(0) for
sgn
= .

This is because if u(xk) = u(0), then one can easily verify V (X) 6 V (Y ) by similar arguments in

the bracket of case (a). In addition,

I1 =
u(0)− u(xi)

0− xi
· h1(pk1 + η1)− h1(pk1)

η1
− γ u(xj)− u(x`)

xj − x`
· h2(p`0)− h2(p`0 − η2)

η2

sgn
=

(h1(pk1 + η1)− h1(pk1))

η1

/h2(p`0)− h2(p`0 − η2)

η2
− γ u(xj)− u(x`)

xj − x`

/u(0)− u(xi)

0− xi

> Ph1,h2 − γG∗[a,b]u > 0,

where the first inequality follows from that xi < 0 6 x` < xj . Substituting I1 and I2 into (17)

yields that V (Y )− V (X) > 0.

(c) k 6 s < `, that is, xi < xk 6 0 6 x` < xj . In this case,

V (X) =

(
i−1∑
ν=1

+

s∑
ν=k+1

)
u(xν)(h1(pν)− h1(pν−1)) +

 `−1∑
ν=s+1

+

n∑
ν=j+1

u(xν)(h2(pν)− h2(pν−1))

+ u(xi)(h1(pi + η1)− h1(pi−1)) +
k−1∑
ν=i+1

u(xν)(h1(pν + η1)− h1(pν−1 + η1))

+ u(xk)(h1(pk)− h1(pk−1 + η1)) + u(x`)(h2(p` − η2)− h2(p`−1))

+ u(xj)(h2(pj)− h2(pj−1 − η2)) +

j−1∑
ν=`+1

u(xν)(h2(pν − η2)− h2(pν−1 − η2)).
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As a consequence,

V (Y )− V (X) =
k∑

ν=i+1

(u(xν)− u(xν−1))(h1(pν−1 + η1)− h1(pν−1))

−
j∑

ν=`+1

(u(xν)− u(xν−1))(h2(pν−1)− h2(pν−1 − η2)).

Choose k0 and `0 such that h1(pk0 + η1)− h1(pk0) = mini6t<k{h1(pt + η1)− h1(pt)} and h2(p`0)−

h2(p`0 − η2) = max`6t<j{h2(pt)− h2(pt − η2)}. Then we have

V (Y )− V (X)

> (u(xk)− u(xi))(h1(pk0 + η1)− h1(pk0))− (u(xj)− u(x`))(h2(p`0)− h2(p`0 − η2))

sgn
=

u(xk)− u(xi)

xk − xi
· h1(pk0 + η1)− h1(pk0)

η1
− γ u(xj)− u(x`)

xj − x`
· h2(p`0)− h2(p`0 − η2)

η2

sgn
=

h1(pk0 + η1)− h1(pk0)

η1

/h2(p`0)− h2(p`0 − η2)

η2
− γ u(xj)− u(x`)

xj − x`

/u(xk)− u(xi)

xk − xi

> Ph1,h2 − γG∗[a,b]u > 0.

Here, we used the fact u(xk) > u(xi) for the second
sgn
= , since otherwise V (Y ) − V (X) > 0 holds

trivially.

(d) ` 6 s < j or j 6 s, that is, xi < xk 6 x` < 0 < xj or xi < xk 6 x` < xj 6 0. These two cases

can be proved by similar arguments to those in cases (a) and (b). Hence, the details are omitted

here.

Combining cases (a)-(d), we conclude that V (X) 6 V (Y ). Thus, we complete the proof.

A.3 Proofs of results in Section 4

We proceed to prove results in Section 4 on properties of the few notions of fractional SD. We

first show Proposition 4.

Proof of Proposition 4. The ⇐ implication is trivial because s(0) = r, and we consider the ⇒

implication below. Denote X0 = X1/r and Y0 = Y 1/r. Then X 6R
r Y if and only if X0 6SSD Y0.

We aim to find the smallest value of s such that X+β 6R
s Y +β, that is, (X+β)1/s 6SSD (Y +β)1/s.

Hence, we need

v(x) := (xr + β)1/s, x ∈ [a1/r, b1/r]
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to be concave which is equivalent to

v′′(x) =
r

s
(r − 1)(xr + β)1/s−1xr−2 +

r2

s

(
1

s
− 1

)
(xr + β)1/s−2x2r−2

sgn
= (r − 1)(xr + β) + r

(
1

s
− 1

)
xr 6 0,

that is,
1

s
6 1 +

1− r
r
× xr + β

xr
.

Note that if β > 0, then
xr + β

xr
> 1 +

β

b
;

Then v is concave on [a1/r, b1/r] if s > rb
b+β−rβ . If β 6 0, then

xr + β

xr
> 1 +

β

a

and v is concave on [a1/r, b1/r] if s > ra
a+β−rβ .

Below, we discuss how X 6SSD Y implies (1+c)A-SD and (1+γ)S-SD for a small modification

of Y . It turns out that for bounded X and Y , both X 6A
c Y + ε and X 6S

γ Y + ε hold for some c

and γ close to 1, which will be used in the proof of Theorem 3.

Lemma 2. Suppose that X and Y are two random variables such that X 6SSD Y and |X|, |Y | 6 m

for some m > 0. For any ε ∈ (0,m], c > 1 − 2ε
2ε+em2 ∈ [0, 1), γ > 1 − 2ε

ε+m ∈ [0, 1), and

r > m2

m2+2ε
∈ [0, 1), we have X 6A

c Y + ε, X 6S
γ Y + ε and X 6R

r Y + ε.

Proof. We first recall the definition of γ-transfer given by Müller et al. (2017). For two discrete

random variables X and Y , we say that X is obtained from Y via a γ-transfer if there exist two

random variables X̂, Ŷ defined on a probability space (Ω,F ,P), ω1, ω2 ∈ Ω, x1 < x2 6 x3 < x4

and η1, η2 > 0 with η2(x4 − x3) = γη1(x2 − x1), P({ωi}) = ηi, i = 1, 2, such that X̂
d
= X, Ŷ

d
= Y ,

where
d
= represents equality in distribution, and

X̂(ω1) = x1, X̂(ω2) = x4, Ŷ (ω1) = x2, Ŷ (ω2) = x3 and X̂(ω) = Ŷ (ω) for ω 6= ω1, ω2. (18)

It is obvious that X 6S
γ Y .

Let X and Y be two random variables such that X 6SSD Y . To find the constants γε,m and

cε,m, it suffices consider the case that X is obtained from Y via a 1-transfer. The general case can

be argued as a limit of 1-transfers; see e.g., Theorems 2.7 and 2.8 of Müller et al. (2017). Without
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loss of generality, assume X = X̂ and Y = Ŷ satisfy (18) with γ = 1. Define Yε as

Yε(ω1) = x2 + ε, Yε(ω2) = x3 + ε, Yε(ω) = Y (ω), ω 6= ω1, ω2,

It is obvious that Yε 6FSD Y + ε. Denote s = x2 − x1 and t = x4 − x3. Then tη2 = sη1 and

s+ t 6 2m. Let us compare X and Yε.

(i) We first consider (1 + γ)S-SD. Noting that

η2(t− ε)
η1(s+ ε)

=
(t− ε)s
t(s+ ε)

=
1− ε/t
1 + ε/s

6
m− ε
m+ ε

=: γε, (19)

where the first equality follows from η2t = η1s. It is obvious that (19) implies X 6γε Yε, and

thus X 6γε Y + ε.

(ii) We next consider (1 + c)A-SD. By Theorem 2 (i), we need to find a λ > 0 such that eλX 6SSD

eλYε , that is,
η2(eλx4 − eλ(x3+ε))

η1(eλ(x2+ε) − eλx1)
=
s(eλx4 − eλ(x3+ε))

t(eλ(x2+ε) − eλx1)
6 1, (20)

where the first inequality follows from η2t = η1s, or equivalently,

eλx4 − eλ(x3+ε)

x4 − x3
6
eλ(x2+ε) − eλx1

x2 − x1
.

For this, it suffices to make the left-hand side less or equal to λ and the right-hand side greater

or equal to λ; thus

eλx4 − eλ(x3+ε) 6 λ(x4 − x3), (21)

and

eλ(x2+ε) − eλx1 > λ(x2 − x1). (22)

We first deal with (21). Noting that eλ(x3+ε) > 1 + λx3 + λε, it suffices to show

eλx4 6 λ(x4 − x3) + 1 + λx3 + λε = 1 + λx4 + λε. (23)

Note that for λ 6 1/m, we have eλx4 6 e. Using Langrange’s formula, we have

eλx4 6 1 + λx4 +
e

2
(λx4)2 6 1 + λx4 +

e

2
λ2m2.

Hence, choosing λ 6 2ε
em2 is sufficient for (23). Note that since ε 6 m, the condition λ 6 1/m

is automatic. Similarly, (22) holds for such choice of λ. Thus, λ 6 2ε
em2 is sufficient for (20).
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This corresponds to c > 1− 2ε
2ε+em2 .

(iii) At last we consider (1 + r)R-SD. Note that for r > m2/(m2 + 2ε), by Taylor’s expansion, we

have

x
1/r
4 − (x3 + ε)1/r 6

x4 − x3

r
and (x2 + ε)1/r − x1/r

1 >
x2 − x1

r
.

which is equivalent to

η2(x
1/r
4 − (x3 + ε)1/r)

η1((x2 + ε)1/r − x1/r
1 )

=
s(x

1/r
4 − (x3 + ε)1/r)

t((x2 + ε)1/r − x1/r
1 )

6 1, (24)

where the first inequality follows from η2t = η1s. By Theorem 2 (i), we know (24) is equivalent

to X1/r 6SSD (Y + ε)1/r, that is, X 6R
r Y + ε.

Proof of Theorem 3. (i) The “if” direction is trivial, and below we show the “only-if” direction for

c ∈ (0, 1). Note that if X 6A
c Y , then αX 6A

αc/(1−c+αc) αY for all α > 0. Hence, if ≺ is monotone

in 6A
c for some c ∈ (0, 1), then it is also monotone in 6A

c′ for all c′ ∈ (0, 1). For any X and Y such

that X 6SSD Y , we aim to show X 4 Y . We consider the following two cases. By Lemma 2, for

n > N, there exists cn ∈ (0, 1) such that X 6S
cn Yn := Y + 1/n and hence X 4 Yn, n ∈ N. Then by

|Yn − Y | → 0 uniformly and the upper semi-continuity of the preference 4, we have X 4 Y .

Note that X 6S
cn Yn is equivalent to Xn := X − 1/n 6S

cn Y and hence Xn 4 Y , n ∈ N. Then

by |Xn −X| → 0 uniformly and the lower semi-continuity of the preference 4, we have X 4 Y .

(ii) Similarly, we only need to show the “only-if” direction. We first show that 4 is monotone

in 6R
r if and only if 4 is monotone in 6R

r′ for r′, r ∈ (0, 1). It suffices to show the necessity for

0 < r′ < r < 1. Note that for any X,Y ∈ X such that X 6R
r Y , let d = max{ess-supX, ess-supY } <

∞. By Proposition 4, there exists β = (r − r′)d/(r′(1 − r)) > 0 such that X + β 6R
r′ Y + β. The

remaining proof is similar to (i).

Proof of Proposition 5. (i) Note that for any u ∈ U S
γ , if it is not a constant function, then there

exists y such that u′(y) = δ > 0. Hence, for any x < y, u′(x) > γu′(y) = γδ. This implies

u(x) 6 u(y) + γδ(y − x) for x 6 y. Hence,

E[u(X)I{X6y}] 6 E[(u(y) + γδ(y −X)I{X6y}] = −∞.

Thus, E[u(X)] 6 E[u(Y )] provided the expectations exist, that is, (i) follows.

(ii) It suffices to consider the case X 6 0 as the partial order SSD is closed under mixture. For

λ = 1/c − 1 and λ′ = 1/c′ − 1, define y = 1
λ logE[eλX ]. We can verify that eλX 6SSD eλy, that is,

X 6A
c y. Note that for non-degenerated random variable X, 1

λ′ logE[eλ
′X ] > 1

λ logE[eλX ] = y. This
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implies eλ
′X 66SSD eλ

′y, that is, X 66S
c′ Y for Y = y.

Proof of Proposition 6. Suppose that P(X < d) > 0. Take u(x) = min{x, d}, x ∈ R. It is straight-

forward to see that d 66SSD X and thus, d 66A
c X for any c ∈ [0, 1]. On the other hand, E[eλX ] =∞

implies eλX 66SSD d and thus, X is not dominated by d in (1 + c)A-SD by Theorem 2.

Details of Example 4. (1) Xk has the distribution

Fk(x) = Φ

(
log x− µk

σk

)
, x > 0,

where Φ is the standard normal distribution. We can check that F1 and F2 are single crossing at

point et0 with t0 = µ1σ2−µ2σ1

σ2−σ1
. The the value of γmin follows from the characterization of (1+γ)S-SD

of Theorem 2.4 of Müller et al. (2017). By Theorem 2, if cmin ∈ (0, 1), then cmin = 1/(1 + λmax)

with λmax the largest value of λ such that eλX1 6SSD eλX2 . Then λmax is the unique solution to the

following equation

∫ et0

0
eλx (F1(x)− F2(x)) dx =

∫ ∞
et0

eλx (F2(x)− F1(x)) dx. (25)

Denote by

hλ(x) := eλe
x

(
Φ

(
x− µ2

σ2

)
− Φ

(
x− µ1

σ1

))
.

We have ∫ ∞
et0

eλx (F2(x)− F1(x)) dx =

∫ ∞
t0

hλ(x)dx.

Note that for any λ > 0 by L’Hôpital’s principle, we have

lim
x→∞

hλ(x)

x
=∞,

which implies that the integration of the right hand side of (25) equals to infinity. The left hand

side is always finite, and thus, λ satisfying (25) does not exist. Hence X1 66A
c X2 for any c < 1.

(2) First note that (1 + x/µ)−α is decreasing in α > 0 and increasing in µ > 0 and thus, when

α1 > α2 and µ1 6 µ2,

1− F1(x) =

(
1 +

x

µ1

)−α1

6

(
1 +

x

µ2

)−α2

= 1− F2(x),

that is, F1 6FSD F2. Hence, without loss of generality we assume α1 > α2 and µ1 > µ2. Denote

g(x) =
(x+ µ1)α1

(x+ µ2)α2
, x > 0.
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Note that g(x) = µα1
1 /µα2

2 if and only if F1(x) = F2(x); and

d

dx
log g(x) =

α1

x+ µ1
− α2

x+ µ2
=

(α1 − α2)x+ α1µ2 − α2µ1

(x+ µ1)(x+ µ2)
, x > 0.

This implies d2

dx2 log g(x) > 0 and thus, g(x) is convex in x > 0. We then consider two cases.

(i) If α1µ2 − α2µ1 > 0, then d log g(x)/ dx > 0 and thus, g(x) is increasing. Then by g(0) =

µα1
1 /µα2

2 , we have g(x) > µα1
1 /µα2

2 , that is, 1− F1(x) 6 1− F2(x) for all x > 0. Then we have

F1 6FSD F2.

(ii) If α1µ2 − α2µ1 < 0, then d log g(x)/dx is negative for x < (α2µ1 − α1µ2)/(α2 − α1) and then

positive when x > (α2µ1−α1µ2)/(α2−α1). Note that g(0) = µα1
1 /µα2

2 and limx→∞ g(x) =∞.

There exists unique x0 > 0 such that g(x0) = µα1
1 /µα2

2 , that is, F1(x0) = F2(x0). That is, F1

and F2 are single crossing at x0. For x < x0, we have g(x) < µα1
1 /µα2

2 , that is,

µα1
1

(x+ µ1)α1
>

µα2
2

(x+ µ2)α2
, x < x0.

This is equivalent to F1(x) < F2(x) for x < x0 and F1(x) > F2(x) for x > x0 (this implies

F1 66SSD F2). Thus, if 1 > α1 > α2 or EF1 [X1] = µ1/(α1 − 1) < EF2 [X2] = µ2/(α2 − 1)

(α1 > α2 > 1), we have F2 66SSD F1.

We only need to consider the case α1 > α2 > 1 and EF1 [X1] > EF2 [X2] in which case we

have F2 6SSD F1, then by the characterization of (1 + γ)S-SD of Theorem 2.4 of Müller et al.

(2017), we have F2 6S
γ F1 with γ > γmin

γmin =

∫∞
x0
F1(x)− F2(x) dx∫ x0

0 F2(x)− F1(x) dx
=

∫∞
x0

µ
α2
2

(x+µ2)α2
− µ

α1
1

(x+µ1)α1
dx∫ x0

0
µ
α1
1

(x+µ1)α1
− µ

α2
2

(x+µ2)α2
dx
∈ (0, 1]

In contrast, for any α1 > α2 > 0, we have
∫∞
x0

(F1(log x/λ)−F2(log x/λ)) dx = λ
∫∞
x0
eλx(F1(x)−

F2(x)) dx =∞ which implies F2 66A
c F1 for c ∈ (0, 1).

A.4 Proofs of results in Section 5

This section contains proofs of Propositions 7, 8 and 9.

Proof of Proposition 7. By Theorem 2 (i), we have λmax is the maximum value of λ such that

eλX 6SSD eλY . (26)

By that (26) is equivalent to E[eλXp ] 6 E[eλYp ] for p ∈ (0, 1), then (13) follows immediately. We then
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consider the case that F single crosses G. In this case, we have the distribution of eλX single crosses

that of eλY and thus, we have (26) holds if and only if E[eλX ] 6 E[eλY ]. Note that λ 7→ E[eλX ] is

continuous in λ and thus, we have λmax is the largest value satisfying E[eλX ] = E[eλY ]. We next

assert that for any λ < λmax, E[eλX ] < E[eλY ]. By Theorem 3.A.4 of Shaked and Shanthikumar

(2007), there exist X̂ and Ŷ such that X̂
st
= eλmaxX , Ŷ

st
= eλmaxY and

E[X̂|Ŷ ] = Ŷ a.s.

Then eλX
st
= X̂δ and eλY

st
= Ŷ δ with δ := λ/λmax < 1, and

E[X̂δ] = E[E[X̂δ|Ŷ δ]] = E[E[X̂δ|Ŷ ]] 6 E[(E[X̂|Ŷ ])δ] = E[Ŷ δ],

where the inequality follows from x 7→ xδ is a strictly concave function. Note that E[X̂δ|Ŷ ] 6

E[X̂|Ŷ ])δ] a.s., and P(E[X̂δ|Ŷ ] = (E[X̂|Ŷ ])δ) < 1. Thus, we have E[X̂δ] < E[Ŷ δ], that is, E[eλX ] <

E[eλY ]. It then follows that λmax is the unique solution satisfying the equation.

Proof of Proposition 8. It suffices to consider n = m by replacing m and n with m ∧ n. Since F

and G are continuous and strictly single-crossing, we know that the probability that Fn and Gn are

single-crossing tends to 1. Hence, we only need to consider ĉmin when Fn and Gn are single-crossing.

Define the random function gn(λ) =
∫
eλx dFn(x) −

∫
eλx dGn(x) for λ > 0, and let g(λ) =∫

eλx dF (x) −
∫
eλx dG(x) for λ > 0. Since x 7→ eλx is a bounded continuous function, we know

that gn(λ) → g(λ) by the continuous mapping theorem. We also note that g(λ) = 0 has a unique

root λmax > 0, and g(λ) is bounded away from 0 outside a neighbourhood of λmax since for all

λ, g(λ) > 0 implies g′(λ) > 0 and g(λ) < 0 implies g′(λ) < 0. Therefore, the unique root λn of

gn(λ) = 0, which exists with probability tending to 1, converges to λ with probability 1. This shows

ĉmin → cmin in probability.

Proof of Proposition 9. As γ 6 1, it suffices to show that γ̃min → γmin in probability as n,m→∞.

Note that |x+ − y+| 6 |x− y| for each x, y ∈ R. It follows that∣∣∣∣∫ t

`F

(Gm(x)− Fn(x))+ − (G(x)− F (x))+dx

∣∣∣∣ 6 ∫ t

`F

|(Gm(x)−G(x))− (Fn(x)− F (x))|dx.

Note that by the assumption on empirical distribution and the underlying distribution is continuous,

we have supx∈R |Gm(x)−G(x)| → 0 and supx∈R |Fn(x)− F (x))| → 0 as m,n→∞ and thus,

sup
x∈R
|Hn,m(x)| := sup

x∈R
|(Gm(x)−G(x))− (Fn(x)− F (x))| −→ 0 a.s., n,m→∞.
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Then by the continuous mapping theorem, we have

sup
t∈R

∣∣∣∣∫ t

0
(Gm(x)− Fn(x))+ − (G(x)− F (x))+dx

∣∣∣∣ 6 ∫ z

`F

|Hn,m(x)|dx→ 0 a.s., (27)

where z is the right end point of the support of G. Similarly, we have

sup
t∈R

∣∣∣∣∫ t

`F

(Fn(x)−Gm(x))+ − (F (x)−G(x))+dx

∣∣∣∣→ 0 a.s. (28)

Note that

γmin = max
t∈R

∫ t
`F

(G(x)− F (x))+dx∫ t
`F

(F (x)−G(x))+dx
> 0. (29)

Denote by t0 ∈ (`G, z] the maximizer of the optimization problem of (29). Then we have
∫ t0
`F

(F (x)−

G(x))+dx > 0, and thus,

γ̃min >

∫ t0
`F

(Gm(x)− Fn(x))+ dx∫ t0
`F

(Fn(x)−Gm(x))+ dx

a.s.−→
∫ t0
`F

(G(x)− F (x))+dx∫ t0
`F

(F (x)−G(x))+dx
= γ, as n→∞. (30)

To show the other direction, let A(t) =
∫ t
`F

(F (x)−G(x))+ dx, B(t) =
∫ t
`F

(G(x)− F (x))+ dx,

An,m(t) =
∫ t
`F

(Fn(x)−Gm(x))+ dx and Bn,m(t) =
∫ t
`F

(Gm(x)− Fn(x))+ dx. Note that for t ∈

(`F , `G), B(t) = 0, A(`G) > 0 and A(t) and B(t) are continuous increasing function. Then for any

δ > 0, there exists ε ∈ (0, A(`G)) such that

B(t) + ε

A(t)− ε
6
B(t)

A(t)
+ δ for t ∈ (`G, z), that is, sup

t∈(`G,z)

B(t) + ε

A(t)− ε
6 γ + δ.

By (27) and (28), there exists Ω′ such that P(Ω′) = 1 and supt∈R |Bn,m(t) − B(t)| → 0 and

supt∈R |An,m(t) − A(t)| → 0 for any ω ∈ Ω′. From now on, we restrict on the fixed ω. Then

for all t ∈ (`G, z), there exist n0,m0 such that for any n > n0, m > m0,

An,m(t) > A(t)− ε, Bn,m(t) 6 B(t) + ε.

This implies that
Bn,m(t)

An,m(t)
6
B(t) + ε

A(t)− ε
, t ∈ (`G, t0).

and thus,

sup
t∈R

Bn,m(t)

An,m(t)
= sup

t∈(`G,z)

Bn,m(t)

An,m(t)
6 sup

t∈(`G,z)

B(t) + ε

A(t)− ε
6 γ + δ,
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where the first equality follows from Bn,m(t) = 0 a.s. for t ∈ (`F , `G). This combined with (30)

implies that γ̃min is a consistent estimator of γ.

A.5 Proof of Proposition 10 in Section 7

Proof of Proposition 10. By definition of Dh, we have Dh(w+αX− c(α)) = w+αDh(X)− c(α) =:

D(X,α). Since c is strictly convex, we have α∗(Xi) ∈ [0, α0] exists and is unique for i = 1, 2.

We show α∗(X1) 6 α∗(X2) by contradiction. Suppose α∗(X1) > α∗(X2). By Theorem 1, Ph > γ

implies that DT(h) is monotone in 6S
γ , and thus, Dh(X1) 6 Dh(X2). It follows that

D(X1, α
∗(X1))−D(X1, α

∗(X2)) +D(X2, α
∗(X2))−D(X2, α

∗(X1))

= α∗(X1)Dh(X1)− α∗(X2)Dh(X1) + α∗(X2)Dh(X2)− α∗(X1)Dh(X2)

= (α∗(X1)− α∗(X2))(Dh(X1)−Dh(X2)) 6 0,

where the inequality follows from α∗(X1) > α∗(X2) and Dh(X1) 6 Dh(X2). This yields a con-

tradiction to that α∗(Xi) is the unique solution to maxα∈[0,α0]D(Xi, α), i = 1, 2. Thus, we have

α∗(X1) 6 α∗(X2).

B Simulation results for Section 5

We present some simulation results to complement the estimators in Section 5. Let F and G

be cdfs of N(µF , σ
2
F ) and N(µG, σ

2
G), respectively. Denote ∆µ = µG − µF and ∆σ = σF − σG.

Müller et al. (2017) showed that F 6S
γ G with

γ >

∫∞
∆µ
∆σ

(1−H(z))dz∫∞
∆µ
∆σ

(1−H(z))dz + ∆µ
∆σ

=: γmin,

and by Theorem 2 (i) we can verify that F 6A
c G where c > cmin := 1/(1 + λmax) and

λmax =
2(µG − µF )

σ2
F − σ2

G

=
∆µ

∆σ

2

σF + σG
.

In Table 2, we present the estimation of γmin and cmin by simulations for normal distributions. We

run N = 1000 replications, and for each time we set sample sizes to n = 200 and n = 500. From

the results on Table 2, we can find that the mean squared error (MSE) of the estimate of cmin is

smaller than that of γmin. The reason behind this phenomenon needs future research.
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F G γmin cmin γ̂min (MSE) ĉmin (MSE)

n = 200 N(0, 0.5302) N(0.013, 0.2272) 0.9 0.9 0.887 (0.0123) 0.892 (0.0105)
n = 500 N(0, 0.5302) N(0.013, 0.2272) 0.9 0.9 0.894 (0.0069) 0.895 (0.0061)

n = 200 N(0, 0.4652) N(0.038, 0.2002) 0.7 0.7 0.708 (0.0154) 0.700 (0.0112)
n = 500 N(0, 0.4652) N(0.038, 0.2002) 0.7 0.7 0.706 (0.0063) 0.707 (0.0047)

n = 200 N(0, 0.3032) N(0.015, 0.2482) 0.5 0.5 0.500 (0.0095) 0.503 (0.0055)
n = 500 N(0, 0.3032) N(0.015, 0.2482) 0.5 0.5 0.502 (0.0033) 0.502 (0.0019)
n = 200 N(0, 0.3312) N(0.03, 0.2212) 0.5 0.5 0.509 (0.0093) 0.508 (0.0058)
n = 500 N(0, 0.3312) N(0.03, 0.2212) 0.5 0.5 0.504 (0.0034) 0.503 (0.0020)
n = 200 N(0, 0.3862) N(0.06, 0.1662) 0.5 0.5 0.509 (0.0082) 0.508 (0.0051)
n = 500 N(0, 0.3862) N(0.06, 0.1662) 0.5 0.5 0.503 (0.0031) 0.502 (0.0018)
n = 200 N(0, 0.4972) N(0.12, 0.0552) 0.5 0.5 0.505 (0.0095) 0.505 (0.0057)
n = 500 N(0, 0.4972) N(0.12, 0.0552) 0.5 0.5 0.501 (0.0034) 0.508 (0.0020)

n = 200 N(0, 0.2872) N(0.078, 0.1232) 0.3 0.3 0.303 (0.0036) 0.301 (0.0017)
n = 500 N(0, 0.2872) N(0.078, 0.1232) 0.3 0.3 0.300 (0.0013) 0.300 (0.0006)

n = 200 N(0, 0.1402) N(0.072, 0.0602) 0.1 0.1 0.103 (0.0005) 0.099 (0.0002)
n = 500 N(0, 0.1402) N(0.072, 0.0602) 0.1 0.1 0.101 (0.0003) 0.099 (0.0000)

Table 2: Simulated results of γmin and cmin for normal distributions.
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