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Abstract

Two notions of fractional stochastic dominance (SD) were recently proposed by Miiller et al.
(2017) and Huang et al. (2020) based on mean-reducing spreads and the coefficient of absolute
risk aversion, respectively. We formulate a general class of fractional SD generated by a convex
transform, which includes those built from absolute or relative risk aversion as special cases, and
this serves as a convenient technical tool for construction of new notions of fractional SD. We
obtain equivalent conditions for a preference modelled by rank-dependent utility or cumulative
prospect theory to be consistent with each notion of fractional SD. Furthermore, we provide an
empirical estimator for the parameters in fractional SD relationships, and we illustrate this with

a financial data analysis.
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1 Introduction

Two notions of fractional stochastic dominance (SD) were recently proposed by Miiller et al.

(2017) and Huang et al. (2020), respectively. Fractional SD was introduced because the classic
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notions of first-order SD (FSD) and second-order SD (SSD) are too often coarse and they could not
capture, e.g., local convexity of a utility function in the expected utility (EU) model. Studies of
stochastic dominance help to analyze decisions for a class of heterogeneous decision makers sharing
some similarity in their risk attitude, without specifying the preference of a particular decision
maker. The first notion of Miiller et al. (2017) is based on v-spread for v € [0,1],! and will
henceforth be referred to as (1 + v)s-SD; see also Miiller et al. (2021). The second notion of Huang
et al. (2020) is based on the Arrow-Pratt coefficient of absolute risk aversion, and will be referred to
as (14 ¢)a-SD for ¢ € [0, 1]. Precise definitions are put in Section 2. For comprehensive discussions
on the relevance of these notions, we refer to Miiller et al. (2017) and Huang et al. (2020).

Risk aversion has been a critical concept in decision making since Pratt (1964) and Arrow
(1974). Various notions of risk aversion were proposed, observed and tested from empirical studies
by Harrison (1986), Tversky and Kahneman (1992), Kimball (1993), Rabin (2000), Rabin and
Thaler (2001) and Schmidt and Traub (2002), amongst others. As the most classic notion, a
preference relation is strongly risk averse (Hadar and Russell (1969), Hanoch and Levy (1969) and
Rothschild and Stiglitz (1970)) if it is monotone in SSD. Since fractional SD bridges SSD and FSD,
monotonicity in fractional SD can be seen as a property of fractional risk aversion.

Our main contribution is a characterization of monotonicity in fractional SD for the behavioral
decision models of rank-dependent utility (RDU) of Quiggin (1982)? and cumulative prospect theory
(CPT) of Tversky and Kahneman (1992). The considered notions of fractional SD include (1 +7)g-
SD, (14 ¢)a-SD and the latter’s analogue based on relative risk aversion. Both RDU and CPT are
generalizations of the EU model and the dual utility theory (DT) of Yaari (1987). Although RDU
can be seen as a special case of CPT, conditions for fractional SD in RDU are more mathematically
concise and economically interpretable, and hence we will present RDU and CPT results separately
in Section 3.

To explain our motivation for studying fractional SD in behavioral models, we look again at
FSD and SSD, which are limits of fractional SD. FSD and SSD were traditionally formulated based
on EU, although these properties are model free. For instance, SSD can be equivalently formulated
via mean-preserving spread (Rothschild and Stiglitz (1970)), conditional expectations (Strassen
(1965)), dual utility (Yaari (1987)), and aversion to positive dependence (Wang and Wu (2020));
the case of FSD is similar. Likewise, the notions of fractional SD are suitable for study beyond EU,

and in particular, we are interested in their implication for the popular descriptive decision models

"Miiller et al. (2017) used the term “y-transfer”. We use “y-spread” (i.e., the inverse of a y-transfer) as this notion
closely resembles the mean-preserving spreads of Rothschild and Stiglitz (1970). Indeed, y-spreads are mean-reducing
spreads.

2 As shown by Chew et al. (1987), a necessary condition for monotonicity in SSD for RDU is a concave probability
perception function. The functons originally used by Quiggin (1982) is not concave.



of RDU and CPT.

Equivalent characterization of strong risk aversion in different decision models has been studied
by Pratt (1964) and Arrow (1974) for EU, Yaari (1987) for DT, Chew et al. (1987) for RDU, and
Schmidt and Zank (2008) for CPT. Our results generalize the above results to several formulations
of fractional SD, including (1 4 7)s-SD and (1 4 ¢)a-SD. Moreover, characterization results are
obtained for a class of fractional SD connected to SSD via a transform v, called v-SD, which
includes (1 4 ¢)A-SD as special cases.

As we will see in Section 2, (1+¢)a-SD is closely related to an exponential transformation. More
precisely, X is dominated by Y in (14 ¢)A-SD if and only if e*¥ is dominated by e*Y in SSD, where
A = 1/c — 1. Therefore, many results and convenient properties of SSD can be translated to those
of (1+ ¢)a-SD. A negative result (Proposition 2) implies that there does not exist a risk transform
or probability distortion such that (1 + )g-SD can be associated with SSD. To be more precise,
(1 4+ v)s-SD between X and Y cannot be equivalently described by SSD between v(X) and v(Y)
for any transform v, and this remains so if we further allows for probability distortions as in RDU.
This nonexistence illustrates that the mathematical basis of (1 + )g-SD is fundamentally different
from SSD and (1 + ¢)a-SD, which also explains why technical results such as a characterization in
RDU and CPT are much more complicated for (1 4 +)s-SD than that for (1 + ¢)5-SD.

To better understand applications of fractional SD in behavioral decision models outside EU,
we proceed to study further technical properties of fractional SD in Section 4, empirical estimators
of parameters of fractional SD between two distributions in Section 5, and a real-data analysis in
Section 6. These additional results illustrate what we can analyze when fractional SD is brought
outside EU.

All proofs are relegated to Appendix A. Some simulation results for estimating the parameters

~ and ¢, complementing Section 6, are put in Appendix B.

2 Notions of fractional stochastic dominance

Similarly to Miiller et al. (2017) and Huang et al. (2020), we use a unified notation [a, b] where
a < b to denote an interval containing the support of the random variables, which encompasses
[a,00) if b = o0, (—00,b] if a = —o0, and (—o0,00) if both. All utility functions are elements of
% = {u:[a,b] — R | u is increasing and twice differentiable}.® In all the statements below, X and
Y are arbitrary random variables taking values in [a, b], and inequalities on expectations are meant

to hold when both sides are well defined.

3In this paper, the term “increasing” is in the non-strict sense. The differentiability condition can be safely relaxed
without changing the corresponding fractional SD defined in this paper; see e.g., Miiller et al. (2017) and Huang et
al. (2020).



The first notion of fractional SD is (1 + v)g-SD of Miiller et al. (2017). Throughout, random
variables X and Y represent random payoffs (prospects) to be compared via notions of SD. For

v € [0, 1], define the set %WS of utilities by
S _ / !
U, ={u €U | yu(y) <u'(z) for all a <z <y < b}.

Definition 1 (Miiller et al. (2017)). For fixed v € [0, 1], Y dominates X by (1 + 7)s-SD, denoted
by X <§ Y, if E[u(X)] < E[u(Y)] for all u € @/WS. The subscript/superscript “S” here represents

that the notion is defined via ~y-spread.

Huang et al. (2020) proposed (1 + ¢)5-SD based on utility functions with a lower bound on
the Arrow-Pratt coefficient of absolute risk aversion. For a twice continuously differentiable utility

function u, the coefficient of absolute risk aversion is defined as

For ¢ € [0, 1], define the set %2 of utilities by
1
wr = {u e |u'(z)>0and pi(z) > —=+1forallz € [a,b]}.
c

Definition 2 (Huang et al. (2020)). For fixed ¢ € [0,1], Y dominates X by (1 + ¢)a-SD, denoted
by X <2V, if E[u(X)] < Eu(Y)] for all u € . The subscript/superscript “A” here represents

that the notion is defined via the coefficient of absolute risk aversion.

Replacing the coefficient of absolute risk aversion pﬁ by the coefficient of relative risk aversion

pulx) =~

we arrive at another notion of fractional SD, which is briefly discussed in the concluding remarks of
Huang et al. (2020). Because of its connection to relative risk aversion, this notion is only defined

for nonnegative random variables. For 7 € [0, 1], define the set %, of utilities by
1
U = {u €U |u(x)>0and pi(z) > —=+1forall z e [a,b]} :
r

Definition 3. For fixed r € [0,1], 0 < a < b < 00, Y dominates X by (1 + r)g-SD, denoted by
X <Ry if Eu(X)] < E[u(Y)] for all u € %R, The subscript/superscript “R” here represents that

the notion is defined via the coefficient of relative risk aversion.

By definition, 1g-SD, 14-SD and 1g-SD are all equivalent to the classic FSD (denoted by <psp)



and 2g-SD, 24-SD and 2g-SD are all equivalent to the classic SSD (denoted by <gsp).
The notions of (1+ ¢)a-SD and (1 +7)g-SD can be unified under the umbrella of v-SD, which
was first studied by Meyer (1977). Let v € % be a convex function with v/ > 0. Define the set %,

of utility functions by
Uy ={ue |u(x) >0, pha) > pl(@), z € [a,b]}. 1)

Taking v(z) = e/ leads to p2(z) = —(1/c — 1) and %, = /. Similarly, taking
v(x) = 27 gives pi(z) = —(1/r —1)/z such that %, = Z~R. Therefore, (14 ¢)2-SD and (1 + r)g-

SD are both special cases of the fractional SD generated by %, for a specific function v.

Definition 4. For a convex function v € % with v > 0, Y dominates X by v-SD, denoted by
X <Y, if E[u(X)] < E[u(Y)] for all u € %,.

Although v-SD is defined with EU conditions, it can be used together with decision models
other than EU, just like any partial order between random variables. For instance, SSD and FSD
are often defined with EU conditions, and they are applied to a wide range of decision models. For
alternative formulations of (1 + 7)s-SD and (1 4 ¢)4-SD without using EU conditions, see Miiller
et al. (2017) and Huang et al. (2020).

As shown by Pratt (1964, Theorem 1), p2 > p2 is equivalent (up to differentiability) to
u = wowv for some increasing concave function w (here, o is the composition of two functions), and

hence %, can be safely replaced by

U ={ue? |ulx)=wl(x)), =€ [a,b] for some increasing concave function w} . (2)
This reformulation immediately allows us to translate between v-SD and SSD by noting that
Elw(v(X))] < E[w(v(Y))] for all strictly increasing concave w is equivalent to v(X) <gsp v(Y).

Proposition 1 (Meyer (1977)). Take any convex function v € % with v' > 0. For all X and Y,
X <, Y if and only if v(X) <gsp v(Y).

Proposition 1 leads to the following SSD-based formulation of (1 + ¢)A-SD and (1 + r)g-SD.

Corollary 1. For any X,Y and ¢,r € (0,1),
X <Y = WX Loqp eV and X <BY «— XV Lgqp YV

Since (1+¢)a-SD and (1+4r)g-SD, as well as v-SD in general, are both connected to SSD via a

transformation, an immediate question that emerges concerns the existence of a similar translation



between (1+7)g-SD and SSD. The answer is negative even if we allow for both shape transforms and
probability distortions (i.e., F' — hoFov for some h and v), which are two fundamental distributional
transforms characterized by Liu et al. (2021). This suggests some fundamental difference between

(1 +~)g-SD and v-SD. A precise statement of this negative result is given below.

Proposition 2. For any v < 1, there do not exist v : R — R and h : [0,1] — [0, 1] such that for all
X,Y taking values on [a, ],

XY = (X)) <ssp (oY) 3)

where Zy, represents a random variable having the distribution function ho H and H is the distri-

bution of Z.

For each given function v > 0, we can build a continuum of fractional SD via (v!)-SD indexed

t

by t € (tg,00), that is, to consider the set of utility functions (where v* means v raised to the power

of t)
Uy = {u€ U |u(z) =w(v'(z)), x € [a,b], w is an increasing concave function},

and tg is such that v! is convex for ¢t > ty. To obtain the class of (1 + ¢)5-SD, we choose to = 0 and
v(xz) = e®. To obtain the class of (1 + r)gr-SD, we choose tg = 1 and v(xz) = x. The property of
(v%)-SD in this continuum becomes stronger as t increases (Remark 1 below), and one can employ
a decreasing transform from (¢p,00) to (0,1) if it is desirable to index the class by a parameter in
(0,1). Because of the economic relevance of (1 + ¢)4-SD and (1 + r)gr-SD, we will be primarily
interested in these two special cases of v-SD, although all our results in Section 3 are presented for

general v-SD.

Remark 1. Monotonicity of v-SD with respect to the coefficient of absolute risk aversion of v is
straightforward. That is, if ,0{}1 < p{;, then >, is stronger than >,,. In particular, >, is stronger

than >,s for ¢t > s.

One may naturally wonder whether the class of v*-SD recovers FSD and SSD as its limiting
cases in the sense that pUAt(J:) — —oo as t — oo, and pft(ac) — 0ast | tg for all x € [a,b],
respectively. The next proposition shows that this is true only in the two cases of (1 + ¢)A-SD and

(1 + T)R—SD.

Proposition 3. For a positive and twice differentiable function v with v’ > 0 and tg > 0, the family
of (v1)-SD always recovers FSD as t — oo. The family of (v')-SD covers SSD as t | to if and only
if (v)-SD is one of (1+ ¢)a-SD or (1 + r)r-SD for some c,r € [0,1].



As a consequence of Proposition 3, the function v which guarantees that the family of (v*)-SD

recovers FSD and SSD is a linear transform of a power or exponential function.

3 Fractional stochastic dominance in RDU and CPT

Below we present our results on fractional SD in the popular behavioral decision models of
RDU and CPT. Since CPT can be seen as a generalization of RDU, we only need to prove the
characterization results for CPT; nevertheless, since the formulas and conditions in RDU are more
concise and easier to interpret, we first present the RDU results, followed by the CPT results.

In the RDU model, each decision maker is characterized by a utility function v : R — R and a
probability perception function A : [0,1] — [0, 1] with h(0) = 0, h(1) = 1. Both u and h are assumed
to be increasing and continuous. For given u and h, the rank-dependent utility of a prospect X is

defined by

Ven(X) = [ (o) dn(F (o)) @
R
where F' is the distribution function of X. An RDU(u, h) preference = is given by

XZY = Vyn(X) < Vyn(Y). (5)

)

A preference 3 (a total preorder on random variables supported in [a, b]) is monotone in the
partial order <§ (or <,) if X <§ Y (or X <, Y) implies X 2 Y. Strong risk aversion corresponds
to monotonicity in SSD. As shown by Chew et al. (1987), an RDU(u, h) preference is strongly risk
averse if and only if both u and h are concave. This statement is generalized to (1 4 v)s-SD and

v-SD in the following theorem.

Theorem 1. For a convex function v € % with v > 0 and v € (0,1), the following statements

hold for any utility u function and probability perception function h.

(i) An RDU(u, h) preference is monotone in <, if and only if u(v=(y)) is concave in y € R and

h is concave. In particular,
(a) for ¢ € (0,1), an RDU(u, h) preference is monotone in <2 if and only if u(1%; logy) is
concave in y € Ry and h is concave;

(b) forr € (0,1), an RDU(u, h) preference is monotone in < if and only if u(y") is concave

my € Ry and h is concave.



(i) An RDU(u,h) preference is monotone in <§ if and only if P, > ’yGEf’b], where

P, = inf h(p2) — h(Pl)/h(lM) — h(ps) (6)
O0<p1<p2<p3<ps<l P2 — Pp1 ps—p3
and
Gladl _ sup u(za) — U($3)/U($2) —uz) )
“ a<lr] <zo<a3<Ta<h T4 — I3 T2 — 1

Taking v(x) =z in (i) or v = 1 in (ii) yields the condition for strong risk aversion in RDU of
Chew et al. (1987) that h and u are both concave. Note that Ggf’b] >12> P, P, =1if and only if
h is concave, and Gq[f P = 1 if and only if u is concave on [a, b].

The quantities Ggf Hl and P, are called the index of greediness and the index of pessimism,
respectively, by Chateauneuf et al. (2005). Therefore, a simple interpretation of Theorem 1 (ii) is
that monotonicity in (1 4+ )g-SD in RDU means a balance between greediness and pessimism. On
the other hand, Theorem 1 (i) says that for (1 + ¢)A-SD and (1 + r)g-SD, the requirement on the
probability perception function h is the same as SSD, and the utility function u needs to be “not
too convex”; if u is twice differentiable, then this means it needs to be in %A or ZER.

If the utility function u is the identity, the RDU model reduces to Yaari’s DT, denoted by
DT(h).

(i) A DT(h) preference is monotone in v-SD if and only if & is concave. Hence, monotonicity in
v-SD for any choice of v is equivalent to strong risk aversion in DT. This shows that DT is

not able to distinguish, for instance, different values of the parameter ¢ in (1 + ¢)-SD.

(i) A DT(h) preference is monotone in <§ if and only if P}, > +, where Py, is defined by (6). This
condition allows for some h that is not concave, and thus monotonicity in <§/ is genuinely
different from strong risk aversion. Indeed, <§ may be alternatively defined using DT instead

of EU, and this is not the case for (1 + ¢)a-SD.

As we see in Theorem 1, in order to determine whether an RDU preference is monotone in <,

it suffices to check whether h is concave and u o v~1

is concave. In case of <?, this corresponds to
RDU with the utility functions in Huang et al. (2020) plus a concave h.
To determine whether an RDU preference is in g,%, we need to compute P, and GLa Y We

]

present P, and Gq[f Pl for some examples u and h.

Example 1 (Utility functions). (i) Consider the piece-wise linear utility function u(z) = azx4 —
Br_, © € R, where o, > 0, and a < 0 < b. If a < (8 (risk-neutral or risk-averse), then
Gt — 1. Ifa > B (risk-seeking), then Gl — a/pB.



1 onsider the exponential utility function u(z) = (1 —e™7%), z € R, where . We have
ii) Consider th ial utility functi z Bz R, where 8 # 0. We h
Gl — max {1, eﬂ(bfa)} .

Note that if § > 0 then u is concave, and if 8 < 0 then w is convex.

(iii) Consider the power utility function u(x) = (wg + x)%, £ > —wp, where 3 > 0 and wy € R

represents the initial wealth of this decision-maker. Then for a > —wy,

B—1
Gg‘vb]:max{l,<w0+b> }
wo + a

Note that if § < 1 then u is concave, and if 8 > 1 then w is convex.

(iv) Consider the utility function of Tversky and Kahneman (1992),
u(@) = 2 Lpzoy — V(1) Lco), R,

where «, 8, > 0. The function u is an inverse-S-shaped utility function and «/, (0) = oo if

0 < 8 <1< a. Weexclude the case that « = = 1, which was discussed in (i). We have

max{(b/a)*"1,1}, 0<a<b,
Gt = max{(b/a)?~1,1}, a<b<O0,

0, otherwise.

Example 2 (Probability perception functions). (i) Consider the hyperbolic perception function
of Chateauneuf et al. (2005), defined by h(p) = p/(p + v(1 — p)), p € [0, 1], for some v > 1.

The function h is convex, and we can calculate P, = h'(0)/h'(1) = 1/v2.

(ii) Consider the power perception function h(p) = p%, p € [0,1], where a > 0. We can calculate

Pl =1 ey

(iii) Consider the inverse-S-shaped probability perception function introduced by Tversky and

Kahneman (1992),
1)

h(p) = (p5+(1p_p)5>1/5, p € 0,1],

where ¢ € (0,1). One can calculate P, = 0.

Combining some u and h in Examples 1 and 2 we obtain some RDU preferences monotone in

<§ but not in SSD. An example is provided below.



Example 3. Fix b > a > 0. Consider the power utility function u(z) = 2 and the hyperbolic
perception function h(p) = p/(p + v(1 — p)) with 8, > 1. Examples 1 and 2 yield that P, = 1/v?
and Gi" = (b/a)?~1, and we let vy := Ph/Ggf’b] = v=2(b/a)'=P. Then, by Theorem 1, the
RDU(u, h) preference is monotone in <§ with v < 4o but monotonicity fails to hold for v > ~p.
For instance, if v = f = 3/2 and b/a = 4, then vy = 2/9. Also note that 7o T 1 as v, 5 ] 1. On the
other than, this RDU(u, k) preference cannot be monotone in < or <} for any ¢, € (0, 1], since

h is not concave.

Next, we turn to the cumulative prospect theory (CPT) of Tversky and Kahneman (1992). In
the CPT model, for an increasing continuous function v : R — R, two distortion functions hq, hs,

and a risk X, the expected loss/utility based on CPT is defined as

0

Vu7 h1,h2(X) = /

—00

u(z) dhy (F(z)) +/ u(z) dha(F(z)), (8)
0
where F' is the distribution function of X. A CPT(u, hi, he) preference 3 is given by
XJY Vqul,/w(X) < Vu,hhhz(y)' (9)

If hy = hy = h, then CPT(u, hi, he) is an RDU preference. Moreover, we will assume a < 0 < b;

that is, the reference point 0 of CPT is contained in [a, b]; otherwise (8) again reduces to (4).

Theorem 2. (i) A CPT(u,h1,hs) preference is monotone in <, if and only if u(v=1(y)) is both

concave in y € [0,v(0)] and y € [v(0),00), h1, ho are concave, and they satisfy

IS

L) e () ()

7 0) <8 o p) (10)

(ii) A CPT(u,hyi,hs) preference is monotone in <§ if and only if ’yGEf’O] < Py, ’yGL?’b] <
7,

P, and fyGZ[a’b] < Ph, by, where P, and Gt are defined by (6) and (7), respectively,
and
h —h h —h
Py = inf 1(p2) 1(p1)/ 2(pa) 2(p3)7 (11)
' 0<p1 <p2<p3<psa<l P2 — p1 P4 — P3
Grlad] — sup u(ws) — U(l‘s)/u(@) —u(a1) (12)
a<r1 <zo<0<a3<za<h T4 — T3 T2 —I1

Theorem 2 generalizes the characterization result of risk aversion in CPT by Schmidt and Zank
(2008). An empirically observed feature in CPT is loss aversion, which means u/'(—x) > «/(x) for
all > 0 where the derivatives exist; see e.g., Baucells and Heukamp (2006). Note that the limit of
u'(x)/u'(—x) as x | 0, if it exists, yields the left-hand side of (10). Similarly to the interpretation

10



of Theorem 1, monotonicity in (14 )s-SD in CPT means a subtle balance between greediness and
pessimism for both the positive part [0,b] and the negative part [a,0], and monotonicity in v-SD

implies that u is “not too convex” and h; and hg are concave.

4 Operational properties and applicability for specific models

We proceed to compare the three notions of fractional SD in terms of operational proper-
ties. These properties further illustrate the differences between these notions of fractional SD in
behavioral models beyond EU.

We first state three invariance properties, where (i) and (ii) are shown by Miiller et al. (2017)

and Huang et al. (2020). For any prospects X and Y and ~,¢,r € [0, 1],

(i) X <SYifand only if aX + 8 <5 aY + B forall a >0 and 8 € R;

(i) X <2 Y if and only if X + f3 <§C/(170+ac) aY + g for all @ > 0 and B € R.
(i) X <P Y if and only if aX + B <F aY + B for all @ > 0 and 3 > 0.

We briefly show (iii). Note that < is invariant to positive scaling. It suffices to show (iii) for o = 1.

1/7 is concave

The < implication is trivial. For the = implication, note that the function z — (2" +0)
on [0,00). Using Corollary 1, we have X/" <ggp Y'V/", which leads to (X + 8)Y/" <ssp (Y + B)V/"
because of the concavity of z — (z” + 8)'/7. Using Corollary 1 again, we obtain X + /3 <Ry +3.

Below we present a slightly stronger result on the translation property of (1 + r)gr-SD than
(iii) above, allowing for a possibly negative location shift. Proposition 4 will be useful in the proof

of Theorem 3.

Proposition 4. Let X and Y be two random variables taking values on [a,b]. Then X <RY if
and only if X + 8 gg‘(ﬂ) Y + 8 for all B > —a where

a rb }gl.

)
R P e

A preference 3 is scale invariant if for all XY, X <Y implies aX < aY for all « > 0. A
preference 3 is translation invariant if for all X,Y, X XY implies X + 3 3 Y + § for all g € R.
The preference 3 is lower semi-continuous if |X;, — X| — 0 uniformly and X,, 3 Y for each n
implies X 2 Y and it is upper semi-continuous if |Y;, — Y| — 0 uniformly and X XY, for each n
implies X Y.

Theorem 3. Let 3 be a lower or upper semi-continuous preference on the set of bounded random

variables, denoted by X .

11



(i) Suppose that the preference 3 is scale invariant. For each ¢ € (0,1], = is monotone in é? if

and only if it is monotone in SSD.

(ii) Suppose that the preference 3 is translation invariant. For each r € (0,1], = is monotone in

<R if and only if it is monotone in SSD.

Theorem 3 implies, in particular, that monotonicity in (1 4 ¢)A-SD (or (1 4 ¢)r-SD) is equiv-
alent to monotonicity in SSD for any preference on X modeled by Yaari’s dual utility, which is
scale/translation invariant and lower/upper semi-continuous. Note that translation invariance is
not compatible with CPT or RDU unless the associated utility function is linear. We have seen
this equivalence in Section 3. The next result concerns a comparison of (1 + ¢)a-SD and (1 + 7)s-
SD for prospects that do not have a finite expected loss (these prospects cannot be compared by

(1 + 7)r-SD since they are not non-negative).
Proposition 5. For any random variable X with E[X_] = oo,
(i) X ég Y for ally € (0,1] and Y.

(ii) For 0 < ¢ < c <1, there exists Y such that X <}Y and X €5 Y.

=

Proposition 5 shows that (1 + ¢)A-SD is able to distinguish between prospects with infinite
expected losses, whereas (1+7)s-SD is completely blind in such situations, just like SSD. In contrast,
any heavy-tailed random variable X and any constant d € R cannot be compared by (1 + ¢)A-SD
unless d < X, which is the case of FSD.

Proposition 6. For any random variable X and d € R, if E[e*X] = oo for some X\ > 0, then X
and d do not dominate each other in (1 + ¢)ao-SD for ¢ < 1/(1+ X\) unless d < X.

In what follows, for notational convenience, we will write fractional SD between distribution
functions F' and G, which should be understood as the fractional SD between the corresponding

random variables with these distributions.

Example 4. We will see that, in contrast to (1+)s-SD, (1+¢)a-SD cannot distinguish log-normal
distributions or Pareto distributions except for the case of FSD. Technical details of the statements

here are given in Section A.3.

(1) (Log-normal distribution.) The log-normal distribution is widely used in both finance and
income/wealth modeling. Let X} = exp(ur + 0xZ), k = 1,2, where Z is a standard normal

distributed prospect with distribution ®, o1 > 09, and ps — 1 > (0’% — ag) /2, which guarantee
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that X; <gsp Xo; see e.g., Theorem 5 of Levy (1973). In the case o1 = o9, either X <psp X»

or Xo <psp Xi. If 01 > 09, then X, <§ Xy for v = ymin where
102 — [207

© z—ps\ T—p
pefe(m)e(m)e
e & ez((p(m)_q)(m)) da oy — 01

—00 o1 o9

moreover, X; <R Xy if and only if o7 > o9, and r(u2 — p1) = (02 — 03)/2. In contrast,

X1 ;{? Xy for any ¢ < 1 in this case.

(2) (Pareto/Lomax distribution.) Let Fj, be a distribution given by

o
Fk(x):1—<1+x> x>0, k=1,2
I

where pur > 0, k = 1,2, a1 > as > 0. If o = a9, then either F1 <psp Fy or Fo <psp Fi
P

depending on py < po or 1 = po. Next, we assume a; > ag and consider the following cases.

(i) If py < pg or puy > po, aqpip — appry > 0, then Fy <pgp Fo.

(ii) g1 > po, crpe — aspy < 0.
(ila) If 1 > agor ag > 1, pu1 /(a1 — 1) < pa/(ag — 1), then F} Lgsp Fo and Fy Lgsp Fi.
(it.h) If ag > 1, p1 /(1 — 1) = pa/(aa — 1), then F, <§ Fy for v > ymin where

a @
[0t Mo da
_ Jwo (xtp2)*2  (wtpn)*t
’Ymin - aq a9 .
fﬂfo Hq _ ) dx
0 (z4p)*r  (z+p2)*2

We also have Fy <§ Fy for v > rpin where i is the solution to the equation

o0 r —aq r —Q2
/ <1+m> —<1+x> dz = 0.
0 M1 2

In contrast, for any a; > ay > 0 and ¢ € (0,1), F» ;{? F.

5 Estimation of the parameter in a fractional SD relationship

In this and the next sections, we study the estimations and real-data applications of the indexes
v in (14 7)s-SD and ¢ in (14 ¢)a-SD. The index 7 in (1 4 r)g-SD shares some similarity with that
of ¢ and is omitted. Since both relations (1 + ¢)4-SD and (1 + )g-SD become stronger as ¢ and
~ decrease, it is natural to identify the smallest values (or infima) of 4 and ¢ such that F ég G
and F <? G hold for two given distributions F' and G. We denote these two numbers by i, and

Cmin, respectively, assuming that they exist (if they do not, then we use the infima). In practice,
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we often need to determine estimates of v,y and ¢y, based on observations Xi,..., X, ~ F and
Yi,..., Y, ~ G. Denote by F, and G, the empirical cumulative distributions (cdfs) of X1,..., X,
and Yi,..., Y, respectively. We assume that F,, — F and G,, — G as n,m — oo in probability.
Clearly, this is the minimum requirement of any meaning approximation of the true distributions
using the empirical ones, and it is satisfied by, for instance, iid or a-mixing stationary data.

We first give an equivalent characterization of (1 + ¢)A-SD. We say that two distributions F
and G are single-crossing at zg € R if either F'— G < 0 on (—o00,x¢) and F — G > 0 on (xg,00), or
F—G>0o0n (—oo,z9) and F'— G < 0 on (xg,00). If, in addition, F <gsp G, then only the latter

case is possible. For a random variable X, define
XPZF_I(pU)a pE [Oa]-]a

where F' is the distribution function of X. If p is small, the random variable X, can be interpreted

as the tail risk of X; see Liu and Wang (2021).

Proposition 7. For random variables X and Y with respective distributions F' and G and finite

exponential moments, X <2Y if and only if ¢ > cmin = 1/(1 4 Anax), where

Amax = sup{A = 0:g(\) >0}, g(\) = pei?)fl) (E[EAYp] _ E[e’\X”]) ) (13)

In particular, if F and G are single-crossing at some point, then Apax 1S the unique solution A > 0

of the equation E[e*X] = E[e Y ].
By Proposition 7, we propose an estimator of ¢y, as follows,

émin = (14 Amax) ™' and Apax = sup{A = 0: §(A) > 0},

where

g(\) = inf (Ey~g, [eM?] — Exop,[e}7]) .
G0 = int By, ] - Bxer [M))

For a given dataset, computation and properties of ¢y, may not be easy to analyze in general
since two layers of optimization are involved when finding the largest A > 0 such that e <ggp
e*W holds for Z ~ F, and W ~ G,,. We are not aware of a simple and efficient procedure
for accomplishing this task for general underlying distributions. Technically, due to the possibly
complicated relationship between F' and G, it is not obvious how to establish consistency of the
estimator Cpin. For the above reason, we will investigate the simpler case of single-crossing, a
popular setup for distributions satisfying an SSD relationship.

Suppose that F' and G are single-crossing. We can set émin = (1 + )\max)*l, where Xmax is
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the largest (usually unique) A satisfying Ef»[e*X] = EGm[e*Y], and we set Amayx = 0 if there is no
solution to the above equation. Under suitable regularity conditions, the probability that F,, and
G, are single-crossing tends to 1 as n,m — oc.

Below, we say that F' and G are strictly single-crossing if they are single-crossing, and there
exists to € (0,1) such that for any ¢ > 0, there exists § > 0 such that |[F~1(t) — G=1(t)| > ¢ for all
x with |t — tg| > 0. That is, the curves of F' and G cross at one point, and they depart before and
after that point.

Proposition 8. Let F' and G be two strictly single-crossing and compactly supported continuous
distributions. Then Cnin 1S a consistent estimator of Cumin; that 1S, Cmin — Cmin 0 probability as

n,m — oQ.

Estimating ymin is simpler than estimating cpin. We follow the equivalent characterization
given by Theorem 2.4 of Miiller et al. (2017). Given two distributions F' and G, F <§ G if and only
if the following statement holds

t

/ (G(z) — F(x))4dx < ’y/ (F(z) — G(x))4dx forall t € R.

—0o0 —0o0

This implies that*
JL (G () = F(x)) ydar

e [T (F(2) — G())4da

Based on this observation, we propose the following 4min as one estimation of vypin:

t
2 (5 5 fo (Gm(z) — Fu(x)), do
Amin = Min{Ymin, 1}, Fmin = max = .
teR fo (Fu(z) = G (7)), do
In contrast to ¢min, the consistency of Amin is easy to establish as it involves only one layer of

optimization.

Proposition 9. Let F' and G be two compactly supported continuous distributions, and let {r and
Lq be the left endpoints of the supports of F' and G, respectively. If {p < £g, then Amin 1S a consistent

estimator of Ymin, that S, Ymin — Ymin N probability as n,m — oco.

Simulations of Yyin and énn for normal distributions are presented in Appendix B. Although
normal distributions do not satisfy the condition of compact support in Propositions 8 and 9, they
satisfy the single-crossing property, and vy and ¢y have explicit formulas. The simulation results

confirm that estimators Yymin and ¢nin, work quite well in this setting.

* A similar index called the measure for partial stochastic dominance o(F, G) is defined by Eq. (10) in Kamihigashi
and Stachurski (2020).
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6 Real data example

We compare the log-return and the daily change® in the S&P500 index, the Dow Jones In-
dustrial (DJI), and NASDAQ of 2005 (251 data points) with those of 2008 (252 data points). For
each index, we denote the empirical cdfs of the 2005 and 2008 samples by Fys and Fjg, respectively.
As shown in Figure 1, for each index, Fps and Fpg are single-crossing and Fys has a larger mean
than Fpg, which implies that Fys €rpsp Fos and Fpg <ssp Fos°. Similarly, we also compare the
log-return and daily change of S&P500, DJI and NASDAQ of 2019 (Q1-Q2, 123 data points from
January 3, 2019 to June 28, 2019) and 2020 (Q1-Q2, 124 data points from January 3, 2020 to June
30, 2020). For each index, we denote these distributions by Fig and Fy, respectively. In Figure 2,
for each index, Fig and Fyg are single-crossing and Fjg has a larger mean than Fbyy, which implies
that Foy €rsp Flg and Foy <ssp Fig. We choose the pairs 2005-2008 and 2019-2020 because the
preference of 2005 over 2008 and 2019 over 2020 is arguably intuitive, and they satisfy the single-
crossing property and a mean inequality, which implies an SSD order. In Table 1, we report the
estimated values of iy and ¢y for the 2005-2008 data and 2019-2020 data using the methods
outlined in Section 5.

From the results on (1 + 7)s-SD, we observe that, either in log-returns or in absolute value,
compared to 2008, the log-return distributions in 2005 are preferred by all investors who are mono-
tone in (14 0.75)s-SD, and compared to 2020, the log-return distributions in 2019 are preferred by
all investors who are monotone in (1 + 0.9)s-SD. Between the two pairs 2005-2008 and 2019-2020
(Q1-Q2), the strength of dominance is comparable for S&P500 and DJI, and the dominance in
2005-2008 is stronger than 2019-2020 for NASDAQ.

From results on (1 + ¢)a-SD, the results are either very close to 0 (using log-return) or very
close to 1 (using daily change). Since the estimates of ¢y, are sensitive to scaling, it is not clear to

us how conclusions can be drawn from these numbers.

7 An application of portfolio selection

We present an application of Theorem 1 in a portfolio selection problem, similar to the setting
considered by Chew et al. (1987). For simplicity, we consider an investor with a DT(h) preference,

and we denote the numerical representation of DT(h) by Dy, i.e., Dy(X) = [z dh(F(x)) where F

5The daily change is the difference between the indices on two consecutive trading days. These data are not iid,
but the methods in Section 5 do not require an iid assumption.

5For two cdfs F and G, the dominance between F and G means the dominance between X and Y, where X and
Y are two random variables having cdfs F' and G, respectively.
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Figure 1: Empirical cdfs of 2005 versus 2008. Left panel: log-return; right panel: daily change.

is the distribution of X. Suppose that the investor has an optimal portfolio problem

o (X) = argmax Dp(w + aX — ¢(«))
a€[0,a0]
where w € [0,00) is the initial wealth of the investor, X is the future price of an asset, ag € (0, 00),
and ¢ : [0,00) — [0,00) is a cost function. The value ¢(a) of the cost function represents the
price paid to purchase a units of the asset. We assume that c is increasing and strictly convex; an
example is ¢(x) = ax? for some a > 0. These assumptions are consistent with the intuition that
the marginal cost is increasing due to transaction fees or limited liquidity (e.g., Follmer and Schied

(2002)). In what follows, two assets are normalized so that they share the same cost function.

Proposition 10. If v € (0,1), Py, > v where P}, is given by (6), and X <§Y Xo, then a*(X;) <
a*(XQ).

To interpret the result in Proposition 10, we take the example in Section 6 by assuming that
X1 and X5 represent the return of 1 unit of the S&P 500 index using the distributions Fps and Fpys,
respectively. As we have seen in Section 6, we have X7 <5 . Xo. If a DT(h) decision maker satisfies
P, > 0.7 (see examples of such h in Example 2), then she would invest more in the index if the

market follows the empirical distribution in 2005 and invest less if the market follows the empirical

17



--- SP500 2019 --- SP500 2019
i — SP500 2020 — SP500 2020

irical CDF

EmUn

0.0 02 4 06 08 1.0
!
irical CDF

Emop
0.0 02 4 06 08 10
]

T T T T T T
-0.05 0.00 0.05 -200 -100 0 100

--- DJI2019 --- DJI2019
— DJI2020 — DJI 2020

irical CDF

Emop

00 02 .4 06 08 1.0
!
irical CDF

Emop
00 02 .4 06 08 1.0
]

T T T T T T T T T T T
-0.10 -0.05 0.00 0.05 0.10 -1000 -500 0 500 1000 1500

--- NASDAQ 2019| --- NASDAQ 2019

4 —— NASDAQ 2020 ) . —— NASDAQ 2020
;
/

irical CDF

EmUo

00 02 4 06 08 10
!
irical CDOF

Emon
00 02 .4 06 08 10
]

T
-0.10 —-0.05 0.00 0.05 0.10 -500 0 500

Figure 2: Empirical cdfs of 2019 versus 2020, Q1-Q2. Left panel: log-return; right panel: daily
change.

distribution in 2008. This conclusion holds true for some risk-seeking investors, as P, > 0.7 allows

for some risk-seeking DT models, i.e., those with a convex h.

8 Concluding remarks

As we have seen from Corollary 1, the concepts of (14 ¢)a-SD and (14 7)g-SD can be roughly
seen as a logarithmic version and a power version of SSD, respectively, which have a clear connection
to the classic framework of risk aversion, in particular, to coefficients of risk aversion. On the other
hand, (1 + v)s-SD offers a significantly different technical framework than the classic ones, thus
allowing for applications in more situations of behavioral decision analysis. Both (1 4 ¢)A-SD and
(1+7)r-SD are included in the class of v-SD, which allows for construction of more general notions
of fractional SD.

If behavioral decision models involving (subjective) probability distortion such as RDU or
CPT are used, then (1 + )g-SD is more suitable than v-SD, as it correctly reflects the role of the
probability distortion in the comparison of risks. On the other hand, (1 + ¢)A-SD and (1 4 r)g-SD
are, in the sense of Theorem 1, blind to probability distortion.

One could nevertheless construct fractional SD directly from RDU (or DT, CPT) preferences.
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2005 vs 2008 2019 vs 2020 (Q1-Q2)
“Ymin Cmin “Ymin Cmin

S&P500 log-return 0.6871 0.1184 0.6593 0.0824
daily change 0.6688 0.9918 0.6706 0.9961

DJI log-return 0.7424 0.1380 0.6806 0.1000
daily change 0.7348 0.9999 0.6582 0.9997

NASDAQ log-return 0.7077 0.1206 0.8309 0.1980
daily change 0.6992 0.9958 0.8958 0.9997

Table 1: Estimated values of ymin and cpip.

For instance, analogously to (2), let
Ry,g ={(u,h) |u=wowv, h = fog for some increasing concave w and f},

and we can define (v,9)-SD by X <, 4 Y & V,u(X) < Vyp(Y) for all (u,h) € %4 With
this formulation, the roles of the utility function and the probability perception function become
symmetric. It is a bit surprising that for (1 + 7)s-SD, the roles of the utility function and the
probability perception function in RDU are indeed symmetric, although the formulation of (1++)s-
SD only involves utility functions; the same holds true for the SSD conditions of RDU.

Our paper is the first to connect the important behavioral models of RDU and CPT in decision
theory and the recent notions of fractional stochastic dominance. As a potential benefit, our results
allow for an economist to know what kind of decision models to use when fractional SD is assumed or
empirically observed. Using these relations, one can pin down optimal choices in some applications
without specifying the preference model. To present a concise analysis in this paper, we did not
include other types of SD, such as the prospect SD of Baucells and Heukamp (2006) and the
continuum of SD of Fishburn (1976, 1980). These generalizations can be studied in the future.
Fractional SD is also studied in other decision models by Yang et al. (2022).

Some other comparisons between the three notions of fractional SD are drawn from our further
analyses in Sections 4-6. If the risk comparison is naturally scalable, such as monetary amounts
possibly via exchange rates, then (1 4 «)s-SD and (1 + r)g-SD are better to use (Theorem 3).
On the other hand, if it is desirable that the risk comparison is invariant to location shift, then
(147)s-SD and (1+c¢)a-SD are more suitable. If the risks to compare do not have a finite expected
loss (statistically, this means the situation that the first moment is difficult to estimate, even if it
exists), then (1 + ¢)a-SD is useful whereas (1 + )g-SD is not (Proposition 5). For prospects that
take both positive and negative values, (1 + r)g-SD is not properly defined. For distributions of

prospects with no exponential moments such as log-normal or Pareto distributions, (1++)s-SD and
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(1 + r)r-SD are more useful than (1 + ¢)4-SD (Proposition 6 and Example 4). When it comes to
estimation of the parameters ¢ and v from real data, (1 4 ~)g-SD is often more convenient to work

with, and its estimates are easier to interpret, at least in our examples in Sections 5 and 6.
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A Proofs of all results

A.1 Proof of Propositions 2 and 3 in Section 2

We first present the proof of Proposition 2, which says that unlike the other notions of fractional

SD considered in this paper, (1 + 7)s-SD of Miiller et al. (2017) cannot be formulated via SSD.

Proof of Proposition 2. We show the result by contradiction. Denote by M, the set of all cdfs
with support in [a,b] and F' and G the cdfs of X and Y, respectively. For v < 1, suppose there
exists a v : R — R and h : [0,1] — [0,1] such that (3) holds. Let 7%, : M,y — M be T, (F) =
h o I owv, where M is the set of distributions. Since both <§Y and <ggp are reflexive, we have that
the transform 7', is a one-to-one transform, that is, h and v are two one-to-one functions. First
consider the distribution d, representing for the point-mass at « € R, we have T’,(6,) = h(d; ov) =
h(Lgyyzay) = R(O)Lgy(y<zy +R(1) 1 {y()2y € M. Hence, we have {h(0), (1)} = {0,1}. Comparing
0z and 0y, a < z < y < b, by (3), we have that either one of the following two cases holds: (1)
v(z) < v(y), h(0) = 0 and h(1) = 1; (2) v(x) > v(y), h(0) = 1 and h(1) = 0. Without loss of
generality (wlog), assume that case (1) holds, that is, v is strictly increasing, 2(0) = 0 and k(1) = 1.
Define u : [a,b] — R as u(z) = v™!(z) = inf{y : v(y) > z}. Then by that the transform T, is a
one-to-one transform, and 7', (6,) is the point mass at u(x), we have u is strictly increasing. Hence,
we have v is continuous and thus, v and u are both increasing and continuous.

Consider the distribution F,, = pdp + (1 — p)d1, p € [0, 1]. Note that F), is decreasing in p with
respect to SSD and thus, we have T, (F') = h(p)d, ) + (1 — h(p))dy(1) is decreasing in p with respect
to (1+7)s-SD. Hence, h is also strictly increasing. For p € (0, 1), define Gy, = pyd1/, + (1 — pn)d1,
where p, = p+vp/(n—1) € (p,1) for n large enough. Then F, <, G, each n such that p, € (p, 1).
By (3), we have T,(F,) <ssp T,(Gn), that is, h(p)dy) + (1 — h(p))dua) <ssp A(Pn)du/m) +
(1 — h(pn))duq)- Note that u is continuous at 0 and h(pn)dy(1/n) + (1 — A(pn))dua) converges to
h(p+)do + (1 — h(p+))dy(1) in distribution and the expectation also converges as n — oo, where
h(p+) = limg, h(p). Since <gsp is continuous with respect to the above convergence, we conclude
that h(p)dy (o) + (1 —h(p))du1) <ssp A(p+)duo) + (1 —h(p+))dy(1). This implies that h(p+) < h(p).
Similarly, we can show h(p—) = limg, h(p) > h(p). Hence, we have h is continuous on (0,1). We
also can similarly show h is continuous on [0, 1].

Define g = h™! and U,(F) = T;'(F) = go F ou. Then g is increasing and continuous in [0, 1]
with g(0) = 0, g(1) = 1, and U, is a transform from M to M|qy. For z € [-2,2], let F; be the

distribution of a random variable X, which is uniformly distributed on {x — 1,2 + 1}. Obviously,
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F, <ssp 0z, and thus, U, (F;) <, U,(0;). Hence, for z € R,

u(x +1) —u(x) . 1—g(1/2)
u(w) —u@—1)" 7T g(1/2)

Ay(z)gre <7 with Ay(z) =

If Ay(x)gy/2 <, then there exists z9 < x such that Ay (z0)g1/2 = 7. This implies that U, (Fy) <
Uy(0z,). Then by (3), we have F, <gsp 0z, which yields a contradiction with that E[X,] = z > zo.
Therefore, we have Ay (z)g; /2 = 7. Similarly, compare the distributions (F, + G)/2 and (d, + G)/2
with G = d_4,04 and (d_4 + d4)/2, respectively, we have

g —g(3/4)
9(3/4) — 9(1/2)

Ay() - 9(1/2) = g(1/4) _ A )'9(3/4) —g(1/2)

o(1/4) D g2 —gija)

. 1/2)—g(1/4 3/4)—g(1/2 1)—g(3/4 1—g(1/2
Those imply SRR = SR = Yt = S and thus, g(z) = @ for @ =

0,1/4,1/2,3/4,1. Similarly, we can show g(k/2") = k/2", k =1,...,2", n € N. By monotonicity,
we have g(z) = x for z € [0,1], and thus, h(x) = z for x € [0,1]. This then implies A, (z) = v

for x € [-2,2]. Define Z such that P(Z = 2 —1) = 1 —-P(Z = z + 2) = 2/3. Then we have

(
), that is, s DUl — 4181 <y,

where the equality follows from A, (x) = v for each x € [—2,2]. This implies v = 1 which yields a

Z <gsp « which is equivalent to u(Z) <, u(z) for z € R by (3

contradiction. O

Next, we present the proof of Proposition 3, which says that (v*)-SD has a limit of FSD, and
it has a limit of SSD if only if it is one of (1 + ¢)A-SD and (1 4 r)g-SD.

Proof of Proposition 3. Note that for ¢ > 0,

Ny EEY (@)
Pul®) = = i)y (wm“t 1’v<x>>'

Since v’ > 0, it is clear that p’(z) — —oc as t — co. Using the equivalence between (1) and (2),

we know that v-SD can be formulated via the set
{we |W(@) >0, pi(@) > ph (), o € [a,b]}.

Therefore, FSD is a limiting case of v!-SD as t — oo. On the other hand, to recover SSD, it means

ph(z) — 0 as t | to, which is the oridinary differential equation

v"v + (tg — 1)(v)% = 0. (14)

If tg # 0, then (14) is equivalent to (v')” = 0, leading to the linearity of v%. This corresponds
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to the case of (1 + r)r-SD, by choosing, for instance, v(z) = = and top = 1; the choice of ty is
irrelevant here. If ¢ = 0, then (14) is equivalent to (logv)” = 0, leading to the linearity of logv.
This corresponds to the case of (1 4 ¢)2-SD, by choosing, for instance v(z) = e* and to = 0. O

A.2 Proofs of Theorems 1 and 2 in Section 3

Next, we present proofs of Theorems 1 and 2. Since Theorem 1 follows from Theorem 2
by setting hy = ho = h, we will show Theorem 2 below. Before proving Theorem 2, we need the
following lemma, similar to Lemma 1 of Chateauneuf et al. (2005) which shows that in the definition
of index of greediness, the supremum can be obtained by choosing (x4 — x3)/(x2 — x1) as a fixed

constant. The proof is similar and hence is omitted.

Lemma 1. For a utility function u, a < b and o > 0, denote by R = {(z1,...,24) ER*: a <
] <xy< w3 <y <b x4—23=0(xy—11)} andR[ab]:{(331,...,954)6R4:a<x1<x2<

O0<z3<x4<b, 24 —23=0c(v2—x1)}. Then

Glabl — sup u(wy) — U($3)/U($2) —u(z)
' (@1,.,wa) ERL) Ta— T3 Tz~
and Grladl sup u(zq) — u(zs) /U(@) —ul@1)
h (21,...,x4)ERY, [a,b] T4 — T3 T2 — 11

Proof of Theorem 2. (i) Without loss of generality we can assume v(0) = 0. One can verify that

for any random variable X,

v(0) 9]

U(v_l(y))dhﬂFv(y))Jr/ w(v™(y)) dh2(Fu(y)) = Vo 1) hy v (0(X)),

Vu,h1,h2 (X) = / ©

—
where F, is the cdf of v(X). By Proposition 1, Vi, s, p, is consistent with <, if and only if V,,(,-1) p, 5,
is consistent with SSD. By Theorem 1 of Schmidt and Zank (2008), we have that a CPT(u, h1, ha)
preference is monotone in <, if and only if u(v~!(z)) is both concave in z € [0,v(0)] and = €
[v(0),00), h1, ho are concave, and they satisfy (10).

(ii) Assume that v > 0 since the case of v = 0 is trivial. We first show the necessity. Suppose
for the purpose of contradiction that qu[f O P, qu[? LS P, or 'yGZ[a’b] > Pp, h,- We shall

show that a CPT(u, hy, hy) preference is not monotone in <§/ in the two cases that ’ka} 0l

and 'yGZ[a’b] > Pp, by, since the case 'qu[?’b]

> Ph1
> Py, can be shown similarly. We write V. =V, p,, n,

for simplicity.

(a) If fyG[a O Py, , then from the definition of Py, there exist 0 < p1 < p2 < p3 < ps < 1 such

that ’qu[f’O] hl(p;2 0 pl)/h1 p;4 Z;(m Next, by Lemma 1 with a = v(p2 — p1)/(ps — p3),
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there exist a < 1 < x9 < 3 < x4 < 0 such that (x4 — x3)(ps — p3) = y(x2 — x1)(p2 — p1) and

u(wy) — u(z3) hi(p2) — h1(p1)
w(@2) —u(@) ~ Fi(pa) —hu(ps)’ (15)

Define two random variables X and Y such that
P(X =21) =p2, P(X =22) =q—p2, P(X =13) =p3 — ¢, P(X = 24) = 1 — p3;

PY =21)=p1, P(Y =22) =q—p1, P(Y =23) =ps — ¢, P(Y = 24) =1 —py,

where g € [pa, p3] is a constant. We can verify that Y is obtained from X via a ~y-transfer, and

V(X) = V(Y) = (u(za) — u(x3))(h1(pa) — h1(ps)) — (u(x2) — u(z1))(h1(p2) — h1(p1)) >0

]

in view of (15). This yields a contradiction. The argument in case ’yGLO s Py, is similar.

If VGZ[a’b] > Py, by, then from the definition of Py, j,, there exist 0 < p; < p2 < p3 <ps <1

*[a,b h —h h —h .
such that ’yGu[ S 1(p;2)_p11 (Pl)/ 2(1);)12_1);(793). Next, by Lemma 1 with o = vy(p2—p1)/(pa—p3),

there exist r1 < x9 < 0 < x3 < x4 such that (x4 — x3)(ps — p3) = y(x2 — x1)(p2 — p1) and

u(ry) — u(z3) hi(p2) — h1(p1)
u(w2) — u(z1) g ha(ps) — ha(p3) (16)

Define two random variables X and Y as in Case (a). Then we have that Y is obtained from

X via a y-transfer, and

V(X) = V(Y) = (u(xa) — u(w3))(ha(ps) — ha(p3)) — (u(z2) — u(z1))(h1(p2) — ha(p1)) >0

in view of (16). This yields a contradiction.

Combining the above cases, we obtain the necessity statement.

2.7

Next, we show sufficiency. Without loss of generality, we assume that u(0) = 0. By Theorems

and 2.8 of Miiller et al. (2017), it suffices to show that V' is monotone in 7-transfers. Let X

and Y satisfy (1) P(Y = x¢) = pr —pp—1 for t = 1,...,n, with 1 < -+ < z,, 0 = pp < p1 <
K =1, 2)P(X =) =P(Y =) for all t & {i,k,{,5}, where 1 < i <k <l < j<n
and (3) for g1 > 0 and 72 > 0, P(X = 2;) = p; —pi-1 +m, PX = 2) = pr — pe—1 — M,

P(X =x¢) = pe —pe—1 — 12, P(X =xj) =p;j —pj—1+ne, with yn1(xx — 2;) = n2(z; — 2¢). Denote

s=max{t:z; <0< 21,6t =1,...,n} with s =0ifzy <Oforallt =1,...,n,and s =n+1if
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x; >0 forallt=1,...,n. Then it holds that

V) =Y u@)(hnp) — h(pr)) + Y ulwe)(ha(pe) — ha(pet)).
t=1 t=s+1

To calculate V(X), we need to consider the following four subcases.

(a) s < i, that is, 2y > 0 for any ¢ € {i,k,¢,j}. In this case, we have that

s i—1 -1 n
V(X) = 3 ul@,)(ha(p) — i (po-1)) + ( Sy + ) ) u(@,)(ha(py) — ha(pr1))

v=1 v=s+1 v=k+1 v=j+1
k-1
+ u(xi)(h2(pi +m) — ha(pi-1)) + Z u(xy)(h2(py +m) — ha(Pv—1 +m))
v=i+1
+ w(wg) (ha(pr) — ha2(pe—1 +m)) + u(ze)(ha(pe — n2) — ha(pe-1))
-1
+ () (ha(py) = ha(pj—1 —m2)) + Y ul@y)(ha(py — m2) — ha(py-1 — 1m2)).
v=(+1
This implies that
k
V(Y)-V(X)= Z (u(zy) — u(wy—1))(h2(py—1 +m) — h2(py—1))
v=i1+1

= > (ul@) = u(zy-1))(ha(po—1) = ha(ps—1 = n2)).

v=4+1

Choose ko and ¢y such that ho(pr, +m1) — h2(pr,) = min<i<x{ha(pt +n1) — ha(pt)} and ha(py,) —
ha(pe, — n2) = maxy<i<j{h2(pi—1) — ha(pi—1 — n2)}. Then

V() - V(X)
> (u(zr) — w(@i)(ha(Pro +m) — ha(pry)) — (u(es) — u(e))(ha(pey) — halpey — n2))

sgn w(xr) —u(@i) ho(pry +m) — halpr,) Vu(l“j) —u(wg) ha(pey) — ha(pe, — 1m2)

T — T m Tj — e 2
sgn o (Pro +m) — hz(pko)/hz(mo) — ha(pey —m2) _ VU(%’) - U(W)/U(!Ek) — u(w;)
m T2 Tj—Te Tk — T4

> Py, — G >0,

where the first equality in sign = follows from that v (3 — ;) = 72 (xj —x¢) and in the second £
we used the fact u(xy) > u(x;) (otherwise, we have u(xy) = u(x;) which implies u(x;) = u(x,) or

GOV = 0. 1t u(z;) = u(ze), then V(Y) > V(X) holds trivially. If GOt = 00, then the condition
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G < Py, implies Py, =1, that is, ha(p) = 1p>0y- It follows that ha(py,) — ha(pe, — m2) = 0 and
thus, V(Y) = V(X) > 0.).
(b) i < s <k, that is, ; <0 <z, < 27 < x;. In this case,

V) =3 ue) (ha(p) — ha(poe)) (Z Z) ) (ha(pv) — hapy1)

v=1 v=k+1 v=j+1

s

+ () (h(pi + m) = h(pim1) + Y ulz)(ha(py +m) = hi(po—1 +m))
v=i+1

+ Z u(@y)(ha(py +m) = ha(po—1 +m))

v=s+1
+ u(zr) (ha(pr) — ha(Pr—1 +m)) + w(xe)(ha(pe — n2) — ha(pe-1))
i1
+u(w;) (ha(ps) — ha(pjo1r —m)) + Y w(@,)(ha(py — n2) — ha(py—1 —12))-
v=4¢+1

As a consequence,

S

V)= V(X) = Y (ux) — ul@—1))(ha(po—1 +m) — h1(pr-1))
v=i+1

—u(xs)(h1(ps +m1) — h1(ps)) + w(zsy1)(h2(ps +m1) — ha(ps))
k

T Z (u<x”) B u(xV—l))(hQ(pv—l + 771) - hg(pl,_l)>
V:s+2

B Z —u(@y—1))(h2(Py—1) — ha(py—1 — n2)).
v=0+1

Choose ki, ko and ¢y such that hy(pg, +m) — h1(pr,) = minj<i<s{h1(pe +m) — h1(pe)}, ho(pr, +

m) — ha(pr,) = ming<icrp{ha(pe +m) — ho(pe)} and ha(pe,) — ha(pe, — M2) = maxpcr<j{h2(pi—1) —
ho(pi—1 —m2)}. Then we have

V(Y) = V(X)
> —u(xi)(h1(pk, +m) — hi(pk,)) + w(@k) (ha(pr, +m) — ha(pk,))
— (u(z;) — u(xe))(ha(pey) — h2(pe, — n2))

sgn —u(@i)  ha(Pe +m) = k) | w@r) | ha(Pr, + ) = ha(Pry)
Lk — i m Lk — Ty m
u(zj) —u(ze) ha(pey) — ha(pe, — m2)
T; — Xy 2
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_\ <U(0) —ul@) My £m) = mpe) ) = w@e) ha(pe) = ha(pe = ?72))

0—x; m xTj— Xy 72
N (U(iﬂk)—U(O) ha(Pry +m1) — ha(prs) ,yu(wj) —u(ze) halpe,) — hz(mo—m))
zp —0 m Tj— Xy 72
= A+ (1= M), (17)
where A = —x;/(xy — x;) > 0. Here, the first inequality follows from u(xs11) > u(0) = 0 and

u(zs) < u(0) =0. Note that

w(zr) —u(0) ho(pry +m) — ha(Pry) Vu(ﬂfj) —u(ze) ha(pe,) — ha(pe, — m2)
zrp — 0 m xTj— Ty 72

sgn (ha(pry +m) — h2(pk2))/h2(mo) — ha(pe, —1m2) ,Yu(fﬁj) - U(W)/U(ﬂ?k) —u(0)
m 72 xTj— Ty zp —0

2 Ph2 _’YGL(,]’b} > 07

I, =

sgn

where the first inequality follows from that 0 < z < zy < x;. We also used u(zy) > u(0) for =.
This is because if u(zx) = u(0), then one can easily verify V(X) < V(Y) by similar arguments in
the bracket of case (a). In addition,

w(0) —u(xi) hi(pr, +m) — halpr,) 7“(%’) —u(ze) ha(pey) — ha(pe, —1m2)
0—x; it Tj— Ty 2

sen (Pa(pe, +m) — Pi(Pry)) /ho(Pey) — ha(pe, —m2)  u(z;) —u(we) su(0) — u(w;)
- m / 72 -7 ﬂjfj—ﬂ?z / 0—z;

2 Ph1,h2 - ’YGZ[a,b] 2 07

I =

where the first inequality follows from that z; < 0 < z; < x;. Substituting I; and I, into (17)
yields that V(Y) — V(X) > 0.

c) k<s </ thatis, ; < xp <0 < zy < x;. In this case,
PSSt J

i—1 s -1 n
Vi) = (z+ > )u<xy><h1<py>—h1<py_1>>+ S 3 | st bt )

v=1 vkt v=stl v=jtl
+ u(xi)(hi(pi +m) — ha(pi-1)) + kz; w(@y)(ha(py +m) — hi(pr—1+m))
+u(xr)(ha(pr) = ha(pr—1 +m)) + w(ze) (ha(pe — n2) — ha(pe-1))

+ u(e;)(ha(pj) = ha(pj—1 —m2)) + jz;:; u(y) (ha(py — n2) — ha(py—1 —12)).
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As a consequence,
k
V(Y)=V(X)= > (w@,) = ul@—1)(h(pv-1 +m) = h1(po-1))
=i+
J
— Y (@) = u(@y-1))(h2(pr-1) = ha(py—1 — m2))-
v=_(+1
Choose ko and £y such that hy(pg, +n1) — h1(p,) = min<i<x{h1(pt + M) — h1(p)} and ha(pg,) —
ha(pe, — m2) = maxe<i<j{ha(pt) — ha(pt — n2)}. Then we have
V(YY) —-V(X)

> (u(zr) — w(@i)) (h1(pro +m) — h1(Pro)) — (w(as) — u(we)) (ha(pey) — ha(pey, — m2))

sgn W(zg) —u(wi) ha(pre +m) = hi(pr,) ,Yu(ifj) — u(xe) ha(pey) — ha(pe, — n2)

T — T4 m Tj — Ty 2
sgn 111 (Pro +m) — P (Pro) /hz(peo) — ha(pe, —m2) Vu(xj) — u(ze) /u(mk) — u(w;)
m 2 Ly — Ty Tp — T4

> Py py —1GEY > 0,

Here, we used the fact u(zy) > u(;) for the second 2, since otherwise V(Y) — V(X) > 0 holds
trivially.

(d)f<s<jorj<s,thatis, o; <xp <ap<0<zjoraz <z <y <z <0. These two cases

can be proved by similar arguments to those in cases (a) and (b). Hence, the details are omitted
here.

Combining cases (a)-(d), we conclude that V(X) < V(Y'). Thus, we complete the proof. [

A.3 Proofs of results in Section 4

We proceed to prove results in Section 4 on properties of the few notions of fractional SD. We

first show Proposition 4.

Proof of Proposition /. The < implication is trivial because s(0) = r, and we consider the =
implication below. Denote Xg = XY and Yy = YY", Then X gfﬂ Y if and only if Xy <ssp Yo.
We aim to find the smallest value of s such that X +3 <® Y +3, that is, (X+8)* <ssp (Y +5)V/5.
Hence, we need

v(z) = (@ +B)Y5, x a7, V]
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to be concave which is equivalent to

L <i_1> (" + B)V/5 22

B (r—1)(a" +B) +r( ):c 0,

that is,
o r
1 <1+ 1—7r . + 05
S T x”
Note that if g > 0, then
"+ B B
z 1+
x" * b

Then v is concave on [a/",bY/"] if s > ij 5 If 3 <0, then

T
il g

x” a

and v is concave on [a¥/",b'/] if s > TTBB- O

Below, we discuss how X <ggp Y implies (1+¢)a-SD and (14 )g-SD for a small modification
of Y. It turns out that for bounded X and Y, both X <? Y +eand X <§ Y + € hold for some ¢

and « close to 1, which will be used in the proof of Theorem 3.

Lemma 2. Suppose that X and Y are two random variables such that X <ssp Y and |X|,|Y]| <m

26_’_72 € [071); Y > I € [071)7 and

€1[0,1), we haveXé?Y+€,X§,SyY+€ and X <RY +e.

for some m > 0. For any e € (0,m], ¢ > 1 —

€+m
Tz mgﬂij%
Proof. We first recall the definition of ~-transfer given by Miiller et al. (2017). For two discrete
random variables X and Y, we say that X is obtained from Y via a ~y-transfer if there exist two
random variables X, Y defined on a probability space (Q, F,P), wi, wy € Q, £1 < 2 < x3 < 24
and 71,12 > 0 with no(z4 — 23) = Y1 (22 — x1), P({w;}) = mi, @ = 1,2, such that x4 X,V 4 Y,

where < represents equality in distribution, and

X(w1) = z1, X(w2) =24, Y(w1) =9, Y(w) =23 and X (w) = Y (w) for w # wy, wo. (18)
It is obvious that X <§Y Y.
Let X and Y be two random variables such that X <gsp Y. To find the constants 7. ,, and

Ce,m, it suffices consider the case that X is obtained from Y via a 1-transfer. The general case can

be argued as a limit of 1-transfers; see e.g., Theorems 2.7 and 2.8 of Miiller et al. (2017). Without
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loss of generality, assume X = X and Y =V satisfy (18) with v = 1. Define Y; as
Yo(wi) =z 46, Yo(wr) =a3+¢, Yo(w) =Y (w), w#wi,wo,

It is obvious that Y. <gsp Y + &. Denote s = x9 — z; and ¢t = x4 — 3. Then tny = sn; and

s+t < 2m. Let us compare X and Y.

(i) We first consider (1 + v)s-SD. Noting that

me(t—e) (t—e)s 1—¢gft cm-e€
m(s+e) tis+e) 14+e/s mte

=, (19)

where the first equality follows from 7ot = ms. It is obvious that (19) implies X <,_ Y, and
thus X <, Y +e.

(ii) We next consider (1 + ¢)4-SD. By Theorem 2 (i), we need to find a A > 0 such that e** <ggp

eY= | that is,
772(6)\14 _ e)\(x3+€)> 8(6)\14 _ e)\(x3+z-:))

= <
771(6)‘(I2+€) — eMﬂl) t(e)\(asere) _ e/\xl) <L (20)

where the first inequality follows from st = 115, or equivalently,

Axg _ e)\(ngrs) Aza+e) Az

(& (&

<
Ty — T3 Ty — 1

— e

For this, it suffices to make the left-hand side less or equal to A and the right-hand side greater

or equal to A; thus

e M Maste) Azy — 3), (21)

and

AN@2FE) _ AT > N\(zy — 1q). (22)

We first deal with (21). Noting that e*(#3+2) > 1 4 Azg + \e, it suffices to show
A Ny — x3) + 1+ Azg 4+ de = 1+ Azyg + Ae. (23)
Note that for A < 1/m, we have e’** < e. Using Langrange’s formula, we have
N1 Aoy + g(Am)? <1+ day+ g)\QmQ.

Hence, choosing A < 6%2 is sufficient for (23). Note that since ¢ < m, the condition A < 1/m

is automatic. Similarly, (22) holds for such choice of A\. Thus, A < 6252 is sufficient for (20).
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2¢e

This corresponds to ¢ > 1 — SeremZ

(iii) At last we consider (1 + r)g-SD. Note that for r > m?/(m? + 2¢), by Taylor’s expansion, we

have

1/r

Ty —x T —
i —(mg—i—s)l/”gu and ($2+5)1/r_$1/r>g_

r r

which is equivalent to

ma(xy” — (w3 + &)Y s(xy — (w3 + )7

= <1, (24)
m((z2+ )V — 2"y (s + )V — 2y

where the first inequality follows from 79t = 1;s. By Theorem 2 (i), we know (24) is equivalent

to X1/7 <gsp (¥ + )7, that is, X <RY +e. -

Proof of Theorem 3. (i) The “if” direction is trivial, and below we show the “only-if” direction for

c € (0,1). Note that if X <2 Y, then aX éaAc/( aY for all @ > 0. Hence, if < is monotone

1—ctac
in <2 for some ¢ € (0,1), then it is also monotone in éé\, for all ¢ € (0,1). For any X and Y such
that X <gsp Y, we aim to show X < Y. We consider the following two cases. By Lemma 2, for
n > N, there exists ¢, € (0,1) such that X <3 Y, :=Y + 1/n and hence X < Y,, n € N. Then by
|Y,, — Y| — 0 uniformly and the upper semi-continuity of the preference <, we have X Y.

Note that X gfﬂ Y, is equivalent to X, := X —1/n gfn Y and hence X,, <Y, n € N. Then
by | X, — X| — 0 uniformly and the lower semi-continuity of the preference <, we have X Y.

(ii) Similarly, we only need to show the “only-if” direction. We first show that < is monotone
in <P if and only if < is monotone in <& for »/,7 € (0,1). It suffices to show the necessity for
0 <7’ < r < 1. Note that for any X,Y € X such that X <R Y let d = max{ess-supX, ess-supY } <
oo. By Proposition 4, there exists 8 = (r —7/)d/(r'(1 —r)) > 0 such that X + 8 <8 Y + 3. The

remaining proof is similar to (i). O

Proof of Proposition 5. (i) Note that for any u € %VS, if it is not a constant function, then there

!/

exists y such that «/(y) = 6 > 0. Hence, for any = < y, v/(x) > yu/(y) = ~d. This implies

u(z) < u(y) +v6(y — x) for x < y. Hence,

Efu(X)Itx<py] < E[(u(y) +70(y — X) [ x<yy] = —o0.

Thus, E[u(X)] < E[u(Y)] provided the expectations exist, that is, (i) follows.

(ii) It suffices to consider the case X < 0 as the partial order SSD is closed under mixture. For
A=1/c—1and N =1/ — 1, define y = 1 logE[e*X]. We can verify that e’ <ggp €*?, that is,
X <2 y. Note that for non-degenerated random variable X, 3 log E[eNX] > 1 log E[e*X] = y. This
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implies eNX gggp €'V, that is, X L5 Y for Y =y. O

Proof of Proposition 6. Suppose that P(X < d) > 0. Take u(x) = min{z,d}, x € R. It is straight-
forward to see that d €ssp X and thus, d €2 X for any ¢ € [0,1]. On the other hand, E[e*X] = oo
implies e’ ssp d and thus, X is not dominated by d in (1 + ¢)4-SD by Theorem 2. O

Details of Example j. (1) X} has the distribution

Ok

1 _
Fk<x>:@(w), >0,

where ® is the standard normal distribution. We can check that F} and F5 are single crossing at
point e with ty = % The the value of i, follows from the characterization of (14+)s-SD
of Theorem 2.4 of Miiller et al. (2017). By Theorem 2, if cpin € (0, 1), then cpin = 1/(1 4+ Amax)
with Apax the largest value of A such that M1 Logp M2, Then Amax is the unique solution to the

following equation

oo

/ C O (R — Pola)) do = / N (Fy(z) — Fi(x)) da. (25)
0 e

to

e o 152) -+ (252))

/:O A (Fy(x) — Fy(z)) do = /oo hy(2)dz.

to to

Denote by

We have

Note that for any A > 0 by L’Ho6pital’s principle, we have

lim (@) = o0,

T—00 €T

which implies that the integration of the right hand side of (25) equals to infinity. The left hand
side is always finite, and thus, X satisfying (25) does not exist. Hence X; §§CA Xy for any ¢ < 1.
(2) First note that (1 + z/u)”* is decreasing in o > 0 and increasing in p > 0 and thus, when

a1 2 ag and py < e,

z\ M x\ ™
1—F1(l‘): <1+> < (1+> :1—F2(x),
1 w2

that is, F1 <psp F>. Hence, without loss of generality we assume a3 > a9 and p; > pe. Denote

(2 + pup)*

9(x) = @+ )™
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Note that g(z) = pi*/p5? if and only if Fy(x) = Fy(z); and

a2 (1 — a2)x + s — asp
T+ T+ p (z + pm)(z + p2)

d
Elogg(az): , x>0.

This implies dd—; log g(z) > 0 and thus, g(x) is convex in x > 0. We then consider two cases.

(i) If aqpe — agpr = 0, then dlogg(z)/dx > 0 and thus, g(z) is increasing. Then by ¢(0) =
pit/ps?, we have g(x) > uf'/ps?, that is, 1 — Fi(z) < 1 — Fy(z) for all z > 0. Then we have

F1 <psp F>.

(ii) If ajpe — aopy < 0, then dlog g(z)/ dx is negative for < (aou; — ajp2)/(a2 — a1) and then
positive when x > (g1 —aqp2)/(ag —a1). Note that g(0) = pi* /p5? and limg_, g(x) = 0.
There exists unique zg > 0 such that g(xo) = pi*/pg?, that is, Fi(x¢) = Fa(xo). That is, Fy
and F; are single crossing at zo. For x < g, we have g(z) < u{'/p5?, that is,

a1 az
EEIE R T

, T <.

This is equivalent to Fi(z) < Fy(z) for x < zp and Fi(z) > Fy(z) for x > zo (this implies
Fy gSSD Fg). Thus, if 1 > a7 > as or EFl[Xl] = ,ul/(ozl — 1) < EFQ[XQ] = ,LLQ/(OZQ — 1)
(a1 > g > 1), we have Fy €gsp Fi.

We only need to consider the case a; > ag > 1 and Ef1[X;] > E2[X5] in which case we

have Fy <sgp F1, then by the characterization of (1 + v)s-SD of Theorem 2.4 of Miiller et al.
(2017), we have F» <5 Fy with 7 > Ymin

o0 00 o2 w
Ymin = fmo Fi(z) — Fa(x) de o fazo (m+ﬁ2)“2 o (m+ﬁ1)a1 d € (0,1]
min = x0T o de | 41 e ,
Jo" B2() = Fil) 0 )T~ G O

In contrast, for any a1 > ag > 0, we have [~ (Fi(logz/\)—Fy(logz/\))dz = X [ e A (Fy (@) —
Fy(2)) dz = oo which implies F, €2 F for ¢ € (0,1). O

A.4 Proofs of results in Section 5

This section contains proofs of Propositions 7, 8 and 9.

Proof of Proposition 7. By Theorem 2 (i), we have Apax is the maximum value of A such that
M <ssDp N, (26)
By that (26) is equivalent to E[e’?] < E[e*?] for p € (0, 1), then (13) follows immediately. We then
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consider the case that F single crosses G. In this case, we have the distribution of e’ single crosses
that of e*Y and thus, we have (26) holds if and only if E[e*¥X] < E[e*Y]. Note that A — E[e*X] is
continuous in A and thus, we have Apayx is the largest value satisfying E[e*X] = E[e*Y]. We next
assert that for any A < Amax, E[e?] < E[e’Y]. By Theorem 3.A.4 of Shaked and Shanthikumar
(2007), there exist X and Y such that X £ AmaxX Y L AmaxY gnq

Then X £ X9 and N 2 V9 with 6 := A/Amax < 1, and

~

E[X°] = E[E[X°|Y’]] = EE[X°|Y]] < E[(E[X|Y])’] = E[Y’],

where the inequality follows from z — 29 is a strictly concave function. Note that E[X?|Y] <
E[X|Y])?] a.s., and P(E[X?|Y] = (E[X|Y])®) < 1. Thus, we have E[X?] < E[Y?], that is, E[e*X] <

E[e*Y]. Tt then follows that Apmay is the unique solution satisfying the equation. O

Proof of Proposition 8. It suffices to consider n = m by replacing m and n with m A n. Since F
and G are continuous and strictly single-crossing, we know that the probability that F,, and G,, are
single-crossing tends to 1. Hence, we only need to consider ¢, when F,, and G, are single-crossing.

Define the random function g,(A) = [e* dF,(z) — [’ dGy,(z) for A > 0, and let g(\) =
[erdF(z) — [edG(z) for A > 0. Since z — €’ is a bounded continuous function, we know
that gn(A\) — ¢g(\) by the continuous mapping theorem. We also note that g(A) = 0 has a unique
root Amax > 0, and g(A) is bounded away from 0 outside a neighbourhood of Apax since for all
A, g(A) > 0 implies ¢'(A) > 0 and g(\) < 0 implies ¢’(\) < 0. Therefore, the unique root A, of
gn(X) = 0, which exists with probability tending to 1, converges to A with probability 1. This shows

Cmin — Cmin 1N probability. O

Proof of Proposition 9. As v < 1, it suffices to show that Jin — Ymin in probability as n,m — co.

Note that |4 — y4+| < |z — y| for each z,y € R. It follows that

/ (Gm(7) = Fu(x)) — (G(x) = F(2))4dz| < [ [(Gm(z) = G(2)) — (Fu(z) — F(x))| da.

lp

t
|

lp

Note that by the assumption on empirical distribution and the underlying distribution is continuous,

we have sup,cp |Gm(2) — G(z)| = 0 and sup,cg |Fn(z) — F(z))] = 0 as m,n — oo and thus,

ilelﬁ | Hyom ()] := ilelﬁ (G (2) — G(x)) — (Fp(z) — F(z))| — 0 a.s., n,m — oo.
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Then by the continuous mapping theorem, we have

< |Hpm(x)|de — 0 as., (27)

153

[ (Gl = Fu(@), - (60) - F@)sdo

sup
teR

where Z is the right end point of the support of G. Similarly, we have

igﬂg /KF (Fu(z) = G(2)) . — (F(2) — G(x))4dz| = 0 as. (28)
Note that
Ymin = Max Jip (G@) = F(@))de > 0. (29)

I [ (F(x) = Glo)yda

Denote by tg € (¢, z] the maximizer of the optimization problem of (29). Then we have |, etg (F(x)—
G(x))4dx > 0, and thus,

s fztﬁ (Gm(z) — Fa(2))y dz o z;(G(x) — P(a)4dz . asn oo 50)
Jo? (Fo(a) = Gr(@)) pde [2(F(2) — G(x))4da

To show the other direction, let A(t) = [, (F(z)—G(x)), dz, B(t) = [, (G(z) - F(z)), dx,
Anm(t) = [} (Fu(x) = Gm(2)), dz and Bym(t) = [}, (Gm(z) — Fu(z)), dz. Note that for ¢ €
(r,la), B(t) =0, A(lg) > 0 and A(t) and B(t) are continuous increasing function. Then for any
d > 0, there exists € € (0, A(¢g)) such that

B(t)+¢

b B
A6 2 O 5 for te (fg,Z), thatis, sup (t)+e

A(t) te(lq,z) A(t) —¢

< <7y +0.

By (27) and (28), there exists ' such that P(Q) = 1 and sup;cg |Bnm(t) — B(t)] — 0 and
Sup;ep |Anm(t) — A(t)] — 0 for any w € Q. From now on, we restrict on the fixed w. Then

for all t € ({5, %), there exist ng, mg such that for any n > ng, m > my,
Apm(t) > A(t) —e, Bpm(t) < B(t) +e.

This implies that

B,m(t)  B(t)+e¢
: < , te (g, to).
Aun(®) S A e )
and thus,
sup 2 ) _ sup Dn () sup (t)+6<7+5,

teR Anm(t) te(lg,z) An,m (t) te(lg,?) At) —e
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where the first equality follows from B, ,,(t) = 0 a.s. for t € ({p,lg). This combined with (30)

implies that A, is a consistent estimator of ~. O

A.5 Proof of Proposition 10 in Section 7

Proof of Proposition 10. By definition of Dy, we have Dy (w+aX —c(a)) = w+ aDp(X) —c(a) =
D(X,a). Since c is strictly convex, we have a*(X;) € [0, a] exists and is unique for ¢ = 1,2.
We show o*(X71) < a*(X2) by contradiction. Suppose a*(X;1) > a*(X3). By Theorem 1, P, > v

implies that DT(h) is monotone in <3, and thus, Dy (X1) < Dp(X2). It follows that

D(XI,O(*(Xl)) — D(XI,OC*(XQ)) + D(XQ, Oé*(Xg)) — D(XQ, Oé*(Xl))
= o (X1)Dp(X1) — o(X2)Dp(X1) + o (X2)Dp(X2) — o (X1)Dp(X2)
= (a"(X1) — a"(X2))(Dr(X1) — Da(X2)) <0,

where the inequality follows from a*(X71) > o*(X2) and Dp(X1) < Dp(Xs2). This yields a con-
tradiction to that a*(X;) is the unique solution to max,e(g o, D(Xi, @), i = 1,2. Thus, we have

Oé*(Xl) < Oé*(XQ). O

B Simulation results for Section 5

We present some simulation results to complement the estimators in Section 5. Let F' and G
be cdfs of N(up,0%) and N(ug, o), respectively. Denote Ay = pug — pp and Ao = op — og.
Miiller et al. (2017) showed that F' <§ G with

fA},L 1 - )dZ
fAu (1-— )dZ + = Jmin,

and by Theorem 2 (i) we can verify that F <? G where ¢ > cpin := 1/(1 + Apax) and

v - 2w —pr) _Ap 2
e 0% — o}, Acop+og

In Table 2, we present the estimation of Yyin and cpin by simulations for normal distributions. We
run N = 1000 replications, and for each time we set sample sizes to n = 200 and n = 500. From
the results on Table 2, we can find that the mean squared error (MSE) of the estimate of ¢y, is

smaller than that of 4. The reason behind this phenomenon needs future research.
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F G Ymin  Cmin  Ymin (MSE) Crmin (MSE)
=200 N(0,0530%) N(0.013,02272) | 0.9 0.9 0.887 (0.0123) 0.892 (0.0105)
n =500 N(0, 0.5302) N(0.013,0.227%) | 0.9 0.9 0.894 (0.0069) 0.895 (0.0061)
n =200 N(0, 0.4652) N(0.038, 0.2002) 0.7 0.7 0.708 (0.0154) 0.700 (0.0112)
n =500 N(0,0.4652) N(0.038,0.2002) | 0.7 0.7 0.706 (0.0063) 0.707 (0.0047)
7 =200 N(0,0.303%) N(0.015,0248%) | 0.5 0.5 0.500 (0.0095) 0.503 (0.0055)
n =500 N(0, 0.3032) N(0.015, 0.2482) 0.5 0.5 0.502 (0.0033) 0.502 (0.0019)
n =200 N(0,0.3312) N(0.03,0.2212) | 0.5 0.5 0.509 (0.0093) 0.508 (0.0058)
n =500 N(0,0.3312) N(0.03,0.2212) | 0.5 0.5 0.504 (0.0034) 0.503 (0.0020)
n=200 N(0,0.382) N(0.06,0.1662) | 0.5 0.5 0.509 (0.0082) 0.508 (0.0051)
n =500 N(0,0.3862) N(0.06,0.1662) | 0.5 0.5 0.503 (0.0031) 0.502 (0.0018)
n=200 N(0,04972) N(0.12,0.0552) | 0.5 0.5 0.505 (0.0095) 0.505 (0.0057)
n =500 N(0,04972) N(0.12,0.0552) | 0.5 0.5 0.501 (0.0034) 0.508 (0.0020)
n =200 N(0,0.2872) N(0.078,0.123%) | 0.3 0.3 0.303 (0.0036) 0.301 (0.0017)
n=500 N(0,02872) N(0.078,0.1232) | 0.3 0.3 0.300 (0.0013) 0.300 (0.0006)
7 =200 N(0,0.140%) N(0.072,0.060%) | 0.1 0.1 0.103 (0.0005) 0.099 (0.0002)
n =500 N(0,0.1402) N(0.072,0.060%) | 0.1 0. 0.101 (0.0003) 0.099 (0.0000)

Table 2: Simulated results of ymin and c¢pin for normal distributions.
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