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Confidence and discoveries with
e-values
Vladimir Vovk and Ruodu Wang

Abstract. We discuss systematically two versions of confidence regions: those
based on p-values and those based on e-values, a recent alternative to p-
values. Both versions can be applied to multiple hypothesis testing, and in
this paper we are interested in procedures that control the number of false
discoveries under arbitrary dependence between the base p- or e-values. We
introduce a procedure that is based on e-values and show that it is effi-
cient both computationally and statistically using simulated and real-world
datasets. Comparison with the corresponding standard procedure based on
p-values is not straightforward, but there are indications that the new one
performs significantly better in some situations.
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1. INTRODUCTION

Starting from the introduction of confidence regions in the work of Jerzy Neyman (1937),
confidence estimation and hypothesis testing have been regarded as dual tasks. We start our
discussion from hypothesis testing and then extend it to confidence estimation.

The usual approaches to hypothesis testing and confidence estimation are based on p-
values, but our emphasis will be on alternative approaches based on e-values, as discussed
in, e.g., Shafer (2021) (who uses “betting score” for our “e-value”), Shafer and Vovk (2019,
Section 11.5) (who use “Skeptic’s capital”), Grünwald, de Heide and Koolen (2020), and
Vovk and Wang (2021) (who proposed the term “e-values”).

E-values can be defined as values taken by e-variables, and an e-variable is a random
variable taking values in [0,∞] whose expectation is at most 1 under the null hypothesis.
In many areas of statistics e-variables appear naturally as likelihood ratios: if Q is a simple
null hypothesis and Q′ is an alternative probability measure, the Radon–Nikodym derivative
dQ′/dQ is an e-variable. In Bayesian statistics, Q or Q′ or both may be defined as marginal
probability measures for Bayesian models, in which case likelihood ratios are known as Bayes
factors. The fundamental monograph treating Bayes factors is Jeffreys’s (1961); see, e.g.,
Ly, Verhagen and Wagenmakers (2016) for a recent appreciation. The notions of e-values
and Bayes factors coincide for simple null hypotheses but diverge for composite ones (for
e-variables, the expectation should be at most 1 under any probability measure in the null
hypothesis).

The existing statistical methods are often divided into Bayesian and classical (we will say
more about the latter in Section 3). While p-values are the standard classical tool of hypothe-
sis testing, Bayes factors are the standard Bayesian tool (Benjamini et al., 2021). One way of
looking at e-values is as a way of modelling Bayes factors inside classical statistics inasmuch
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as they do not require prior distributions for their definition. This hints at the difficulty of com-
parisons between results based on p-values and those based on e-values; it is a manifestation
of the oft-acknowledged chasm between classical and Bayesian statistics.

Roughly, the Bayesian interpretation of an e-variable dQ′/dQ is that, when deciding be-
tween Q′ and Q as possible explanations for the data and observing a very large e-value, the
optimal decision is to reject Q unless the prior probability of Q is high or a mistaken rejec-
tion ofQ is much more costly than a mistaken rejection ofQ′ (see Bernardo and Smith (2000,
Proposition 6.1) for a precise decision-theoretic statement).

Another important and popular source of e-values, especially in the context of sequential
observations, is e-processes, which are stochastic processes (Et)t≥0 such that Eτ is an e-
variable for any stopping time τ (with respect to a pre-specified filtration); see, e.g., Shafer
and Vovk (2019), Grünwald, de Heide and Koolen (2020), Vovk and Wang (2021), and Wang
and Ramdas (2022). The use of e-processes ensures validity under optional stopping and
allows sequential update of statistical evidence. These advantages are discussed extensively
in the existing literature and are not the focus of this paper.

If E is an e-variable and α > 1, Markov’s inequality implies that, under the null hypoth-
esis, E ≥ α with probability at most 1/α. Therefore, observing a large value of E provides
evidence against the null hypothesis in classical statistics as well. In typical uses of e-values,
however, we are not given a threshold α in advance (or ever), and simply regard an e-value as
the strength of evidence against the null.

The defining property of a p-value is that it is α or less with a probability of at most α. This
definition involves a quantifier over thresholds α and sometimes is considered misleading
in situations where no threshold α is fixed in advance. There have been proposals to turn
(“calibrate”) p-values into Bayes factors (Sellke, Bayarri and Berger, 2001) to help intuition,
and Jeffreys (1961, Appendix B) proposes an informal correspondence between p-values and
Bayes factors; both can be used for establishing connections between p-values and e-values.
Ways of turning p-values into e-values and vice versa have been systematically discussed
in Vovk and Wang (2021, Section 2) and are the topic of Section 3. They provide ways of
comparing results based on e-values and p-values, albeit crude ones.

An area of statistics where we can see both e-values and p-values in action is controlling the
number of false discoveries in multiple hypothesis testing. A known procedure of controlling
the number of false discoveries (Genovese and Wasserman, 2004; Goeman and Solari, 2011a;
Goeman et al., 2019), which we call the GWGS procedure, uses p-values, but it can be easily
adapted to e-values. In this paper we demonstrate the performance of both versions.

Both versions of the GWGS procedure control the number of false discoveries in a stronger
sense than the well-known procedure of Benjamini and Hochberg (1995) controlling the false
discovery rate (FDR). Whereas FDR is the expected value of the false discovery proportion,
the GWGS procedure provides upper confidence bounds on the number of false discoveries.
Procedures that control FDR using e-values are studied by Wang and Ramdas (2022).

The GWGS procedure involves, at least implicitly, merging several p-values into a single p-
value. Merging p-values is difficult: see, e.g., Vovk and Wang (2020a); Vovk, Wang and Wang
(2022). The situation with e-values is radically different: arithmetic averaging is essentially
the only symmetric method of merging (Vovk and Wang, 2021, Proposition 3.1). This contrast
shows in the observation that the e-version of the GWGS procedure produces seemingly better
results than the p-version; we cannot be more categorical since comparison between p-values
and e-values is not straightforward.

We start the main part of the paper by discussing testing in Sections 2 and 3, defining con-
fidence regions in Section 4, and repackaging them as confidence measures in Section 5. In
Section 6 we introduce the e-version of the GWGS procedure, postponing the p-version to an
appendix. A special case that is easy to visualize is introduced under the name of discovery
e-matrices. In Sections 7 and 8 we demonstrate the advantages of the e-version in simula-
tion and empirical studies, respectively. In Section 9 we give its computationally efficient
implementation. Section 10 concludes.

The main content of the paper is complemented by five appendixes, A–E. Appendix A
contains some further information on a toy example in the main paper. Appendix B explores
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other procedures of controlling false discoveries with e-values, including the one based on
a Bonferroni-type procedure of merging e-values. If the goal is family-wise validity, such
procedures (including the one in Holm (1979)) usually work very well, but if the goal is to
control the number of false discoveries, they work much worse than arithmetic averaging.
In this appendix we also discuss a Simes-type procedure based on e-values. Appendix C
makes connections with Goeman and Solari’s (2011a) work explicit. As Hemerik, Solari and
Goeman (2019, Supplementary material) explain, the method of Goeman and Solari (2011a)
is equivalent to a method in Genovese and Wasserman (2004). Appendix D points out the
importance of generalized Bayes factors. Finally, Appendix E summarizes results of further
biomedical studies related to the dataset that we use in Section 8.

2. THREE APPROACHES TO HYPOTHESIS TESTING

The basic principle of hypothesis testing is sometimes referred to as Cournot’s principle
(Shafer, 2007). Augustin Cournot’s bridge between probability theory and the world is that
if a given event has a small probability, we do not expect it to happen. It is shown at the
top of Figure 1 and has entered (without its name) countless statistics textbooks: the simplest
approach to hypothesis testing consists in selecting a priori a critical regionA of a small prob-
ability under the null hypothesis and rejecting the null hypothesis when A happens. Cournot’s
principle is the basis of the classical approach to statistics; it was known to and used by James
Bernoulli (1713), and Cournot’s (1843) contribution was to say that this is the only bridge.

FIG 1. Cournot’s principle and its two generalizations

We are mostly interested in two generalizations of Cournot’s principle. To give formal
definitions, we fix a measurable space (Ω,A). This is our sample space; to complete it to
a probability space we need a probability measure Q ∈P(Ω), where P(Ω) is the set of all
probability measures on (Ω,A).

A statistical model is a family (Qθ | θ ∈Θ) of probability measures on (Ω,A). We do not
require measurability, in any sense, of Qθ in θ; in particular, the parameter space Θ is just
a set (not a measurable space). We are mostly interested in the case where Θ = P(Ω) and
Qθ = θ for all θ ∈Θ, but in the first few sections our exposition will be general, which may
make our definitions more familiar to some of the readers. For a given parameter θ ∈Θ, we
have the notion of expectation Eθ(E) :=

∫
E dQθ ∈ [0,∞] for each extended random variable

E taking nonnegative values (we call it “extended” since it may take value∞) and the notion
of probability Pθ(A) := Eθ(1A) =Qθ(A) for each event A ∈A.

A simple statistical hypothesis is an element θ of Θ. A statistical hypothesis (or composite
statistical hypothesis, or simply hypothesis) is a set H ⊆ Θ of parameters. We embed the
simple statistical hypotheses into the composite statistical hypotheses by identifying θ ∈ Θ
with the corresponding singleton {θ} ⊆Θ. We will say “null hypothesis” to emphasize that
we are interested in whether the hypothesis should be rejected in view of the data ω ∈Ω.

We already mentioned that the most basic way of testing a simple hypothesis θ ∈ Θ is
to choose a critical region A ∈ A with probability Pθ(A) ≤ α, α (the size) being a small
positive number, and to reject the hypothesis θ at level α after observing an outcome ω ∈A.



4

A disadvantage of this way of testing is that it is binary; either we completely reject the null
hypothesis or we find no evidence whatsoever against it. We will discuss two ways to graduate
the notion of a critical region: the classical one using p-values and a more recent one using
e-values.

A p-variable for testing a simple hypothesis θ is a nonnegative random variable P such
that, for any α ∈ (0,1), Pθ(P ≤ α) ≤ α. For each threshold α we have a critical region
{P ≤ α}, and a p-variable provides a nested family of critical regions. An e-variable for
testing a simple hypothesis θ ∈ Θ is a nonnegative extended random variable E such that
Eθ(E)≤ 1.

Suppose we are testing a simple null hypothesis θ (it might correspond to default parameter
values). In p-testing, we choose a p-variable P in advance and reject the null hypothesis θ
when the observed value P (ω) of P (the p-value) is small, and in e-testing, we choose an
e-variable E in advance and reject the null hypothesis θ when the observed value E(ω) of E
(the e-value) is large. In both cases, we get a measure of the amount of evidence found against
the null hypothesis.

We can embed basic testing into both p-testing and e-testing: namely, to each critical region
A corresponds the p-variable

(1) P (ω) :=

{
α if ω ∈A
1 if not

and e-variable

(2) E(ω) :=

{
1/α if ω ∈A
0 if not,

where α is the size of the critical region A. These two random variables carry the same
information as A. This justifies the two arrows marked “generalization” in Figure 1.

The special case of basic testing corresponds to concentrating on only one threshold, de-
noted α in the case of p-values, (1), and 1/α in the case of e-values, (2). It is instructive to see
how we could extend the basic p-variable (1) and the basic e-variable (2). It is easy to extend
(1); e.g., we can take another critical region A′ ⊃A of size α′ >α and define a p-variable,

P (ω) :=


α if ω ∈A
α′ if ω ∈A′ \A
1 if ω ∈Ω \A,

that strongly dominates (1). As it were, for each α we have a separate budget of α that can be
spent on a critical region. On the other hand, there is no way to improve the e-variable (2) in a
non-trivial way (make it larger on a set of positive probability). Now we have a single budget
of 1, which has been fully spent in (2).

The definitions of critical regions, p-variables, and e-variables extend to the case of com-
posite hypotheses as follows. A critical region of size α for a composite hypothesis H is an
eventA ∈A satisfying Pθ(A)≤ α for all θ ∈H . A p-variable for testing a composite hypoth-
esis H is a nonnegative random variable P such that, for any α ∈ (0,1), Pθ(P ≤ α)≤ α for
all θ ∈H . And an e-variable for testing a composite hypothesisH is an extended nonnegative
E satisfying Eθ(E)≤ 1 for all θ ∈H .

While p-variables (referred to as valid p-values in Casella and Berger (2002, Definition
8.3.26)) are standard, e-variables (Shafer, 2021; Vovk and Wang, 2021) have not been used
widely.

Observing a small p-value or a large e-value provide evidence againstH . It is convenient to
have conventional thresholds for p-values and e-values. For p-values, the standard thresholds
are 1% and 5%, and they go back to Fisher. If p≤ 0.05, we say that the evidence against the
null hypothesis is significant, and if p≤ 0.01, we say that the evidence is highly significant.
For e-values, we will use Jeffreys’s (1961, Appendix B) rule of thumb:
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FIG 2. The p-values (black solid lines) and e-values on the decimal log scale for testing the null hypothesis
N(0,1). Left panel: for the signed χ alternatives. Right panel: for the alternatives in the family N(µ,1).

• If the e-value is below 1, the null hypothesis is supported. In our plots (such as in
Figure 3 below) in the experimental sections, 7 and 8, such e-values will be shown in
dark green.

• If the e-value is in the interval (1,
√

10) ≈ (1,3.16), the evidence against the null hy-
pothesis is not worth more than a bare mention. Such e-values will be shown in green.

• If the e-value is in (
√

10,10) ≈ (3.16,10), the evidence against the null hypothesis is
substantial. Shown in yellow.

• If it is in (10,103/2) ≈ (10,31.6), the evidence against the null hypothesis is strong.
Shown in red.

• If it is in (103/2,100) ≈ (31.6,100), the evidence against the null hypothesis is very
strong. Shown in dark red.

• If the e-value exceeds 100, the evidence is decisive. Shown in black.

Fisher’s and Neyman–Pearson’s views of testing

A common view is that, in our terminology, Fisher preferred p-testing, whereas Neyman
preferred basic testing (with the null hypothesis complemented by an alternative hypothesis).
The full story is, however, more complex: see, e.g., Lehmann (2011, Section 4.4).

Fisher’s interpretation of hypothesis testing was in terms of a disjunction (Fisher, 1973,
Section III.1). If A is a critical region of a small size α and we observe an outcome in A, then
either the null hypothesis is wrong or “a rare chance has occurred”. To avoid any frequentist
connotations, we may express it in the equivalent form the null hypothesis is wrong unless the
outcome is strange (“unless” being one of the ways to express the idea of disjunction (Kleene,
1967, Section 14)). A similar interpretation is applicable to p-values and e-values: e.g., if we
observe a large e-value, then the null hypothesis is wrong unless the outcome is strange.

In Neyman and Pearson’s approach to hypothesis testing, a big role is played by alternative
hypotheses. In e-testing, the notion of an alternative hypothesis plays a less independent role:
choosing an e-variable E can often be interpreted as choosing an alternative hypothesis in
such a way that E is the likelihood ratio of the alternative hypothesis to the null (Shafer,
2021, 2.2).

A toy example

Let us see how these definitions work in a simple example. We would like to test the null
hypothesis x ∼ N(0,1) given an observation x ∈ Ω := R. Suppose we believe that |x| re-
flects the amount of evidence against the null hypothesis. Therefore, we will be interested in
p-variables P (x) and e-variables E(x) that depend on x only via |x| and are monotonic func-
tions (increasing for E and decreasing for P ) of |x|. There is a unique p-variable P (uniform
on [0,1]) satisfying this property, namely P (x) := 2Φ(−|x|), where Φ is the standard Gaus-
sian distribution function. On the other hand, there is a huge variety of e-variables satisfying
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this property. A natural class of such e-variables is

(3) E(x) :=
|x|d

π−1/22d/2Γ
(
d+1

2

) , d > 0,

where the denominator is just the normalizing constant ensuring
∫
E dN(0,1) = 1 (the dth

absolute moment of the standard Gaussian distribution, which is well known and easily found
by direct integration).

Figure 2 gives the p-values as the black solid line in both panels and gives the e-values
for d ∈ {2,10,50} in the left panel. On Fisher’s scale, p-values are significant when their
decimal logarithms drop below log10 0.05 and highly significant when they drop below −2;
these levels are shown as thin black lines. Jeffreys’s levels 0.5, 1, 1.5, and 2 for e-values on
the log10 scale are shown as thin orange lines. The e-variables are not comparable, in the
sense that none of them dominates any other everywhere.

Each of the e-variables in the left panel of Figure 2 defines an alternative to the null hypoth-
esis, as discussed above, so that the e-variable becomes the likelihood ratio of the alternative
to the null hypothesis. The alternative hypothesis corresponding to (3) has the density propor-
tional to |x|d exp(−x2/2). Since x ranges over R, it is not exactly the χ density with d+ 1
degrees of freedom, which we will denote χd+1, but it is a slight variation: after generating x
from χd+1, we change its sign (i.e., multiply it by −1) with probability 1/2. We will call this
alternative distribution the signed χd+1 distribution; for d = 2 this is the signed Maxwell–
Boltzmann distribution, which is abbreviated to “M.-B.” in the legend in the left panel of
Figure 2.

The signed χ alternatives, corresponding to E(x)∝ |x|d, appear to be the simplest uncon-
strained choice, but a more standard approach is to look for alternatives inside a parametric
family of distributions. Let us embed N(0,1) into the statistical model N(µ,1), µ ∈R (there
are other natural embeddings, and in Appendix A we will also discuss the embedding into the
statistical model N(0, σ2), σ > 0). The right panel of Figure 2 shows three more e-variables,
which are based on the likelihood ratios

(4) E(δ)(x) :=
dN(δ,1)

dN(0,1)
(x) =

exp(−(x− δ)2/2)

exp(−x2/2)
= exp(δx− δ2/2).

To obtain an e-variable that depends on x only via |x|, let us average E(δ) and E(−δ):

(5) Ē(δ)(x) :=
E(δ)(x) +E(−δ)(x)

2
.

The right panel of Figure 2 shows Ē(1), Ē(3), and Ē(5).
Four points are indicated in the right panel to illustrate the interpretation of our plots. The

points A1 and A2 are at the intersection of the graph of the p-variable with the horizontal line
at level −2, and the points B1 and B2 are at the intersection of the graph of the e-variable
with δ := 3 with the horizontal line at level 2. The x-coordinates of the points A1 and A2

are approximately ±2.58, and the x-coordinates of the points B1 and B2 are approximately
±3.27. The observations xwith |x| exceeding (approximately) 3.27 provide decisive evidence
against the null hypothesis N(0,1), and the other observations do not, according to Jeffreys’s
scale. Similarly, the observations x with |x| exceeding (approximately) 2.58 provide highly
significant evidence against the null hypothesis N(0,1), while the other observations do not,
according to Fisher’s scale. Using similar interpretation for the left panel, we can see, e.g., that
the e-variable for d= 2 makes a wider range of observations x provide substantial evidence
against the null hypothesis than the e-variable for d= 10 does, whereas for strong evidence
we have the opposite situation.

Later in the paper we will use methods related to both panels of Figure 2. In our simulation
studies in Section 7, we will generate observations from N(µ,1) and use again the likelihood
ratios (4) that we used in the right panel. In our empirical studies in Section 8, where we have
no idea of the true distribution of the data, we use the e-variables proportional to |x|d, as in
the left panel.
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3. IS IT POSSIBLE TO COMPARE E-VALUES AND P-VALUES?

Starting from the next section we will describe various methods based on p-values and e-
values. In Section 1 we already alluded to difficulties of comparing such results. There is no
overarching testing framework (at least at this time) containing both p-testing and e-testing
that could be used for comparing such results. The best we can do rigorously is to convert,
albeit imperfectly, p-values to e-values and vice versa.

Sometimes the user of statistical procedures has a clear preference for p-values or e-values.
These are some possible categories of users (this is not an exhaustive list, of course):

1. Some users will find the frequentist interpretation of p-variables P appealing: for any
threshold α, the long-run frequency of observing P ≤ α in a sequence of independent
identical trials is at most α. This is typical of the frequentist school of classical statistics.

2. Other users will prefer a direct application of Cournot’s principle: for a small α and
pre-specified P , we do not expect to observe P ≤ α under the null hypothesis. This
school is referred to as Bernoullian statistics by Glenn Shafer (Shafer, 2022), following
Francis Edgeworth, Richard von Mises, Arthur Dempster, and Ian Hacking.

3. Another category, representing Bayesian statistics, will like the Bayesian interpretation
of e-variables referred to in Section 1.

4. Our final category will accept the betting interpretation of an e-variable E (see, e.g.,
Shafer (2021)): the e-value E(ω) is the pay-off of a lottery that is fair under the null
hypothesis, and a large pay-off casts doubt on the null hypothesis. The idea of betting
is often regarded as an important ingredient of Bayesian statistics (see, e.g, de Finetti
(2017, 3.3.5)), but it is used there in a very different way, in the form of no Dutch book
requirement.

Communication may be easier between the users in the first two categories (classical statis-
tics), or between the users in the last two categories. But otherwise, we need methods of
conversion between p- and e-values. Therefore, as a first step we discuss rigorous ways of
turning p-values into e-values (known as calibrating p-values) and vice versa. For further
details, see Vovk and Wang (2021, Section 2).

A decreasing function f : [0,1]→ [0,∞] is a calibrator if, for any p-variable P , f(P ) is an
e-variable. In other words, a calibrator transforms p-values to e-values. A very natural family
of calibrators is

(6) fκ(p) := κpκ−1,

where κ ∈ (0,1]. The maximum-possible e-value

(7) VS(p) := max
κ∈(0,1]

fκ(p) =

{
− exp(−1)/(p lnp) if p≤ exp(−1)

1 otherwise
, p ∈ (0,1],

attainable by this family will be referred to as the VS bound (abbreviating “Vovk–Sellke
bound” (Sellke, Bayarri and Berger, 2001; Shafer and Vovk, 2019, Section 11.5)), but due
to the maximum operation, VS(P ) need not be an e-variable even if P is a p-variable.

In the opposite direction, a decreasing function f : [0,∞]→ [0,1] is an e-to-p calibrator if,
for any e-variable E, f(E) is a p-variable. It is a function transforming e-values to p-values.
As explained and formalized in Vovk and Wang (2021, Proposition 2.2),

(8) t ∈ [0,∞] 7→min(1,1/t)

is the only reasonable e-to-p calibrator.
In general, calibrating p-values and e-values are crude processes. A strong e-value of 20

barely attains statistical significance when transformed into a p-value (namely, 5%) using (8).
The VS bound for the borderline significant p-value of 5% is approximately 2.456, and so “is
not worth more than a bare mention”, according to Jeffreys. The low “round-trip efficiency”
in the domain of p-values can be illustrated by

(9) 1/VS(0.005)≈ 0.072.
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The round trip turns the highly significant p-value of 0.5% into the non-significant p-value of
7.2%. And this is despite the VS bound being achievable as e-value only in hindsight.

In view of the low round-trip efficiency, it is natural to expect that users of statistical pro-
cedures who insist on using p-values will be best served by methods producing directly p-
values. A method producing e-values will have to be vastly superior to result in better, or
even equally good, p-values after conversion. Interestingly, we will see such an example in
Section 7 (see the discussion of Figure 4). Symmetrically, a method producing p-values will
have to be vastly superior to a method producing directly e-values in order to result in better
or equally good e-values after conversion. The caveat here is that the result of comparison
still depends on using the bound (7) (using the e-to-p calibrator (8) is uncontroversial).

The user who is uncertain whether to use p-values or e-values usually needs a more ac-
curate comparison than that provided by the crude procedures of calibration and e-to-p cali-
bration. We do not have objective ways of doing that. One subjective way to compare results
using e-values to those using p-values is to appeal to Jeffreys’s (1961, Appendix B) authority:
“Users of these tests speak of the 5 per cent. point in much the same way as I should speak of
the K = 10−1/2 point, and of the 1 per cent. point as I should speak of the K = 10−1 point.”
In our terminology, people doing p-testing speak of a p-value of 5% (resp. 1%) in much the
same way as Jeffreys should speak of an e-value of 101/2 (resp. 10). The approximate equiv-
alences are

(10) p-value of 5%∼ e-value of 101/2 ≈ 3.16 p-value of 1%∼ e-value of 10.

Another subjective way is to use Good’s (Good, 1958, Appendix IV) rule of thumb. Ac-
cording to Good, the e-value corresponding to a p-value of p should lie in the range

(11)
(

1

30p
,

3

10p

)
when 0.001< p< 0.2 (which Good felt were the values of p that are usually of most practical
interest). In Good’s picture the p-value of p is obtained using the standard recipe from the
Bayes factor as test statistic (this condition is always satisfied in this paper). If we take the
geometric mean 1/(10p) of the end-points of the interval (11), we will obtain

(12) p-value of 5%∼ e-value of 2 p-value of 1%∼ e-value of 10

in place of (10). While (10) and (12) are close, Good acknowledges the significant uncertainty
surrounding the correspondence.

A slightly more objective way of comparing methods based on p-values and e-values is
to consider their mathematical simplicity. A great advantage of e-values is that they are very
easy to combine; as we mentioned in Section 1, arithmetic averaging is essentially the only
symmetric method of combination (Vovk and Wang, 2021, Proposition 3.1). This leads to
simple and intuitive algorithms (and in Vovk, Wang and Wang (2022) merging e-values is
even used as a technical tool for designing admissible ways of merging p-values).

4. CONFIDENCE REGIONS

The notion of a confidence region was introduced by Neyman (1934; 1937) only in its
basic version. (See Lehmann (2011, Section 6.4) for Neyman’s predecessors; the word “con-
fidence” is a translation of the Polish “ufność” (Neyman, 1941), and Neyman’s adjectival use
of it was at first made fun of by his English listeners (Neyman, 1934, comments by Bowley
and Fisher).) The p-version is usually implicit, and the e-version has not been used in main-
stream statistics. However, the e-version has been used for a long time, in some form, in the
algorithmic theory of randomness (Levin, 1976; Gács, 2005; Vovk and V’yugin, 1993), and in
this paper we will use the terminology close to that of the algorithmic theory of randomness.

Let us fix a statistical model (Qθ | θ ∈ Θ). A basic test of size α is a family of critical
regions (Aθ | θ ∈Θ) of size α. Therefore, for each simple statistical hypothesis θ, a basic test
fixes a critical region Aθ for testing θ: Pθ(Aθ)≤ α.

The interpretation of a basic test that is symmetric between the parameter space Θ and
sample space Ω is that ω ∈Aθ means poor agreement between θ and ω. This binary relation
of poor agreement and its complementary relation of good agreement have two sides:
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• on the testing side, we start from θ and divide the ωs into those that conform to θ
(ω /∈Aθ) and those that do not (ω ∈Aθ);

• on the estimation side, we start from ω and divide the θs into those that agree with ω
(ω /∈Aθ) and those that do not (ω ∈Aθ).

In particular, on the estimation side we have the notion of a confidence estimator as introduced
by Neyman: the confidence estimator corresponding to a basic test (Aθ | θ ∈Θ) is

(13) Γ(ω) := {θ ∈Θ | ω /∈Aθ}.

In the context of a basic test (Aθ | θ ∈ Θ) of a small size α we may say that an outcome
ω ∈Ω is strange for a parameter value θ ∈Θ if ω ∈Aθ . According to Cournot’s principle, we
do not expect the outcome ω to be strange for the true θ. Our interpretation of the confidence
region (13) is that Γ(ω) covers the true θ unless ω is strange.

Graduated notions of a confidence estimator are discussed surprisingly rarely in statistics
textbooks, especially in full generality (e.g., the popular textbook Cox and Hinkley (1974) is
one of the few places where they are discussed, but only in the context of a linearly ordered
parameter space Θ). A p-test is a family of p-variables (Pθ | θ ∈ Θ), and the corresponding
p-confidence regions are defined as

(14) Γp,α(ω) := {θ ∈Θ | Pθ(ω)>α}, α ∈ (0,1).

We regard Pθ(ω) as a measure of agreement between θ and ω, with small values indicating
poor agreement, and define Γp,α(ω) to be the set of θ that agree with ω at level α. The
definition of a p-confidence estimator is only a slight variation on the definition of a basic
estimator: namely, (14) can be obtained from (13) by setting Aθ := {ω | Pθ(ω) ≤ α} for
each α. Notice that the p-confidence regions Γp,α(ω) are nested: α1 <α2 implies Γp,α2

(ω)⊆
Γp,α1

(ω); this property is sometimes discussed or at least mentioned in statistics textbooks
(e.g., in Cox and Hinkley (1974, Section 7.2), Casella and Berger (2002, 9.5.2), and Stuart,
Ord and Arnold (1999, Section 19.15)).

Similarly, an e-test is a family of e-variables (Eθ | θ ∈ Θ). We also regard Eθ(ω) as a
measure of agreement between θ and ω, but now large values indicate poor agreement. Anal-
ogously to (14), we define the e-confidence regions as

(15) Γe,α(ω) := {θ ∈Θ |Eθ(ω)<α}, α ∈ (0,∞).

The definitions (14) and (15) of p-confidence regions and e-confidence regions generalize the
basic definition (13), which corresponds to using the p-test and the e-test defined by (1) and
(2), respectively, with added subscripts θ.

The notions of p-test and e-test provide graduated notions of strangeness. Let α > 0; we
will sometimes refer to it as the significance level (the interesting values are α < 1 for p-
testing and α > 1 for e-testing). In the context of a p-test (Pθ | θ ∈Θ), we say that ω ∈ Ω is
α-strange for θ ∈Θ if Pθ(ω)≤ α (i.e., if we reject θ at level α after observing ω). And in the
context of an e-test (Eθ | θ ∈Θ), we say that ω ∈ Ω is α-strange for θ ∈Θ if Eθ(ω)≥ α. If
there is any risk of confusion, we will use the fuller expressions “(p, α)-strange” and “(e, α)-
strange”.

The interpretation of the confidence region (14) in terms of a Fisher-type disjunction is that
Γp,α(ω) covers the true θ unless ω is (p, α)-strange. Similarly, we interpret (15) by saying that
Γe,α(ω) covers the true θ unless ω is (e, α)-strange.

Starting from Section 7, we will visualize e-confidence regions for a range of thresholds,
including 10. Inspired by the terminology of Jeffreys (1961, Appendix B), already discussed
in Section 2, we will refer to an e-confidence region at level 1 as weak, at level 101/2 as
substantial, at level 10 as strong, at level 103/2 as very strong, and at level 100 as extremely
strong.
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Simultaneous confidence regions

Sometimes we are interested not in θ but in some derivative parameter (as in Schervish’s
textbook (1995, 5.2.1)). For example, if Ω = R and Θ = P(Ω), we might be interested in the
median of θ ∈Θ. Let g : Θ→Θg be the function mapping the original parameter θ to a new
parameter, g(θ).

The confidence regions for the derived parameter g(θ) become:

(16) Γg(ω) := {g(θ) | θ ∈Θ & ω /∈Aθ}

in place of (13),

Γgp,α(ω) := {g(θ) | θ ∈Θ & Pθ(ω)>α}, α ∈ (0,1),

in place of (14), and

(17) Γge,α(ω) := {g(θ) | θ ∈Θ & Eθ(ω)<α}, α ∈ (0,∞),

in place of (15).
It is important that we can have a family of functions g, and the confidence estimator (16)

will be valid simultaneously for all of them, provided the same basic test (Aθ | θ ∈ Θ) is
used for all g. The same is true for p-confidence estimators and e-confidence estimators; what
is important is that the notion of strangeness should not depend on g. For example, for any
family of functions g : Θ→Θg , the confidence region Γge,α(ω) in (17) contains g(θ) for all g
simultaneously unless the outcome is α-strange for the true parameter θ.

Confidence regions in the toy example

Here we continue our discussion of the toy example started in the previous section. Now
our statistical model (Qθ | θ ∈Θ) is Θ := R and Qθ :=N(θ,1) for all θ. For a fixed δ, such
as δ := 3, let us generalize (5) to

(18) Ē
(δ)
θ (x) :=

E
(δ)
θ (x) +E

(−δ)
θ (x)

2
,

where, generalizing (4),

(19) E
(δ)
θ (x) :=

dN(θ+ δ,1)

dN(θ,1)
(x) =

exp(−(x− θ− δ)2/2)

exp(−(x− θ)2/2)
= exp(δ(x− θ)− δ2/2).

This gives us an e-test.
Remember that the x-coordinate of the point B2 in the right panel of Figure 2 is approx-

imately 3.27, and let us fix δ := 3. Therefore, the extremely strong e-confidence regions (e-
confidence intervals in this case) are

(20) Γe,100(x)≈ [x− 3.27, x+ 3.27], x ∈R,

where “≈” refers to 3.27 being an approximate value. For Jeffreys’s other thresholds the
e-confidence intervals are

(21) Γe,103/2(x)≈ [x− 2.88, x+ 2.88], Γe,10(x)≈ [x− 2.50, x+ 2.50],

Γe,101/2(x)≈ [x− 2.11, x+ 2.11],

and the p-confidence intervals are, as usual, Γp,0.01(x)≈ [x− 2.58, x+ 2.58].
The e-confidence intervals (20)–(21) will change if the alternative hypotheses θ ± 3 are

replaced by other ones, such as θ ± 1 or θ ± 5. It can be considered an advantage of p-
confidence intervals, and p-values in general, that for a small set of popular statistical models
there is no dependence on the choice of the alternative hypothesis. This is closely related
to the existence of uniformly most powerful statistical tests (Lehmann and Romano, 2005,
Chapter 3).
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5. CONFIDENCE MEASURES

The notions of a test discussed in the previous sections allow us to associate measures
of confidence with subsets of the parameter space in view of an outcome. These are just a
different way to package confidence regions.

For a p-test (Pθ | θ ∈Θ), the p-confidence measure of a set B ⊆Θ in view of an outcome
ω ∈Ω is defined as

Cp(B | ω) := sup
θ/∈B

Pθ(ω).

Now the Fisher-type disjunction for the true θ is: θ ∈B unless ω is Cp(B | ω)-strange for θ.
Therefore, we expect θ ∈ B for a small Cp(B | ω). Of course, this disjunction remains true
if we replace “Cp(B | ω)-strange” by “c-strange” for any c≥ Cp(B | ω), but in statements of
this kind we usually choose the c that makes them as strong as possible.

Similarly, for an e-test (Eθ | θ ∈Θ), the e-confidence measure of B ⊆Θ given ω ∈Ω is

Ce(B | ω) := inf
θ/∈B

Eθ(ω),

with the analogous interpretation: θ ∈B unless ω is Ce(B | ω)-strange for θ.
If we are interested in a derivative parameter g(θ), where g : Θ→ Θg , the p-confidence

measure and e-confidence measure of B ⊆Θg in view of ω ∈Ω are now defined as

Cgp (B | ω) := sup
θ∈Θ:g(θ)/∈B

Pθ(ω) = Cp(g−1(B) | ω),

Cge (B | ω) := inf
θ∈Θ:g(θ)/∈B

Eθ(ω) = Ce(g
−1(B) | ω),

respectively, with the same interpretations as before.

REMARK 5.1. The notions of confidence measures discussed in this section are related to
the necessity measures of possibility theory (Dubois and Prade, 1988) (which they include in
a wider class of what they call confidence measures), to the belief functions of the Dempster–
Shafer theory (Shafer, 1976), and to confidence in conformal prediction (Vovk, Gammerman
and Shafer, 2005, (3.66)). However, unlike confidence measures in those theories, our notion
just re-expresses the idea of confidence regions without adding new information.

Confidence measures in the toy example

In the toy example considered at the end of the previous section (with the same p-test and
e-tests), we can write the p-confidence measure of a set B ⊆ R of parameter values in view
of an observation x ∈R as

Cp(B | x) = 2Φ

(
− inf
θ/∈B
|x− θ|

)
.

According to the definition, Cp(B | x) is determined by the parameter value outside B (as-
suming the inf is attained) that makes the observed x least strange.

The main application of confidence measures in this paper (described in the following sec-
tion) will be “one-sided”, in that the corresponding confidence regions will provide only a
lower bound (on the quantity called the number of true discoveries; equivalently, they pro-
vide an upper bound on the number of false discoveries). If instead of (18) we use the e-test
(19) with δ > 0, we will have prediction regions in the form of rays pointing left, and the
confidence measure will be

Ce(B | x) = exp
(
δ (x− supBc)− δ2/2

)
,

where Bc = Θ \B is the complement of B.
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6. CONTROLLING THE NUMBER OF FALSE DISCOVERIES

Starting from this section we specialize our setting. Our sample space (Ω,A) is still arbi-
trary, but now we take Θ := P(Ω) as our parameter space and Qθ := θ for all θ ∈ Θ as our
statistical model; remember that P(Ω) is the set of all probability measures on (Ω,A). Since
our statistical model contains all probability measures on Ω, there is no real loss of generality.

Suppose that we are given K e-variables E1, . . . ,EK for testing hypotheses H1, . . . ,HK ,
which are our base hypotheses; we would like to reject some of them (in fact, as many of
them as possible under a validity constraint). The realized values of E1, . . . ,EK are denoted
by e1, . . . , eK , so that ek :=Ek(ω) for the realized outcome ω.

If we do not know anything about the nature of the hypotheses H1, . . . ,HK , it makes sense
to reject a number of them with the largest ek. But in general, we can consider an arbitrary
non-empty rejection set R ⊆ {1, . . . ,K}; this is the set of base hypotheses, represented by
their indices, that the researcher chooses to reject. Goeman and Solari (2011a) argue convinc-
ingly that in some practically relevant cases R will not necessarily correspond to the largest
ek; e.g., R may include hypotheses connected by a common theme, such as all relevant genes
related to the gastrointestinal tract (Goeman and Solari, 2011a, 4.1).

In this section we will find functions D providing a measure of confidence in the number
of true discoveries (to be formally defined momentarily) in the following sense: a rejection set
R contains at least j true discoveries unless the outcome ω is DR(j)-strange. This statement
is uniform in R and j, in the sense of the strangeness of outcomes being measured by a fixed
e-test. Therefore, a large DR(j) means high confidence in the number of true discoveries
being at least j.

For each θ ∈P(Ω), we define

Iθ := {k ∈ {1, . . . ,K} | θ ∈Hk}

to be the set of indices of hypotheses containing θ. If the researcher rejects Hk, we refer to
this decision as a discovery. We say that the discovery is true if θ /∈ Hk, and it is false if
θ ∈ Hk, where θ is the true (unknown) probability measure governing the data generation.
For a rejection set R, the number of true discoveries is

(22) gR(θ) := |R \ Iθ|= |{k ∈R | θ /∈Hk}| ,

and the number of false discoveries is

|R ∩ Iθ|= |{k ∈R | θ ∈Hk}| .

The sum of these two numbers is |R|, the total number of discoveries, and so controlling
the number of false discoveries is the same thing as controlling the number of true discov-
eries. Our functions DR(j) will provide measures of confidence in lower bounds j on the
number of true discoveries (equivalently, upper bounds |R| − j on the number of false dis-
coveries). Researchers are sometimes interested in the proportion of true or false discoveries
|R \ Iθ|/ |R| or |R ∩ Iθ|/ |R|, respectively. We can also control those with the bounds j/ |R|
or (|R| − j)/ |R| (lower for true and upper for false discoveries), respectively.

REMARK 6.1. The researcher may be interested in parameters g(θ) different from (22).
For example, g(θ) may be the weighted number of true discoveries in R (e.g., some genes
can be more important than other genes). Or, for a partition of R into groups (one of which
can be, e.g., the genes related to the gastrointestinal tract), g(θ) may be the number of groups
containing true discoveries. In this paper we restrict ourselves to the simplest case.

For e-confidence bounds, we need an e-test (Eθ)θ∈P(Ω). For each k ∈ Iθ , Ek is an e-
variable for testing θ. We will obtain Eθ by merging (Ek)k∈Iθ . This can be achieved by using
e-merging functions studied in Vovk and Wang (2021). An e-merging function is a Borel
function F : ∪∞n=0[0,∞]n→ [0,∞] that is increasing in each of its arguments and maps any
finite sequence of e-variables to an e-variable: if E1, . . . ,En are e-variables, F (E1, . . . ,En)
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is required to be an e-variable as well. We always set F := 1 if the input sequence is empty.
An example (of paramount importance, as discussed earlier) is the arithmetic mean

(23) (e1, . . . , en) 7→ 1

n

n∑
i=1

ei.

An e-merging function is symmetric if it does not depend on the order of its arguments, like
the arithmetic mean.

Let F be a symmetric e-merging function; we define for each θ ∈Θ the e-variable

(24) Eθ := F (Ek : k ∈ Iθ).

Our main object of interest is CgRe ({j, j + 1, . . .} | ω) for this e-test. In agreement with
Section 5, CgRe ({j, j + 1, . . .} | ω) gives a confidence bound on the number of true dis-
coveries: the rejection set R contains at least j true discoveries unless the outcome ω is
CgRe ({j, j+ 1, . . .} | ω)-strange. Therefore, we can count on there being at least j true discov-
eries in R for a large observed CgRe ({j, j + 1, . . .} | ω).

Let us now replace CgRe ({j, j + 1, . . .} | ω) by a more explicit and easily computable ex-
pression. Set, for a rejection set R,

CgRe ({j, j + 1, . . .} | ω) = min
θ∈P(Ω):gR(θ)<j

Eθ

= min
θ∈P(Ω):|R\Iθ|<j

F (Ek : k ∈ Iθ)

≥ min
I⊆{1,...,K}:|R\I|<j

F (Ek : k ∈ I) =:DR
e,F (j),(25)

where, as usual, min∅ :=∞, and the equality =: in (25) signifiesDR
e,F (j) being defined, with

the subscripts (e, F ) dropped if clear from the context.
Intuitively, in (25) we go over all I for which there are fewer than j true discoveries and

evaluate their strangeness; if all of them are strange, we are entitled to reject there being fewer
than j true discoveries. The interpretation in terms of the Fisher-type disjunction of the value
DR(j) defined in (25) is: the rejection set R contains at least j true discoveries unless the
outcome ω is DR(j)-strange. The values DR(j) are informative for j = 1, . . . , |R|, and we
will sometimes refer to DR(j) (as function of j) as discovery e-vector.

Let us say (following Holm (1979, Section 1)) that H1, . . . ,HK satisfy the free combina-
tions condition for R if the sets Iθ , θ ∈Θ, include all subsets of R:

∀S ⊆R ∃θ ∈Θ : Iθ = S.

The “≥” in (25) becomes “=” under the free combinations condition, but it is not required
for the validity of our methods. In particular, the Fisher-type disjunction still holds for DR(j)
when the property is not satisfied.

Technically, the choice of F in (24) may depend on θ, but using the same F leads to
convenient properties of monotonicity for DR(j) described in the next proposition. These
properties will help us to visualize D in our plots in the experimental sections.

PROPOSITION 6.2. For any R,R′ ⊆ {1, . . . ,K}, j, j′ ∈ {0,1, . . .}, and e-merging func-
tion F :

(1) DR
e,F (j)≤DR′

e,F (j) if R⊆R′;
(2) DR

e,F (j)≤DR
e,F (j′) if j′ ≤ j;

(3) DR′

e,F (j + |R′ \R|)≤DR
e,F (j).

PROOF. For item (1), we can rewrite DR
e,F (j)≤DR′

e,F (j) as

min
I:|R\I|<j

F (Ei : i ∈ I)≤ min
I:|R′\I|<j

F (Ei : i ∈ I),
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Algorithm 1 Discovery e-vector for a given rejection set
Input: A symmetric e-merging function F , the rejected hypotheses R⊆ {1, . . . ,K}, and an increasing sequence

of e-values e1 ≤ · · · ≤ eK .
1: for j = 1, . . . , |R| do
2: let Rj be R without its j − 1 largest elements

3: DR(j) := Fe(Rj)
4: for i= 1, . . . ,K do
5: e := Fe(Rj ∪ {1, . . . , i})
6: if e <DR(j) then
7: DR(j) := e

and it suffices to notice that any I satisfying |R′ \ I|< j satisfies |R \ I|< j.
Item (2) can be rewritten as

min
I:|R\I|<j

F (Ei : i ∈ I)≤ min
I:|R\I|<j′

F (Ei : i ∈ I),

which follows from |R \ I|< j′ implying |R \ I|< j.
Item (3) can be rewritten as

min
I:|R′\I|<j+|R′\R|

F (Ei : i ∈ I)≤ min
I:|R\I|<j

F (Ei : i ∈ I),

which follows from

|R \ I|< j =⇒
∣∣R′ \ I∣∣< j +

∣∣R′ \R∣∣ ,
which in turn follows from the obvious∣∣R′ \ I∣∣≤ |R \ I|+ ∣∣R′ \R∣∣ .

An algorithm for computing the discovery vector DR is given as Algorithm 1; it is
polynomial-time if the underlying e-merging function F , assumed symmetric, is polynomial-
time. It uses the notation

(26) Fe(I) := F (ei : i ∈ I), I ⊆ {1, . . . ,K}, I 6= ∅,

where e := (e1, . . . , eK). Without loss of generality we assume that the e-values are sorted in
the ascending order,

(27) e1 ≤ · · · ≤ eK .

Our definitions so far are essentially translations of Goeman and Solari’s (2011a, Sec-
tion 2) definitions into the language of e-values. We will explain the connection in detail in
Appendix C. As the procedure for p-values was first proposed in Genovese and Wasserman
(2004, Theorem 6.3), we refer to it as the GWGS procedure. In Appendix C we will also com-
ment on the recent result by Goeman, Hemerik and Solari (2021) about the GWGS procedure
being the only admissible one for controlling true discoveries (under a property of validity
based on p-values).

A special and important choice of F is the arithmetic average (23). Using this e-merging
function in (25), the arithmetic-mean discovery e-vector is defined as

AVR(j) := min
I⊆{1,...,K}:|R\I|<j

1

|I|
∑
i∈I

Ei, R⊆ {1, . . . ,K}, j ∈ {1, . . . , |R|}.

As we said earlier, arithmetic averaging is the only useful symmetric e-merging function
(Vovk and Wang, 2021, Proposition 3.1). It is computed by Algorithm 1 with

Fe(I) :=
1

|I|
∑
i∈I

ei, I ⊆ {1, . . . ,K}, I 6= ∅.
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Algorithm 2 Discovery e-matrix D
Input: A symmetric e-merging function F and an increasing sequence of e-values e1 ≤ · · · ≤ eK .
1: for r = 1, . . . ,K do
2: for j = 1, . . . , r do
3: Sr,j := {K − r+ 1, . . . ,K − j + 1}
4: Dr,j := Fe(Sr,j)
5: for i= 1, . . . ,K − r do
6: e := Fe(Sr,j ∪ {1, . . . , i})
7: if e <Dr,j then
8: Dr,j := e

Discovery e-matrices

Let us return to the case of a general symmetric e-merging function F , although we are
mainly interested in the arithmetic mean. Next we will discuss a less flexible method in which
we consider a family of rejection sets R that are chosen in an optimal way, in some sense. For
each r ∈ {1, . . . ,K}, the set

Rr := {K − r+ 1, . . . ,K}

is the optimal rejection set of size r (assuming (27)), meaning that DRr
e,F ≥DR

e,F for any other
set R ⊆ {1, . . . ,K} of size r. In the terminology of statistical decision theory (Wald, 1950,
Section 1.3), Rr is a complete class of rejection sets.

Let us call Dr,j :=DRr
e,F (j) the discovery e-matrix. In terms of the Fisher-type disjunction,

there are at least j true discoveries among the r hypotheses with the largest e-values unless
the outcome ω is Dr,j-strange. An algorithm for computing the discovery e-matrix D is given
as Algorithm 2.

We are particularly interested in the arithmetic-mean discovery matrix AM, i.e., the dis-
covery e-matrix

AMr,j(e1, . . . , eK) := min
I:|Rr\I|<j

1

|I|
∑
i∈I

ei.

In Appendix B we illustrate discovery e-matrices with some other choices of the e-merging
function F , which, according to Vovk and Wang (2021, Proposition 3.1), are essentially dom-
inated by the arithmetic mean.

REMARK 6.3. It is true that arithmetic averaging is the only useful symmetric e-merging
function when no assumptions are made about the dependence structure of the base e-values.
On the other hand, if the base e-values are supposed to be independent, it is clear that the
product of e-variables is always an e-variable. Therefore, when defining the e-test (24), we
have plenty of alternatives to the arithmetic mean in the role of F ; F can be the product, or a
combination of the arithmetic mean and the product. The product does not work well for prob-
lems of the type considered in this paper, since small base e-values then have disproportionate
effect. However, the combination

Eθ :=
∑
{i,j}⊆Iθ

EiEj/

(
|Iθ|
2

)
(with {i, j} ranging over the 2-element subsets of Iθ) of the product and arithmetic aver-
aging gives excellent results, much better than what we can get without the assumption of
independence. See Vovk and Wang (2020b) for details.

7. SIMULATION STUDIES

In our simulation studies we will visualize the arithmetic-mean discovery matrix in some
simple cases and compare Algorithm 2 with a method based on p-values. Our setting will be
similar to that of Vovk and Wang (2021, Section 5), where family-wise validity is studied.
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FIG 3. The arithmetic-mean discovery matrix for 10 false and 10 true null hypotheses, as described in text. The
colour map on the right gives Jeffreys’s thresholds, the boundaries between different colours in most of our plots,
on the decimal log scale. Row 10 is highlighted in blue.

The observations are generated from the Gaussian model N(µ,1). The null hypotheses are
N(0,1) and the alternatives are N(δ,1), where we take δ :=−3 throughout the section. We
generate K/2 observations from N(δ,1) (the alternative distribution) and then K/2 observa-
tions from N(0,1) (the null distribution), where K (the overall number of hypotheses) is an
even number.

In this paper, we colour-code the entries (e-values) of discovery e-matrices according to
Jeffreys’s rule of thumb discussed in Section 2. The full colour map is shown on the right of
Figure 3 with the thresholds between different colours given in terms of the decimal logarithm
of e-values. The most interesting parts of our plots of discovery e-matrices are those in yellow
and red; green and dark green parts carry little or no evidence and so are useless for us, and
dark red and black parts carry so much evidence that they are rare in a wide range of prac-
tical applications (cf. Section 8). In all our discussions below we will ignore the boundaries
between the green and dark green parts.

Figure 3 shows the arithmetic-mean discovery matrix that Algorithm 2 gives for K = 20:
we generate 10 observations from N(δ,1) and then 10 from N(0,1). The base e-values are
the likelihood ratios

(28) E(x) :=
dN(δ,1)

dN(0,1)
(x) = exp(δx− δ2/2)

(cf. (4)) of the alternative to the null density, where x∼N(µ,1) is the corresponding obser-
vation.

In terms of confidence regions, the non-black part of the discovery e-matrix is formed by
the extremely strong confidence regions in each row. For example, row 10 (highlighted in
blue) of the matrix in Figure 3 shows that the extremely strong confidence region for the
number of true discoveries among the 10 hypotheses with the largest e-values is {4, . . . ,10}.
In other words, there is decisive evidence that the number of true discoveries is at least 4.
The red/yellow/green part is formed by the very strong confidence regions. For example, the
very strong confidence region for the number of true discoveries among the 10 hypotheses
with the largest e-values is {6, . . . ,10}; there is very strong evidence that the number of true
discoveries is at least 6. And so on.

The upper left panel of Figure 4 is the counterpart of Figure 3 for a larger number of
hypotheses,K = 200: we generate 100 observations fromN(δ,1) and then 100 fromN(0,1).
We will refer to this set of observations as the simulation data.
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FIG 4. Upper left panel: the arithmetic-mean discovery matrix for 100 false and 100 true null hypotheses. Upper
middle panel: the GWGS discovery p-matrix in the same situation for Fisher’s thresholds 1% and 5% (with values
below 1% shown in red and between 1% and 5% in yellow) under arbitrary dependence. Upper right panel: as
the upper middle panel but assuming independence.
Lower left panel: the e-to-p calibrated arithmetic-mean discovery matrix in the upper left panel using Fisher’s
thresholds. Lower middle panel: the VS-transformed GWGS discovery p-matrix in the upper middle panel of
Figure 4 (under arbitrary dependence) using Jeffreys’s thresholds. Lower right panel: the VS-transformed GWGS
discovery p-matrix in the upper right panel (under independence) using Jeffreys’s thresholds.

TABLE 1
The values Dr,j of the discovery matrix shown in Figure 4 for several rows r and columns j.

r
j

11 12 27 28 29 40 41 42 43 46 47

31 95.6 87.5 14.1 10.8 7.63
32 96.5 88.5 16.0 12.7 9.63
50 103 96.0 33.2 30.6 28.2 11.2 9.94 8.73 7.52 4.04 3.11
51 103 96.0 33.4 30.9 28.5 11.6 10.4 9.21 8.01 4.61 3.69
52 103 96.0 33.6 31.1 28.7 12.0 10.8 9.61 8.43 5.10 4.19

In practice, a discovery e-matrix, such as that shown in the upper left panel of Figure 4,
can be used in different ways, for example:

• The researcher may have budget for a limited number of follow-up studies of the hy-
potheses. For example, if in the situation of that panel her budget is 50 hypotheses, she
just concentrates on row 50 (studying the 50 hypotheses Hk with the largest e-values).
For the first 11 entries in this row the e-value exceeds 100, and so she has decisive evi-
dence that there are at least 11 true discoveries among those 50 hypotheses. Similarly,

– she has very strong evidence that there are at least 27 true discoveries,
– she has strong evidence that there are at least 40 true discoveries,
– she has substantial evidence that there are at least 46 true discoveries.

For the relevant e-values, see the bold entries in the row r = 50 of Table 1. In terms of
confidence regions, we can say, e.g., that our method gives the substantial e-confidence
region {46,47, . . .}, so that 46 may be called the substantial lower e-confidence bound
on the number of true discoveries among the 50 hypotheses.
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• The researcher might have some idea of what proportion of false discoveries she is
willing to tolerate (in the spirit of choosing the false discovery rate a priori (Benjamini
and Hochberg, 1995)). For example, if she is willing to tolerate 10% of false discoveries
and willing to use Jeffreys’s standard (e-value greater than 10) of strong evidence, she
should concentrate on row 31 (i.e., study the 31 hypotheses with the largest e-values),
which is the lowest row with at most 10% of entries below 10. See the bold entries in
the rows r ∈ {31,32} of Table 1 (we have strong evidence that there are at most 3/31≈
9.7% of false discoveries in row 31 and at most 4/32 = 12.5% of false discoveries in
row 32).

• Alternatively, the researcher might have some idea of how many false discoveries she
is willing to tolerate (in the spirit of k-FWER (Romano and Wolf, 2007)). If she is
willing to tolerate at most 10 false discoveries and still willing to use Jeffreys’s standard
of strong evidence, she should concentrate on row 51, which is the lowest row with
at most 10 entries (in fact, exactly 10 entries) below 10. See the bold entries in the
rows r ∈ {51,52} of Table 1 (we have strong evidence that there are at most 10 false
discoveries in row 51 and at most 11 false discoveries in row 52).

Of course, the researcher may know her hypotheses and relations between them very well,
and after looking at the discovery e-matrix she may come up with her own rejection set R, as
discussed in Section 6. In this case she should also use Algorithm 1.

In accordance with Proposition 6.2, all discovery e-matrices in our figures satisfy three
properties of monotonicity. For example, the entries AMr,j are decreasing in j and increasing
in r. They are also monotonic along the main diagonal and the lines parallel to it: for any
c= 0,1, . . . , AMr,r−c is decreasing in r.

Comparisons

This paper concentrates on multiple hypothesis testing using e-values, but in scientific
practice p-values are more popular, despite recent criticism. In this subsection we will report
results of our simulation studies in terms of p-values and compare them to our results, as best
we can in view of the difficulties discussed in Section 3.

For comparison with methods based on p-values, we use the GWGS procedure applied to
standard procedures for combining p-values and to the same nested rejection sets (initial sub-
sets of {1, . . . ,200} assuming the p-values are given in ascending order). These procedures
admit computationally efficient shortcuts (Goeman et al., 2019, Theorem 1) and are imple-
mented in the R package hommel (Goeman, Meijer and Krebs, 2019). As the base p-values
we take P (x) := Φ(x), where Φ is, as before, the standard Gaussian distribution function;
these are the p-values found using the most powerful test given by the Neyman–Pearson
lemma. The GWGS procedure can be interpreted as producing an analogue of a discovery
e-matrix, which we call a discovery p-matrix, with e-values replaced by p-values. For details,
see Appendix C. In particular, a version of the notion of a discovery p-vector was introduced
in Goeman and Solari (2011b, Section 3).

The package hommel has an option (simes) that controls the choice of the procedure for
combining p-values, and the resulting discovery p-matrix is valid either under arbitrary de-
pendence, in which case Hommel’s (1986) procedure is used for combining p-values, or under
certain assumptions on the dependence structure for the input p-values, in which case Simes’s
(1986) procedure is used. In particular, Simes’s procedure is valid under the assumption of
independence; it is also valid under relaxations of independence such as positive dependence
(Sarkar, 2011), but not under arbitrary dependence. For brevity we will talk about p-values
that are either arbitrarily dependent or independent, but it should be remembered that the
assumption of independence may be relaxed. We never make such assumptions about base
e-values (but cf. Remark 6.3).

The upper middle panel of Figure 4 shows the discovery p-matrix found using hommel
applied to the simulation data under arbitrary dependence. The upper right panel of Figure 4
is analogous but assumes independent base p-values. Both panels use Fisher’s thresholds 1%
and 5%; the values below 1% are shown in red, between 1% and 5% in yellow, and above 5%
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TABLE 2
The Benjamini–Hochberg and Benjamini–Yekutieli procedures applied to the simulation data for FDR (false

discovery rate) 5% and 1%.

assumption 5% 1%

independence 87 61
arbitrary dependence 55 28

in green (so that red means “highly significant” and yellow means “significant but not highly
significant”). According to Jeffreys as quoted in Section 3 (p. 8), the red and yellow areas
are somewhat comparable between p-values and e-values, but we can draw some conclusions
even without such cross-comparisons.

Remember that our method does not require any assumptions about the dependence struc-
ture of the e-values. It is true that our simulated data are independent, but this information is
typically unavailable, and the performance of methods that do not depend on independence or
similar assumptions is still interesting. Comparing the upper left and upper middle panels of
Figure 4, we can see that our method produces better confidence bounds if we are willing to
use Jeffreys’s informal correspondence between e-values and p-values. The upper left panel
is even better, in this sense, than the upper right panel, which makes an assumption on the
dependence structure of the base p-values.

The three lower panels of Figure 4 are the transformed versions of the corresponding upper
panels. In the lower left panel, we transform the arithmetic-mean discovery matrix (upper left
panel) by applying the canonical e-to-p calibrator e 7→ 1/e. In the other two lower panels, we
transform the corresponding upper panels by applying the VS transformation (7). Therefore,
the lower left panel contains valid p-values, whereas the other two lower panels contain upper
bounds on e-values.

It is interesting that even after the crude step of e-to-p calibration (remember the woeful
round-trip efficiency illustrated by (9)), the lower left panel of Figure 4 still looks slightly
better than the upper middle panel. In this comparison there is no uncertainty in the choice
of the e-to-p calibrator, since (8) is the only reasonable one (namely, it dominates any other
e-to-p calibrator). And even the optimistic VS transformation (the lower middle panel) looks
much worse than the arithmetic-mean discovery matrix in the upper left panel. We can see,
even without using Jeffreys’s informal correspondence, that the method based on e-values
produces better results in this case, despite the crude calibration steps.

Not surprisingly, assuming independence makes direct treatment of p-values more effi-
cient: compare the upper right panel and the lower left panel. What is more surprising is that,
even assuming independence and using the optimistic VS transformation, the lower right
panel still look worse than the upper left panel.

Table 2 gives the numbers of null hypotheses rejected by the Benjamini–Hochberg proce-
dure (Benjamini and Hochberg, 1995) and its version for arbitrary dependence (Benjamini
and Yekutieli, 2001). (The relationship between the Benjamini–Yekutieli procedure and the
hommel package without the simes option is the same as that between the Benjamini–
Hochberg procedure and the hommel package with the simes option; this is made explicit
in Goeman et al. (2019, Section 5).) Here the results are more difficult to interpret, since the
kind of guarantees provided by those procedures is so different from the guarantees provided
by the GWGS methods. Roughly, we get comparable results between the row “arbitrary de-
pendence” in Table 2 and the confidence bounds for the number of true discoveries in, say,
row 50 of the discovery matrix in the upper left of Figure 4: as discussed earlier (cf. Ta-
ble 1), the strong and substantial confidence bounds are 40 and 46, respectively. (Remember
that, following Jeffreys, “strong” refers to the threshold of 10 for e-values and regarded as
roughly corresponding to “very significant”, and “substantial” refers to the threshold of 101/2

for e-values and regarded as roughly corresponding to “significant”.)
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8. EMPIRICAL STUDIES

In this section we will demonstrate how the methods of this paper can, in principle, be used
in practice. It is important that we will make no assumptions of independence.

We will use the classical dataset first described in Hedenfalk et al. (2001) and then carefully
studied in Storey and Tibshirani (2003). Essentially, we will adapt Storey and Tibshirani’s
analysis to using e-values in place of p-values (see the end of the section for a discussion of
differences). In our experiments we use the version of the dataset made available as part of
the R package qvalue (Storey et al., 2019).

The main content of the dataset is the expression levels of 3226 genes in 15 samples of
tissues. Seven samples are coming from carriers of mutations in the BRCA1 gene, and the
remaining eight from carriers of mutations in the BRCA2 gene. We will say that each sample
is labelled with its BRCA status: seven are labelled BRCA1, and eight are labelled BRCA2.
The core of the dataset is the 3226× 15 matrix of gene expressions in the samples; all entries
are positive numbers. Following Storey and Tibshirani (2003, Appendix, Remark C), we re-
move all rows containing at least one entry exceeding 20, which leaves us with a 3170× 15
data matrix. Each row of the data matrix corresponds to a gene and each column to a sample,
and the entry in row k and column j is the expression level of gene k in sample j. For each
gene we are interested in the scientific hypothesis that the gene expression does not depend
on the BRCA status of the sample.

Storey and Tibshirani’s version of the dataset also contains some further information, such
as the p-value for each gene. For further information about this dataset, which we will refer to
as the BRCA dataset, see, e.g., Storey, Dai and Leek (2007, Section 5) and Guindani, Müller
and Zhang (2009, 5.2).

For this dataset methods ensuring family-wise validity do not work well. For example, the
ten smallest p-values in Storey and Tibshirani’s list multiplied by the number of genes 3170
are

(29) 0, 0.040, 0.050, 0.060, 0.060, 0.100, 0.140, 0.160, 0.240, 0.240

and so the Bonferroni correction leads to only three statistically significant p-values. More-
over, one of the p-values is exactly zero, and so cannot be a valid p-value (for details, see
p. 22). Hedenfalk et al. conclude that 9–11 genes are differentially expressed. Storey and Tib-
shirani’s informal analysis suggests that many more, at least 33%, of the examined genes are
differentially expressed. However, their informal analysis assumes what they call “weak in-
dependence”: they rely on the law of large numbers when inspecting histograms of p-values,
assuming that the probabilities of the p-values lying in various ranges will manifest them-
selves as empirical frequencies seen in the histograms. Their formal analysis is asymptotic
and also assumes weak independence: see their Appendix, Remark D.

We formalize the scientific theory of interest as the following statistical hypothesis about
each gene k: given the multiset of expression levels in row k of the data matrix, each ordering
of the row has the same probability. In our current context, a nonconformity measure is a
measurable function of two multisets; we will use it by applying, for a given gene, to the
multiset (of size 7) of the expression levels for the samples labelled BRCA1 and the multiset
(of size 8) of the expression levels for the samples labelled BRCA2; the resulting value will
be called the nonconformity score. For computing base e-values, we use the formula

(30) ek :=
Tk

1
B+1

(∑B
b=1 T

0b
k + Tk

) , k = 1, . . . ,3170,

where Tk is the nonconformity score computed from the kth row of the data matrix with the
true labels (BRCA1 or BRCA2) for each sample, T 0b

k is the nonconformity score computed
from the same row with randomly permuted labels, and B is the number of permutations. In
our experiments, the case 0/0 of the right-hand side of (30) never occurs. We will call (30) the
Monte Carlo e-value. We are justified in calling it an e-value since, under the null hypothesis,
the expected value of the right-hand side of (30) is 1 if we set 0/0 := 1. (Moreover, the
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FIG 5. Left panel: the top-left 200× 200 corner of the arithmetic-mean discovery matrix for the BRCA dataset for
B := 10000, using Jeffreys’s thresholds. Right panel: its version (based on (35)) that is only approximately valid.

conditional expectation of the right-hand side of (30) is 1 given the multiset of nonconformity
scores {T 01

k , . . . , T 0B
k , Tk}, the expectation being over all choices of the position of the true

nonconformity score in the multiset.)
Our nonconformity measure will be defined in terms of the t-statistic. Let xkj be the base

two logarithm of the value in row k and column j of the data matrix (although the base does
not matter in our empirical studies). The two-sample t-statistic for the kth gene is

(31) tk :=
x̄k2 − x̄k1√

s2
k1/n1 + s2

k2/n2

,

where n1 = 7 is the number of BRCA1 columns, n2 = 8 is the number of BRCA2 columns,
and

x̄k1 :=
1

n1

∑
j∈BRCA1

xkj , s2
k1 :=

1

n1 − 1

∑
j∈BRCA1

(xkj − x̄k1)2

are the sample mean and variance for the BRCA1 entries, with the analogous expressions for
BRCA2. The variances of the two groups (BRCA1 and BRCA2) are not assumed to be equal
(following Storey and Tibshirani (2003)), but using equal-variance two-sample t-statistics
would lead to similar results.

We define the nonconformity score as Tk := f(tk) for some function f of the t-statistic
tk (see (31)). A natural nonconformity score is |tk|, but we generalize it to |tk|d for some
d > 0. This choice of f is motivated by the Bayesian two-sample t-test widely discussed
in recent literature starting from Gönen et al. (2005) and briefly reviewed in Gönen et al.
(2019, Section 3). A standard expression for the Bayes factor produced by such a test via the
t-statistic t is

(32) f(t) := c
(
1 + at2

)d/2
for positive constants a, c, and d involving the number of degrees of freedom and effective
sample size; see, e.g., Wang and Liu (2016, (14)) and Rouder et al. (2009, (1)); the form
(32) goes back to Jeffreys (Ly, Verhagen and Wagenmakers, 2016, (12)). However, different
constants are used in different papers. We set, without loss of generality, c := 1, since c cancels
out when using (30). We further simplify (32) by ignoring the “1 + ”; this makes a and any
constant factors in the definition of the t-statistic t (there is a non-trivial factor under the
assumption of equal variances for the two groups) irrelevant, as they also cancel out when
applying (30). Of course, this step does not affect the validity of our methods.

The left panel of Figure 5 gives a key part of the arithmetic-mean discovery matrix for
the BRCA dataset with f(t) := |t|d for d := 10, with B := 10000, and with base Monte
Carlo e-values (30). We can see that there is strong evidence that the number of differentially
expressed genes is at least as large as Hedenfalk at al.’s number. If we settle for substantial
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TABLE 3
Summaries of the last row of the arithmetic-mean discovery matrix for different values of d. Column “strong”

contains the number of entries that are greater than 10 (all of them are below 103/2, and so they provide strong
evidence, i.e., red in our pictures). Column “substantial” contains the number of entries that are greater than

101/2 (providing at least substantial evidence).

d strong at least substantial

4 0 62
6 0 82
8 4 70

10 7 56
12 8 46
20 9 29
50 8 17

100 7 14

evidence, the number is much larger. Arguably, it is not as large as in Storey and Tibshirani’s
study, but we are not using any exchangeability or independence assumptions.

Dependence on the initial state of the random numbers generator (always set to 1 in our
experiments) is fairly significant but does not affect our conclusions. Dependence on the value
of d is also significant; the values below 10 tend to lead to higher numbers of true discoveries
for Jeffrey’s standard of substantial evidence, and the values above 10 to higher numbers
of true discoveries for strong evidence (up to a limit; see Table 3). The literature on the
Bayesian two-sample t-test quoted above seems to suggest that d should have the same order
of magnitude as the number of degrees of freedom.

Comparisons

We start by comparing our methodology with that of Storey and Tibshirani (2003), which
was our main source of data and ideas in this section. The main differences are:

• Storey and Tibshirani use p-values whereas we use e-values.
• Storey and Tibshirani implicitly assume that the genes are exchangeable under the null

hypothesis.
• Moreover, Storey and Tibshirani assume that the p-values are weakly independent.

Strictly speaking, Storey and Tibshirani’s method does not produce valid p-values, even
under their null hypothesis implicitly involving gene exchangeability. This can be seen from
their formula for computing the p-values,

(33) pk :=

∑B
b=1

∣∣∣{j :
∣∣∣t0bj ∣∣∣≥ |tk| , j = 1, . . . ,3170}

∣∣∣
3170 ·B

(the last displayed equation in their Appendix, Remark C), where tk is the t-statistic for gene
k and t0bj is the t-statistic for gene j with the labels BRCA1 and BRCA2 randomly permuted
(for the bth random permutation, b= 1, . . . ,B and B := 100). The numerator of (33) can well
be zero (and it is in one case: see (29)).

To turn the expression (33) into a valid p-value (under the null hypothesis of gene ex-
changeability and label uninformativeness), it suffices to add 1 to the numerator and denom-
inator of (33); cf. Lehmann and Romano (2005, p. 636), Hemerik and Goeman (2018), and
the method of conformal prediction (Vovk, Gammerman and Shafer, 2005): namely,

(34)

∑B
b=1

∣∣∣{j :
∣∣∣t0bj ∣∣∣≥ |tk| , j = 1, . . . ,3170}

∣∣∣+ 1

3170 ·B + 1

is a valid p-value. The intuition behind the expression (34) is that, to see how well tk conforms
to the multiset of size 3170 ·B consisting of t0bj , we add tk to the multiset before computing
the rank p-value. Since we are comparing the t-statistic for gene k with t-statistics for other
genes in (33) and (34), we are implicitly assuming gene exchangeability.
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FIG 6. Left panel: the top-left 200× 200 corner of the arithmetic-mean discovery matrix for the BRCA dataset for
B := 100. Right panel: its simplified version whose lack of validity is visible.

TABLE 4
The Benjamini–Hochberg and Benjamini–Yekutieli procedures applied to the BRCA dataset (the three entries of

“1” are unreliable as they are based on a zero p-value).

assumption 5% 1%

independence 88 1
arbitrary dependence 1 1

Under gene exchangeability, for computing base e-values, we can use the formula

ek :=
Tk

1
3170·B+1

(∑B
b=1

∑3170
j=1 T

0b
j + Tk

) ,
in analogy with (34). This gives an e-variable under the assumption that the labels are unin-
formative and the genes are exchangeable.

To avoid the assumption of gene exchangeability, we use the expression (30) thus avoiding
comparing the statistic pertaining to gene k to statistics pertaining to other genes. Our value
of B, B = 10000, is much larger than Storey and Tibshirani’s B = 100.

We can also introduce a simplified version of (30):

(35) ek :=
Tk

1
B

∑B
b=1 T

0b
k

,

in analogy with (33). This version may be more intuitive, but it is only approximately valid
for large B and ceases to be valid for small B. The difference shows, e.g., in the fact that
ek defined via (30) is bounded above by B + 1 whereas ek defined via (35) is potentially
unbounded; such a difference can be significant if B is small. When B = 10000, there is not
much difference between using (30) and using (35): see the right panel of Figure 5, which
uses (35).

A useful role of the version (35) may be to check whether the value of B in (30) is suf-
ficiently large. In the case of Figure 5, the approximation is good, which suggests that B is
sufficiently large. However, in the case of Figure 6, where B = 100 (as in Storey and Tib-
shirani (2003)), the right-hand panel, which uses (35), looks far too good to be valid. On the
other hand, the left-hand panel, which uses (30), is valid but extremely conservative.

Results given by hommel are either poor (when independence is assumed) or extremely
poor (under arbitrary dependence). The former are given in Figure 7 and the latter are given
in Appendix C (Figure 11).

The Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995) rejects 88 null hy-
potheses at FDR q := 0.05 and 1 null hypothesis at FDR q := 0.01 for Storey and Tibshirani’s
list of p-values (of course, we will always reject at least 1 null hypothesis because of the zero
p-value on their list). However, this procedure assumes independence. Under arbitrary depen-
dence, we can control FDR by replacing q by q/

∑K
k=1 k

−1 (Benjamini and Yekutieli, 2001,
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FIG 7. Left panel: the top-left corner of the GWGS discovery p-matrix for the BRCA dataset for Fisher’s thresholds
1% and 5%, assuming independence. Right panel: analogous picture for Jeffreys’s thresholds applied to the VS
bounds for the entries of this matrix.

Algorithm 3 Arithmetic-mean discovery matrix AM
Input: An increasing sequence of e-values e1 ≤ · · · ≤ eK .
1: s1 := e1
2: for k = 2, . . . ,K do
3: sk := sk−1 + ek

4: for r = 1, . . . ,K do
5: σr,r := eK−r+1
6: for j = r− 1, . . . ,1 do
7: σr,j := σr,j+1 + eK−j+1

8: for r = 1, . . . ,K do
9: for j = 1, . . . , r do

10: AMr,j := σr,j/(r− j + 1)
11: for i= 1, . . . ,K − r do
12: e := (σr,j + si)/(r− j + 1+ i)
13: if e <AMr,j then
14: AMr,j := e

Theorem 1.3). This leads to rejecting 1 null hypothesis even at FDR 0.05, which is both poor
and unwarranted. These results are summarized in Table 4.

9. EFFICIENT IMPLEMENTATION OF ALGORITHM 2 FOR THE ARITHMETIC MEAN

Algorithm 2 is a generic algorithm that works for any symmetric e-merging function F . In
general, computing one row of the discovery e-matrix takes time O(K3) if we assume that
the base e-merging function F can be computed in time linear in the number of arguments.
This assumption is correct for the arithmetic mean and, provided the arguments are sorted,
the Simes e-merging function (see Appendix B). The overall computational complexity for
the full discovery e-matrix is very high, O(K4).

A more efficient implementation of Algorithm 2 for the arithmetic mean is given as Algo-
rithm 3, which uses arrays sk (the sum of the first k base e-values) and σr,j (the sum of the
base e-values with indices in Sr,j in the notation of Algorithm 2). There is a preprocessing
stage (lines 1–3) taking time O(K) and another preprocessing stage (lines 4–7) taking time
O(K2); the loop in lines 6–7 is executed in the decreasing order of j, and in particular it is
not executed when r = 1 (this also applies to two similar loops in Algorithm 4). After that
computing each row of the arithmetic mean discovery matrix takes time O(K2). The overall
time is O(K3).

An even more efficient implementation of Algorithm 2 is given as Algorithm 4. This al-
gorithm computes one row of the arithmetic mean discovery matrix in time O(K), which
gives the overall time O(K2). Both O(K) and O(K2) are clearly optimal in this context. The
ability to compute efficiently individual rows is useful when the discovery matrix is big; e.g.,
it can be too big to fit in computer memory.
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Algorithm 4 One row of the arithmetic-mean discovery matrix in time O(K)

Input: Increasing sequence of e-values e1 ≤ · · · ≤ eK and row number r ∈ {1, . . . ,K} of the discovery matrix.
1: s0 := 0
2: for k = 1, . . . ,K − r do
3: sk := sk−1 + ek

4: σr := eK−r+1
5: for j = r− 1, . . . ,1 do
6: σj := σj+1 + eK−j+1

7: k :=K − r
8: for j = 1, . . . , r do
9: slope :=

sk+σj
k+r−j+1

10: for i= k− 1, . . . ,0 do
11: new_slope :=

si+σj
i+r−j+1

12: if new_slope> slope then break
13: k := i
14: slope := new_slope

15: AMr,j := slope

3 2 1 0 1 2 3 4
3
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1

2

P0
P1
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P4

Qj

Qj + 1

FIG 8. Geometry behind Algorithm 4.

We are using essentially the same array s as in Algorithm 3 (now we extend it by adding
s0 := 0), and the array σ in Algorithm 4 is one row of the array σ in Algorithm 3;

sk = e1 + · · ·+ ek, k = 0, . . . ,K − r,

σj := eK−r+1 + · · ·+ eK−j+1, j = 1, . . . , r.

Of course, there is no need to recompute the array s for each row r of the discovery matrix.
The geometry behind Algorithm 4 is shown in Figure 8. The coordinates of each of the

points Pk, k = 0, . . . ,K − r, are (k, sk), and the coordinates of the point Qj , where j ∈
{1, . . . , r}, are −(r − j + 1, σj). Since the sequence e1, . . . , eK−r is increasing, connecting
the points P0, P1, . . . in this order (see the red line in Figure 8) gives us the graph of a convex
function.

The command break in line 12 means leaving the loop, as in Python or R; in this context,
it is equivalent to “go to line 15”. The variable k in line 13 is the index of the “current vertex”
Pk; we start from the rightmost Pk in line 7 and then keep moving left. Figure 8 illustrates
the execution of Algorithm 4 when k = 3, so that the current vertex is P3.

For each j = 1, . . . , r, the iteration of the loop in lines 9–15 of Algorithm 4 computes the
slope of the straight line (shown in blue) passing through Qj and touching the red line from
below. The validity of the algorithm follows from the point Qj+1 lying at or above the blue
line, for each j = 1, . . . , r− 1. Let us check the last statement. If k <K − r, the slope of the
blue line is at most ek+1 ≤ eK−r . On the other hand, the slope of the line going from Qj to
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Qj+1 is eK−j+1 ≥ eK−r . It remains to consider the case k =K − r. In this case, it suffices
to notice that the slope eK−j+1 of the line going from Qj to Qj+1 is greater than or equal to
the average of e1, . . . , eK−j+1, which is the slope of the line going from Qj to PK−r .

If we are only interested in the positions where discovery vectors or matrices exceed a
given threshold, we can also use algorithms described in Tian et al. (2021).

10. CONCLUSION

The main technical tool of this paper, e-values, has important advantages over p-values.
The advantage that we have found most useful here is the easiness of merging e-values: the
arithmetic average of e-values is an e-value, and this is the only useful symmetric method of
merging e-values. Other advantages were mentioned in Section 1, such as the open nature of
e-values allowing their sequential updating.

We have described methods for multiple hypothesis testing using e-values and demon-
strated their use in simulation and empirical studies. We believe that these methods, being
simpler and more powerful, are preferred to methods using p-values unless the final result
must be stated in terms of p-values. Besides, our methods do not depend on the base e-values
being independent, and under arbitrary dependence, they are sometimes competitive with re-
sults based on p-values even when the final result is to be stated in terms of p-values.

One of the obvious directions of further research is to extend our methods to non-
symmetric problems of multiple hypothesis testing (cf. Genovese, Roeder and Wasserman
(2006)), in which different e-values may be assigned different weights. Our procedure for
multiple hypothesis testing is generic and does not have to rely on unweighted arithmetic
averaging.
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APPENDIX A: MORE E-VARIABLES FOR TESTING N(0,1)

Embedding the null hypothesis N(0,1) into the family N(µ,1), as in the right panel of
Figure 2, is not the only option, and Figure 9 gives results for the family N(0, σ2), σ > 0
being the standard deviation. The figure shows the likelihood ratios dN(0, σ2)/dN(0,1) as
e-variables for a range of σ, and it shows P1(x) := χ2(x2) and P2(x) := 1 − χ2(x2) as p-
variables, where χ2 is the distribution function of χ2 with 1 degree of freedom (with P1

rejecting σ that are too small and P2 rejecting σ that are too large).
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FIG 9. Some p-values and e-values for testing N(0,1) embedded into the family N(0, σ2). This complements the
right panel of Figure 2.
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To get a non-trivial two-sided confidence interval for σ, we need to merge the two p-
variables (by, say, using the Bonferroni merging function B(P1, P2) := 2 min(P1, P2)) or
merge two of the e-variables, one for σ > 1 and the other for σ < 1 (which can be done more
efficiently, simply by averaging them).

APPENDIX B: USING OTHER E-MERGING FUNCTIONS

In this appendix, we briefly explore discovery e-matrices using e-merging functions F
other than the arithmetic mean. The Bonferroni e-merging function is the following lower
bound for (23):

(36) B(e1, . . . , en) :=
1

n
max

i∈{1,...,n}
ei.

A better lower bound for (23) is given by the Simes e-merging function

(37) S(e1, . . . , en) := max
i∈{1,...,n}

ie[i]

n
,

where e[i] is the ith largest e-value among ei, i ∈ {1, . . . , n} (Vovk and Wang, 2021, end of
Section 6): e[1], . . . , e[n] is the permutation of e1, . . . , en satisfying e[1] ≥ · · · ≥ e[n].

Our discussion of e-values and p-values in Section 7 suggests that the function t 7→ 1/t
transforms e-values into p-values (cf. (8)) and transforms p-values into approximate e-values
(cf. (6) for a small κ ∈ (0,1)); of course, the word “approximate” is used here in a crude
sense (in the spirit of the algorithmic theory of randomness). Under this correspondence, the
Bonferroni e-merging function (36) turns into the Bonferroni merging function for p-values,
and the Simes e-merging function (37) turns into the Simes merging function for p-values.
The dominating arithmetic-mean e-merging function (23) corresponds to using the harmonic
mean for merging p-values, and indeed the harmonic mean has been discussed recently in
this role (Wilson, 2019), sometimes with a similar justification based on the VS bound (Held,
2019). However, the harmonic mean is not a valid function for merging p-values (Goeman,
Rosenblatt and Nichols, 2019) unless multiplied by, say, 2.5 lnK for K ≥ 3 (Vovk and Wang,
2020a).

With Fe(I) of (26) specialized to the Bonferroni lower bound

Fe(I) =Be(I) :=
1

|I|
max
i∈I

ei, I ⊆ {1, . . . ,K}, I 6= ∅,

Algorithms 1 and 2 have the same interpretation as before (although the results are not as good
since they are based on more conservative e-values). However, they simplify, especially Algo-
rithm 2, whose Bonferroni implementation is given as Algorithm 5. In line 1 of Algorithm 5
we initialize the adjusted Bonferroni e-value, in line 3 we compute the raw Bonferroni e-
value, and in line 4 we adjust it. The algorithm produces a matrix BM with constant columns
and takes time O(K) per column; this time is spent simply by writing one value repeatedly.
The resulting computational complexity O(K2) is clearly the optimal one.

Whereas Bonferroni-type procedures often perform well when the goal is family-wise va-
lidity (see, e.g., Vovk and Wang (2021, Figures 3 and 4)), their performance tends to de-
teriorate for less demanding notions of validity. (In terms of p-values, this phenomenon is

Algorithm 5 Bonferroni discovery e-matrix BM
Input: An increasing sequence of e-values e1 ≤ · · · ≤ eK .
1: a :=∞
2: for j = 1, . . . ,K do
3: B := eK−j+1/(K − j + 1)
4: if a >B then a :=B

5: for r = j, . . . ,K do
6: BMr,j := a
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FIG 10. Left panel: the Bonferroni discovery e-matrix (given by Algorithm 5) in the situation of Figure 4, using
Jeffreys’s thresholds. Right panel: the corresponding Simes discovery e-matrix.

discussed in, e.g., Goeman and Solari (2011b, Section 1).) Comparing the left panel of Fig-
ure 10 with the upper left panel of Figure 4 we can see that the e-Bonferroni method is much
worse than arithmetic averaging when the goal is to control the number of false discoveries.

The poor performance of the e-Bonferroni method is clear already from the upper left
panel of Figure 4: the areas of different colours are far from been vertical at the top, where
they curve left. It is clear that every discovery e-matrix that is dominated by this one and
has vertical boundaries between different colours (such as e-Bonferroni) is going to be much
worse.

The right panel of Figure 10 shows the Simes e-matrix, based on (37), in the situation of
Figure 4. It is intermediate between AM and Bonferroni and, remarkably, it looks better than
the GWGS discovery p-matrix transformed by applying the VS bound to its elements (the
lower right panel of Figure 4).

REMARK B.1. We can quantify the quality of the lower bounds (36) and (37) of the
arithmetic mean F by the inequalities

B(e1, . . . , en)≤ S(e1, . . . , en)≤ F (e1, . . . , en),

1≤ F (e1, . . . , en)

S(e1, . . . , en)
≤

n∑
k=1

1

k
≤ lnn+ 1,

1≤ F (e1, . . . , en)

B(e1, . . . , en)
≤ n, 1≤ S(e1, . . . , en)

B(e1, . . . , en)
≤ n,

all of which are tight (achievable as equality for any n), apart from ≤ lnn + 1 (which is
tight only for n = 1). Since n := |I| ≤ K in (25), this gives bounds for the ratios of the
corresponding elements of the discovery e-matrices built on top of B, S, and F .

APPENDIX C: COMPARISON WITH THE GWGS PROCEDURE

First we discuss the GWGS multiple testing procedure in the form described in Goeman
and Solari (2011a, Section 2) and in terms of our definitions. Let F : ∪∞n=1[0,1]n→ [0,1] be
a p-merging function, i.e., a monotonic function transforming p-variables into a p-variable:
whenever P1, . . . , Pn are p-variables for some n ∈ {1,2, . . .}, F (P1, . . . , Pn) is a p-variable.
Suppose that F is symmetric. With such an F we can associate the following analogue of
(25) in terms of p-values:

(38) DR
p,F (j) := max

I:|R\I|<j
F (pi, i ∈ I)≥ CgRp ({j, j + 1, . . .} | ω),

where the p-test P is defined by Pθ := F (Pk : k ∈ Iθ) (analogously to (24)); we leave the
dependence on p1, . . . , pK implicit, following Goeman and Solari and similarly to the case of
e-values.
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Goeman and Solari prefer the inverse to the function (38), which they denote fα(R), sup-
pressing the dependence on p1, . . . , pK ; we consider it as function of α ∈ [0,1], which is
interpreted as significance level. We will see that this function satisfies

(39) fα(R)≥ j⇐⇒DR
p,F (j)≤ α

(and this equivalence can serve as definition of f ). Therefore, it gives us the lower p-
confidence bound on the number of true discoveries at significance level α.

For the reader familiar with Goeman and Solari (2011a), we will check that their definition
indeed satisfies (39). They first define their bound

tα(R) := max{|I| | I ⊆R,I /∈ X}

on the number of false discoveries, where

X := {I | ∀J ⊇ I : J ∈ U}

are the subsets of {1, . . . ,K} rejected by the closed testing procedure, and

U := {I | F (pi, i ∈ I)≤ α}

are the subsets of {1, . . . ,K} rejected by F ; in general, I and J will run over the subsets of
{1, . . . ,K}. Then they define their bound on the number of true discoveries as

(40) fα(R) := |R| − tα(R).

The equivalence (39) can be checked as follows:

fα(R)≥ j⇐⇒ tα(R)≤ |R| − j

⇐⇒max{|I| | I ⊆R,I /∈ X} ≤ |R| − j

⇐⇒ (∀I ⊆R : I /∈ X ⇒ |I| ≤ |R| − j)

⇐⇒ (∀I ⊆R : |I|> |R| − j⇒ I ∈ X )

⇐⇒ (∀I ⊆R : |I|> |R| − j⇒ (∀J ⊇ I : J ∈ U))

⇐⇒ (∀J : |J ∩R|> |R| − j⇒ J ∈ U)

⇐⇒ (∀J : |R \ J |< j⇒ J ∈ U)

⇐⇒ max
J :|R\J |<j

F (pi, i ∈ J)≤ α⇐⇒DR
p,F (j)≤ α.

In Section 7 we mentioned that Goeman and Solari (2011b, Section 3) introduced a ver-
sion of the notion of a discovery p-vector. Namely they introduced the confidence distribution
whose quantile function is α 7→ tα(R). We can interpret (39) as DR

p,F being the distribution
function whose quantile function is α 7→ fα(R). Since f and t are so closely connected (see
(40)), the discovery p-vector is closely connected to Goeman and Solari’s confidence distri-
bution function.

A property of completeness for the GWGS procedure

Goeman, Hemerik and Solari (2021) have shown that the GWGS procedure is the only
admissible one for controlling true discoveries. Doesn’t this mean that the e-version of this
procedure, Algorithm 1, is inadmissible?

Similarly to (25), the interpretation of the property of validity (38) in terms of a Fisher-
type disjunction is: the rejection set R contains at least j true discoveries unless the outcome
ω is DR

p,F (j)-strange. We can indeed obtain a property of validity of the same kind (i.e.,
in terms of p-values) for the procedure of Algorithm 1. Our interpretation of (25) was that
the rejection set R contains at least j true discoveries unless ω has an e-value of DR

e,F (j)
or more. Applying the canonical e-to-p calibrator (8), we can see that R contains at least j
true discoveries unless ω has a p-value of 1/DR

e,F (j) or less. We have the same property of
validity, but with 1/DR

e,F (j) in place of DR
p,F (j). By Goeman et al.’s result, the procedure
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FIG 11. Left panel: the top-left corner of the GWGS discovery p-matrix for the BRCA dataset for Fisher’s thresh-
olds 1% and 5%, under arbitrary dependence. Right panel: analogous picture with each entry replaced by the
corresponding VS bound and using Jeffreys’s thresholds.

with 1/DR
e,F (j) is either a GWGS procedure or inadmissible. Since the operation of e-to-p

calibration is so crude, there is no doubt that this procedure is inadmissible in non-degenerate
cases. The source its inadmissibility is the inefficiency of converting e-values into p-values,
and it can be shown that Algorithm 1 itself is admissible when F is arithmetic averaging.

More results for the hommel package

In conclusion, we give one more figure demonstrating the work of the hommel package.
Figure 11 shows results (very poor) for the BRCA dataset without assuming independence. In
particular, the right panel is much worse than the left panel of Figure 5, which also does not
assume independence.

APPENDIX D: GENERALIZED BAYES AND BOOSTING A WEAK SIGNAL

When defining the base e-values for use in our simulation studies we just used the like-
lihood ratio E(x) defined by (28). This is the simplest version of a Bayes factor. It usually
works very well, but in some cases can be improved. Later in this appendix we will see an
example where a weak signal needs to be boosted, but we start from developing tools that will
allow us to do so.

Let us choose a constant η > 0 (the learning rate) and refer to

(41) Eη(x) :=
1

c
E(x)η =

1

c
exp(ηδx− ηδ2/2)

as the generalized Bayes factor (see, e.g., Grünwald and van Ommen (2017, 2.4) and refer-
ences therein). Here c > 0 is the normalizing constant ensuring

∫
Eη dN(0,1) = 1; a simple

calculation gives

c= exp
(
η(η− 1)δ2/2

)
.

Plugging this into (41) we obtain

Eη(x) = exp(ηδx− η2δ2/2).

This gives a useful interpretation of the generalized Bayes factor: it is still the likelihood ratio,
but we replace the true alternative N(δ,1) by a false one, N(ηδ,1). For η > 1 we are boosting
the difference between the null and alternative hypotheses.

One situation in which the likelihood ratio (28) does not work well is where we have a large
number of false null hypotheses, but the true data-generating distributions are fairly close to
the null hypotheses (as it were, we have a weak signal). Figures 12–13 illustrate the case of
10,000 null hypotheses N(0,1) of which 1000 are false, the true alternatives being N(−2,1)
(which makes the signal much weaker than in Section 7). In the left panel of Figure 12 we
use the Bayes factor (28), whereas in its right panel we use the generalized Bayes factor (41)
for η = 2. Using the generalized Bayes factor greatly improves the discovery e-matrix. The
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FIG 12. Left panel: the top-left 200× 200 corner of the arithmetic-mean discovery matrix for the simulation data
with 10,000 observations, 10% of false hypotheses, and weak signal, using Bayes factors as base e-values, as
described in text. Right panel: using generalized Bayes factors with learning rate η = 2. Both panels use Jeffreys’s
thresholds.
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FIG 13. Left panel: the top-left 200× 200 corner of the GWGS discovery p-matrix for the simulation data with
10,000 observations, 10% of false hypotheses, and weak signal, under general dependence. Right panel: assuming
independence. The colour code is based on Fisher’s thresholds.

TABLE 5
The Benjamini–Hochberg and Benjamini–Yekutieli procedures applied to the simulation data with 10,000

observations, 10% of false hypotheses, and weak signal for FDR 5% and 1%.

assumption 5% 1%

independence 84 18
arbitrary dependence 10 0

results for the GWGS procedure are given in Figure 13; they look poor, particularly so for
arbitrary dependence.

Table 5 gives the numbers of rejections for the Benjamini–Hochberg and Benjamini–
Yekutieli procedures. In view of Figure 12 (right panel), the results for arbitrary dependence
are poor.

APPENDIX E: EMPIRICAL STUDY: GROUND TRUTH

In Section 8 we discussed a pioneering biomedical study whose results were published
a long time ago (Hedenfalk et al., 2001). To evaluate the performance of various statistical
techniques and their assumptions, it is natural to analyze the developments in this area of
biomedicine since 2001.

The main goal of Hedenfalk et al. (2001) was to test the hypothesis that different genes are
expressed by hereditary malignant breast tumours that are due to mutations in the BRCA1 and
BRCA2 genes and to identify differently expressed genes. A recent review (Wiggins, Walker
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and Pearson, 2020, Sections 2 and 5) compares results of nine studies, starting from Hedenfalk
et al. (2001), pursuing this goal and mostly using different biological samples (therefore,
not including Storey and Tibshirani (2003)). The overlap between the lists of differentially
expressed genes produced by different studies is poor. In particular, only one gene has been
identified as associated with BRCA1 by more than two studies. This gene, TOB1, was among
the genes identified in Hedenfalk et al. (2001, Figure 2A). In Storey and Tibshirani’s list of
p-values used in Figure 7 the TOB1 gene has rank 77; in our list of e-values used in Figure 5
TOB1 has a slightly better rank of 51.

One reason (Wiggins, Walker and Pearson, 2020, Section 2) for the poor overlap between
different studies is the genuine difficulty of the problem of differentiating mutations in the
two BRCA genes while controlling for potential confounders, first of all the estrogen- and
progesterone-receptor status and the subtype, which are known to affect gene expression
greatly. For the dataset used in this paper, differentiation between mutations in the two genes
is facilitated, e.g., by all BRCA1 samples being negative for both estrogen and progesterone
receptors and majority of the BRCA2 samples being positive for both (Hedenfalk et al., 2001,
Table 1). Other studies reported in Wiggins, Walker and Pearson (2020) tried to control for
these confounders.

We can draw only limited conclusions from these follow-up studies. There is often a big
difference between the statistical null hypothesis and the scientific hypothesis of interest.
Whereas there are genuine significant differences between the BRCA1 and BRCA2 samples
in the dataset, the differences are not necessarily due to their different BRCA status. A possi-
ble lesson is that in our assumptions we should err on the side of caution avoiding assuming
independence or weak independence, which lead us to expect very large numbers of discov-
eries.
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