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Abstract
We propose Choquet regularizers to measure and manage the level of exploration for reinforce-

ment learning (RL), and reformulate the continuous-time entropy-regularized RL problem of Wang

et al. (2020a) in which we replace the differential entropy used for regularization with a Choquet

regularizer. We derive the Hamilton–Jacobi–Bellman equation of the problem, and solve it ex-

plicitly in the linear–quadratic (LQ) case via maximizing statically a mean–variance constrained

Choquet regularizer. Under the LQ setting, we derive explicit optimal distributions for several spe-

cific Choquet regularizers, and conversely identify the Choquet regularizers that generate a number

of broadly used exploratory samplers such as ε-greedy, exponential, uniform and Gaussian.

Keywords: Reinforcement learning, Choquet integrals, continuous time, exploration, regularizers,

quantile, HJB equations, linear–quadratic control.

1 Introduction

Reinforcement learning (RL) is one of the most active and fast developing subareas in machine

learning. The foundation of RL is “trial and error” – to strategically explore different action plans

in order to find the best plan as efficiently and economically as possible. A key question to this

inherent exploratory approach for RL is to seek a proper tradeoff between exploration and exploit-

ation, for which one needs to first quantify the level of exploration. Because exploration is typically

captured by randomization in the RL study, entropy has been employed to measure the magnitude

of the randomness and hence that of the exploration – a uniform distribution representing a com-

pletely blind search has the maximum entropy while a Dirac mass signifying no exploration at all

has the minimum entropy. Discrete-time entropy-regularized (or “softmax”) RL formulation has

been proposed which introduces a weighted entropy value of the exploration as a regularization term
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into the objective function (Haarnoja et al. (2018), Nachum et al. (2017) and Ziebart et al. (2008)).

For continuous-time RL, Wang et al. (2020a) formulate an entropy-regularized, distribution-valued

stochastic control problem for diffusion processes, and derive theoretically the Gibbs (or Boltzmann)

measure as the optimal distribution for exploration which specializes to Gaussian when the prob-

lem is linear–quadratic (LQ). Gao et al. (2022) and Wang and Zhou (2020) apply the results of

Wang et al. (2020a) to a Langevin diffusion for simulated annealing and a continuous-time entropy-

regularized Markowitz’s mean–variance portfolio selection problem, respectively. Guo et al. (2020)

analyze both quantitatively and qualitatively the impact of entropy regularization for mean-field

games with learning in a finite time horizon. There have been recently many other developments

along this direction of RL in continuous time; see Jia and Zhou (2022a,b,c), Mou et al. (2021) and

Tang et al. (2022) and the references therein.

While the entropy is a reasonable metric to quantify the information gain of exploring the envir-

onment and entropy regularization can indeed explain some broadly used exploration distributions

such as Gaussian, there are two closely related open questions:

1. Distributions other than Gaussian, such as exponential or uniform, are also widely used for

exploration in RL. What regularizer(s) can theoretically justify the use of a given class of

exploratory distributions?

2. What are the optimal exploratory distributions for regularizers other than the entropy?

In this paper, we study these two questions in the setting of continuous-time diffusion processes,

by introducing a new class of regularizers borrowing from the literature of risk metrics. Risk metrics,

roughly speaking, include risk measures and variability measures, which are two separate and active

research streams in the general area of risk management. Value-at-risk (VaR), expected shortfall

(ES) and various coherent or convex risk measures, introduced by Artzner et al. (1999), Delbaen

(2002) and Föllmer and Schied (2002), are popular examples of risk measures. Variance, the Gini

deviation, interquantile range and deviation measures of Rockafellar et al. (2006) are instances of

variability measures. There has been a rich body of study on risk metrics in the past two decades;

see Föllmer and Schied (2016) and the references therein.

We introduce what we call Choquet regularizers, which belong to the class of the signed Choquet

integrals recently studied by Wang et al. (2020c) in the context of risk management. A signed

Choquet integral in general gives rise to a nonlinear and non-monotone expectation in which the

state of nature is weighted by a probability weighting or distortion function in calculating the

expectation. It includes as special cases Yaari’s dual utility (Yaari (1987)) and distortion risk

measures (Acerbi (2002) and Kusuoka (2001)), which are commonly used monotone functionals,

and appears in rank-dependent utility (RDU) theory; see De Waegenaere and Wakker (2001),

Gilboa and Schmeidler (1989), Quiggin (1982) and Tversky and Kahneman (1992) in the related

literature of behavioral economic theory.
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There are several reasons to use Choquet regularizers for RL due to a number of theoretical

and practical advantages. First, they satisfy several “good” properties such as quantile additivity,

normalization, concavity, and consistency with convex order (mean-preserving spreads) that facil-

itate analysis as regularizers. Second, Choquet regularizers are non-monotone. In order to measure

exploration, monotonicity is irrelevant, in contrast to assessing risk or wealth. For instance, a de-

generate distribution should be associated with no-exploration regardless of its position, in which

case non-monotone mappings should be used. Moreover, the use of Choquet regularizers is closely

connected to distributionally robust optimization (DRO) where a Wasserstein distance naturally

induces a special class of Choquet regularizers, whereas DRO itself is an important approach for

learning and for correcting the inherent flaws suffered by classical model-based estimation and

optimization. Finally, as we will see later in the paper, for any given location–scale class of dis-

tributions, there exists a common Choquet regularizer such that the corresponding regularized

continuous-time LQ control for RL has optimal distributions in that class.

We take the same continuous-time exploratory stochastic control problem as in Wang et al.

(2020a), except that the entropy regularizer is replaced with a Choquet regularizer. In the general

case we derive the Hamilton–Jacobi–Bellman (HJB) equation. However, in sharp contrast to Wang

et al. (2020a) in which the optimal control distributions are proved to be Gibbs measures, obtain-

ing the class of optimal distributional policies via verification theorem remains a significant open

question. To obtain explicit solutions, we focus on the LQ case. The form of the LQ-specialized

HJB equation suggests that the problem boils down to a static optimization in which the given

Choquet regularizer is to be maximized over distributions with given mean and variance. It turns

out this last problem has been solved explicitly by Liu et al. (2020). The optimal distributions

form a location–scale family, whose shape depends on the choices of the Choquet regularizer. The

solutions to the static problem are then employed to solve the original LQ-based exploratory HJB

equation explicitly and to derive the optimal samplers for exploration under the given Choquet

regularizer. As expected, optimal distributions are no longer necessarily Gaussian as in Wang et al.

(2020a), and are now dictated by the choice of Choquet regularizers. However, the following feature

of the entropy-regularized solutions revealed in Wang et al. (2020a) remains intact: the means of the

optimal distributions are linear in the current state and independent of the exploration, whereas

the variances are determined by the exploration but irrespective of the current state. Along an

opposite line of inquiry, we are able to identify a proper Choquet regularizer in order to interpret a

given exploratory distribution. Specifically, we derive the regularizers that generate some common

exploration measures including ε-greedy, three-point, exponential, uniform and Gaussian.

The rest of the paper is organized as follows. We introduce Choquet regularizers in Section 2,

and present their basic properties as well as an axiomatic characterization based on existing results

of Wang et al. (2020b,c). In Section 3, we formulate the continuous-time Choquet-regularized RL

control problem and derive the HJB equation. We then motivate a mean–variance constrained
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Choquet regularizer maximization problem for LQ control. This problem is studied in details

in Section 4, including discussions on some special regularizers arising from problems in finance,

optimization, and risk management. In Section 5, we return to the exploratory LQ control problem

and solve it completely. We also present examples linking specific exploratory distributions with

the corresponding Choquet regularizers. In Section 6, we discuss the connections between the

exploratory LQ problem and the classical LQ problem. Finally, Section 7 concludes the paper.

2 Choquet regularizers

Throughout the paper, we assume that (Ω,F ,P) is an atomless probability space. With

a slight abuse of notation, let M denote both the set of (probability) distribution functions of

real random variables and the set of Borel probability measures on R, with the obvious identity

Π(x) ≡ Π((−∞, x]) for x ∈ R and Π ∈ M. We denote by Mp ⊂ M, p ∈ [1,∞), the set of

distribution functions or probability measures with finite p-th moment. For a random variable X

and a distribution Π, we write X ∼ Π if the distribution of X is Π under P, and X
d
= Y if two

random variables X and Y have the same distribution. We denote by µ and σ2 the mean and

variance functionals on M2, respectively; that is, µ(Π) is the mean of Π and σ2(Π) the variance of

Π for Π ∈ M2.

Given a function h : [0, 1] → R of bounded variation with h(0) = 0 and Π ∈ M, the functional

Ih on M is defined as

Ih(Π) ≡
∫

h ◦Π([x,∞))dx :=

∫ 0

−∞
[h ◦Π([x,∞))− h(1)] dx+

∫ ∞

0
h ◦Π([x,∞))dx, (2.1)

assuming that (2.1) is well defined (which could take the value ∞). The function h is called a

distortion function, and the functional Ih is called a signed Choquet integral by Wang et al. (2020c).

If h(x) ≡ x then Ih reduces to the mean functional; thus, Ih is a nonlinear generalization of the

mean/expecation. If h is increasing and satisfies h(0) = 1−h(1) = 0, then Ih is called an increasing

Choquet integral, which include as special cases the two most important risk measures used in

current banking and insurance regulation, VaR and ES.1

Next, we define the Choquet regularizer, a main object of this paper. We are particularly

interested in a subclass of signed Choquet integrals, where h satisfies the following properties:

(i) h is concave;

(ii) h(1) = h(0) = 0.

1This functional Ih is termed differently in different fields. For example, it is known as Yaari’s dual utility (Yaari
(1987)) in decision theory, distorted premium principles (Denneberg (1994) and Wang et al. (1997)) in insurance and
distortion risk measures (Acerbi (2002) and Kusuoka (2001)) in finance.
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Let us briefly explain the interpretations and implications of the above two conditions. Condi-

tion (i) is equivalent to several other properties, and in particular, to that Ih is a concave mapping

and to that Ih is consistent with convex order ;2 see Theorem 3 of Wang et al. (2020c) for this claim

and several other equivalent properties. Here, concavity of Ih means

Ih(λΠ1 + (1− λ)Π2) ⩾ λIh(Π1) + (1− λ)Ih(Π2), for all Π1,Π2 ∈ M and λ ∈ [0, 1],

and consistency with convex order means

Ih(Π1) ⩽ Ih(Π2), for all Π1,Π2 ∈ M with Π1 ⪯cx Π2.

If Π1 ⪯cx Π2, then Π2 is also called a mean-preserving spread of Π1 (Rothschild and Stiglitz (1970)),

which intuitively means that Π2 is more spread-out (and hence “more random”) than Π1. The above

two properties do indeed suggest that Ih(Π) serves as a measure of randomness for Π, since both a

mixture and a mean-preserving spread introduce extra randomness; see e.g., Acciaio and Svindland

(2013) for related discussions. Condition (ii), on the other hand, is equivalent to Ih(δc) = 0 ∀c ∈ R,
where δc is the Dirac mass at c. That is, degenerate distributions do not have any randomness

measured by Ih.

Definition 2.1. Let H be the set of h : [0, 1] → R satisfying (i)-(ii). A functional Φ : M →
(−∞,∞] is a Choquet regularizer if there exists h ∈ H such that Φ = Ih, that is,

Φ(Π) =

∫
R
h ◦Π([x,∞))dx, (2.2)

and this Φ will henceforth be denoted by Φh.

To clarify on notation, we require h ∈ H for Φh, while there is no such requirement for Ih.

Moreover, we call Φh to be location invariant and scale homogeneous if Φh(Π
′) = λΦh(Π) where Π′

is the distribution of λX + c for λ > 0, c ∈ R and X ∼ Π.

We summarize some useful properties of Φh in the following lemma.

Lemma 2.2. For h ∈ H, Φh is well defined, non-negative, and location invariant and scale homo-

geneous.

Proof. First, a concave h with h(0) = h(1) has to be first increasing and then decreasing on [0, 1].

Hence h has bounded variation, and the two integrals in (2.1) are well defined. Moreover, (i) and

(ii) imply h ⩾ 0, which further yields that both terms in (2.1) are non-negative. So Φh is well

defined and non-negative. Location invariance and scale homogeneity follow from Proposition 2

(iii) and (iv) of Wang et al. (2020b).

2Let Π1 and Π2 be two distribution functions with finite means. Then, Π1 is smaller than Π2 in convex order,
denoted by Π1 ⪯cx Π2, if E[f(Π1)] ⩽ E[f(Π2)] for all convex functions f , provided that the two expectations exist. It
is immediate that Π1 ⪯cx Π2 implies E[Π1] ⩽ E[Π2].
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Each property in Lemma 2.2 has a simple interpretation for a regularizer that measures the

level of randomness, or the level of exploration in the RL context of this paper.

(a) Well-posedness: Any distribution for exploration can be measured.3

(b) Non-negativity: Randomness is measured in non-negative values.

(c) Location invariance: The measurement of randomness does not depend on the location.

(d) Scale homogeneity: The measurement of randomness is linear in its scale.

For a distribution Π ∈ M, let its left-quantile for p ∈ (0, 1] be defined as, recalling that

Π(x) = Π((−∞, x]) for x ∈ R,

QΠ(p) = inf {x ∈ R : Π(x) ⩾ p} ,

whereas its right-quantile function for p ∈ [0, 1) be defined as

Q+
Π(p) = inf {x ∈ R : Π(x) > p} .

It is useful to note that Φh admits a quantile representation as follows; see Lemma 1 of Wang et al.

(2020b).

Lemma 2.3. For h ∈ H and Π ∈ M,

(i) if h is right-continuous, then Φh(Π) =
∫ 1
0 Q+

Π(1− p)dh(p);

(ii) if h is left-continuous, then Φh(Π) =
∫ 1
0 QΠ(1− p)dh(p);

(iii) if QΠ is continuous, then Φh(Π) =
∫ 1
0 QΠ(1− p)dh(p).

Choquet regularizers include, for instance, range, mean-median deviation, the Gini deviation,

and inter-ES differences. Moreover, standard deviation can be written as the supremum of Cho-

quet regularizers; see Examples 1, 3 and 4 of Wang et al. (2020c). Variance also has a related

representation (Example 2.2 of Liu et al. (2020)):

σ2(Π) = sup
h∈H

{
Φh(Π)−

1

4
||h′||22

}
, Π ∈ M,

where ||h′||22 =
∫ 1
0 (h

′(p))2dp if h is continuous with a.e. right-derivative h′, and ||h′||22 := ∞ if h is

not continuous.

3This property is technically important since functional properties of Ih could be very difficult to analyze if one
faces a quantity such as ∞−∞. As an example, consider h(x) = x leading to Ih being the mean functional. In this
case, Ih is only well defined on some subsets of M.
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Concave signed Choquet integrals are characterized by, e.g., Wang et al. (2020c), which is

essentially a consequence of the seminal works of Schmeidler (1989) and Yaari (1987); see also

Theorem 2.4 below. In what follows, we say that Φ = Φh is quantile additive if for all Π1,Π2 ∈ M,

Φ(Π1 ⊕ Π2) = Φ(Π1) + Φ(Π2) where the quantile function of Π1 ⊕ Π2 is the sum of those of Π1

and Π2. In other words, QΠ1⊕Π2 = QΠ1 + QΠ2 . Moreover, we say that Φ is continuous at infinity

if limM→1Φ((Π ∧M) ∨ (1 −M)) = Φ(Π), and Φ is uniform sup-continuity if for any ε > 0, there

exists δ > 0, such that |Φ(Π1) − Φ(Π2)| < ε whenever ess-sup|Π1 − Π2| < δ, where ess-sup is the

essential supremum defined by Π−1(1) .

We give the following simple characterization for our Choquet regularizers based on Theorems

1 and 3 of Wang et al. (2020b).

Theorem 2.4. A functional Φh is a Choquet regularizer in (2.2) if and only if it satisfies all of the

following properties

(i) Φh is quantile additive;

(ii) Φh is concave or ⪯cx-consistent;

(iii) Φh ⩾ 0 and Φh(δc) = 0 for all c ∈ R;

(iv) Φh is continuous at infinity and uniformly sup-continuous.

Note that Theorems 1 and 3 of Wang et al. (2020b) are stated in terms of a risk measure

defined on the space of real random variables, say X , while here Φh is defined on M. To use

these results, we can define ρ : X → R by ρ(X) = Φh(Π) where X ∼ Π, which is automatically

law-invariant.4 On the other hand, Theorem 1 in Wang et al. (2020b) requires an extra continuity

condition to imply that h has bounded variation on [0, 1], which is guaranteed here by condition

(iii). In fact, condition (i) is equivalent to comonotonic additivity of ρ.5 Continuity at infinity and

uniform sup-continuity of ρ can be defined in paralell to those of Φh. Finally, h(1) = h(0) = 0 is

equivalent to Φh(δc) = 0 for all c ∈ R. Theorem 2.4 hence follows directly from Theorems 1 and 3

of Wang et al. (2020b).

Remark 2.5. If h is not constantly 0, Choquet regularizers belong to the class of generalized

deviation measures in Grechuk et al. (2009) and Rockafellar et al. (2006). Moreover, Choquet reg-

ularizers can be used to construct law-invariant generalized deviation measures. Indeed, combining

characterization of generalized deviation measures in Proposition 2.2 of Grechuk et al. (2009) and

the quantile representation of signed Choquet integrals in Lemma 2.3, all law-invariant generalized

deviation measures can be represented as a supremum of some Choquet regularizers of the type (2.2).

This includes standard deviation and mean absolute deviation as special cases.

4Law-invariance means that ρ(X) = ρ(Y ) for X
d
= Y .

5A random vector (X1, . . . , Xn) is called comonotonic if there exists a random variable Z ∈ X and increasing
functions f1, . . . , fn on R such that Xi = fi(Z) almost surely for all i = 1, . . . , n. Comonotoic-additivity means that
ρ(X + Y ) = ρ(X) + ρ(Y ) if X and Y are comonotonic.
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We conclude this section by comparing the Choquet regularization with the differential entropy

regularization, the latter having been used for exploration–exploitation balance in RL; see Guo et

al. (2020), Wang et al. (2020a) and Wang and Zhou (2020). For an absolutely continuous Π, we

define DE, Shannon’s differential entropy, as

DE(Π) := −
∫
R
Π′(x) log(Π′(x))dx. (2.3)

Sunoj and Sankaran (2012) show that (2.3) admits a different quantile representation

DE(Π) =

∫ 1

0
log(Q′

Π(p))dp. (2.4)

It is clear that DE is location invariant, but not scale homogeneous. It is not quantile additive

either. Therefore, DE is not a Choquet regularizer.

3 Exploratory control with Choquet regularizers

In this section, we first introduce an exploratory stochastic control problem for RL in continu-

ous time and spaces which was originally proposed in Wang et al. (2020a), and then reformulate it

with Choquet regularizers.

Let F = {Ft}t⩾0 be a filtration defined on (Ω,F ,P) along with an {Ft}t⩾0-adapted Brownian

motionW = {Wt}t⩾0, the filtered probability space satisfying the usual assumptions of completeness

and right continuity. All stochastic processes introduced below are supposed to be adapted processes

in this space.

The classical stochastic control problem is to control the state dynamic described by a stochastic

differential equation (SDE)

dXu
t = b (Xu

t , ut) dt+ ξ (Xu
t , ut) dWt, t > 0; Xu

0 = x ∈ R, (3.1)

where u = {ut}t⩾0 is the control process taking value in a given action space U . The aim of the

problem is to achieve the maximum expected total discounted reward represented by the value

function

V cl(x) := sup
u∈Acl(x)

Ex

[∫ ∞

0
e−ρtr (Xu

t , ut) dt

]
, (3.2)

where r is the reward function, ρ > 0 is the discount rate, and Acl(x) denotes the set of all admissible

controls which in general may depend on x. Throughout this paper, for ease of notation we assume

that the state and Brownian motion are scalar-valued processes. Moreover, we suppose that the

control is also one-dimensional, which is however an essential assumption because the Choquet
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regularizer to be involved is defined only for distributions on R.6

With the complete knowledge of the model parameters, the theory for solving the classical,

model-based problem (3.1)–(3.2) has been developed and established thoroughly. In the RL setting,

where those parameters are partly or completely unknown and therefore dynamic learning is needed,

the agent employs exploration to interact with and learn the unknown environment through trial

and error. The key idea is to model exploration by a distribution of controls Π = {Πt}t⩾0 over the

control space U from which each “trial” is sampled. Thus, the notion of controls is extended to

distributions. The agent executes controls for N rounds over the same time horizon, while at each

round, a classical control is sampled from the distribution Π. The reward of such a policy becomes

accurate enough when N is large.

Thus, similarly to Wang et al. (2020a), we give the “exploratory” version of the state dynamic

(3.1) motivated by repetitive learning in RL. The control process is now randomized, leading to

a distributional or exploratory control process Π = {Πt}t⩾0, where Πt ∈ M(U) is the probability

distribution function for control at time t, with M(U) being the set of distribution functions on U .

For a given such distributional control Π, the exploratory version of the state dynamics is

dXΠ
t = b̃

(
XΠ

t ,Πt

)
dt+ ξ̃

(
XΠ

t ,Πt

)
dWt, t > 0; XΠ

0 = x ∈ R, (3.3)

where the coefficients b̃(·, ·) and ξ̃(·, ·) are defined as

b̃(y,Π) =

∫
U
b(y, u)dΠ(u), y ∈ R, Π ∈ M(U), (3.4)

and

ξ̃(y,Π) =

√∫
U
ξ2(y, u)dΠ(u), y ∈ R, Π ∈ M(U). (3.5)

The “exploratory state process”
{
XΠ

t

}
t⩾0

describes the average of the state processes under (infin-

itely) many different classical control processes sampled from the exploratory control Π = {Πt}t⩾0.

Further, the reward function r in (3.2) needs also to be modified to the exploratory reward

r̃(y,Π) =

∫
U
r(y, u)dΠ(u), y ∈ R, Π ∈ M(U). (3.6)

A detailed explanation of where this exploratory formulation comes from is provided in Wang

et al. (2020a, pp. 6–8). We reiterate that the exploratory state process
{
XΠ

t

}
t⩾0

is the average of

the sample state trajectories under infinitely many actions generated from the same distribution Π

and is in itself not a sample state trajectory nor observable. The exploratory formulation above just

provides a framework for theoretical analysis. See Jia and Zhou (2022b, p. 9) for more discussion

on this point.

6See Section 7 for a discussion about how we may extend the notion of Choquet regularizer to multi-dimensions.

9



Next, we use a Choquet regularizer Φh to measure the level of exploration, and the aim

of the exploratory control is to achieve the maximum expected total discounted and regularized

exploratory reward represented by the optimal value function

V (x) = sup
Π∈A(x)

Ex

[∫ ∞

0
e−ρt

(
r̃(XΠ

t ,Π) + λΦh(Π)
)
dt

]
, (3.7)

where λ > 0 is the temperature parameter representing the weight on exploration, A(x) is the set

of admissible distributional controls (which may in general depend on x), and Ex represents the

conditional expectation given XΠ
0 = x.

The precise definition of A(x) depends on the specific dynamic model under consideration

and the specific problems one wants to solve, which may vary from case to case. We will define

A(x) precisely later for the linear–quadratic (LQ) control case, which will be the main focus of the

paper. Note that (3.7) is mathematically a so-called relaxed stochastic control problem; see Wang

et al. (2020a, Footnote 7) for a detailed discussion about the connection between the exploratory

formulation and relaxed control.

Controls in A(x) are measure (distribution function)-valued stochastic adapted processes,

which are open-loop controls in the control terminology. A more important notion in RL is the

feedback (control) policy. Specifically, a deterministic mapping Π(·; ·) is called a feedback policy

if i) Π(·;x) is a distribution function for each x ∈ R; ii) the following SDE (which is the system

dynamic after the feedback law Π(·; ·) is applied)

dXt = b̃ (Xt,Π(·;Xt)) dt+ ξ̃
(
XΠ

t ,Π(·;Xt)
)
dWt, t > 0; X0 = x ∈ R

has a unique strong solution {Xt}t⩾0; and iii) the open-loop control Π = {Πt}t⩾0 ∈ A(x) where

Πt := Π (·;Xt). In this case, the resulting open-loop control Π is said to be generated from the

feedback policy Π(·; ·) with respect to the initial state x.

On the other hand, for a continuous h ∈ H, we have

Φh(Π) =

∫ 1

0
QΠ(1− p)dh(p) =

∫
U
uh′(1−Π(u))dΠ(u).

We present the general procedure for solving the problem (3.7), following Wang et al. (2020a).

Applying the classical Bellman principle of optimality, we deduce that the optimal value function

V satisfies the Hamilton-Jacobi-Bellman (HJB) equation

ρv(x) = max
Π∈M(U)

(
r̃(x,Π) + λ

∫
U

uh′(1−Π(u))dΠ(u) +
1

2
ξ̃2(x,Π)v′′(x) + b̃(x,Π)v′(x)

)
, (3.8)
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or equivalently,

ρv(x) = max
Π∈M(U)

∫
U

(
r(x, u) + λuh′(1−Π(u)) +

1

2
ξ2(x, u)v′′(x) + b(x, u)v′(x)

)
dΠ(u),

where v denotes the generic unknown solution of the equation. The verification theorem then yields

that the feedback policy Π∗ defined as

Π∗(x) := argmax
Π∈M(U)

∫
U

(
r(x, u) + λuh′(1−Π(u)) +

1

2
ξ2(x, u)v′′(x) + b(x, u)v′(x)

)
dΠ(u) (3.9)

is an optimal policy if it generates an admissible open-loop control for any x.

When the regularizer is the entropy, Wang et al. (2020a) applied the corresponding verification

theorem to conclude that the Gibbs (or Boltzmann) measures are generally optimal samplers for

exploration, which specialize to Gaussian in the LQ case. However, no general study on the entropy-

regularized exploratory HJB equation was available until Tang et al. (2022) established the well-

posedness and regularity of its viscosity solution. With the current Choquet regularizers, studying

(3.8) and solving the maximization problem in (3.9) generally remain (significant) open questions

because (3.8) is very different from its entropy counterpart and it is unclear whether the analyses

in Tang et al. (2022) and Wang et al. (2020a) carry over.

In this paper, we focus on the LQ setting, in which the exploratory HJB equation (3.8) can

be explicitly solved, to study how different Choquet regularizers may generate the optimal policy

distributions. Specifically, we consider

b(x, u) = Ax+Bu and ξ(x, u) = Cx+Du, x, u ∈ R, (3.10)

where A,B,C,D ∈ R, and

r(x, u) = −
(
M

2
x2 +Rxu+

N

2
u2 + Px+ Lu

)
, x, u ∈ R, (3.11)

where M ⩾ 0, N > 0, and R,P, L ∈ R. Moreover, as in standard LQ theory we assume henceforth

that U = R and thus write M = M(U) and M2 = M2(U).

Remark 3.1. LQ control plays a vitally important role in the classical control literature, not only

because it usually admits elegant and simple solutions, but also because more complex, nonlinear

problems can be approximated by LQ problems. Indeed, one can simply apply a second-order Taylor

approximation to the reward function and a first-order Taylor approximation to the dynamics coef-

ficient functions to define an approximate LQ problem; see Benigno and Woodford (2003, 2012),

Judd (1998), Li and Todorov (2007), Todorov and Li (2005) and the reference therein for more

details.

Fix an initial state x ∈ R. For each open-loop control Π ∈ A(x), denote its mean and variance
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processes {µt}t⩾0 and {σ2
t }t⩾0 by

µt ≡ µ(Πt) =

∫
U
udΠt(u) and σ2

t ≡ σ2(Πt) =

∫
U
u2dΠt(u)− µ2

t .

By (3.4) and (3.5), we have

b̃(x,Π) = Ax+Bµ(Π), ξ̃(x,Π) =
√
C2x2 + 2CDxµ(Π) +D2[µ2(Π) + σ2(Π)]. (3.12)

Thus, the state dynamic XΠ in (3.3) is given by

dXΠ
t = (AXΠ

t +Bµt)dt+
√

(CXΠ
t +Dµt)2 +D2σ2

t dWt, XΠ
0 = x ∈ R, (3.13)

which implies that the state process only depends on the mean process {µt}t⩾0 and the variance

process {σ2
t }t⩾0 of the given distributional control {Πt}t⩾0. Let B be the Borel algebra on R. A

control process Π is said to be admissible, denoted by Π ∈ A(x), if (i) for each t ⩾ 0, Πt ∈ M a.s.; (ii)

for each A ∈ B, {Πt(A), t ⩾ 0} is Ft-progressively measurable; (iii) for each t ⩾ 0,E[
∫ t
0 (µ

2
s+σ2

s)ds] <

∞; (iv) with {XΠ
t }t⩾0 solving (3.3), lim infT→∞ e−ρTE[(XΠ

T )
2] = 0; (v) with {XΠ

t }t⩾0 solving (3.3),

E[
∫∞
0 e−ρt|r̃(XΠ

t ,Πt) + λΦh(Πt)|dt] < ∞.

In the above, condition (iii) is to ensure that for any Π ∈ A(x), both the drift and volatility

terms of (3.3) satisfy a global Lipschitz condition and a linear growth condition in the state variable

and, hence, the SDE (3.3) admits a unique strong solution XΠ. Condition (iv) is used to ensure

that dynamic programming and verification theorem are applicable, as will be evident in the sequel.

Finally, the reward is finite under condition (v).

By (3.6) and (3.11), we have

r̃(x,Π) = −M

2
x2 −Rxµ(Π)− N

2
[µ2(Π) + σ2(Π)]− Px− Lµ(Π). (3.14)

Thus, plugging (3.12) and (3.14) back into (3.8), we can derive the HJB equation for LQ control as

ρv(x) = max
Π∈M2

{
−Rxµ(Π)− N

2

[
µ2(Π) + σ2(Π)

]
− Lµ(Π) + λΦh(Π)

+ CDxµ(Π)v′′(x) +
1

2
D2
[
µ2(Π) + σ2(Π)

]
v′′(x) +Bµ(Π)v′(x)

}
+Axv′(x)− M

2
x2 − Px+

1

2
C2x2v′′(x).

(3.15)

To analyze and solve this equation, we need to study the maximization problem therein. Denote

by φ(x,Π) the term inside the max operator above. Observe that φ(x,Π) depends on Π via only

its mean µ(Π) and variance σ2(Π), except for the term Φh(Π), which motivates us to write

max
Π∈M2

φ(x,Π) = max
m∈R,s>0

max
Π∈M2,µ(Π)=m,σ2(Π)=s2

φ(x,Π). (3.16)

12



The inner maximization problem is in turn equivalent to

max
Π∈M2

Φh(Π) subject to µ(Π) = m and σ2(Π) = s2. (3.17)

This is a static optimization problem, which holds the key to solve the HJB equation (3.15)

and thus to our exploratory problem with Choquet regularizers. It is interesting to note that when

the regularizer is the entropy, the optimal solution to the above problem is Gaussian, which is

indeed the essential reason behind the Gaussian exploration derived in Wang et al. (2020a). More

specifically, for LQ control any regularized payoff function depends only on the mean and variance

processes of the distributional control, and the Gaussian distribution maximizes the entropy when

the mean and variance are fixed. The natural question in our setting is what distribution with

given mean and variance maximizes a Choque regularizer, which is exactly the problem (3.17). The

next section is devoted to solving explicitly this maximization problem (3.17) of “mean–variance

constrained Choquet regularizers” with a variety of specific Choquet regularizers.

4 Maximizing mean–variance constrained Choquet regularizers

4.1 General results

For given h ∈ H, m ∈ R and s > 0, we consider the problem (3.17), which has been motivated

by the exploratory control for RL as discussed in the previous section. Note that since Φh is

location-invariant and scalable, (3.17) is equivalent to the following problem

s max
Π∈M2

Φh(Π) subject to µ(Π) = 0 and σ2(Π) = 1.

In what follows, h′ represents the right-derivative of h, which exists on [0, 1) since h is concave on

[0, 1].

It turns out that a general solution to (3.17) has been given by Theorem 3.1 of Liu et al.

(2020).

Lemma 4.1. If h is continuous and not constantly zero, then a maximizer Π∗ to (3.17) has the

following quantile function

QΠ∗(p) = m+ s
h′(1− p)

||h′||2
, a.e. p ∈ (0, 1), (4.1)

and the maximum value of (3.17) is Φh(Π
∗) = s||h′||2.

In the context of RL, an interesting question arises: Given a distribution used for exploration,

what is the regularizer that leads to that distribution? This is a practically important question that
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can provide interpretability to some widely used samplers for exploration in practice. Theoretically,

answering this question is in some sense a converse of Lemma 4.1 at least in the LQ setting.

In what follows, we denote by M2(m, s2) the set of Π ∈ M2 satisfying µ(Π) = m ∈ R and

σ2(Π) = s2 > 0. Also, recall that given a distribution Π the location-scale family of Π is the set of

all distributions Πa,b parameterized by a ∈ R and b > 0 such that Πa,b(x) = Π((x − a)/b) for all

x ∈ R.

Proposition 4.2. Let Π ∈ M2(m, s2) be given, where m ∈ R and s > 0. Then Π maximizes Φh

as well as Φλh for any λ > 0 over M2(m, s2) for a continuous h ∈ H specified by

h′(p) = QΠ(1− p)−m, a.e. p ∈ (0, 1). (4.2)

Moreover, for any Π̂ in the location-scale family of Π, Π̂ also maximizes Φh over M2(µ(Π̂), σ2(Π̂)).

Proof. By Lemma 4.1, given a continuous h ∈ H, we have

h′(p) =
||h′||2
s

(QΠ(1− p)−m), a.e. p ∈ (0, 1),

where Π maximizes Φh over M2(m, s2). Since Φλh(Π) = λΦh(Π) for any λ > 0, Π that maximizes

Φh also maximizes Φλh, which means that a positive constant multiplier in Φh does not affect

problem (3.17). Hence, Π maximizes Φh over M2(m, s2) with h′(p) = QΠ(1− p)−m for p ∈ (0, 1)

a.e. Moreover, if Π̂ is in the location-scale family of Π, then we have Π̂(x) = Π((x− a)/b) for some

a ∈ R and b > 0 for all x ∈ R, which implies that

h′(p) = QΠ(1− p)−m = (QΠ̂(1− p)− a)/b−m for p ∈ (0, 1) a.e.

Since µ(Π̂) = a+ bm, it follows that Π̂ maximizes Φh over M2(µ(Π̂), σ2(Π̂)).

A simple but important implication from Proposition 4.2 is that every non-degenerate distribu-

tion with finite first and second moments is the optimizer of some Φh in (3.17) over M2(m, s2) for

some m ∈ R and s > 0. Therefore, any distribution used for static exploration can be interpreted by

certain suitable Choquet regularizer Φh. Moreover, there is a common distortion function h, which

is explicitly specified by Proposition 4.2, for any given location-scale family, in the sense that any

distribution function Π belonging to this location-scale family maximizes Φh over M2(µ(Π), σ2(Π)).

In other words, a single Φh can serve as the same regularizer for a whole location-scale family of

distributions. We remark that optimization of a general functional Ih may also be feasible where

h is not necessarily concave (see Pesenti et al. (2020) for inverse S-shaped distortion functions);

however, this is not desirable for an exploration regularizer.

In the following subsections, we present specific examples applying the above general results,

involving several samplers commonly used in RL for exploration, as well as measures commonly
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used in finance and operations research for evaluating distribution variability.

4.2 Some common exploratory distributions

We first present some simple distributions which have been widely used for exploration in the

RL literature.

Example 4.3 (Bang–bang exploration). Let Π be a Bernoulli distribution with Π({0}) = 1 − ε ∈
(0, 1) and Π({1}) = ε. In this case, the RL agent explores only two states 0 and 1, which is called a

bang–bang exploration. In particular, in the classical two-armed bandit problem, 0 is the currently

more promising arm and 1 is the other arm. Proposition 4.2 gives

h′(p) = 1{p<ε} − ε, a.e. p ∈ (0, 1),

and thus h(p) = p ∧ ε − εp. The corresponding regularizer Φh is given by, using the quantile

representation in Lemma 2.3,

Φh(Π) =

∫ ε

0
QΠ(1− p)dp− ε

∫ 1

0
QΠ(1− p)dp = ε(µε(Π)− µ(Π)),

where µε(Π) is the ε-tail mean defined by

µε(Π) :=
1

ε

∫ ε

0
QΠ(1− p)dp.

Since a constant multiplier in Φh does not affect problem (3.17), a Bernoulli distribution with

parameter ε maximizes Φh = µε−µ. Note that the tail mean corresponds to ES in risk management

with an axiomatic foundation laid out in Wang and Zitikis (2021). The difference between an ES

and the mean, µε −µ, is an example of generalized deviation measures in Example 3 of Rockafellar

et al. (2006), which has an axiomatic characterization similar to ES.

Example 4.4 (ε-greedy exploration). Let Π be a discrete distribution satisfying Π({0}) = 1− ε ∈
(0, 1) and Π({j}) = ε/(2n) for j ∈ {−n, . . . ,−1, 1, . . . , n}. In this case, the RL agent explores

2n+1 states where 0 is the currently most “exploitative” state and {−n, . . . ,−1, 1, . . . , n} represent

the other states surrounding 0. From Proposition 4.2, we have

h′(p) =

n∑
i=1

(n− i+ 1)1{
(i−1)ε

2n
⩽p< iε

2n

} −
2n∑

i=n+1

(i− n)1{
(i−1)ε

2n
+1−ε⩽p< iε

2n
+1−ε

} (4.3)

for p ∈ (0, 1) a.e.; and thus h is a piece-wise linear function. An example of h in (4.3) is plotted in

FIG. 1. Using the quantile representation in Lemma 2.3, the corresponding regularizer Φh is given
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Figure 1: The plots of h (left panel) and h′ (right panel) in Example 4.4 corresponding to a discrete
distribution Π where n = 5 and ε = 0.4.

by

Φh(Π) = ε

(
n∑

i=1

µ+
ε (i,Π)−

2n∑
i=n+1

µ−
ε (i,Π)

)
,

where µ+
ε (i,Π) and µ−

ε (i,Π) are defined by

µ+
ε (i,Π) :=

n− i+ 1

ε

∫ iε
2n

(i−1)ε
2n

QΠ(1− p)dp for i = 1, . . . , n, (4.4)

and

µ−
ε (i,Π) :=

i− n

ε

∫ iε
2n

+(1−ε)

(i−1)ε
2n

+(1−ε)
QΠ(1− p)dp for i = n+ 1, . . . , 2n. (4.5)

This example is related to the ε-greedy strategy in multi-armed bandit problem, where ε signifies

the probability of exploring. To be specific, the ε-greedy exploration is to select the current best arm

with probability 1− ε, and the other 2n arms uniformly with probability ε/(2n). It is worth noting

that ES is also used as a criterion in the multi-armed bandit problem with exploration; see Benac

and Godin (2021) and Chang et al. (2020).

Example 4.5 (Exponential exploration). Let Π be an exponential distribution with mean 1. It

follows from Proposition 4.2 that

h′(p) = − log(p)− 1, a.e. p ∈ (0, 1),

and thus h(p) = −p log(p). The corresponding Choquet regularizer Φh is given by

Φh(Π) = −
∫ 1

0
QΠ(1− p)(log(p) + 1)dp =: CRE(Π), Π ∈ M,
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Figure 2: The plots of h (left panel) and h′ (right panel) in Example 4.6 corresponding to a Gaussian
distribution.

where

CRE(Π) := −
∫ ∞

0
Π([x,∞)) log(Π([x,∞)))dx,

which is called the cumulative residual entropy (CRE) and studied by Hu and Chen (2020) and Rao

et al. (2004). Toomaj et al. (2017) argue that CRE can be viewed as a measure of dispersion or

variability. Thus, the exponential exploration can be interpreted by the CRE regularizer.

Example 4.6 (Gaussian exploration). If Π is a Gaussian distribution, then Proposition 4.2 gives

h′(p) = z(1− p), a.e. p ∈ (0, 1),

where z is the quantile function of a standard normal distribution.7 This gives h(p) =
∫ p
0 z(1−s)ds,

which is plotted in FIG. 2. The corresponding regularizer Φh is given by

Φh(Π) =

∫ 1

0
QΠ(1− p)z(1− p)dp =

∫ 1

0
QΠ(p)z(p)dp, Π ∈ M. (4.6)

Thus, any Gaussian distribution maximizes the regularize Φh given by Φh(Π) =
∫ 1
0 QΠ(p)z(p)dp.

This example also indicates that there are multiple regularizers (including the above regularizer and

differential entropy) that induce Gaussian exploration.

4.3 The inter-ES difference as a Choquet regularizer

We look at a regularizer based on ES. For Π ∈ M, ES at level p is defined as

ESp(Π) :=
1

1− p

∫ 1

p
QΠ(r)dr, p ∈ (0, 1),

7In statistics, the quantile of a standard normal distribution corresponding to a test statistic is often referred to
as a z-score – hence the notation z.
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and the left-ES is defined as

ES−p (Π) :=
1

p

∫ p

0
QΠ(r)dr, p ∈ (0, 1).

For α ∈ (0, 1), let

hα(p) := p/(1− α) ∧ 1 + (α− p)/(1− α) ∧ 0, p ∈ [0, 1]. (4.7)

Define Φhα = IERα by

IERα(Π) := ESα(Π)− ES−1−α(Π),

which is known as the inter-ES difference. Here, we assume α ∈ [1/2, 1). The inter-ES difference

is a relatively new notion: it appears in Example 4 of Wang et al. (2020c) as a signed Choquet

integral. In a recent work by Bellini et al. (2022), various properties are studied to underline the

special role the inter-ES difference plays among other variability measures.

Proposition 4.7. Suppose that α ∈ [1/2, 1). For m ∈ R and s2 > 0, the optimization problem

max
Π∈M2

IERα(Π) subject to µ(Π) = m and σ2(Π) = s2

is solved by a three-point distribution Π∗ with its quantile function uniquely specified as

QΠ∗(p) = m+
s√

2(1− α)

[
1{p>α} − 1{p⩽1−α}

]
, a.e. p ∈ (0, 1). (4.8)

Proof. Note that for Φh = IERα, we have

h′(p) =
1

1− α
1{p<1−α} −

1

1− α
1{p⩾α}

for α ∈ [1/2, 1), By (4.1), we can show that a maximizer Π∗ satisfies (4.8), which is a three-point

distribution.

So the inter-ES difference regularizer encourages exploration at three points. One of them is

the mean m corresponding to the best single-point exploitation without exploration, while the other

two spots are symmetric to m capturing the exploration part.

Remark 4.8. For α ∈ [1/2, 1), if we take the function hα(p) = 1[1−α,α](p), p ∈ [0, 1], the inter-

quantile difference Φhα := IQRα is given by

IQRα(Π) := Q+
Π(α)−QΠ(1− α),

which is a classical measure of statistical dispersion widely used in e.g., box plots. Unlike the inter-

ES difference, the distortion function hα for IQRα is not concave. However, the concave envelopes
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of h is give by h∗(p) = p/(1−α)∧1+(α−p)/(1−α)∧0, p ∈ [0, 1], which is exactly (4.7). According

to Theorem 1 in Pesenti et al. (2020), we have supΠ∈M2 IQRα(Π) = supΠ∈M2 IERα(Π) and the

maximizer is obtained by Π∗ which satisfies (4.8). Thus, the optimization problem is still solvable

even if h is not concave.

4.4 The L1-Wasserstein distance to Dirac measures as a Choquet regularizer

LetW : M×M → R+ be a statistical distance between two distributions, such as a Wasserstein

distance. Since an exploration is essentially to move away from degenerate (Dirac) distributions, a

natural way to encourage exploration is to use W (Π, δx), where δx is the Dirac measure at x ∈ R,
as a regularizer. Moreover, to remove the location dependence, we modify the regularizer to be

minx∈RW (Π, δx). For any statistical distance satisfying W (Π, Π̂) = 0 if and only if Π = Π̂, it is

clear that minx∈RW (Π, δx) = 0 if and only if Π itself is a Dirac measure (hence deterministic).

The use of Wasserstein distance to model distributional uncertainty in other settings naturally

gives rise to a regularization term, yielding a theoretical justification for its use in practice; see

for example Blanchet et al. (2021), Esfahani and Kuhn (2017) and Pflug and Wozabal (2007) that

formulate different models with distributional robustness based on Wasserstein distances.

We focus on the case where W is the Wasserstein L1 distance, defined as

W1(Π, Π̂) :=

∫ 1

0
|QΠ(p)−QΠ̂(p)|dp.

In this case, W1(Π, δx) is the L1 distance between x and X ∼ Π, and it is well known via L1

loss minimization that the minimizers of minx∈RW1(Π, δx) are the medians of Π (unique if QΠ is

continuous):

argmin
x∈R

W1(Π, δx) = [QΠ(1/2), Q
+
Π(1/2)].

Moreover, for a median of Π, x∗ ∈ [QΠ(1/2), Q
+
Π(1/2)], we have that W1(Π, δx∗) is the mean-median

deviation; namely

min
x∈R

W1(Π, δx) = W1(Π, δx∗)

=

∫ 1/2

0
(x∗ −QΠ(p))dp+

∫ 1

1/2
(QΠ(p)− x∗)dp

=

∫ 1

1/2
QΠ(p)dp−

∫ 1/2

0
QΠ(p)dp.

This in turn shows that argminx∈RW1(Π, δx) belongs to the class of Choquet regularizers.

Proposition 4.9. For m ∈ R and s2 > 0, the optimization problem

max
Π∈M2

min
x∈R

W1(Π, δx) subject to µ(Π) = m and σ2(Π) = s2,
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is solved by a unique Π∗ with the quantile function specified as

QΠ∗(p) = m+ s1{p>1/2} − s1{p⩽1/2}, a.e. p ∈ (0, 1). (4.9)

Proof. Applying Lemma 2.3 to get minx∈RW1(Π, δx) = Φh(Π) with h′(p) = 1 for p < 1/2 and

h′(p) = −1 for p ⩾ 1/2. Using (4.1) in Lemma 4.1 yields (4.9), which implies a symmetric two-

point distribution.

As Φh(Π) = minx∈RW1(Π, δx) induces a symmetric exploration around the mean, we call it

a symmetric Wasserstein regularizer with h(p) = p1{p<1/2} + (1 − p)1{p⩾1/2}. Next, let us discuss

two-point asymmetric exploration. Suppose that two directions are not symmetric, and we would

like to regularize in a way to encourage more exploration in a certain direction. Take a constant

α ∈ (0, 1), and choose W as an asymmetric Wasserstein distance

Wα
1 (Π, Π̂) =

∫ 1

0

(
α(QΠ(p)−QΠ̂(p))+ + (1− α)(QΠ(p)−QΠ̂(p))−

)
dp.

The corresponding minimizers are the α-quantiles

argmin
x∈R

Wα
1 (Π, δx) = [QΠ(α), Q

+
Π(α)],

and for x∗ ∈ [QΠ(α), QΠ(α)], we have

min
x∈R

Wα
1 (Π, δx) = Wα

1 (Π, δx∗)

=

∫ α

0
(1− α)(x∗ −QΠ(p))dp+

∫ 1

α
α(QΠ(p)− x∗)dp

= α

∫ 1

α
QΠ(p)dp− (1− α)

∫ α

0
QΠ(p)dp.

We call Φh(Π) = minx∈RWα
1 (Π, δx) an asymmetric Wasserstein regularizer with h(p) = αp1{p<1−α}+

(1− α)(1− p)1{p⩾1−α}.

Proposition 4.10. For m ∈ R and s2 > 0, the optimization problem

max
Π∈M2

min
x∈R

Wα
1 (Π, δx) subject to µ(Π) = m and σ2(Π) = s2

has a unique maximizer Π∗ with the quantile function uniquely specified as

QΠ∗(p) = m+ s

(
α

1− α

)1/2

1{p>α} − s

(
1− α

α

)1/2

1{p⩽α}, a.e. p ∈ (0, 1). (4.10)
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Proof. For Φh(Π) = minx∈RWα
1 (Π, δx), we have

h′(p) = α for p < 1− α and h′(p) = −1 + α for p ⩾ 1− α.

Using (4.1), the optimization problem has a solution Π∗ satisfying (4.10), which is an asymmetric

two-point distribution.

To recap, the Wasserstein L1 regularization encourages possibly asymmetric (with respect to

the mean) two-point exploration, which is an instance of the bang-bang exploration in Example 4.3.

4.5 The Gini mean difference or maxiance as a Choquet regularizer

By letting h(p) = p− p2, p ∈ [0, 1], we consider the regularizer Φσ := Φh given by

Φσ(Π) =

∫
R

(
Π([x,∞))−Π2([x,∞))

)
dx.

There are two ways to represent Φσ(Π) in terms of two iid copies X1 and X2 from the distribution

Π. First, Φσ can be rewritten as

Φσ(Π) =
1

2
E[|X1 −X2|],

which is the Gini mean difference (e.g., Furman et al. (2017); sometimes without the factor 1/2).

Alternatively, Φσ can be represnted as

Φσ(Π) = E[max{X1, X2}]− µ(Π),

which is called themaxiance by Eeckhoudt and Laeven (2022). The two representations are identical

as seen from the following equality

E[max{X1, X2}]− µ(Π) = E
[
max{X1, X2} −

1

2
(X1 +X2)

]
= E

[
max{X1, X2} −

1

2
(max{X1, X2}+min{X1, X2})

]
=

1

2
E [max{X1, X2} −min{X1, X2}] =

1

2
E[|X1 −X2|].

As argued by Eeckhoudt and Laeven (2022), the maxiance can be seen as the dual version of the

variance, due to the following identities

σ2(Π) =

∫
R
(x− µ(Π))2dΠ, Φσ(Π) =

∫
R
(x− µ(Π))dΠ2.

Moreover, the maxiance can be used to approximate a local index of absolute risk aversion in Yaari

(1987)’s dual theory of choice under risk, which is similar to the role of variance in the classic
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expected utility theory.

We now show that the maxiance regularizer Φσ leads to a uniform distribution for exploration.

Proposition 4.11. For m ∈ R and s2 > 0, the optimization problem

max
Π∈M2

Φσ(Π) subject to µ(Π) = m and σ2(Π) = s2 (4.11)

has a unique maximizer Π∗ = U[m−
√
3s,m+

√
3s].

Proof. Note that for Φh = Φσ, we have h′(p) = 1− 2p. It follows from (4.1) that a maximizer Π∗ is

a uniform distribution. By matching the moments in (4.11), we obtain Π∗ = U[m−
√
3s,m+

√
3s].

The uniqueness statement is guaranteed by e.g. Theorem 2 of Pesenti et al. (2020).

Proposition 4.11 provides a foundation for a uniformly distributed exploration strategy on R.
Note that this is different from the result of uniform distributions maximizing entropy on a fixed,

given bounded region: here in our setting the region is not fixed, since we allow Π to be chosen

from arbitrary distributions on R, and thus the bounded region [m−
√
3s,m+

√
3s] is endogenously

derived rather than exogenously given.

Remark 4.12. The inequality

σ(Π) ⩾
√
3Φσ(Π) for all Π ∈ M2

is known as Glasser’s inequality (Glasser (1962)). For the uniform distribution Π∗ in Proposition

4.11 with σ(Π∗) = s, we have Φσ(Π
∗) =

√
3s/3 by Lemma 4.1. Thus, Π∗ attains the sharp bound

of Glasser’s inequality, which holds naturally since Π∗ maximizes Φσ for a fixed σ2.

5 Solving the exploratory stochastic LQ control problem

We are now ready to solve the exploratory stochastic LQ control problem presented in Section

3. Let

W (x,Π) = Ex

[∫ ∞

0
e−ρt

(
r̃(XΠ

t ,Πt) + λΦh(Πt)
)
dt

]
, x ∈ R, Π ∈ A(x). (5.1)

We have the following result based on Lemma 4.1.

Proposition 5.1. Let a continuous h ∈ H be given. For any Π = {Πt}t⩾0 ∈ A(x) with mean

process {µt}t⩾0 and variance process {σ2
t }t⩾0, there exists Π∗ = {Π∗

t }t⩾0 ∈ A(x) given by

QΠ∗
t
(p) = µt + σt

h′(1− p)

||h′||2
, a.e. p ∈ (0, 1), t ⩾ 0, (5.2)

which has the same mean and variance processes satisfying W (x,Π∗) ⩾ W (x,Π).

22



Proof. It follows from (3.13) and (3.14) that the term Ex

[∫∞
0 e−ρtr̃(XΠ

t ,Πt)dt
]
in (5.1) only depends

on the mean process {µt}t⩾0 and variance process {σ2
t }t⩾0 of {Πt}t⩾0. Thus, for any fixed t ⩾ 0,

choose Π∗
t with mean µt and variance σ2

t that maximizes Φh(Π). From Lemma 4.1, it follows that Π∗
t

satisfies (5.2) and the maximum value is Φh(Πt) = σt||h′||2. Clearly, the strategy Π∗ = {Π∗
t }t⩾0 ∈

A(x) is the desired one.

Proposition 5.1 indicates that the control problem (3.7) in the LQ setting is maximized within

a location–scale family of distributions, which is determined only by h.

We go back to the HJB equation (3.15). It follows from (3.16)–(3.17) along with Lemma 4.1

that (3.15) is equivalent to

ρv(x) = max
µ∈R,σ>0

[
−Rxµ− N

2

(
µ2 + σ2

)
− Lµ+ λσ

∥∥h′∥∥
2
+ CDxµv′′(x)

+
1

2
D2
(
µ2 + σ2

)
v′′(x) +Bµv′(x)

]
+Axv′(x)− M

2
x2 − Px+

1

2
C2x2v′′(x).

(5.3)

Applying the first-order conditions, we get the maximizers

µ∗(x) =
CDxv′′(x) +Bv′(x)−Rx− L

N −D2v′′(x)
and (σ∗(x))2 =

λ2 ∥h′∥22
(N −D2v′′(x))2

of the max operator in (5.3), which in turn leads to the optimal distributional policy Π∗(·;x)
prescribed by Lemma 4.1.

Bringing the above expressions of µ∗(x) and σ∗(x) back into (5.3), we can further write the

HJB equation as

ρv(x) =
[CDxv′′(x) +Bv′(x)−Rx− L]2 + λ2 ∥h′∥22

2[N −D2v′′(x)]

+
1

2

[
C2v′′(x)−M

]
x2 + [Av′(x)− P ]x.

(5.4)

We now solve this equation explicitly. Denote

∆ = [ρ− (2A+ C2)]N + 2(B + CD)R−D2M.

Under the assumptions that ρ > 2A+ C2 and MN > R2, a smooth solution to (5.4) is given by

v(x) =
1

2
k2x

2 + k1x+ k0,

where8

k2 =
∆−

√
∆2 − 4[(B + CD)2 + (ρ− (2A+ C2))D2](R2 −MN)

2[(B + CD)2 +D2(ρ− (2A+ C2))]
, (5.5)

8Values of k2, k1 and k0 are obtained by solving the system of equations ρk2 = (k2(B+CD)−R)2

N−k2D2 +k2
(
2A+ C2

)
−M,

ρk1 = (k1B−L)(k2(B+CD)−R)

N−k2D2 + k1A− P , and ρk0 =
(k1B−L)2+λ2∥h′∥22

2(N−k2D2)
.
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k1 =
P
(
N − k2D

2
)
− LR

k2B(B + CD) + (A− ρ) (N − k2D2)−BR
, (5.6)

and

k0 =
(k1B − L)2 + λ2∥h′∥22

2ρ(N −D2k2)
. (5.7)

We can verify easily that k2 < 0. Hence, v is concave, a property that is essential for v to

be actually the value function. Next, we state the main result of this section, whose proof follows

essentially the same lines of that of Theorem 4 in Wang et al. (2020a), thanks to the analysis above

and the results obtained. We omit the details here.

Theorem 5.2. Consider the LQ control specified by (3.10)–(3.11), where we assume M ⩾ 0, N > 0,

MN > R2 and 9

ρ > 2A+ C2 +max

(
D2R2 − 2NR(B + CD)

N
, 0

)
.

Then the value function in (3.7) is given by

V (x) =
1

2
k2x

2 + k1x+ k0, x ∈ R,

where k2, k1 and k0 are as in (5.5)-(5.7), respectively. The optimal feedback policy has the distri-

bution function Π∗(·;x) whose quantile function is

QΠ∗(·;x)(p) =
(k2(B + CD)−R)x+ k1B − L

N − k2D2
+

λh′(1− p)

N − k2D2
, a.e. p ∈ (0, 1), x ∈ R, (5.8)

with the mean and variance given by

µ∗(x) =
(k2(B + CD)−R)x+ k1B − L

N − k2D2
and (σ∗(x))2 =

λ2 ∥h′∥22
(N − k2D2)2

, x ∈ R. (5.9)

Finally, the associated optimal state process {X∗
t }t⩾0 with X∗

0 = x under Π∗(·; ·) is the unique

solution of the SDE

dX∗
t =

[(
A+

B (k2(B + CD)−R)

N − k2D2

)
X∗

t +
B (k1B − L)

N − k2D2

]
dt

+

√[(
C +

D (k2(B + CD)−R)

N − k2D2

)
X∗

t +
D (k1B − L)

N − k2D2

]2
+

D2λ2 ∥h′∥22
(N − k2D2)2

dWt.

Some remarks are in order. First of all, (5.8) implies that for any Choquet regularizer, the

optimal exploratory distribution in the regularized LQ problem is uniquely determined by h′. Note

that h′(x) is the “probability weight” put on x when calculating the (nonlinear) Choquet expect-

ation; see e.g. Gilboa and Schmeidler (1989) and Quiggin (1982). Second, we can see from (5.9)

9The constraint on ρ is used not only to ensure k2 < 0 but also to show lim infT→∞ e−ρTE[(XΠ
T )2] = 0; see the

proof of Theorem 4 in Wang et al. (2020a) for more details.
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that the mean of the optimal distribution does not depend on the exploration represented by h

and λ, and only the variance does. In particular, the mean is exactly the same as the one in Wang

et al. (2020a) when the differential entropy is used as a regularizer, which is also identical to the

optimal control of the classical, non-exploratory LQ problem. Third, the mean of the exploration

distributions is a linear function of the state, while its variance is independent of the state.

These observations are intuitive in the context of RL. Different h’s correspond to different

Choquet regularizers; hence they will certainly affect the way and the level of exploration. Also,

the more weight put on the level of exploration, the more spreaded out the exploration becomes

around the current position. Furthermore, the second and third observations above show a perfect

separation between exploitation and exploration, as the former is captured by the mean and the

latter by the variance of the optimal exploration distributions. This property is also consistent with

the LQ case studied in Wang et al. (2020a) and Wang and Zhou (2020) even though a different

type of regularizer is applied therein.

Next, we investigate optimal exploration samplers under the LQ framework for some concrete

choices of h studied in Section 4. For convenience, we denote

σ̃∗(x) :=
σ∗(x)

∥h′∥2
≡ λ

N − k2D2
.

Theorem 5.2 yields that the mean of the optimal distribution is independent of h; so we will specify

only its quantile function and variance for each h discussed below. Recall that the expressions of

µ∗(x) and (σ∗(x))2 for a general h are given by (5.9).

(i) Let h(p) = (p∧ ε− εp), leading to Φh(Π) = ε(µε(Π)−µ(Π)); see Example 4.3. The optimal

policy is ε-greedy, given as

Π∗ ({µ∗(x) + (1− ε)σ̃∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L+ (1− ε)λ

N − k2D2

})
= ε,

and

Π∗ ({µ∗(x)− εσ̃∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L− ελ

N − k2D2

})
= 1− ε.

At each state x, the control policy takes a more “promising” action at µ∗(x)− εσ̃∗(x) with a large

probability 1 − ε, and tries an alternative action µ∗(x) + (1 − ε)σ̃∗(x) with probability ε.10 Since

∥h′∥22 = ε(1− ε), the variance of Π∗ is

(σ∗(x))2 =
ε(1− ε)λ2

(N − k2D2)2
.

10Precisely speaking, the policy presented here is not exactly the ε-greedy strategy in the classical two-arm bandit
problem because the two “arms” in our setting depend on the current state x and hence are dynamically changing
over time. However, at any point of time one needs to explore only two action points.
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(ii) Let h(p) be specified by the discrete exploration in (4.3), leading to

Φh(Π) = ε

(
n∑

i=1

µ+
ε (i,Π)−

2n∑
i=n+1

µ−
ε (i,Π)

)
,

where µ+
ε (i,Π) and µ−

ε (i,Π) are defined by (4.4) and (4.5); see Example 4.4. The optimal policy is

a (2n+ 1)-point distribution given as

Π∗ ({µ∗(x) + jσ̃∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L+ jλ

N − k2D2

})
=

ε

2n
,

for j ∈ {−n, . . . ,−1, 1, . . . , n}, and

Π∗ ({µ∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L

N − k2D2

})
= 1− ε.

Similarly, at each state x, the control policy takes a more “exploitative” action at µ∗(x) with a large

probability 1 − ε, and tries 2n alternative actions µ∗(x) + jσ̃∗(x) for j ∈ {−n, . . . ,−1, 1, . . . , n},
each with probability ε/(2n). Since ∥h′∥22 = ε(n+ 1)(2n+ 1)/6, the variance of Π∗ is given by

(σ∗(x))2 =
ε(n+ 1)(2n+ 1)λ2

6(N − k2D2)2
.

(iii) Let h(p) = −p log(p), corresponding to

Φh(Π) =

∫ ∞

0
Π([x,∞)) log(Π([x,∞)))dx;

see Example 4.5. The optimal policy is a shifted-exponential distribution given as

Π∗(u;x) = 1− exp

{
[(k2(B + CD)−R)x+ k1B − L]

λ
− 1

}
exp

{
−(N −D2k2)u

λ

}
.

Since ∥h′∥22 = 1, the variance of Π∗ is given by

(σ∗(x))2 =
λ2

(N − k2D2)2
.

(iv) Let h(p) =
∫ p
0 z(1 − s)ds where z is the standard normal quantile function. We have

Φh(Π) =
∫ 1
0 QΠ(p)z(p)dp; see Example 4.6. The optimal policy is a normal distribution given by

Π∗(·;x) = N

(
(k2(B + CD)−R)x+ k1B − L

N − k2D2
,

λ2

(N − k2D2)2

)
,

owing to the fact that ∥h′∥22 = 1. Recall that the optimal distribution is also Gaussian in Wang et

al. (2020a) using the entropy regularizer. This is an example of different regularizers leading to the
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same class of exploration samplers. On the other hand, examining more closely the Gaussian policy

derived above and the one in Wang et al. (2020a, eq. (40)), we observe that the means of the two

are identical but the variance of the former is the square of that of the latter. The reason of the

discrepency in variance is because the maximized mean–variance constrained Choquet regularizer

Φh(Π) is always linear in the given standard deviation σ whereas the corresponding maximized

entropy regularizer DE(Π) is logorithmic in σ.

(v) Let h(p) = p/(1− α)∧ 1 + (α− p)/(1− α)∧ 0 with α ∈ [1/2, 1). Then Φh(Π) = ESα(Π)−
ES−1−α(Π); see Section 4.3. The optimal policy is a three-point distribution given as

Π∗
({

(1− α)[(k2(B + CD)−R)x+ k1B − L] + λ

(1− α)(N − k2D2)

})
= 1− α,

Π∗
({

(k2(B + CD)−R)x+ k1B − L

N − k2D2

})
= 2α− 1,

and

Π∗
({

(1− α)[(k2(B + CD)−R)x+ k1B − L]− λ

(1− α)(N − k2D2)

})
= 1− α.

Since ∥h′∥22 = 2a/(1− α)2, the variance of Π∗ is given by

(σ∗(x))2 =
2αλ2

(1− α)2(N − k2D2)2
.

(vi) Let h(p) = αp1{p<1−α} + (1 − α)(1 − p)1{p⩾1−α} with α ∈ (0, 1). Then Φh(Π) =

minx∈RW1(Π, δx); see Section 4.4. The optimal feedback policy is an asymmetric two-point distri-

bution given as

Π∗
({

(k2(B + CD)−R)x+ k1B − L+ αλ

N − k2D2

})
= 1− α,

and

Π∗
({

(k2(B + CD)−R)x+ k1B − L− (1− α)λ

N − k2D2

})
= α.

Since ∥h′∥22 = α(1− α), the variance of Π∗ is given by

(σ∗(x))2 =
α(1− α)λ2

(N − k2D2)2
.

(vii) Let h(p) = p − p2. Then Φh(Π) = E[|X1 − X2|]/2; see Section 4.5. The optimal policy

Π∗(·;x) is a uniform distribution given as

U

[
(k2(B + CD)−R)x+ k1B − L− λ

N − k2D2
,
(k2(B + CD)−R)x+ k1B − L+ λ

N − k2D2

]
.
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Since ∥h′∥22 = 1/3, the variance of Π∗ is given by

(σ∗(x))2 =
λ2

3(N − k2D2)2
.

Note here the uniform distribution is on a state-dependent bounded region centering around

the mean µ∗(x), rather than on a pre-specified bounded region.

6 Relationship between classical and exploratory problems

In this section, similarly to the discussions in Wang et al. (2020a) and Wang and Zhou (2020),

we study the relationship between the classical (unregularized and non-exploratory) and exploratory

stochastic LQ problems. Since most results are parallel , we will make the exposition brief.

Recall the classical LQ problem (3.2) where the reward function is given by (3.11). The

explicit forms of optimal control and value function, denoted respectively by u∗ and V cl, were given

by Theorem 9-(b) of Wang et al. (2020a). We now provide the solvability equivalence between the

problems (3.2) and (3.7).

Theorem 6.1. The following two statements (a) and (b) are equivalent.

(a) The function V (x) = 1
2α2x

2 + α1x + α0 +
λ2∥h′∥22

2ρ(N−α2D2)
, x ∈ R, with α0, α1 ∈ R and α2 < 0,

is the value function of the exploratory problem (3.7) and the corresponding optimal feedback

policy has the distribution function Π∗(·;x) whose quantile function is

QΠ∗(·;x)(p) =
(α2(B + CD)−R)x+ α1B − L

N − α2D2
+

λh′(1− p)

N − α2D2
,

with the mean and variance given by

µ∗(x) =
(α2(B + CD)−R)x+ α1B − L

α2D2
and (σ∗(x))2 =

λ2 ∥h′∥22
(N − α2D2)2

.

(b) The function w(x) = 1
2α2x

2 + α1x + α0, x ∈ R, with α0, α1 ∈ R and α2 < 0, is the value

function of the classical problem (3.2) and the corresponding optimal feedback control is

u∗(x) =
(α2(B + CD)−R)x+ α1B − L

N − α2D2
.
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Proof. We rewrite the exploratory dynamics of X∗ under Π∗ as

dX∗
t =

(
AX∗

t +B
(α2(B + CD)−R)X∗

t + α1B − L

N − α2D2

)
dt

+

√(
CX∗

t +D
(α2(B + CD)−R)X∗

t + α1B − L

N − α2D2

)2

+
D2λ2 ∥h′∥22
(N − α2D2)2

dWt

≡ (A1X
∗
t +A2) dt+

√
(B1X∗

t +B2)
2
+ C1dWt,

(6.1)

where A1 := A+ B(α2(B+CD)−R)
N−α2D2 , A2 :=

B(α1B−L)
N−α2D2 , B1 := C + D(α2(B+CD)−R)

N−α2D2 , B2 :=
D(α1B−L)
N−α2D2 and

C1 :=
D2λ2∥h′∥22
(N−α2D2)2

. This has exactly the same form as that appearing in the proof of Theorem 9 in

Appendix C of Wang et al. (2020a), except that the values of C1 are different.11 Thus, the rest of

the proof is the same as in Wang et al. (2020a).

Note that, although the value function V of the exploratory problem (3.7) has been explicitly

given by Theorem 5.2, the above theorem focuses on the equivalence of solvability of the two

problems without having to know the explicit expression of the value function of either problem.

Hence we use generic letters (α0, α1, α2) instead of (k0, k1, k2) to express the value functions.

The following result shows that the Choquet-regularized LQ problem converges to its classical

counterpart if the exploration weight λ goes to zero.

Proposition 6.2. Assume that statement (a) (or equivalently, (b)) of Theorem 6.1 holds. Then,

for each x ∈ R,
lim
λ→0

Π∗(·;x) = δu∗(x)(·) weakly.

Moreover, for each x ∈ R, limλ→0

∣∣V (x)− V cl(x)
∣∣ = 0.

Proof. The proof is the same as that of Theorem 11 in Wang et al. (2020a), noting that

lim
λ→0

λ2∥h′∥22
2ρ(N − α2D2)

= 0.

Finally, we examine the “cost of exploration” – the loss in the original (i.e., non-regularized)

objective due to exploration, which was originally defined and derived in Wang et al. (2020a) for

problems with entropy regularization. The notion can be extended readily to the current Choquet

setting, namely, it is the difference between the two optimal value functions, adjusting for the

additional contribution coming from the Choquet regularizer of the optimal exploratory strategy:

Cu∗,Π∗
(x) := V cl(x)−

(
V (x)− λEx

[∫ ∞

0

e−ρt

(∫
U

uh′(1−Π∗
t (u))dΠ

∗
t (u)

)
dt

])
, (6.2)

for x ∈ R.
11There is a typo in the title of Appendix C of Wang et al. (2020a): it should be the proof of Theorem 9, instead

of Theorem 7.
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Theorem 6.3. Assume that statement (a) (or equivalently, (b)) of Theorem 6.1 holds. Then, the

exploration cost for the stochastic LQ problem is

Cu∗,Π∗
(x) =

λ2∥h′∥22
2ρ(N − α2D2)

, for x ∈ R. (6.3)

Proof. Let {Π∗
t }{t⩾0} be the open-loop control generated by the feedback control Π∗(·;x) given in

statement (a) with respect to the initial state x whose quantile function is

QΠ∗(·;x)(p) =
(α2(B + CD)−R)x+ α1B − L

N − α2D2
+

λh′(1− p)

N − α2D2
,

with the mean and variance given by

µ∗(x) =
(α2(B + CD)−R)x+ α1B − L

N − α2D2
and (σ∗(x))2 =

λ2 ∥h′∥22
(N − α2D2)2

.

By Lemma 4.1, it is straightforward to calculate∫
U
uh′(1−Π∗

t (u))dΠ
∗
t (u) =

λ||h′||22
N − α2D2

.

The desired result now follows immediately from the definition (6.2) and the expressions of V (·) in
(a) and V cl(·) in (b).

The costs of exploration derived in Wang et al. (2020a) and Wang and Zhou (2020) for the

entropy setting depend on only the temperature parameter and the discounting rate or time horizon

which are chosen by the agents, but not on the state dynamics or the reward coefficients which the

agents generally do not know about. In contrast, the derived exploration cost (6.3) for the Choquet

setting does depend on the unknown model parameters in a complicated way (mainly through α2),

which seems to be a disadvantage from the learning perspective. However, a bit of reflection reveals

that it is more important to know what impact the cost than to know the precise value of the cost.

For example, (6.3) suggests a way to strategically select the regularizers: other things being equal,

to reduce the exploration cost one should choose regularizers with smaller values of ∥h′∥2. Moreover,

Cu∗,Π∗
(x) ⩽ λ2∥h′∥22

2ρN noting α2 < 0; so the cost is bounded above by a constant that is inversely

proportional to the unknown parameter N , the control weight in the reward function. As a result,

when executing controls becomes increasingly costly, the exploration cost diminishes because the

agent is less motivated to do exploration. Furthermore, Cu∗,Π∗
(x) = λ∥h′∥2

2ρ σ∗(x), meaning that the

cost is proportional to the standardized deviation of the exploratory control, a feature that is not

presented in the entropy setting Wang et al. (2020a). Finally, the exploration cost (6.3) depends

on λ and ρ in a rather intuitive way: it increases as λ increases, due to more emphasis placed on

exploration, or as ρ decreases, indicating an effectively longer horizon for exploration.
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7 Conclusion

This paper develops a framework for continuous-time RL that can generate or indeed inter-

pret/explain many broadly practiced distributions for exploration. The main contributions are

conceptual/theoretical rather than algorithmic: Theorem 5.2 does not lead directly to an algorithm

to compute optimal policies, because the expression (5.8) involves the model parameters which are

unknown in the RL context. That said, our results do provide important guidance for devising RL

algorithms. First, Theorem 5.2 may imply a provable policy improvement theorem and hence result

in a q-learning theory analogous to that in the entropy-regularized setting recently established by

Jia and Zhou (2022c). Second, the explicit form (5.8) can suggest special structure of function

approximators for learning optimal distributions, thereby greatly reduce the number of parameters

needed for function approximation and improve the efficiency of the resulting learning algorithms.

Finally, the availability of a large class of Choquet regularizers makes it possible to compare and

choose specific regularizers to achieve certain objectives specific to each learning problem.

Another conceptual contribution of the paper is that it establishes a link between risk metrics

and RL. This paper is the first to do so, and the attempt is by no means comprehensive. The

rich literature on decision theory and risk metrics is expected to further bring in new insights and

directions into the RL study, not only related to regularization, but also in terms of motivating new

objective functions and axiomatic approaches for learning.

The theory developed in this paper opens up several research directions. Here we comment on

some. One is to develop the corresponding q-learning theory mentioned earlier. Another is to find

the “best Choquet regularizer” in terms of efficiency of the resulting RL algorithms. Yet another

problem is in financial application: to formulate a continuous-time mean–variance portfolio selection

problem with a Choquet regularizer and compare the performance with its entropy counterpart

solved in Wang and Zhou (2020).

Last but not least, the Choquet regularizers proposed in this paper are defined for distributions

on R, while many RL applications involve multi-dimensional action spaces. Because Choquet

regularizers are characterized by quantile additivity as in Theorem 2.4 while quantile functions

are not well defined for distributions on Rd with d > 1, it is very challenging to study Choquet

regularizers in high dimensions. To overcome the difficulty, the first possible attempt is to minic

(2.2) by defining, for distributions Π on Rd, the functional Φjoint
h (Π) =

∫
Rd h ◦ Π([x,∞))dx. This

formulation requires some further conditions on h ∈ H to guarantee desirable properties, and it is

unclear whether we can derive the corresponding optimizers in a form similar to Proposition 4.2.

Another possible idea is to use

Φsum
h (Π) =

d∑
i=1

∫
R
h ◦Πi([x,∞))dx or Φprod

h (Π) =

d∏
i=1

∫
R
h ◦Πi([x,∞))dx,
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where Πi is the i-th marginal distribution of Π. This formulation relies only on the marginal

distributions of Π, allowing us to utilize the existing results for Choquet regularizers on R. Either
formulation mentioned above requires a thorough analysis in a future study.
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