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Abstract

Quantile aggregation with dependence uncertainty has a long history in probability theory with wide

applications in finance, risk management, statistics, and operations research. Using a recent result on inf-

convolution of quantile-based risk measures, we establish new analytical bounds for quantile aggregation

which we call convolution bounds. Convolution bounds both unify every analytical result available in

quantile aggregation and enlighten our understanding of these methods. These bounds are the best

available in general. Moreover, convolution bounds are easy to compute, and we show that they are

sharp in many relevant cases. They also allow for interpretability on the extremal dependence structure.

The results directly lead to bounds on the distribution of the sum of random variables with arbitrary

dependence. We discuss relevant applications in risk management and economics.

Keywords: Range-Value-at-Risk, convolution, model uncertainty, dependence structure, duality

1 Introduction

The problem of quantile aggregation with dependence uncertainty refers to finding possible values of

quantiles of an aggregate variable S = X1+ · · ·+Xn (often representing a total risk, but it can also represent

the completion time of a task). The random variables X1, . . . , Xn have given marginal distributions, but

unspecified dependence structure. More precisely, given marginal distributions µ1, . . . , µn on R, the following

quantities are of interest:

sup{qt(X1 + · · ·+Xn) : Xi ∼ µi, i = 1, . . . , n} (1)

and

inf{qt(X1 + · · ·+Xn) : Xi ∼ µi, i = 1, . . . , n}, (2)

where qt(X) stands for a (left or right) quantile of a random variable X at probability level t ∈ [0, 1]. The

optimization problems (1) and (2) are, respectively, referred to as the worst-case and the best-case quantile

aggregation. An equivalent problem is to find the maximum and the minimum values of P(S ⩽ x) for a given

x ∈ R. This problem has a long history in probability theory; see Makarov (1981) and Rüschendorf (1982) for
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early results. It has also been studied in combinatorial optimization with applications in statistical testing

(e.g., Vovk and Wang (2020); Vovk et al. (2022)) and risk management (e.g., Embrechts et al. (2013, 2015));

see Section 2 and Appendix G for several applications. A key feature of quantile aggregation is the “arbitrary

dependence” structure imposed. Naturally, this level of generality leads to robust estimates, although these

can be conservative in some situations.

Because of the level of generality imposed both in marginal distributions and dependence, the quantile

aggregation problems (1) and (2) rarely have analytical tractability. In the literature, some analytical bounds

for the homogeneous setting (i.e., identical marginal distributions) are obtained by Embrechts and Puccetti

(2006), Wang et al. (2013) and Puccetti and Rüschendorf (2013), and approximating algorithms are available

such as the rearrangement algorithm (RA) in Puccetti and Rüschendorf (2012) and Embrechts et al. (2013).

The sharpness of these bounds is rarely obtained with the exception of Wang et al. (2013) and Puccetti

and Rüschendorf (2013) under some strong conditions. The RA only gives a lower bound on the quantile

aggregation, and its convergence is not guaranteed. As a variant of optimal transport problem, discrete

versions of problems (1) and (2) admit a linear programming reformulation, which involves exponentially

many variables, and is computationally difficult for moderate dimensions (e.g., n ⩾ 6); details are explained

in Appendix F. So, it is sensible to discuss bounds that can be shown to be sharp in continuous relaxations

as the ones that we consider here.

In this paper, we propose a class of bounds on Range-Value-at-Risk (RVaR) based on the inf-convolution

formulas introduced by Embrechts et al. (2018). We will call them convolution bounds. Since RVaR includes

the two regulatory risk measures, Value-at-Risk (VaR) and the Expected Shortfall (ES, also known as CVaR),

as special cases, the results on RVaR give rise to useful bounds on quantile aggregation problems (1) and (2).

As our main contributions, convolution bounds can provide by far the most convenient and sharpest

theoretical results on quantile aggregation in a wide range of practical settings, and they can be applied to

any marginal distributions, discrete, continuous, or mixed. As such, convolution bounds enjoy multifaceted

advantages. They can be applied to both the quantile and RVaR aggregations (Theorems 1 and A.1);

they combine different existing sharpness results of quantile aggregation and some new cases into a unified

form (Theorems 2 and A.2); they lead to tractable extremal dependence structures for interpretation or

approximation (Theorem 3), and they are computationally convenient and efficient. To the best of our

knowledge, there is no other theoretical result on quantile aggregation which cannot be covered by our

convolution bounds. Moreover, our results provide novel bounds on RVaR aggregation and establish sharpness

for the dual bound (Theorem 4.17 of Rüschendorf (2013)). Although the sharpness of convolution bounds

requires some conditions, their numerical performance suggests that they are generally very accurate even

in cases where sharpness cannot be theoretically proved. As we mentioned above, our results on quantile

aggregation can be directly applied to compute bounds on the distribution of the sum of random variables

with arbitrary dependence. Our technical development builds on some results on risk sharing in Embrechts

et al. (2018). Our target problem and theoretical contributions are very different from those on risk sharing,

which aim to optimally allocate a fixed total risk (random variable X) to different agents (several random
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variables that sum to X). Our objective, on the contrary, aims to solve the max/min values of the quantile

of the sum random variable given known marginals (the total risk is not fixed). This problem is called the

problem of robust risk aggregation in the literature; see Section 2.1.

We can relate and contrast our investigation to the recent fast-growing literature on distributionally

robust optimization (DRO) (e.g., Goh and Sim (2010); Delage and Ye (2010); Wiesemann et al. (2014)) and

chance constrained optimization (e.g., Nemirovski and Shapiro (2007), Chen et al. (2010) and Chapter 4 of

Shapiro et al. (2021)). Viewed as a distributional analog to (deterministic) robust optimization (Bertsimas

et al. (2011); Ben-Tal et al. (2009)), this literature tackles decision-making where the underlying parameter

in a stochastic problem is uncertain. This leads to the optimization of decision under the worst-case scenario,

where the worst case is over a region in which the uncertain parameter is believed to lie in, often known

as the uncertainty set or ambiguity set. In DRO, the uncertain parameter, and hence the decision variable

in the inner maximization, is the underlying probability distribution. Common constraints to characterize

the belief on uncertain distributions include neighborhood balls formed by statistical distances such as the

Wasserstein distance (Esfahani and Kuhn (2018); Gao and Kleywegt (2016); Blanchet and Murthy (2019))

and ϕ-divergence (Bertsimas et al. (2018); Ben-Tal et al. (2013)), moments and supports (Bertsimas and

Popescu (2005)), geometric shape (Popescu (2005)), and marginal information (Doan and Natarajan (2012);

Mishra et al. (2014)).1 The RVaR and quantile aggregation considered in this paper can be regarded as an

optimization over distributions having a marginal information constraint (i.e., the latest class listed above).

When placed as a constraint, quantile or percentile criterion can be converted into a chance or probabilistic

constraint (e.g., Delage and Mannor (2010)). The worst-case VaR under various settings of model uncertainty

is also popular in robust portfolio optimization; see e.g., El Ghaoui et al. (2003), Zhu and Fukushima (2009)

and Zymler et al. (2013). However, in contrast to the DRO literature which often focuses on solution

methods via convex reformulations, here our problem is knowingly computationally intractable, and our goal

is to obtain tractable analytical bounds that are provably tight in important cases.

The rest of the paper is organized as follows. Section 2 presents two motivating examples of robust

risk management and the O-ring model in economics (Kremer (1993)), and Section 3 contains technical

preliminaries. The (upper) convolution bounds on the quantile and RVaR aggregations are established in

Sections 4-5. A general extremal dependence structure and some explicit approximations are presented in

Section 6. The dual formulation of the quantile aggregation problems is studied in Section 7 (Theorem

4). The numerical advantages of the new bounds are carefully examined in Section 8. The two motivating

examples are revisited in Section 9, where we apply our main results and discuss their implications. Section

10 concludes the paper. To better illustrate our main ideas, the lower convolution bounds and related

discussions are postponed to Appendix A (in particular, Theorems A.1 and A.2). Appendices B-G include

1There is a large literature on DRO problems with various formulations, in addition to the few papers mentioned. We refer
to Blanchet et al. (2019a,b) and the references therein for recent developments on DRO with Wasserstein distance, and to Hu
and Hong (2013); Glasserman and Xu (2014); Jiang and Guan (2016); Lam (2016); Blanchet et al. (2020) for DRO problems
with ϕ-divergence. DRO formulated by moments and supports are also studied by, e.g., Delage and Ye (2010); Goh and Sim
(2010); Ghosh and Lam (2019). See also Van Parys et al. (2016); Lam and Mottet (2017); Li et al. (2019) for various settings
of DRO with geometric shape.
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all proofs, the counter-examples, technical discussions and other operations research applications.

2 Motivating examples

In this section, we list two examples where the quantile aggregation problems (1) and (2) become

natural in various contexts relevant to modern operations research. We will revisit these examples with our

theoretical results and numerical illustrations in Section 9.

2.1 Robust risk management

The worst-case value of a risk measure ρ evaluating an aggregate risk is extensively studied in the risk

management literature, known as the problem of robust risk aggregation. It is motivated by the context in

which data from different correlated products are separately collected and hence their dependence information

is not available; see Embrechts et al. (2013, 2015) and the references therein. As a specific example,2

the European Union has established a solidarity fund since 2002 to help member states in case of some

catastrophic events. While the loss curves are well estimated in each country, the fund has to pay for the

sum of all losses. An independence assumption cannot be justified for climate-related events, which may

affect several countries. Since an estimate of the copula is not available, the worst-case analysis in this

section provides some bounds on the total losses.

Suppose that there are n random losses X1, . . . , Xn with known marginal distributions µ1, . . . , µn and

unknown dependence structure. To calculate the regulatory margin conservatively, one relies on the worst-

case aggregate risk, that is,

sup{ρ(X1 + · · ·+Xn) : Xi ∼ µi, i = 1, . . . , n}.

If ρ is a convex risk measure such as an ES, then its worst-case value is easy to compute due to convexity; see

Rüschendorf (2013). In case ρ is the VaR at level t, this quantity is (1), which is highly non-trivial because

of non-convexity of the quantile. Due to the connection of quantiles to risk measures like VaR, quantile

aggregation is a popular problem in risk management (Section 8.4 of McNeil et al. (2015)), and many useful

technical results were developed in this literature, e.g., Embrechts and Puccetti (2006), Wang et al. (2013),

Embrechts et al. (2015) and Jakobsons et al. (2016). Our main results directly address this problem for the

cases that ρ is a VaR or RVaR; some numerical illustrations are presented in Section 8.2.

Next, we bring the worst-case risk calculation to the context of portfolio selection. The traditional

problem of VaR-based portfolio selection (e.g., Basak and Shapiro (2001)) is formulated as

maximize E[u(λ ·X)] over λ ∈ ∆n−1, subject to qt(λ · (−X)) ⩽ x,

2We thank an anonymous referee for providing the context in this example.
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where λ represents a portfolio weight vector, X represents future asset values, x is a constant risk limit,

u : R → R is a strictly concave and increasing utility function, t ∈ (0, 1) is close to 1, and ∆n−1 is the

standard n-simplex, that is,

∆n−1 =

{
(λ1, . . . , λn) ∈ [0, 1]n :

n∑
i=1

λi = 1

}
.

Note that the quantile constraint can be equivalently formulated as a chance (exceedance probability) con-

straint, popular in the literature of stochastic programming. This formulation requires a full specification

on the joint distribution of all the assets (X1, . . . , Xn) which can be difficult to obtain. In the presence

of dependence uncertainty, we consider the following robust optimization problem, for a given tuple µ of

marginal distributions,

maximize inf
X∼µ

E[u(λ ·X)] over λ ∈ ∆n−1, subject to sup
X∼µ

qt(λ · (−X)) ⩽ x, (3)

where X ∼ µ represents the marginal conditions Xi ∼ µi, i = 1, . . . , n. The problem (3) has robustness

implications. Assume that the marginal distribution is well-specified and we solve (3). Denote the optimal

solution by λ∗ and the optimal value by v∗. They satisfy the guarantee that qt(λ
∗ · (−X0)) ⩽ x and

E[u(λ∗ ·X0)] ⩾ v∗, where X0 follows the unknown true distribution. In other words, we guarantee that the

quantile constraint under the true distribution is satisfied, while the attained objective value under the true

distribution has at least a performance level v∗.

The problem (3) is challenging due to the non-convexity of VaR. Portfolio optimization with dependence

uncertainty has been studied by, e.g., Pflug and Pohl (2018), but there are no results on the case of VaR.

Our results on quantile aggregation can be applied to address this problem. As our analysis in Section 9

shows, although this worst-case approach is generally conservative, the obtained optimal strategies are quite

intuitive.

2.2 The O-ring model

The O-ring theory of economic development was proposed by Kremer (1993); see also the recent work

of Boerma et al. (2021) and the references therein. The O-ring model can be formulated in a stochastic

context. Assume that there are continuums of firms and n types of workers. Each firm requires n workers,

one in each type, to format a team in production. Let ω be a firm in the continuum. The product value

of the firm ω is denoted by Z(ω) ∈ (0,∞). For a type-i worker matched with the firm ω, the probability

to successfully complete his/her task is denoted by Xi(ω) ∈ (0, 1). A high-skilled worker has a higher value

of Xi. Among all firms, the value Z has a distribution µZ . Among all workers of type i, the value Xi has

a distribution µi. The product of a firm is considered successful if all n workers in the firm complete their

individual tasks (this explains the name of the O-ring model). It is customary as in Kremer (1993) to assume

that n individual events, in which the i-th worker completes his/her task, i = 1, . . . , n, are independent for a
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fixed firm. Hence, the production function of the firm ω is the product value times the probability of success,

that is,

y(X1(ω), . . . , Xn(ω), Z(ω)) = Z(ω) ·
n∏

i=1

Xi(ω). (4)

A classic problem is to seek a global matching between multiple heterogeneous workers into teams at het-

erogeneous firms in order to maximize E[y(X1, . . . , Xn, Z)] among all kinds of dependence structures with

the given marginal distributions. The solution of the optimal sorting is positively dependent; more precisely,

Z,X1, . . . , Xn are comonotonic. The interpretation is that the good workers (Xi all have a higher value)

should work together in a good firm (Z also has a higher value). This partially explains the assignment of

global economic industries between the developed and developing countries as argued by Kremer (1993).

As argued by Boerma et al. (2021, 2023), labour matching observed in the labour market does not

show the comonotonic pattern as implied by the classic O-ring theory. Below, we explain that a quantile

aggregation problem leads to a richer matching pattern which can be solved using the results in this paper.3

There is a recently increasing interest in quantiles as decision criteria in economics; see Rostek (2010) and

de Castro and Galvao (2019) for theoretical advances and de Castro et al. (2022) for experimental analysis.

Instead of optimizing the expected production in (4) across firms, one may be concerned about how

many productions have low values below a certain threshold y0 > 0, e.g., a level that is unacceptable by the

society. That is, one investigates the deficiency proportion minimization problem

min {P(y(X1, . . . , Xn, Z) ⩽ y0) : Z ∼ µZ , Xi ∼ µi, i = 1, . . . , n} , (5)

where the probability P measures the proportion of productions that falls below the deficiency threshold.

Since the problems of quantile aggregation and probability bounds translate to each other, for (5) it suffices

to solve the problem of quantile aggregation on log(Z) +
∑n

i=1 log(Xi). The extremal dependence structure

attaining (5) illustrates the optimal matching pattern, which is the topic of Section 6. Section 9 contains a

detailed illustration. Our results can also be applied to the model of Boerma et al. (2021), where the product

is considered successful if at least one worker, instead of all, is able to complete the task.

3 Notation and preliminaries

Let M be the set of (Borel) probability measures on R and M1 be the set of probability measures on R

with finite mean. For µ = (µ1, . . . , µn) ∈ Mn, let Γ(µ) be the set of probability measures on Rn that have

one-dimensional marginals µ1, . . . , µn. For a probability measure µ on Rn, define λµ ∈ M by

λµ(−∞, x] = µ({(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn ⩽ x}), x ∈ R.
3It is not our intention to say that the real labour market follows such a model; this issue would require a separate study.

Our model provides a way to generate rich matching patterns. This is also the approach taken by Boerma et al. (2021, 2023)
for different settings.
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In other words, λµ is the distribution measure of
∑n

i=1 Xi where the random vector (X1, . . . , Xn) follows µ.

Moreover, let Λ(µ) = {λµ : µ ∈ Γ(µ)}. Thus, Λ(µ) is the set of the aggregate distribution measures with

specified marginals µ. For t ∈ (0, 1], define the left quantile functional

q−t (µ) = inf{x ∈ R : µ(−∞, x] ⩾ t}, µ ∈ M,

and for t ∈ [0, 1), define the right quantile functional

q+t (µ) = inf{x ∈ R : µ(−∞, x] > t}, µ ∈ M.

The two extreme cases q+0 and q−1 correspond to the essential infimum and the essential supremum. Note

that q±t is defined on M instead of on the set of random variables as in the introduction. The most important

objects in this paper are the average quantile functionals which we define next. For 0 ⩽ β < β + α ⩽ 1,

define

Rβ,α(µ) =
1

α

∫ β+α

β

q+1−t(µ)dt, µ ∈ M. (6)

By definition, Rβ,α(µ) is the average of the quantile4 of µ over [1 − β − α, 1 − β]. The functional Rβ,α,

introduced originally by Cont et al. (2010), is called an RVaR by Wang et al. (2015). The value Rα,β(µ) in

(6) is always finite for β > 0 and α + β < 1, and it may take the value ∞ or −∞ in case one of β = 0 or

α + β = 1. For the special case in which β = 0 and α = 1, R0,1 is precisely the mean, and it is only well

defined on the set M1 of distributions with finite mean. The left and right quantiles can be obtained as

limiting cases of Rβ,α for β ∈ (0, 1) via

lim
α↓0

Rβ,α(µ) = q−1−β(µ) and lim
α↓0

Rβ−α,α(µ) = q+1−β(µ), µ ∈ M. (7)

Two other useful special cases are ES and the left-tail ES (LES), defined, respectively, at level α ∈ (0, 1) via

ESα(µ) = R0,α(µ) =
1

α

∫ 1

1−α

q+u (µ)du, µ ∈ M,

and

LESα(µ) = R1−α,α(µ) =
1

α

∫ α

0

q+u (µ)du, µ ∈ M.

As explained by Embrechts et al. (2018), the RVaR functional R bridges the gap between quantiles (VaR)

and ES, the two most popular risk measures in banking and insurance.

It is sometimes convenient to slightly abuse the notation by using Rβ,α(X) or qt(X) for Rβ,α(µ) or qt(µ)

where X ∼ µ. All random variables appearing in the paper live in an atomless probability space (Ω,F ,P).5

We use
∨n

i=1 αi for the maximum of real numbers α1, . . . , αn.

4We can use either q+ or q− in the integral, as the two quantities are the same almost everywhere on [0, 1].
5A probability space is atomless if there exists a continuously distributed random variable on this space.
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4 Convolution bounds on RVaR aggregation

Our starting point is that an upper bound on RVaR aggregation, which we shall refer to as convolution

bounds, can be obtained from an inequality on RVaR from Embrechts et al. (2018). More precisely, Theorem

2 of Embrechts et al. (2018) gives the following inf-convolution formula, for any integrable random variable

X and α1, . . . , αn, β1, . . . , βn ∈ [0, 1] with β + α ⩽ 1 where β =
∑n

i=1 βi and α =
∨n

i=1 αi,

Rβ,α (X) = inf

{
n∑

i=1

Rβi,αi(Xi) : X1 + · · ·+Xn = X

}
, (8)

where the infimum is taken over all random variables X1, . . . , Xn. As a consequence of (8), we have an RVaR

aggregation inequality

Rβ,α

(
n∑

i=1

Xi

)
⩽

n∑
i=1

Rβi,αi(Xi) (9)

for all X1, . . . , Xn, provided the right-hand side of (9) is well defined (not “∞ − ∞”).6 The objective of

Embrechts et al. (2018) is the risk sharing problem where the aggregate risk X and the preferences of the

agents are known (thus, α1, . . . , αn, β1, . . . , βn are given) and one optimizes
∑n

i=1 Rβi,αi
(Xi) over possible

allocations X1, . . . , Xn satisfying X1 + · · ·+Xn = X.

In this paper, we use the reverse direction of (9): we fix µ = (µ1, . . . , µn) ∈ Mn and t, s with 0 ⩽ t <

t + s ⩽ 1, and aim to find the worst-case value of the aggregate risk Rt,s(ν) over ν ∈ Λ(µ) using (9). For

any 0 ⩽ t < t+ s ⩽ 1, β0 ∈ [s, t+ s], ν ∈ Λ(µ), noting that Rt,s ⩽ Rt+s−β0,β0
, (9) leads to

Rt,s(ν) ⩽ R∑n
i=1 βi,β0

(ν) ⩽
n∑

i=1

Rβi,β0
(µi), (10)

where
∑n

i=1 βi = t + s − β0. Taking a supremum among all ν ∈ Λ(µ) and an infimum among all feasible

(β0, β1, . . . , βn) in (10), we get, for any fixed (t, s) with 0 ⩽ t < t+ s ⩽ 1,

sup
ν∈Λ(µ)

Rt,s(ν) ⩽ inf∑n
i=0 βi=t+s
β0⩾s>0

n∑
i=1

Rβi,β0(µi). (11)

The right-hand side of (11) depends only on the marginal distributions µ1, . . . , µn and (t, s), and thus we

obtain a novel upper bound on the worst-case RVaR aggregation. We shall refer to the bound in (11) as a

convolution bound, since it is obtained from the inf-convolution formula in (8). To simplify notation, for each

n ∈ N, let

∆n =

{
(β0, β1, . . . , βn) ∈ (0, 1)× [0, 1)n :

n∑
i=0

βi = 1

}
,

which is the set of vectors in the standard (n + 1)-simplex with positive first component. In all results, β

6The inequality in (9) is essentially Theorem 1 of Embrechts et al. (2018), which requires a condition on integrability. We
slightly generalize this result to probability measures without finite means, which will be useful for the generality of results
offered in this paper; see Lemma EC.1 in the appendix. Also note that our parameterization is slightly different from Embrechts
et al. (2018).
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represents (β0, β1, . . . , βn).

We formally present the convolution bound in Theorem 1 below. More importantly, we show that

this bound is indeed sharp under a few sets of conditions, and hence the convolution bounds are useful in

calculating worst-case values in risk aggregation problems. As far as we are aware of, Theorem 1 is the only

result in the literature on RVaR aggregation with given marginal distributions. The practically relevant case

of quantiles (s ↓ 0) will be discussed in detail in Section 5.

Throughout, by “admitting a decreasing density” we mean that the distribution has a left-bounded

support and it has a decreasing probability density function with respect to the Lebesgue measure on its

support. The case for “admitting an increasing density” is analogous.

Theorem 1. Let µ = (µ1, . . . , µn) ∈ Mn. For any t, s with 0 ⩽ t < t+ s ⩽ 1,

sup
ν∈Λ(µ)

Rt,s(ν) ⩽ inf
β∈(t+s)∆n

β0⩾s>0

n∑
i=1

Rβi,β0
(µi). (12)

Moreover, (12) holds as an equality in the following cases:

(i) t = 0;

(ii) each of µ1, . . . , µn admits a decreasing density beyond its (1− t− s)-quantile;

(iii)
∑n

i=1 µi

(
q+1−t−s(µi), q

−
1 (µi)

]
⩽ t+ s.

In Theorem 1, case (i) corresponds to the aggregation of ES, which is well known in the literature, e.g.,

Chapter 8 of McNeil et al. (2015). Case (ii) in Theorem 1 is the most useful as decreasing densities are

common in many areas of applications, including but not limited to finance and insurance. The proof of

this case is quite technical, and it relies on advanced results on robust risk aggregation established in Wang

and Wang (2016) and Jakobsons et al. (2016). Case (iii) corresponds to an assumption which allows for a

lower mutually exclusive (see Puccetti and Wang (2015) and also Definition EC.1 in Appendix B.1) random

vector following marginal distributions µ1, . . . , µn. Such a situation is not common, but it may happen in

the context of credit portfolio analysis, where each µi represents the distribution of loss from a defaultable

security which has a small probability of being positive. For instance, take t = s = 0.05, n = 50 and let µi be

Bernoulli distributions with µi({1}) = 0.001 for i = 1, . . . , n. In this example, the aggregate risk represents

the loss from a portfolio of defaultable bonds with default probability 0.001, and the condition in case (iii)

is satisfied because
∑n

i=1 µi

(
q+1−t−s(µi), q

−
1 (µi)

]
=
∑n

i=1 µi({1}) = 0.05 ⩽ t + s. The proof for case (iii) is

based on convenient properties of a mutually exclusive random vector. Moreover, we will show in Figure

2 (right panel) in Section 8 that the bound (12) is not sharp for marginals with increasing densities, even

for homogeneous marginals; however for quantiles (limits of RVaR), the bound becomes sharp for increasing

densities (Theorem 2).

Results that are symmetric to the upper convolution bounds are collected in Appendix A. For instance,

a lower bound on infν∈Λ(µ) Rt,s(ν), which is symmetric to Theorem 1, is given in Theorem A.1.
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Case (ii) in Theorem 1 involves conditional distributions above a certain quantile. For µ ∈ M and

t ∈ [0, 1), let µt+ be the probability measure given by

µt+(−∞, x] = max

{
µ(−∞, x]− t

1− t
, 0

}
, x ∈ R.

The probability measure µt+ is called the t-tail distribution of µ by Rockafellar and Uryasev (2002). In other

words, µt+ is the distribution measure of the random variable qU (µ) where U is a uniform random variable

on [t, 1]. Equivalently, µt+ is the distribution measure of µ restricted beyond its t-quantile. For example,

the statement in case (ii) that µ admits a decreasing density beyond its (1− t− s)-quantile is equivalent to

the one that µ(1−t−s)+ admits a decreasing density. Moreover, by direct computation, for fixed µ ∈ M and

t ∈ [0, 1), we have

Rβ,α(µ
t+) = R(1−t)β,(1−t)α(µ), for all 0 ⩽ β < β + α ⩽ 1;

q−u (µ
t+) = q−t+(1−t)u(µ), for all u ∈ (0, 1].

(13)

Using (13), we obtain Proposition 1 below based on Theorem 4.1 of Liu and Wang (2021). This result is

useful in the proof of Theorem 1. For µ = (µ1, . . . , µn) ∈ Mn and t ∈ [0, 1), denote by µt+ = (µt+
1 , . . . , µt+

n ).

Proposition 1. For µ = (µ1, . . . , µn) ∈ Mn, t ∈ [0, 1) and s ∈ (0, 1− t], we have

sup
ν∈Λ(µ)

Rt,s(ν) = sup
ν∈Λ(µ(1−t−s)+)

LES s
t+s

(ν)

and

sup
ν∈Λ(µ)

q+t (ν) = sup
ν∈Λ(µt+)

q+0 (ν).

Proposition 1 suggests that for the worst-case problems of RVaR aggregation, it suffices to consider the

one started from quantile level 0, i.e. the LES aggregation. In particular, for the worst-case problems of

quantile aggregation, it suffices to consider the one at quantile level 0, i.e. the problems supν∈Λ(µt+) q
+
0 (ν)

for generic choices of µ. This result will be used repeatedly in our discussions, and it will be the general

approach taken in the proof of our main results.

5 Convolution bounds on quantile aggregation

5.1 Convolution bounds

In Theorem 2 below we summarize bounds on supν∈Λ(µ) q
+
t (ν). Most cases can be obtained by sending

s to 0 and replacing t with (1 − t) in Theorem 1, but a notable difference is that the convolution bounds

are sharp for both decreasing and increasing densities, for n = 2, and for two types of mutual exclusivity

(see Appendix B.1). This is in drastic contrast to the RVaR convolution bounds which are only sharp for

decreasing densities or upper mutual exclusivity (see Figure 2). Results on lower bounds on q−t (ν) are put

in Appendix A. In particular, Theorem A.2 is symmetric to Theorem 2.
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Theorem 2. For µ ∈ Mn and t ∈ [0, 1), we have

sup
ν∈Λ(µ)

q+t (ν) ⩽ inf
β∈(1−t)∆n

n∑
i=1

Rβi,β0
(µi). (14)

Moreover, (14) holds as an equality in the following cases:

(i) n ⩽ 2;

(ii) each of µ1, . . . , µn admits a decreasing density beyond its t-quantile;

(iii) each of µ1, . . . , µn admits an increasing density beyond its t-quantile;

(iv)
∑n

i=1 µi

(
q+t (µi), q

−
1 (µi)

]
⩽ 1− t;

(v)
∑n

i=1 µi

[
q+t (µi), q

−
1 (µi)

)
⩽ 1− t.

Remark 1. If µ1, . . . , µn have positive densities on their supports, then supν∈Λ(µ) q
−
t (ν) = supν∈Λ(µ) q

+
t (ν)

for all t ∈ (0, 1); see Lemma 4.5 of Bernard et al. (2014). Hence, using q−t (ν) or q
+
t (ν) in Theorem 2 is not

essential to our discussions.

Remark 2. The classic probability bound P(
∑n

i=1 Xi ⩾
∑n

i=1 zi) ⩽
∑n

i=1 P(Xi ⩾ zi) for all z1, . . . , zn ∈ R,

is a special case of Theorem 2 by converting quantile bounds into probability bounds. To see this, let µi be

the distribution of Xi and ti = P(Xi ⩾ zi) for i ∈ {1, . . . , n}, and let ν be the distribution of
∑n

i=1 Xi. The

bound (14) gives q+1−
∑n

i=1 ti
(ν) ⩽

∑n
i=1 q

−
1−ti

(µi) ⩽
∑n

i=1 zi. This implies P(
∑n

i=1 Xi ⩾
∑n

i=1 zi) ⩽
∑n

i=1 ti.

In the literature, some sharp bounds on quantile aggregation for decreasing densities are obtained by

Wang et al. (2013) and Puccetti and Rüschendorf (2013) in the homogeneous case (µ1 = · · · = µn) and

Jakobsons et al. (2016) in the heterogeneous case. For the heterogeneous case, the method of Jakobsons

et al. (2016) involves solving a system of (n + 1)-dimensional implicit ODE (equations (E1) and (E2) of

Jakobsons et al. (2016)), which requires a highly complicated calculation. In contrast, our result in Theorem

2 gives sharp bounds based on the minimum or maximum of an (n+ 1)-dimensional function.

In the homogeneous case µ1 = · · · = µn, as an immediate consequence of Theorem 2, we obtain the

following reduced bounds in which one replaces infβ∈(1−t)∆n

∑n
i=1 Rβi,β0

(µi) by a one-dimensional optimiza-

tion problem. We show that, in some homogeneous case, the sharp result in Theorem 2 can be achieved

by the reduced bound. A proof of this result follows from a combination of Theorem 2 and Proposition 1

of Embrechts et al. (2014). In what follows, Λn(µ) = Λ(µ, . . . , µ) is the set of the aggregate distribution

measures with the homogeneous marginal µ.

Proposition 2 (Reduced convolution bounds). For µ ∈ M and t ∈ [0, 1), we have

sup
ν∈Λn(µ)

q+t (ν) ⩽ inf
α∈(0,(1−t)/n)

nRα,1−t−nα(µ) = inf
α∈(0,(1−t)/n)

n

1− t− nα

∫ 1−α

t+(n−1)α

q−u (µ)du. (15)

Moreover, (15) holds as an equality if µ admits a decreasing density beyond its t-quantile.
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First, it is clear that the convolution bound (14) is better (smaller) than the reduced one (15), while

the latter is easier to compute. They are not generally equal. Second, in case µ admits a decreasing density,

Proposition 8.32 of McNeil et al. (2015) (reformulated from Wang et al. (2013, Theorem 3.4)) gives

sup
ν∈Λn(µ)

q+t (ν) =
n

1− t− nα

∫ 1−α

t+(n−1)α

q−u (µ)du

for some α ∈ [0, (1− t)/n). Together with (14), we get the sharpness of (15).

Since quantiles commute with strictly increasing transforms, Theorem 2 leads to a multiplicative version

of the convolution bounds, which can be useful for some applications, in particular, the O-ring theory in

Section 2.2 and Section 9. Recall that for any random variable X following distribution µ and any Borel

function f , the random variable f(X) has distribution µ ◦ f−1 where f−1 is the set-valued inverse of f .

Proposition 3. For µ1, . . . , µn ∈ M with support included in (0,∞), we have

sup
Xi∼µi,i=1,...,n

q+t

(
n∏

i=1

Xi

)
⩽ exp

(
inf

β∈(1−t)∆n

n∑
i=1

Rβi,β0
(µi ◦ exp)

)
, t ∈ [0, 1). (16)

Moreover, (16) holds as an equality in the following cases (denote by f1, . . . , fn the densities of µ1, . . . , µn):

(i) n ⩽ 2;

(ii) for each i = 1, . . . , n, x 7→ xfi(x) is decreasing beyond the t-quantile of µi;

(iii) for each i = 1, . . . , n, x 7→ xfi(x) is increasing beyond the t-quantile of µi;

(iv)
∑n

i=1 µi

(
q+t (µi), q

−
1 (µi)

]
⩽ 1− t;

(v)
∑n

i=1 µi

[
q+t (µi), q

−
1 (µi)

)
⩽ 1− t;

5.2 Technical discussions

We do not expect that the formula (14) always gives sharp bounds, and this is a situation similar to

Theorem 1. A counter-example of non-sharpness of the bounds in Theorem 2 is presented in Section 8.2 with

some discrete marginal distributions (see also Example EC.1 in Appendix C). Nevertheless, in most cases,

the bounds in Theorem 2 work quite well, as illustrated by the numerical examples later. In some special

cases, the reduced bounds in Proposition 2 are equivalent to those in Theorem 2. We shall show this does

not generally hold (e.g., for some distribution with increasing density) later in Figure 3 (right panel).

In the following proposition, we note that supν∈Λ(µ) q
+
t (ν) is always attainable as a maximum, which is

implied by Lemma 4.2 of Bernard et al. (2014).

Proposition 4. For µ ∈ Mn and t ∈ [0, 1), there exists ν+ ∈ Λ(µ) such that

sup
ν∈Λ(µ)

q+t (ν) = q+t (ν+).
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We next turn to the right-hand side of (14). Because of the continuity of Rα,β in α, β ∈ [0, 1], the infimum

in infβ∈(1−t)∆n

∑n
i=1 Rβi,β0(µi) for any t ∈ [0, 1) is attainable in the closure ∆n of ∆n; see Appendix D for

details.

To address computational efficiency, we first focus on the case of monotone densities which are sufficient

for (ii) and (iii) in Theorem 2 for any t. These two assumptions will be used repeatedly later.

(DD) each of µ1, . . . , µn admits a decreasing density;

(ID) each of µ1, . . . , µn admits an increasing density.

Under condition (DD) or (ID), we can formally argue that the convolution bound is easy to compute. For

an illustration, consider the infimum problem in (14) with the condition (DD); here we take t = 0 without

loss of generality due to Proposition 1. For a fixed β0 ∈ (0, 1), note that the mapping

ϕi : βi 7→
1

β0

∫ 1−βi

1−βi−β0

q−u (µi)du

is convex, because u 7→ q−u (µi) is convex under (DD) which implies that βi 7→ q−1−βi−β0
(µi) − q−1−βi

(µi) is

increasing. Therefore, for fixed β0,

(β1, . . . , βn) 7→
n∑

i=1

Rβi,β0
(µi) =

n∑
i=1

1

β0

∫ 1−βi

1−βi−β0

q−u (µi)du

is convex since it is the sum of convex functions in each component. The full optimization can be con-

verted to an n-dimensional convex minimization problem over (β1, . . . , βn) and a one-dimensional problem

of optimization over β0, which is not necessarily convex. The objective is continuous in β0, so that the

one-dimensional problem is computable by suitable discrete approximation up to any specified accuracy. In

case (ID) holds, the objective is concave in (β1, . . . , βn), and its solution always lies on the boundary of the

simplex (1−β0)∆n−1. When (DD) and (ID) do not hold, the above optimization may be more complicated,

but in our numerical experiments in Section 8, they are always solved quite fast and produce results that are

consistent with other methods. The convolution bound is also compared with a discrete linear programming

formulation in Appendix F, showing its advantages in computational time and feasibility in high dimensions.

The next proposition concerns the truncation of the marginal distributions. When calculating the

supremum of q+0 for the aggregation of non-negative risks, one can safely truncate the marginal distributions

at a high threshold. This result is convenient when applying several results in the literature formulated for

distributions with finite mean or a compact support, including Theorem 1 of Embrechts et al. (2018). For

a probability measure µ ∈ M and a constant m ∈ R, let µ[m] be the distribution of X ∧ m where X ∼ µ

and x ∧ y stands for the minimum of two numbers x and y. Further denote that µ[m] = (µ
[m]
1 , . . . , µ

[m]
n ) for

µ = (µ1, . . . , µn) ∈ Mn.
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Proposition 5. For any distributions µ1, . . . , µn on [0,∞], t ∈ [0, 1), and m ⩾
∑n

i=1 q
+
1−(1−t)/n(µi), we have

sup
ν∈Λ(µ)

q+t (ν) = sup
ν∈Λ(µ[m])

q+t (ν). (17)

5.3 Quantile aggregation at levels 0 and 1

Now we restate the specific cases of quantile aggregation q+0 and q−1 , where an analogous result to

Theorem 2 is used; see Appendix A.

Proposition 6 (Convolution bounds at levels 0 and 1). For µ ∈ Mn, we have

sup
ν∈Λ(µ)

q+0 (ν) ⩽ inf
β∈∆n

n∑
i=1

Rβi,β0
(µi), (18)

and

inf
ν∈Λ(µ)

q−1 (ν) ⩾ sup
β∈∆n

n∑
i=1

R1−βi−β0,β0
(µi). (19)

The two bounds are both sharp if n ⩽ 2, or each of µ1, . . . , µn admits a decreasing (respectively, increasing)

density on its support.

If µ1, . . . , µn have finite means, the inequalities in (18) and (19) can be combined into a chain of

inequalities.

Proposition 7. For µ = (µ1, . . . , µn) ∈ Mn
1 , we have

inf
ν∈Λ(µ)

q−1 (ν) ⩾ sup
β∈∆n

n∑
i=1

R1−βi−β0,β0
(µi) ⩾

n∑
i=1

R0,1(µi) ⩾ inf
β∈∆n

n∑
i=1

Rβi,β0
(µi) ⩾ sup

ν∈Λ(µ)

q+0 (ν). (20)

The tuple of distributions µ ∈ Mn is said to be jointly mixable (JM) if δC ∈ Λ(µ) for some C ∈ R; see

Appendix E. Proposition 7 implies that (18) and (19) become sharp if µ ∈ Mn
1 is JM. If µ1, . . . , µn do not

have finite means, the relationships in (20) may not hold generally, which is illustrated by Example EC.3 in

Appendix C.

6 Approximation of the extremal dependence

A significant advantage of the convolution bounds on the quantile aggregation problem is that we are able

to visualize, in certain cases, the extremal dependence structure corresponding to the convolution bounds.

In view of Proposition 1, for the problems of worst-case quantile aggregation, it suffices to consider the one

at quantile level 0, i.e., supν∈Λ(µ) q
+
0 (ν). Similarly, for the problems of the best-case quantile aggregation,

it suffices to consider the one at quantile level 1, i.e., infν∈Λ(µ) q
−
1 (ν) as in Proposition A.1. The supremum

and the infimum can be replaced by a maximum and a minimum, respectively, as implied by Proposition 4.
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We will describe a dependence structure, which approximately solves maxν∈Λ(µ) q
+
0 (ν) and minν∈Λ(µ) q

−
1 (ν)

in certain cases. If the marginal distributions all have decreasing densities as in Theorem 2 (ii) and Propo-

sition 6, then this dependence structure precisely attains both the maximum and the minimum above.

6.1 Extremal dependence structures: Monotone densities

We first focus on the case of monotone densities. To describe the optimal dependence structure, we

divide the sample space Ω into (n+ 1) disjoint events A1, . . . , An, B; in other words, Ω = A1 ∪ · · · ∪An ∪B.

These sets have the following interpretations:

(B) “body”: the event that all individual random variables take the “medium value” of their distributions

and the sum of them is a constant;

(Ai) “i-th right tail”: the event that the i-th individual random variable takes a “large value” and the other

(n− 1) random variables take “small values”.

Intuitively, the dependence structure is summarized as “joint mix” (Wang and Wang (2016); see Ap-

pendix E) and “(approximate) mutual exclusivity”. Moreover, Ai is a tail event of the i-th random variable

Xi by Wang and Zitikis (2021). The above dependence structure is not completely specified, as one further

needs to properly specify what we meant by “large value”, “medium value” and “small value”, and on each

event how the random variables are constructed and dependent. Unfortunately, it is in general not possible

to provide an analytical description, if the marginal distributions are heterogeneous. In the homogeneous

case with a decreasing density, an analytical description is possible, as discussed in Wang and Wang (2011).

More explicit formulas of this dependence structure will be discussed in Section 6.2.

An optimal structure for the problem of both maxν∈Λ(µ) q
+
0 (ν) and minν∈Λ(µ) q

−
1 (ν) admits the above

dependence structure when (DD) holds, as observed by Jakobsons et al. (2016); a formal and more general

result on this observation is Theorem 3 below. The optimality comes from a result of Jakobsons et al. (2016)

where it is shown that the sum under this dependence structure is the minimum with respect to convex order

given marginal distributions. Moreover, this dependence structure leads to an approximation to optimality

in many relevant situations that (DD) does not hold; some numerical results will be shown in Section 8.3.

We note that the optimal structure for maxν∈Λ(µ) q
+
0 (ν) or minν∈Λ(µ) q

−
1 (ν) is not unique in general,

and in this section we only describe one such candidate. In all our follow-up discussions, we will focus on

this candidate.

For now, assume that all marginal distributions have decreasing densities, i.e., (DD) holds. Our method

of convolution bounds allows us to determine the existence of the above events A1, . . . , An, B from the

optimizing vector β. We explain this below. For µ = (µ1, . . . , µn) ∈ Mn and β = (β0, β1, . . . , βn) ∈ ∆n, we

denote by

R+
β (µ) =

n∑
i=1

Rβi,β0
(µi). (21)
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Figure 1: Quantile functions for the sum. Left panel: decreasing densities (n = 3, quantile functions are
6
5r(t),

4
5r(t) and 4

5r(t), where r(t) = − log(ε + (1 − ε)(1 − t)), t ∈ [0, 1]) and ε = 0.0001); Right panel:
increasing densities (n = 3, quantile functions are − 6

5r(1 − t), − 4
5r(1 − t) and − 4

5r(1 − t), t ∈ [0, 1].). The
events A1, . . . , An, B are described in Theorem 3.
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The bound (14) is sharp in our setting by Theorem 2. Suppose that β ∈ ∆n is the optimizer to (14), that is,

max
ν∈Λ(µ)

q+0 (ν) = inf
β′∈∆n

R+
β′(µ) = R+

β (µ).

We describe a classification on the existence of A1, . . . , An, B based on the obtained value of β.

1. If β1 = · · · = βn = 0, then the optimal dependence structure is “a full joint mix”; that is, the individual

random variables add up to a constant on the whole probability space. Only the event B occurs; all

events Ai are of zero probability.

2. If βi ̸= 0 for i ∈ I where the index set I is a non-empty proper subset of {1, . . . , n}, then the events of

“body” and “i-th right tail” occur; i.e., the possible events are {B,Ai : i ∈ I}.

3. If βi ̸= 0 for all i = 1, . . . , n, then all (n+ 1) events occur; i.e., the possible events are {B,A1, . . . , An}.

To show the above classification statement, note that βi indicates the maximum value i-th random variable

Xi takes on the event B. More precisely, the largest value of Xi takes on B is q1−βi
(µi). Hence, βi = 0

means that there is no “large” values of Xi that is considered as a “tail”, and thus Ai does not occur. The

quantile function of the corresponding sum is illustrated in an example by the left panel of Figure 1.

For a general t ∈ (0, 1), to build a corresponding dependence structure for maxν∈Λ(µ) q
+
t (ν), we need

to build the above events B and A1, . . . , An for the conditional distributions µt+
1 , . . . , µt+

n . These events will

take up probability 1− t in total. The remaining event C has probability t, which can specified as

(C) “feet”: the event that all individual random variables take small values below their t-quantile.

Conditional on the event C, the dependence structure of (X1, . . . , Xn) no longer matters, as it does not
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contribute to the quantile of the sum. For the optimality, it suffices to require (DD) to hold for µt+
1 , . . . , µt+

n .

Similarly we can deal with the case of minν∈Λ(µ) q
−
t (ν).

The above discussions also apply to the setting with (ID) in place of (DD) by replacing each involved

random variable Xi with its negation −Xi. In this case, a similar dependence structure can be constructed

based on an event B of “body” and n events A1, . . . , An of “left tail”. An example is presented in the right

panel of Figure 1. We omit the details here.

In general, if (DD) and (ID) do not hold, but the densities are approximately increasing or decreasing,

then we can still use the above construction, and obtain an approximately optimal structure. This will be

discussed next.

6.2 The general case and an approximation

Section 6.1 contains a description of a class of dependence structures that leads to the optimized value

of maxν∈Λ(µ) q
+
t (ν) under the assumption (DD) or (ID). In this section, we discuss more on this class of

dependence structures and show that some further specifications may be used as an approximation for the

cases without (DD) and (ID).

In the following, for 0 ⩽ α < β ⩽ 1 and any probability measure µ, we let µ[α,β] be the probability

measure given by

µ[α,β](−∞, x] =
(min {µ(−∞, x], β} − α)+

β − α
, x ∈ R.

Equivalently, µ[α,β] is the distribution measure of the random variable qV (µ) where V ∼ U[α, β], a uniform

random variable on [α, β]. In particular, µ[α,1] = µα+ is the α-tail distribution of µ in Section 4.

We say that a random vector (X∗
1 , . . . , X

∗
n) attains the maximum of q+0 for µ = (µ1, . . . , µn) ∈ Mn if

X∗
1 ∼ µ1, . . . , X

∗
n ∼ µn and q+0 (X

∗
1+· · ·+X∗

n) = maxν∈Λ(µ) q
+
0 (ν). The existence of the maximizer ν+ ∈ Λ(µ)

is guaranteed by Proposition 4.

Next, we introduce a special class of dependence structures in a way similar to Section 6.1. Fix β =

(β0, β1, . . . , βn) ∈ ∆n and µ = (µ1, . . . , µn) ∈ Mn. Let the random vector (X∗
1 , . . . , X

∗
n) satisfy

X∗
i = Zi1Ai

+Wi1Bc\Ai
+ Yi1B , i = 1, . . . , n,

where (A1, . . . , An, B) is a partition of Ω independent of all others, and P(Ai) = βi for each i,

Zi ∼ µ
[1−βi,1]
i , Wi ∼ µ

[0,1−β0−βi]
i , Yi ∼ µ

[1−β0−βi,1−βi]
i , and

∑n
i=1 Yi = R+

β (µ) almost surely.

(22)

The existence of (X∗
1 , . . . , X

∗
n) satisfying (22) requires some conditions, which will be clear from Theorem 3

below. The construction in (22) is not unique. In particular, the dependence among (Z1, . . . , Zn,W1, . . . ,Wn)

is not specified. A specification may be given by


X∗

i = q−
1− βi

1−β0
U
(µi)1{U∈[0,1−β0),K=i} + q−1−β0−βi

1−β0
U
(µi)1{U∈[0,1−β0),K ̸=i} + Yi1{U∈[1−β0,1]}

for each i = 1, . . . , n, where U ∼ U[0, 1], P(K = i) = βi

1−β0
for i = 1, . . . , n,

the random vector (Y1, . . . , Yn) is coupled by (22), and U,K, (Y1, . . . , Yn) are independent.

(23)

17



Theorem 3. Suppose that µ = (µ1, . . . , µn) ∈ Mn and maxν∈Λ(µ) q
+
0 (ν) = R+

β (µ) for some β ∈ ∆n. There

exists a random vector (X∗
1 , . . . , X

∗
n) of the form (22) attaining the maximum of q+0 for µ. Moreover, if

β0 = 1, then µ is jointly mixable; if β0 ̸= 1, β1, . . . , βn > 0 and the minimum of each of the functions

hi : (0, 1− β0] → R,

hi(u) = q−
1− βi

1−β0
u
(µi) +

∑
j ̸=i

q−1−β0−βj
1−β0

u
(µj), i = 1, . . . , n, (24)

is attained at u = 1− β0, then (X∗
1 , . . . , X

∗
n) in (23) attains the maximum of q+0 for µ.

Theorem 3 gives useful information on the worse-case dependence structure attaining maxν∈Λ(µ) q
+
0 (ν)

based on our knowledge of minimizer β. The form (23) gives a specification of all n “right tail” events: for

each i = 1, . . . , n, on the “i-th right tail” event Ai, the (n− 1) other random variables are all comonotonic,

while they are counter-monotonic to the i-th individual random variable. Theorem 3 can be applied to

arbitrary quantile levels t by considering the conditional distributions µt+
1 , . . . , µt+

n .

In the homogeneous case (µ1 = · · · = µn), the condition for optimality of the dependence structure

(23) holds for any distribution with a decreasing density if β0 ̸= 1 and β1 = · · · = βn = 1−β0

n . In this case,

h1 = · · · = hn on (0, 1 − β0]. According to Theorem 3.2 and Proposition 3.4 of Bernard et al. (2014), h1 is

decreasing on (0, 1 − β0]. Theorem 3 then shows that the corresponding measure ν+ attains the worst-case

quantile aggregation. In the heterogeneous case, we give some numerical examples to show the performance

of (23) in Section 8.

The dependence structure (22) is motivated by the discussions in Section 6.1 on the setting (DD), and

hence it performs well for distributions with approximately decreasing densities. For the setting (ID), the

optimal β in (14) for maxν∈Λ(µ) q
+
0 (ν) is often given by β0 = 0, βi = 1 for some i, βj = 0 for other j ̸= i.

Hence, in (22), we have P(Ai) = 1 for some i and P(Ac) = P(Aj) = 0 for other j ̸= i. In this case, although

Theorem 3 holds true, the dependence in (22) is completely unspecified. Nevertheless, for approximately

increasing densities, an alternative explicit dependence structure can be similarly designed based on an event

B of “body” and n events A1, . . . , An of “left tail”. We omit the details.

The only unspecified part in (23) is the design of Y1, . . . , Yn which add up to a constant. Such random

variables are known to exist under some conditions of joint mixability, but they are not easy to explicitly

construct or to simulate except for some very simple cases such as uniform marginal distributions. Below, we

give an explicit suboptimal dependence structure as an approximation of (23) without the vector (Y1, . . . , Yn):

X∗
i =


q−
1− βi

1−β0
U
(µi)1{K=i} + q−1−β0−βi

1−β0
U
(µi)1{K ̸=i}, if β0 ̸= 1,

q−
1− 1

nU
(µi)1{K=i} + q−n−1

n U
(µi)1{K ̸=i}, if β0 = 1,

i = 1, . . . , n, (25)

where U,K are given in (23) and we further set P(K = i) = 1
n , i = 1, . . . , n in case β0 = 1 (i.e., set

βi/(1− β0) = 1/n). For (X∗
1 , . . . , X

∗
n) in (25), it is easy to see that X∗

i ∼ µi for each i = 1, . . . , n. If β0 ̸= 1,
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using hi in (24), the essential infimum of
∑n

i=1 X
∗
i is given by

min
1⩽i⩽n

min
0⩽x⩽1

hi(x) = min
1⩽i⩽n

min
0⩽x⩽1

q−
1− βi

1−β0
x
(µi) +

∑
j ̸=i

q−1−β0−βj
1−β0

x
(µj)

 . (26)

Since X∗
1 , . . . , X

∗
n are obtained by explicit construction, the above infimum (26) serves as a lower bound for

supν∈Λ(µ) q
+
0 (ν). If β0 ̸= 1, the first-order condition in the optimality of β gives hi(1 − β0) = R+

β (µ) for

i = 1, . . . , n satisfying βi ̸= 0; see (EC.17) in Appendix B.

The dependence structure in (25) has an explicit formula as soon as β0 is computed, so it has at

most the same computational complexity as computing the convolution bound; see the explanations of the

computational issues in the numerical results in Section 8.

This construction can be further improved as follows. For any β′ ∈ ∆n, define

H(β′) = min
1⩽i⩽n

min
0⩽x⩽1

hi(x;β
′) = min

1⩽i⩽n
min

0⩽x⩽1

q−
1−

β′
i

1−β′
0
x
(µi) +

∑
j ̸=i

q−
1−β′

0−β′
j

1−β′
0

x
(µj)

 .

We then solve another n-dimensional optimization problem

sup
β′∈∆n

H(β′). (27)

The maximum point is denoted by γ = (γ0, γ1, . . . , γn) ∈ ∆n. Hence, we have the suboptimal dependence

structure

X∗
i =


q−
1− γi

1−γ0
U
(µi)1{K=i} + q−1−γ0−γi

1−γ0
U
(µi)1{K ̸=i}, if γ0 ̸= 1,

q−
1− 1

nU
(µi)1{K=i} + q−n−1

n U
(µi)1{K ̸=i}, if γ0 = 1,

i = 1, . . . , n, (28)

where U,K are independent, U ∼ U[0, 1] and P(K = i) = γi

1−γ0
, i = 1, . . . , n if γ0 ̸= 1 and P(K = i) = 1

n ,

i = 1, . . . , n if γ0 = 1. For (X∗
1 , . . . , X

∗
n) in (28), it is easy to see that X∗

i ∼ µi for each i = 1, . . . , n and the

essential infimum of
∑n

i=1 X
∗
i is H(γ).

It turns out that (25) gives a good approximation for the maximum value of q+0 in many cases and (28)

does even better. The numerical performance will be illustrated in Section 8. Note that

H(β) ⩽ H(γ) ⩽ sup
ν∈Λ(µ)

q+0 (ν) ⩽ R+
β (µ). (29)

As a result, we provide two-side approximation intervals [H(β), R+
β (µ)] or [H(γ), R+

β (µ)] for true value of

supν∈Λ(µ) q
+
0 (ν). If only β is provided, the former interval can be adopted to approximate the worst-case

quantile aggregation; if it is convenient to conduct another optimization (27), the latter one would be more

accurate in approximation.
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7 Dual formulation

In this section, we investigate the dual formulation of the quantile aggregation problem. In Theorem 2,

the convolution bound (14) is obtained by an n-dimensional optimization problem. The main result in this

section is that under continuity conditions the convolution bound (14) is equal to a dual bound (30), with a

convenient correspondence between the minimizers of both problems.

The following proposition gives a dual bound on quantile aggregation, which is essentially Theorem 4.17

of Rüschendorf (2013) that is expressed in terms of probability instead of quantiles.

Proposition 8. For t ∈ [0, 1), it holds that

[dual bound] sup
ν∈Λ(µ)

q+t (ν) ⩽ D−1
n (1− t), (30)

where D−1
n (α) = inf{x ∈ R : Dn(x) < α}, α ∈ (0, 1] and the function Dn : R → R is defined by

Dn(x) = inf
r∈∆n(x)

{
n∑

i=1

1

x− r

∫ x−r+ri

ri

µi(y,∞)dy

}
, x ∈ R, (31)

where r = (r1, . . . , rn), r =
∑n

i=1 ri and ∆n(x) = {(r1, . . . , rn) ∈ Rn :
∑n

i=1 ri < x}.

Below we always write r = (r1, . . . , rn) and r =
∑n

i=1 ri. We find that the dual bound (30) is equal to

our convolution bound (14) if the marginal distribution and quantile functions are continuous.

Theorem 4. For fixed t ∈ [0, 1), let x = D−1
n (1 − t). Suppose that each of µ1, . . . , µn has continuous

distribution and quantile functions. The convolution bound (14) and the dual bound (30) share the same

value x. Moreover, the correspondence between the minimizers β ∈ ∆n of (14) and r in the closure of ∆n(x)

of (31) is given by:

µi(−∞, ri] = 1− β0 − βi, µi(−∞, x− r + ri] = 1− βi, i = 1, . . . , n. (32)

As far as we are aware of, there are no sharpness results on the dual bound in the setting of heterogeneous

marginals. Therefore, our main results on convolution bounds also contribute to the literature by establishing

the sharpness of the dual bounds in several situations, as the convolution bound and the dual bound are

usually equal. Moreover, we note that the convolution bound is applicable to RVaR aggregation problems,

whereas the dual bound based on probability is specific to quantile aggregation. On the computational side,

as the set (1− t)∆n is bounded and the set ∆n(x) is unbounded, optimization of the convolution bound (14)

is often easier than that of the dual bound (30). Moreover, (30) needs to additionally compute an inverse

function from Dn. Further, the equivalence in Theorem 4 may fail for discrete distributions; see Table 2 of

Section 8.

In the homogeneous case µ1 = · · · = µn, Embrechts and Puccetti (2006) derived a (reduced) dual bound
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for the worst-case quantile aggregation based on a one-dimensional optimization problem:

[reduced dual bound] D−1(1− t) = inf {x ∈ R : D(x) < 1− t} , (33)

where

D(x) = inf
a< x

n

n

x− na

∫ x−(n−1)a

a

µ ((y,∞)) dy, x ∈ R.

This dual bound is a special case of (30) by letting r1 = · · · = rn in (31). Thus, the reduced dual bound (33)

is larger than or equal to the dual bound (30), as well as our convolution bound (14) by Theorem 4. Similarly

to the discussion in Section 5, the dual bound (30) and the reduced one (33) are not generally equal.

Similarly to Theorem 4, one can show that the reduced dual bound (33) is the same as the reduced

convolution bound (15) if the marginal distribution and quantile functions are continuous. In Figure 3 (right

panel) of Section 8, we give out examples that (14) is strictly smaller than (33).

8 Numerical illustration

In this section, the convolution bounds in Theorems 1-2 are computed and compared with the existing

bounds by numerical examples, including the dual bound of Embrechts and Puccetti (2006) and the rear-

rangement algorithm (RA) of Puccetti and Rüschendorf (2012) and Embrechts et al. (2013). We give some

numerical examples to show the performance of the candidate and suboptimal dependence structures (23)

and (25) in the heterogeneous case.

We briefly explain the output of RA. If a tuple µ of marginal distributions is given as quantile functions

or distribution functions, then RA involves discretization of the marginal distributions by N steps, where N

is chosen as 105 in our implementations. If the marginal distributions are given as empirical distributions of

data, then discretization is not needed. Running RA on µ returns an interval [sN , s̄N ], whose left and right

end-points are close when N is sufficiently large, providing an approximation for supν∈Λ(µ) q
+
t (ν). The left

end-point is always a (numerical) lower bound, whereas the right end-point is not a lower or upper bound.

Although RA is a popular algorithm, there is no guarantee that its produced lower bound converges to the

true value of supν∈Λ(µ) q
+
t (ν), and there are no theoretical results on the time for RA to converge. For the

above claims and a detailed explanation on implementing RA, see Embrechts et al. (2013). Consistently with

the literature, we treat the upper value produced by RA as a good approximation of the true value of the

worst-case RVaR, although no convergence result is established.

Next, we explain how we compute the convolution bound, denoted by Bconv. We use the built-in

function fmincon in MATLAB to numerically compute Bconv, where the input are the marginal quantile

functions. No discretization is needed for this computation, as long as marginal quantiles can be specified.7

All computations are performed on MATLAB R2017b with Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz. In

7Note that many distributions, including empirical distributions from data, have their quantile functions as built-in functions
in most computational softwares. For those that do not have a built-in quantile function, computing a numerical quantile function
is a standard and simple task.
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our implementations, we use the default optimization method, the interior-point algorithm. The convergence

criterion is a termination tolerance scalar value 10−6 on the first-order optimality, which is the default

choice, and this convergence criterion is met in all computations. Note, however, that the optimization

problem required in computing Bconv is generally non-convex, and so global optimality may not always be

attainable by fmincon. Nonetheless, in theory, as the left end-point sN of RA is a lower bound and Bconv is

an upper bound, we have

RA output sN ⩽ true sup
ν∈Λn(µ)

q+t (ν) ⩽ true Bconv ⩽ computation of Bconv.

As far as we know, there is no theoretical guarantee that the global optimum in the computation of Bconv

is attained. Nevertheless, in most results, sN and computed values of Bconv coincide almost perfectly, and

therefore convergence is practically verified in these cases.

With discretization, the quantile aggregation problem can also be formulated into a linear programming

(LP) problem with an exponential number of variables. The LP formulation approximates to the true optimal

value of the problem, but it is difficult if the dimension n or the number of points in the discretization is high.

In a real risk management problem where loss distributions are typically continuous (such as asset prices or

insurance losses), a fine discretization is required to ensure good approximation, making LP very slow. In

Appendix F, we provide a detailed comparison among LP, RA and the convolution bound to compute the

quantile aggregation problem.

8.1 Convolution bounds on RVaR aggregation

For any t, s with 0 ⩽ t < t + s ⩽ 1, we numerically compute the RVaR aggregation value Rt,s(ν),

ν ∈ Λn(µ) with different methods in the homogeneous case, where the marginal distribution is identical and

denoted by µ. The convolution bound is given by (12) and the true value is approximated by RA.

We fix t + s = 0.9 and change s ∈ (0, 0.9) to simulate values of supν∈Λn(µ) Rt,s(ν). In Figure 2 (left

panel), we check Theorem 1 that the convolution bound (12) is sharp for marginals with decreasing densities.

In Figure 2 (right panel), we see that the convolution bound (12) is not sharp for marginals with increasing

densities. Although this bound is not sharp for increasing densities, the difference is small and it performs

quite well numerically. Moreover, in Figure 2, the convolution bound (12) is sharp if t = 0 (Theorem 1) and

s ↓ 0 (Theorem 2).

8.2 Numerical comparison with existing results

For t ∈ [0, 1), we numerically compare the quantile aggregation value q+t (ν), ν ∈ Λn(µ) with analytical

bounds obtained in the homogeneous case, where the marginal distribution is identical and denoted by µ.

Recall that the convolution bound is given by (14), the (reduced) dual bound derived in Embrechts and

Puccetti (2006) is given by (33) and the reduced convolution bound is given by (15). The standard bound is
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Figure 2: Bounds for supν∈Λ3(µ) R
+
0.9−s,s(ν). Left panel: µ = Pareto(1, 1/2) with a decreasing density

1
2x

−3/2, x ∈ [1,∞). Right panel: µ has an increasing density 5
9 (101− x)−

3
2 , x ∈ [1, 100].
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derived from the lower Fréchet-Hoeffding bound (see Remark A.29 of Föllmer and Schied (2016)). We also

give the quantile aggregation value under a comonotonic scenario for comparison.

Figure 3: Bounds for supν∈Λ3(µ) q
+
t (ν). Left panel: µ = Pareto(1, 1/2) with a decreasing density 1

2x
−3/2, x ∈

[1,∞). Right panel: µ has an increasing density 5
9 (101 − x)−3/2, x ∈ [1, 100]. In the left panel, “reduced

dual bound”, “reduced convolution bound”, “convolution bound” and “RA” have the same curve, and for
better visibility the “RA” curve is not plotted. In the right panel, “RA” and “convolution bound” have the
same curve and “reduced dual bound” and “reduced convolution bound” have the same curve.
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This section also serves as a numerical illustration for the worst-case risk aggregation in Section 2.1. In

Figure 3, we compute (1) in the setting that losses in a portfolio follow some given marginal distributions.

Figure 3 (left panel) illustrates that the convolution bound (14), the reduced convolution bound (15) and

the reduced dual bound (33) share the same value of quantile aggregation for a Pareto distribution. The

standard bound performs worst as an upper bound for supν∈Λn(µ) q
+
t (ν). The comonotonic scenario serves
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Table 1: RA (with N = 105) and the convolution bound Bconv to compute supν∈Λ(µ) q
+
0 (ν) for two different

settings of heterogeneous marginal distributions. RA produces an interval whose left-end point is a lower
bound, and the convolution bound Bconv is an upper bound which is sharp in the first setting of Pareto
distributions.

Xi ∼ Pareto(1, αi) time Xi ∼ Pareto(1, i+ 2), i = 1, . . . , 20 time
αi = 2 + i, n = 20 X20+i ∼LogN(5− i, (i/2)2), i = 1, . . . , 20 n = 60
i = 1, . . . , 20 X40+i ∼ Γ(i+ 1, 10

i ), , i = 1, . . . , 20
RA [22.5966, 22.5971] 111s [539.5141, 539.6205] 639s

Bconv (14) 22.5968 46s 539.5611 672s
RA minus (14) [−2.04 ∗ 10−4, 3.02 ∗ 10−4] [-0.0470, 0.0594]

as a lower bound. Results for other distributions such as Lognormal and Gamma distribution are similar

and we omit them.

In Figure 3 (right panel), we plot analytical bounds of the maximum possible quantile aggregation value

supν∈Λ3(µ) q
+
t (ν), where the convolution bound (14) achieves a strictly smaller value than the reduced dual

bound (33). It means that our bound (14) is an analytically better bound for quantile aggregation. Figure

3 (right panel) further shows that (14) is better than the reduced convolution bound (15); see also Example

EC.2.

In Table 1, we numerically check the performance of the bound (14) against RA in more detail.

Concerning performance, Figure 3 (right panel) and Table 1 both indicate that the convolution bound

and RA have a similar value for most cases. We discuss three aspects. First, we emphasize again that the

true value of supν∈Λ(µ) q
+
0 (ν) is generally unavailable. It is available in cases with monotone densities, where

the true value equals to the convolution bound according to Theorem 2. It is the case of Figure 3 and the

first model in Table 1. Second, if the true value of supν∈Λ(µ) q
+
0 (ν) is unknown, then we can use the (upper)

convolution bound together with the lower bound provided by the RA to approximately target the true value.

As shown in the second model of in Table 1, the difference between the two bounds is quite small and we

can approximately know the true value. Third, we show that in some cases RA does not perform well while

the convolution bound provides a sharp result; see Example 1.

Example 1. Let µ be a triatomic uniform distribution on {1, 2, 3}. By constructing a random vector

uniformly distributed on {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, we get supν∈Λ(µ,µ,µ) q
+
0 (ν) = 6. As a result, (14) provides

a sharp upper bound infβ∈∆3
R+

β (µ, µ, µ) = 6 with the optimal β = (1, 0, 0, 0). However, the interval provided

by the RA is [5, 5]; see Example EC.4 for details.

Concerning computation time, we find that the convolution bound (14) is computed quicker than or

similarly to RA. In conclusion, (14) is not only a good analytical upper bound, but also performs quickly in

the numerical calculation for the maximum possible lower end-point supν∈Λ(µ) q
+
0 (ν).

Theorem 4 assumes continuous distribution and quantile functions. Generally, equivalence between

quantile methods and probability methods can be troublesome when dealing with discrete distributions.

We illustrate in a simple example that the equivalence in Theorem 4 may fail. Define µ = Bernoulli(0.5)

and n = 3. We numerically compute the values of RA, the convolution bound and the dual bound on
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Table 2: RA (with N = 105), true value, convolution bound Bconv and dual bound Bdual on supν∈Λ3(µ) q
+
t (ν).

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7
RA (left end-point) 1 1 2 2 2 3 3

true value 1 1 2 2 3 3 3
Bconv 1.6667 1.875 2 2 3 3 3
Bdual 1.6667 1.875 2.1429 2.5 3 3 3

Table 3: Numerical values of lower end-points in Figure 4.
µ1 = Pareto(1,3) µ1 = Pareto(1,1/3) µ1 = Pareto(1,3) µ1 = Pareto(1,3)
µ2 = LogN(0,1) µ2 = LogN(0,1) µ2 = LogN(-1,1) µ2 = LogN(0,1)
µ3 = Γ(1, 2) µ3 = Γ(1, 2) µ3 = Γ(1, 2) µ3 = Γ(3, 2)

Mean 5.1487 ∞ 4.1065 9.1487
RA [4.2856,4.2857] [8.5933,8.5936] [3.2545,3.2545] [7.6338,7.6341]

[H(γ), R+
β (µ)] [4.1185, 4.2857] [8.055, 8.5936] [3.1254,3.2545] [7.3653,7.634]

Bound (14) 4.2857 8.5936 3.2545 7.634
Candidate (23) 4.2855 8.4995 3.2545 7.5415

Suboptimum (25) 4.0739 7.7835 3.0587 7.2889
Suboptimum (28) 4.1185 8.055 3.1254 7.3653

supν∈Λ3(µ) q
+
t (ν) in Table 2. The true values are available in this simple setting for comparison. We make

two observations. First, as we mentioned above, the true value of supν∈Λ3(µ) q
+
t (ν) is bounded from below by

the RA left end-point and from above by the convolution bound and is exactly obtained if these two bounds

are equal. Second, for t = 0.3 and 0.4, the values of the convolution bound Bconv and the dual bound Bdual

are not the same. In these cases, we observe that Bconv is closer (equal) to the true value than Bdual.

8.3 Performance of extremal dependence structures

Recall that in Section 6.2 we propose a candidate dependence structure (23) for the worst-case quan-

tile aggregation. We also state a suboptimal structure (25) without involving Y1, . . . , Yn. A better sub-

optimum (28) is obtained by solving another optimization problem and a two-side approximation interval

[H(γ), R+
β (µ)] is established. We now give some numerical examples to compare their corresponding lower

end-points in the heterogeneous case with n = 3. As shown in Theorem 3, possible values of the aggregation

variable in (23) are those of the functions h1, h2, h3 on [0, 1− β0], while the corresponding values in (25) are

those of h1, h2, h3 on [0, 1]. Thus, the lower end-point derived from (23) is attained at the minimal values of

all h1, h2, h3 on [0, 1− β0], while that from (25) is attained at those on [0, 1].

In Figure 4, according to the sufficient condition in Theorem 3, the third subfigure shows that (23) gives

out the worst-case quantile aggregation. Even in the other subfigures, the essential infimum of
∑n

i=1 X
∗
i of

(23), which is the minimal value of h1 on [0, 1−β0], is just slightly lower than the corresponding q+0 (ν+). We

further show the numerical values in Table 3, including the convolution bound, the RA results, and values

from the suboptimal structures (25) and (28). Recall that (25) is based on β, while (28) requires solving γ in

another optimization problem. The suboptimal methods give explicit random vectors, and hence it is useful

in visualizing the worst case of quantile aggregation. In Table 3, both (25) and (28) produce numbers close

to the convolution bound in many cases, while (28) is always better but requires more computation.
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Figure 4: Performance of extremal dependence structures with settings in Table 3. In each panel, we plot the
function of hi and the values of quantile aggregation provided by the convolution bound, the suboptimum β
and the suboptimum γ.
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9 Two applications

9.1 Robust risk management

The convolution bounds can be directly applied to compute the worst-case or best-case risk aggregation

problem in Section 2.1 for the risk measure being VaR or RVaR. In this section, we solve the robust portfolio

selection problem (3) also presented in Section 2.1. Using a standard Lagrangian technique, for (3), it is

equivalent to solve

maximize inf
X∼µ

E[u(λ ·X)]− ξ sup
X∼µ

q+t (λ · (−X)) over λ ∈ ∆n−1, (34)

where ξ ⩾ 0 is a Lagrangian multiplier. After obtaining the optimizer λ∗
ξ of (34) for varying ξ ⩾ 0 we can

calibrate ξ with the risk constraint supX∼µ q+t (λ
∗
ξ · (−X)) = x to solve (3) whenever the risk constraint is

binding. In what follows, we will focus on (34). Recall that u is a strictly concave and increasing function.
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Table 4: Different optimal portfolios under different risk constraints, where n = 3, t = 0.99, X1 ∼ N(0.9, 1.82),
X2 ∼ N(0.1, 0.22), X3 = Y − 4 with Y ∼ LogN(1.5, 1.22), and u(x) = 5(1− exp(−x/5)), x ∈ R

Lagrangian ξ 0 0.01 0.1 1 10

risk constraint x ⩾ 3.075 2.489 1.626 0.459 0.365

optimal portfolio λ∗ (0.41, 0.23, 0.36) (0.23, 0.38, 0.39) (0, 0.64, 0.36) (0, 0.97, 0.03) (0, 1, 0)

utility U(λ∗) 0.704 0.702 0.678 0.200 0.095

For λ = (λ1, . . . , λn), the first term in the problem (34) admits a simple formula

inf
X∼µ

E[u(λ ·X)] =

∫ 1

0

u

(
n∑

i=1

λiq
+
v (µi)

)
dv =: U(λ), (35)

because the worst-case portfolio is comonotonic (e.g., Corollary 3.29 of Rüschendorf (2013)). Since λ 7→

u(
∑n

i=1 λiq
+
v (µi)) is concave, so is U . The concavity of U implies that a maximizer for (35) may favour

some diversification. On the other hand, as shown by Proposition 7.1 of Chen et al. (2022), a minimizer for

supX∼µ q+t (λ · (−X)) favours no diversification if the marginal distributions are identical and satisfy (DD) or

(ID). Therefore, intuitively, there is a trade-off between diversification and concentration in (34). Applying

the convolution bound in the form of Theorem A.2 (the symmetric version of Theorem 2) and using the

positive homogeneity of RVaR, we have

inf
X∼µ

E[u(λ ·X)]− ξ sup
X∼µ

q+t (λ · (−X)) = U(λ) + ξ inf
X∼µ

q−1−t(λ ·X)

⩾ U(λ) + ξ sup
β∈(1−t)∆n

n∑
i=1

R1−β0−βi,β0(λiXi)

= sup
β∈(1−t)∆n

{
U(λ) + ξ

n∑
i=1

λiR1−β0−βi,β0
(µi)

}
.

The above objective will be maximized over λ. For a fixed β ∈ (1 − t)∆n, the above objective is concave

in λ, which is easy to maximize. As we discussed in Section 5.2, the optimization of β is also often simple.

The inequality above becomes an equality when the convolution bound is sharp. This is guaranteed if

µ1, . . . , µn have increasing (or decreasing) tail densities below level 1− t (Theorem A.2). Since t is close to

1, this requirement is very weak and it is satisfied by portfolio models in practice. We will assume that the

convolution bound is sharp from now on.

For a simple illustration, we consider three heterogeneous assets with normal and log-normal distri-

butions and different parameters. The parameters of these distributions are chosen such that the problem

is non-trivial in the sense that the three marginal distributions do not dominate each other. We take an

exponential utility function to characterize the preference of the decision maker. The numerical results of

the following setting are given in Table 4. If the Lagrangian multiplier ξ = 0, then the problem is robust

utility maximization under uncertainty without risk constraint (or, the risk constraint is not binding), and
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Table 5: Different cases of the optimal matching

threshold y (0, 0.046) [0.046, 0.353) [0.353, 1)

corresponding probability t (0, 0.077) [0.077, 0.420) [0.420, 1)

optimal β/(1− t) of (16) (0, 1, 0, 0) (0, 1, 0, 0) (1, 0, 0, 0)

optimal β of (36) (< 1, > 0, > 0, > 0) (< 1, > 0, 0, 0) (1, 0, 0, 0)

possible events C, B, AZ , AX C, B, AZ C, B

the optimizer is a diversified portfolio (0.41, 0.23, 0.36). As the Lagrangian multiplier ξ increases, the role of

the risk constraint is getting more important, and the optimal portfolio becomes more concentrated. In case

ξ = 10, the optimal portfolio is to only invest in the second asset, which has the smallest expected return

and the smallest variance (thus, the safest choice). This is consistent to our intuition that when the penalty

on the worst-case dependence is large, the decision maker prefers a concentrated portfolio, which does not

have dependence uncertainty. A similar phenomenon is also observed by Pflug and Pohl (2018) and Chen

et al. (2022) in different settings without the utility term U(λ).

9.2 The O-ring model

We proceed to analyze the O-ring model presented in Section 2.2. Our goal is to find the minimum

value of (5) as well as its optimizing dependence structure. This optimizing dependence structure will yield

matching patterns in the label market. For this, we use Proposition 3 and the arguments in Section 6.1 on

the extremal dependence.

For an illustration, we will use the following simple setting: µZ = Beta(5/6, 1), µ1 = µ2 = Beta(5/4, 1).

That is, there are two workers in each firm, where the product value of the firm and the successful probabilities

of the workers follow the Beta distributions. Note that all Beta distributions of the form Beta(α, 1) satisfy

the condition in Proposition 3 (iii); equivalently, (ID) holds for the distributions of log(Z), log(X1) and

log(X2). Hence, the right-hand side of (16) is the true minimum value in (5). For values of the threshold

y ∈ [0, 1), we obtain the corresponding minimum probability t as well as the optimal β/(1 − t) of (16) in

Table 5. We will explain this table in more detail below.

For a given threshold y ∈ (0, 1) and its corresponding probability level t ∈ (0, 1), by Proposition 1,

one needs to consider an optimal matching of the conditional distributions µt+
Z , µt+

1 and µt+
2 on an event

with total probability 1− t, and the matching on the remaining event C with probability t can be arranged

arbitrarily. As µ1 = µ2, by symmetry, the overall optimal dependence structure includes four possible events

(Ω = AZ ∪AX ∪B ∪ C):

(B) two medium-skilled workers work together as a team in a medium-value firm;

(AZ) a low-value firm hires two high-skilled workers as a team;

(AX) a low-skilled worker works with a high-skilled coworker in a high-value firm;
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(C) two very low-skilled workers work in a very low-value firm.

In the above construction of (Z,X1, X2), we have

B ∪AZ ∪AX = {Z ⩾ q+t (µZ)} = {X1 ⩾ q+t (µ1)} = {X2 ⩾ q+t (µ2)};

C = {Z < q+t (µZ)} = {X1 < q+t (µ1)} = {X2 < q+t (µ2)}.

Such a structure is called t-concentration by Wang and Zitikis (2021).

For a given threshold y ∈ (0, 1) and its corresponding probability level t ∈ (0, 1), by the arguments

in Section 6.1, since (ID) holds, to determine the possible events in the dependence structure, one should

compute the optimal β from the lower convolution bound (A.4), i.e.,

sup
β∈∆n

∑
i=Z,1,2

R1−βi−β0,β0

(
µt+
i ◦ exp

)
. (36)

We denote the optimal β in Table 5 by (1−βZ −β1−β2, βZ , β1, β2). As in Section 6.1, we have the following

classification:

Case 1. If y ∈ [0.353, 1), then βZ = β1 = β2 = 0, implying that the events C and B occur.

Case 2. If y ∈ [0.046, 0.353), then βZ > 0 and β1 = β2 = 0, implying that the events C, B and AZ occur.

Case 3. If y ∈ (0, 0.046), then βZ , β1, β2 > 0, implying that all the events C, B, AZ and AX occur.

The event C corresponds to the proportion of firms and workers that are given up by the matching

problem. Since our goal is to obtain as many project values above y as possible, some projects have to be left

behind, and they are composed of low-value firms and low-skilled workers. The event B corresponds to the

proportion of medium-value firms which hire medium-skilled workers. This reflects the majority of firms and

workers and they are matched together. The event AZ means that the low-value firm has to hire high-skilled

workers to minimize the global deficiency proportion of production.

The event AX matches a high-value firm and a high-skilled worker with a low-skilled coworker. If the

firm value is high enough and the threshold y is low enough, then there is no point for this firm to hire

two high-skilled workers anymore; in fact, the firm can hire one high-skilled worker and reduce its cost by

hiring a low-skilled coworker if the goal is only to bypass the threshold y = 0.046. This may be realistic in

settings where robots or automated machines are cheaper and less effective than human workers, but they

are sufficient to pass a threshold of interest (e.g., quality control) for the firm, so the firm would use robots

or automated machines. However, this situation does not happen if the threshold is high enough.

The optimal matching, featured with events AZ and AX , for problem (5) is quite different from the classic

result in Kremer (1993), where high-skilled workers are always matched with high-value firms. Certainly, the

objectives in the two settings are different. To explain this from the perspective of dependence, the product

function (z, x1, . . . , xn) 7→ z
∏n

i=1 xi is a supermodular function, and its expected value is maximized by
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positive matching, that is, comonotonicity; see e.g., Puccetti and Wang (2015, Section 2). On the other

hand, (z, x1, . . . , xn) 7→ 1{z
∏n

i=1 xi⩽y} is neither supermodular nor submodular, and its minimization (or

maximization) is highly complicated and involves both positive and negative matching; see Puccetti andWang

(2015, Section 3) for extremal negative dependence. Translating this into the O-ring theory, to minimize

the percentage of production values under a threshold, one needs to assign high-skilled workers and high-

value firms to assist less-performed workers or firms. Such a matching policy is quite common in socially

relevant real situations, e.g., team tournaments, help groups, and financial assignments, to name a few. The

appearance of negative matching is getting increasing attention in various economic contexts; see e.g., the

recent work of Boerma et al. (2021, 2023).

10 Conclusion

Using the RVaR convolution result of Embrechts et al. (2018), we establish new (semi-analytical) bounds

for the problem of quantile aggregation, and show that these bounds are sharp in many cases with analytical

formulas in the literature. We can interpret the corresponding worst-case dependence structure and give

explicit construction for the complicated optimization problem. The convolution bounds cover all existing

theoretical results on quantile aggregation. Moreover, the proposed bound has advantages in its tractability,

interpretability, and computation.

The level of theoretical difficulty in quantile aggregation leaves ample room for future adventures and

challenges. For instance, the sharpness of convolution bounds under general conditions, other than those in

Theorems 1, 2, A.1 and A.2, is an open question. For the interested reader, we connect our results to the

theory of joint mixability in Appendix E, where many questions remain to be open. Additional information

on the dependence structure, other than the marginal distributions, can be incorporated in the quantile

aggregation problem, and it usually leads to highly challenging questions; see e.g., Bernard et al. (2017a,b)

and Bartl et al. (2022). In view of the broad appearance of quantile aggregation, its application domain

includes many problems in economics, finance, risk management, statistics, and scheduling, in addition to

the two applications discussed Section 2. We mention some applications in Appendix G, on which many

relevant questions warrant thorough future investigation.

A Lower convolution bounds

In this appendix, we quickly collect results on lower convolution bounds for infν∈Λ(µ) Rt,s(ν) and

infν∈Λ(µ) q
−
t (ν), and some related results. The proofs of these results are symmetric to those on the up-

per convolution bounds, and they are omitted.
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Theorem A.1 (RVaR aggregation). Let µ = (µ1, . . . , µn) ∈ Mn. For any t, s with 0 ⩽ t < t+ s ⩽ 1,

inf
ν∈Λ(µ)

Rt,s(ν) ⩾ sup
β∈(1−t)∆n

β0⩾s>0

n∑
i=1

R1−βi−β0,β0
(µi). (A.1)

Moreover, (A.1) holds as an equality in the following cases:

(i) t+ s = 1;

(ii) each of µ1, . . . , µn admits an increasing density below its (1− t)-quantile;

(iii)
∑n

i=1 µi

[
q+0 (µi), q

−
1−t(µi)

)
⩽ 1− t.

Let µt− be the probability measure given by

µt− (−∞, x] = min

{
µ (−∞, x]

t
, 1

}
, x ∈ R.

That is, µt− is the distribution measure of the random variable qV (µ) where V is a uniform random variable

on [0, t]. In the case of Theorem A.1 (iii), it equivalently means that each of µ
(1−t)−
1 , . . . , µ

(1−t)−
n admits an

increasing density. We denote by µt− = (µt−
1 , . . . , µt−

n ). Proposition A.1 (symmetric to Proposition 1) shows

relevant results.

Proposition A.1. For µ = (µ1, . . . , µn) ∈ Mn, for 0 ⩽ t < t+ s ⩽ 1, we have

inf
ν∈Λ(µ)

Rt,s(ν) = inf
ν∈Λ(µ(1−t)−)

ESs/(1−t)(ν)

and

inf
ν∈Λ(µ)

q−t (ν) = inf
ν∈Λ(µt−)

q−1 (ν).

Similarly to the worst-case values, for the best-case values of RVaR aggregation, it suffices to consider

the one ended at quantile level 1, i.e. the ES aggregation. In particular, for the worst-case problems of

quantile aggregation, it suffices to consider the one at quantile level 1, i.e. the problems infν∈Λ(µt−) q
+
1 (ν)

for generic choices of µ.

Theorem A.2 (Quantile aggregation). For µ ∈ Mn, for t ∈ (0, 1], we have

inf
ν∈Λ(µ)

q−t (ν) ⩾ sup
β∈t∆n

n∑
i=1

R1−βi−β0,β0(µi). (A.2)

Moreover, (A.2) holds as an equality in the following cases:

(i) n ⩽ 2;

(ii) each of µ1, . . . , µn admits an increasing density below its t-quantile;
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(iii) each of µ1, . . . , µn admits a decreasing density below its t-quantile;

(iv)
∑n

i=1 µi

[
q+0 (µi), q

−
t (µi)

)
⩽ t;

(v)
∑n

i=1 µi

(
q+0 (µi), q

−
t (µi)

]
⩽ t.

Proposition A.2 (symmetric to Proposition 2) concerns a reduced lower convolution bound.

Proposition A.2. For µ ∈ M and t ∈ (0, 1], we have

inf
ν∈Λn(µ)

q−t (ν) ⩾ sup
α∈(0,t/n)

nR1−t+(n−1)α,t−nα(µ) = sup
α∈(0,t/n)

n

t− nα

∫ t−(n−1)α

α

q−s (µ)ds. (A.3)

Moreover, (A.3) holds as an equality if µ admits an increasing density below its t-quantile.

Proposition A.3 (symmetric to Proposition 4) shows that infν∈Λ(µ) q
−
1 (ν) is always attainable and the

infimum can be replaced by a minimum.

Proposition A.3. For µ ∈ Mn and t ∈ (0, 1], there exists ν− ∈ Λ(µ) such that infν∈Λ(µ) q
−
t (ν) = q−t (ν−).

Proposition A.4 (symmetric to Proposition 3) presents a lower convolution bound for multiplicative

risks.

Proposition A.4. For µ1, . . . , µn ∈ M with support included in (0,∞), we have

inf
Xi∼µi,i=1,...,n

q−t

(
n∏

i=1

Xi

)
⩾ exp

{
sup

β∈t∆n

n∑
i=1

R1−βi−β0,β0 (µi ◦ exp)

}
, t ∈ (0, 1]. (A.4)

Moreover, (A.4) holds as an equality in the following cases (denote by f1, . . . , fn the densities of X1, . . . , Xn):

(i) n ⩽ 2;

(ii) for each i = 1, . . . , n, x 7→ xfi(x) is decreasing beyond the t-quantile of µi;

(iii) for each i = 1, . . . , n, x 7→ xfi(x) is increasing beyond the t-quantile of µi.

(vi)
∑n

i=1 µi

[
q+0 (µi), q

−
t (µi)

)
⩽ t;

(vii)
∑n

i=1 µi

(
q+0 (µi), q

−
t (µi)

]
⩽ t.
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Proposed E-Companion: Technical Appendices B-G

B Proofs of main results

B.1 Proofs in Section 4

We first present a lemma slightly generalizing the RVaR inequalities in Theorem 1 of Embrechts et al.

(2018) to include distributions possibly with no finite mean.

Lemma EC.1. Let α1, . . . , αn, β1, . . . , βn ∈ [0, 1]. Denote by b =
∑n

i=1 βi and a =
∨n

i=1 αi. If b + a ⩽ 1,

then for all µ = (µ1, . . . , µn) ∈ Mn and ν ∈ Λ(µ),

Rb,a(ν) ⩽
n∑

i=1

Rβi,αi
(µi), (EC.1)

provided the right-hand side of (EC.1) is well-defined (no “∞−∞”).

Proof of Lemma EC.1. Theorem 1 of Embrechts et al. (2018) with the notation RVaRβ,α(µ) = Rβ,α(µ) for

α, β ⩾ 0, α + β ⩽ 1 gives (EC.1) if µ1, . . . , µn ∈ M1. For µ1, . . . , µn that do not necessarily have finite

means, we always assume that the right-hand side of (EC.1) is well-defined (no “∞−∞”).

If there exists some i such that Rβi,αi
(µi) = ∞, (EC.1) holds trivially. Now we assume Rβi,αi

(µi) < ∞,

i = 1, . . . , n. There are four cases:

1. Suppose b + a < 1 and b > 0. In this case, Rb,a and Rβi,αi are continuous with respect to weak

convergence on M (see e.g. Cont et al. (2010)). For µ ∈ Γ(µ1, . . . , µn) such that ν = λµ, we can find a

sequence µ(k), k ∈ N such that all one-dimensional margins of µ(k) are in M1, and µ(k) → µ weakly as

k → ∞. As a consequence, all one-dimensional margins of µ(k), as well as its projection λµk
, converge

weakly. Since (EC.1) holds for probability measures in M1, using the continuity of Rb,a and Rβi,αi ,

we know (EC.1) holds in this case.

2. Suppose b+ a = 1 and b > 0. If R1−a,a(ν) = −∞, (EC.1) holds trivially. If R1−a,a(ν) > −∞, then

lim
ε↓0

R1−a,a−ε(ν) = R1−a,a(ν)

since R1−a,a−ε(ν) is monotone for ε ∈ (0, a). In the first case, we have shown, for ε ∈ (0,
∧n

i=1 αi),

R1−a,a−ε(ν) ⩽
n∑

i=1

Rβi,αi−ε(µi).

Taking a limit as ε ↓ 0 establishes (EC.1).

3. Suppose b+ a < 1 and b = 0. It implies that β1 = · · · = βn = 0. Because R0,αi
(µi) < ∞, i = 1, . . . , n,
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we have

lim
ε↓0

Rε,αi(µi) = R0,αi(µi),

since Rε,αi(µi) is monotone for ε ∈ (0, 1 − αi), i = 1, . . . , n. In the first case, we have shown, for

ε ∈ (0, 1− a),

Rnε,a(ν) ⩽
n∑

i=1

Rε,αi(µi).

Taking a limit as ε ↓ 0 establishes (EC.1).

4. Suppose b+ a = 1 and b = 0. It implies that β1 = · · · = βn = 0. Because R0,αi
(µi) < ∞, i = 1, . . . , n,

we know
∑n

i=1 R0,1(µi) is well defined. By the linearity of R0,1, we have

R0,1(ν) =

n∑
i=1

R0,1(µi) ⩽
n∑

i=1

R0,αi
(µi),

which establishes (EC.1).

Proof of Theorem 1. The inequality (12) is shown in the text above Theorem 1. We proceed to prove the

sharpness under the following cases.

(i) If t = 0, then Rt,s = ESs and {β ∈ (1− t)∆n : β0 ⩾ s} = {(s, 0, . . . , 0)}. It is well known (e.g., Kusuoka

(2001)) that ESs is subadditive and comonotonic additive, which gives

sup
ν∈Λ(µ)

R0,s(ν) = sup
ν∈Λ(µ)

ESs(ν) =

n∑
i=1

ESs(µi) = inf
β∈(0+s)∆n

β0⩾s

n∑
i=1

Rβi,β0
(µi).

(ii) Step 1: Using Proposition 1 (which will be shown later), we have

sup
ν∈Λ(µ)

Rt,s(ν) = sup
ν∈Λ(µ(1−t−s)+)

LES s
t+s

(ν). (EC.2)

Hence, it suffices to consider the problem of the right-hand side of (EC.2).

Step 2: Since each of µ1, . . . , µn admits a decreasing density beyond its (1 − t − s)-quantile, each of

the measures µ
(1−t−s)+
1 , . . . , µ

(1−t−s)+
n admits a decreasing density on its support. We can define an

aggregate random variable Tsn by (see Equation (3.4) of Jakobsons et al. (2016))

Tsn = h(U)1{U∈(0,sn)} + d(sn)1{U∈[sn,1]},

which will be explained below.

(a) We can write Tsn =
∑n

i=1 Xi where Xi ∼ µ
(1−t−s)+
i , i = 1, . . . , n. Let ν0 be the distribution

measure of Tsn . Lemma 3.4 (c) of Jakobsons et al. (2016) gives ν0 ∈ Λ(µt+).

39



(b) U is a uniform random variable on [0, 1], h, d : [0, 1] → R are functions and sn ∈ [0, 1] is a constant.

They are given by:

h(x) =

n∑
i=1

yi(x)− (n− 1)y(x), x ∈ (0, 1),

d(x) =
1

1− x

n∑
i=1

E
[
Xi1{yi(x)−y(x)⩽Xi⩽yi(x)}

]
, x ∈ (0, 1),

sn = inf{x ∈ (0, 1) : h(x) ⩽ d(x)},

where y, y1, . . . , yn are functions on (0, 1) satisfying (see Equations (E1)-(E2) of Jakobsons et al.

(2016))

(E1) :

n∑
i=1

P(Xi > yi(x)) = x,

(E2) : P(yi(x)− y(x) < Xi ⩽ yi(x)) = 1− x, i = 1, . . . , n.

(c) According to Lemma 3.2 of Jakobsons et al. (2016), h is a decreasing function on (0, sn). Hence,

for all u ∈ (0, sn), we have h(u) ⩾ d(sn), and further d(sn) = q+0 (ν0).

Step 3: Denote by a = min{ t
t+s , sn}. We proceed to show

LES s
t+s

(ν0) = d(a). (EC.3)

We verify this by direct computation. If t/(t+ s) ⩾ sn, then

LES s
t+s

(ν0) =
1
s

t+s

E
[
Tsn1{U∈[ t

t+s ,1]}

]
= d(sn);

if t/(t+ s) < sn, then

LES s
t+s

(ν0) =
1
s

t+s

E
[
Tsn1{U∈[ t

t+s ,1]}

]
=

1
s

t+s

(
E [Tsn ]− E

[
h(U)1{U∈(0, t

t+s )}

])
=

1
s

t+s

(
n∑

i=1

E [Xi]−
n∑

i=1

E
[
Xi(1{Xi>yi(

t
t+s )} + 1{Xi<yi(

t
t+s )−y( t

t+s )})
])

=
1
s

t+s

n∑
i=1

E
[
Xi1{yi(

t
t+s )−y( t

t+s )⩽Xi⩽yi(
t

t+s )}
]
= d

(
t

t+ s

)
,

where the third equality is due to Lemma 3.3 of Jakobsons et al. (2016).

Step 4: We now show

d(a) = R+
β (µ), (EC.4)

40



for some β ∈ (t+ s)∆n satisfying β0 ⩾ s, which is defined by

β0 = (t+ s)(1− a), βi = (t+ s)µ
(1−t−s)+
i (yi(a),∞) = µi(yi(a),∞), i = 1, . . . , n.

According to (E1),
∑n

i=1 βi = (t+ s)a. We have (β0, β1, . . . , βn) ∈ (t+ s)∆n, and β0 ⩾ s. Hence,

d(a) =

n∑
i=1

1

1− a
E
[
Xi1{yi(a)−y(a)⩽Xi⩽yi(a)}

]
=

n∑
i=1

1

1− a

∫ yi(a)

yi(a)−y(a)

xµ
(1−t−s)+
i (dx)

=

n∑
i=1

1

1− a

∫ 1− βi
t+s

a− βi
t+s

q−u (µ
(1−t−s)+
i )du

=

n∑
i=1

1

1− a

∫ 1− βi
t+s

a− βi
t+s

q−1−t−s+(t+s)u(µi)du

=

n∑
i=1

1

(1− a)(t+ s)

∫ 1−βi

1−βi−β0

q−v (µi)dv

=

n∑
i=1

1

β0

∫ 1−βi

1−βi−β0

q−v (µi)dv =

n∑
i=1

Rβi,β0
(µi),

where the third equality is due to the fact that µ
(1−t−s)+
i (−∞, yi(a) − y(a)] = a − βi

t+s derived from

(E2).

Step 5: Combining (EC.2), (EC.3) and (EC.4), we have

sup
ν∈Λ(µ)

Rt,s(ν) = sup
ν∈Λ(µ(1−t−s)+)

LES s
t+s

(ν) ⩾ LES s
t+s

(ν0)

= d(a) =

n∑
i=1

Rβi,β0(µi) ⩾ inf
β′∈(t+s)∆n

β′
0⩾s

n∑
i=1

Rβ′
i,β

′
0
(µi).

Thus, the bound (12) is sharp.

(iii) It suffices to prove the statement for t = 1 − s. The assumption
∑n

i=1 µi(q
+
0 (µi), q

−
1 (µi)] ⩽ 1 allows

for the existence of a lower mutually exclusive (see Definition EC.1 below) random vector (X1, . . . , Xn)

where Xi ∼ µi, i = 1, . . . , n. Hence, the desired result follows from Lemma EC.2 below by checking

that the bound (12) is attained by such a vector.

Definition EC.1 (Mutually exclusivity). We say that a random vector (X1, . . . , Xn) where Xi ∼ µi, i =

1, . . . , n is lower mutually exclusive if P(Xi > q+0 (µi), Xj > q+0 (µj)) = 0 for all i ̸= j and it is upper mutually

exclusive if P(Xi < q−1 (µi), Xj < q−1 (µj)) = 0 for all i ̸= j.

Lemma EC.2. If random variables X1, . . . , Xn are lower mutually exclusive and bounded from below, then
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for α ∈ (0, 1),

R1−α,α

(
n∑

i=1

Xi

)
=

n∑
i=1

Rβi,α(Xi), (EC.5)

for some β1, . . . , βn ∈ [0, 1) with
∑n

i=1 βi = 1− α.

Proof. Without loss of generality, we assume q+0 (µi) = 0 for each i. If q+α (
∑n

i=1 Xi) = 0, then
∑n

i=1 P(Xi >

0) = P (
∑n

i=1 Xi > 0) ⩽ 1 − α. Hence, we can choose βi ⩾ P(Xi > 0) for each i, and both sides of (EC.5)

are 0. Below we assume q+α (
∑n

i=1 Xi) > 0.

First, we assume that the distribution µi of Xi is continuous on {Xi > 0} for each i = 1, . . . , n, and so

is the conditional distribution of
∑n

i=1 Xi on {
∑n

i=1 Xi > 0}.

Let y = q+α (
∑n

i=1 Xi) and A = {
∑n

i=1 Xi ⩽ y}. We have P(A) = α. For each i = 1, . . . , n, let

αi = P(A ∩ {Xi > 0}) = P(0 < Xi ⩽ y) and ti = P(Xi > 0). By direct calculation

R1−α,α

(
n∑

i=1

Xi

)
= E

[
n∑

i=1

Xi | A

]
=

n∑
i=1

E [Xi | A]

=
1

α

n∑
i=1

(
0 + E

[
Xi1A∩{Xi>0}

])
=

1

α

n∑
i=1

(∫ 1−ti

1−ti+αi−α

q+u (µi)du+

∫ 1−ti+αi

1−ti

q+u (µi)du

)

=

n∑
i=1

Rti−αi,α(Xi).

We can check, by lower mutual exclusivity and the continuity assumption, that

n∑
i=1

(ti − αi) =

n∑
i=1

(P(Xi > 0)− P(0 < Xi ⩽ y)) =

n∑
i=1

P(Xi > y) = P

(
n∑

i=1

Xi > y

)
= 1− α.

By (12), we have

R1−α,α

(
n∑

i=1

Xi

)
⩽

n∑
i=1

Rti−αi,α(Xi).

Therefore, (EC.5) holds by choosing βi = ti − αi, i = 1, . . . , n. In case the conditional distributions of

X1, . . . , Xn are positive and not continuous, we can approximate (by convergence in distribution) X1, . . . , Xn

by conditionally continuous distributions while fixing P(Xi > 0) for each i. The compactness of the set

(1−α)∆n−1 on which (β1, . . . , βn) takes values and the continuity of Rβ,α with respect to weak convergence

(e.g., Cont et al. (2010)) yields the desirable result.

Proof of Proposition 1. The first equality is a direct consequence of Theorem 4.1 and Example 6.3 of Liu

and Wang (2021), and the second equality follows from Remark 4.1 of Liu and Wang (2021).
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B.2 Proofs in Section 5

Proof of Theorem 2. The convolution bound (14) is obtained by taking a limit of (12) in Theorem 2 using

(7). Similarly, based on Theorem 2 and the fact that Rβi,β0 is continuous in β0, this limit argument also

gives sharpness in (i), (ii) and (iv). Next we proceed to show sharpness in (iii) and (v).

(iii) First, we note that

sup
ν∈Λ(µ)

q+t (ν) = − inf
ν̃∈Λ(µ̃)

q−1−t(ν̃), (EC.6)

where µ̃i is the distribution measure of the random variable −Xi with Xi ∼ µi, i = 1, . . . , n and

µ̃ = (µ̃1, . . . , µ̃n). The fact that each of µ1, . . . , µn admits an increasing density beyond its t-quantile

implies that each of µ̃1, . . . , µ̃n admits an decreasing density below its (1 − t)-quantile. Note that

a distribution that has a decreasing density below its (1 − t)-quantile is supported in either a finite

interval [a, b] or a half real line [a,∞) for some a, b ∈ R. Hence, without loss of generality, we can

assume q+0 (µ̃i) = 0, i = 1, . . . , n.

For sharpness of (14), we need to show

sup
ν∈Λ(µ)

q+t (ν) ⩾ inf
β∈(1−t)∆n

n∑
i=1

Rβi,β0(µi).

By (EC.6) and the definition of Rβ,α, it suffices to show

inf
ν̃∈Λ(µ̃)

q−1−t(ν̃) ⩽ sup
β∈(1−t)∆n

n∑
i=1

R1−βi−β0,β0
(µ̃i). (EC.7)

Fix j ∈ {1, . . . , n} and βj ∈ (0, 1− t). By taking βi = 0 for i ∈ {1, . . . , n}\{j} and β0 = 1− t− βj , we

get

sup
β∈(1−t)∆n

n∑
i=1

R1−βi−β0,β0
(µ̃i) ⩾ Rt,1−t−βj

(µ̃j) +
∑
i ̸=j

Rt+βj ,1−t−βj
(µ̃i) ⩾ Rt,1−t−βj

(µ̃j).

Taking a supremum over βj ∈ (0, 1− t) and j ∈ {1, . . . , n} yields

sup
β∈(1−t)∆n

n∑
i=1

R1−βi−β0,β0(µ̃i) ⩾
n∨

j=1

sup
βj∈(0,1−t)

Rt,1−t−βj (µ̃j) =

n∨
j=1

q−1−t(µ̃j). (EC.8)

If
∨n

j=1 q
−
1−t(µ̃j) = ∞, then the right-hand side of (EC.7) is∞, which holds automatically. If

∨n
j=1 q

−
1−t(µ̃j) <

∞, we can apply Corollary 4.7 of Jakobsons et al. (2016), using the condition that each of µ1, . . . , µn

admits a decreasing density below its (1− t)-quantile. This gives

inf
ν̃∈Λ(µ̃)

q+1−t(ν̃) = max

{
n∨

i=1

q−1−t(µ̃i),

n∑
i=1

Rt,1−t(µ̃i)

}
. (EC.9)
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Also note that in this case, Rt,1−t(µ̃i) < ∞, i = 1, . . . , n, and hence

sup
β∈(1−t)∆n

n∑
i=1

R1−βi−β0,β0(µ̃i) ⩾
n∑

i=1

Rt,1−t(µ̃i). (EC.10)

Combining (EC.8)-(EC.10), we get (EC.7).

(v) It suffices to prove the case t = 0. The assumption
∑n

i=1 µi[q
+
0 (µi), q

−
1 (µi)) ⩽ 1 allows for the existence

of an upper mutually exclusive (see Definition EC.1) random vector (X1, . . . , Xn) where Xi ∼ µi,

i = 1, . . . , n. Hence, we have

q+0

(
n∑

i=1

Xi

)
= min

1⩽i⩽n

q+0 (µi) +
∑
j ̸=i

q−1 (µj)

 ⩾ inf
β∈∆n

n∑
i=1

Rβi,β0
(µ).

Hence, the desired result follows as the bound (14) is attained by such a vector.

Proof of Proposition 2. Letting β1 = · · · = βn = α in Theorems 2 and A.2, we immediately get (15). We

show (15) holds as an equality in this case of decreasing density. Note that the second equality in (15) is

simply the definition. By Proposition 1 of Embrechts et al. (2014), supν∈Λn(µ) q
+
t (ν) is equal to n times the

conditional mean of µ on an interval [t+ (n− 1)α, 1− α] for some α ∈ [0, 1−t
n ]. Therefore,

sup
ν∈Λn(µ)

q+t (ν) ⩾ inf
α∈(0, 1−t

n )
nRα,1−t−nα(µ).

Also note that the “⩽” sign in (15) is implied by Proposition 2. Hence, (15) holds as an equality in this

case.

Proof of Proposition 3. For any fixed Xi ∼ µi, i = 1, . . . , n, we define Yi = log (Xi) and hence have

q+t

(
n∏

i=1

Xi

)
= q+t

(
exp

{
n∑

i=1

Yi

})
= exp

{
q+t

(
n∑

i=1

Yi

)}
.

We obtain the desired results by investigating the corresponding quantile problem q+t (
∑n

i=1 Yi). We only

prove the cases (ii)-(iii). Denote by fi the density of Xi. The density of Yi at y ∈ R is exp(y) · fi(exp(y)).

According to Theorem 2, (16) is sharp if exp(y) · fi(exp(y)) are all decreasing (resp. increasing) beyond the

t-quantile of Yi for all i = 1, . . . , n. With a change of variables (and the fact that log is strictly increasing),

the condition is translated into that the functions x · fi(x) are all decreasing (resp. increasing) beyond the

t-quantile of Xi for all i = 1, . . . , n.

Proof of Proposition 4. The statement for q+t , t ∈ (0, 1), is shown in Lemma 4.2 of Bernard et al. (2014).

The case of t = 0 follows from the same argument by noting the upper semicontinuity of q+0 .

Proof of Proposition 5. To show the “⩾” direction of (17), we note that for any νY ∈ Λ(µ[m]) such that

Y1 ∼ µ
[m]
1 , . . . , Yn ∼ µ

[m]
n and

∑n
i=1 Yi ∼ νY , by letting Xi = q−UYi

(µi), i = 1, . . . , n, we get Xi ∼ µi and
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Xi ⩾ Yi for each i = 1, . . . , n. Denote by νX the distribution measure of
∑n

i=1 Xi. It follows that νX ∈ Λ(µ)

and q+t (νX) ⩾ q+t (νY ), which gives

sup
ν∈Λ(µ)

q+t (ν) ⩾ sup
ν∈Λ(µ[m])

q+t (ν).

To show the “⩽” direction of (17), for any νX ∈ Λ(µ) such that random variables X1 ∼ µ1, . . . , Xn ∼ µn

and
∑n

i=1 Xi ∼ νX , let Yi = Xi ∧m, i = 1, . . . , n. Write SX =
∑n

i=1 Xi and SY =
∑n

i=1 Yi. Denote by νY

the distribution measure of SY . We have νY ∈ Λ(µ[m]). By Corollary 1 of Embrechts et al. (2018), we have,

for ε > 0,

q−t+ε(νX) ⩽
n∑

i=1

q−1−(1−t−ε)/n(µi).

Taking a limit of the above equation as ε ↓ 0, we obtain

q+t (νX) ⩽
n∑

i=1

q+1−(1−t)/n(µi) ⩽ m. (EC.11)

It is clear that (SX ∧m) ⩽ SY because the real function x 7→ x ∧m is subadditive. Denote by ν̃ the

distribution of SX ∧m. Hence, (EC.11) implies

q+t (νX) = q+t (ν̃) ⩽ q+t (νY ). (EC.12)

Taking a supremum of (EC.12) over all possible choices of νX ∈ Λ(µ), we get

sup
ν∈Λ(µ)

q+t (ν) ⩽ sup
ν∈Λ(µ[m])

q+t (ν).

This completes the proof.

Proof of Proposition 6. It is a direct corollary by letting t ↓ 0 in Theorem 2 and t ↑ 1 in Theorem A.2

respectively.

Proof of Proposition 7. Note that

sup
β∈∆n

n∑
i=1

R1−βi−β0,β0(µi) ⩾ lim
ε↓0

n∑
i=1

R(n−1)ε,1−nε(µi)

=

n∑
i=1

R0,1(µi) = lim
ε↓0

n∑
i=1

Rε,1−nε(µi) ⩾ inf
β∈∆n

n∑
i=1

Rβi,β0(µi).

Hence, the second and the third inequalities in (20) hold. The first and the last inequalities are due to

Proposition 6.
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B.3 Proofs in Section 6.2

Proof of Theorem 3. By assumption and Proposition 4, there exists ν+ ∈ Λ(µ) such that

q+0 (ν+) = sup
ν∈Λ(µ)

q+0 (ν) = R+
β (µ).

Take X∗
i ∼ µi, i = 1, . . . , n such that

∑n
i=1 X

∗
i ∼ ν+ and

∑n
i=1 X

∗
i ⩾ q+0 (ν+) almost surely. We divide

the proof into several steps. We first prove the properties of X∗
i in (22) in Steps 1-3 and the feasibility of

(23) and its optimality given the above sufficient condition in Steps 4-5. In Steps 1-3, we will show that the

probability space Ω is divided into Ω = A1 ∪ · · · ∪ An ∪ B where Ai is defined by Ai = {X∗
i > q−1−βi

(µi)}

(“right-tail” parts of X1, . . . , Xn) and Bc =
⋃n

i=1 Ai, with the following properties:

(a) on the set B, X∗
i ∼ µ

[1−β0−βi,1−βi]
i for all i = 1, . . . , n and

∑n
i=1 X

∗
i = q+0 (ν+) almost surely;

(b) for any fixed i = 1, . . . , n, on the set Ai, X
∗
i ∼ µ

(1−βi,1]
i and X∗

j ∼ µ
[0,1−β0−βj)
j for all j ̸= i.

Step 1: We show that the set
{∑n

i=1 X
∗
i = q+0 (ν+)

}
has probability no less than β0. By (10), we have

q+0 (ν+) ⩽ R1−β0,β0
(ν+) ⩽ R+

β (µ) = q+0 (ν+), (EC.13)

and hence all inequalities in (EC.13) are equalities. The fact that q+0 (ν+) = R1−β0,β0
(ν+) implies that

q−t (ν+) = q+0 (ν+) for all t ∈ (0, β0] and the set
{∑n

i=1 X
∗
i = q+0 (ν+)

}
has probability no less than β0.

Step 2: We proceed to show that the events (“body” parts of X1, . . . , Xn)

{q−1−β0−βi
(µi) ⩽ X∗

i ⩽ q−1−βi
(µi)}, i = 1, . . . , n, (EC.14)

are identical and
∑n

i=1 X
∗
i = q+0 (ν+) almost surely on this set.

As the events Ai = {X∗
i > q−1−βi

(µi)}, i = 1, . . . , n, and Bc = ∪n
i=1Ai, we have P(Bc) ⩽ P(A1) + · · · +

P(An) =
∑n

i=1 βi = 1−β0. Denote by κi ∈ M the distribution measure of Ti = X∗
i 1Ac

i
+m1Ai , i = 1, . . . , n,

where m is a real number satisfying that m < min1⩽i⩽n q
−
1−β0−βi

(µi). Denote by τ the distribution measure

of the sum variable
∑n

i=1 Ti. It is verified that κi has a finite mean and Rβi,β0
(µi) = ESβ0

(κi), i = 1, . . . , n.

We first prove that

q−t (τ) ⩾ q−t−1+β0
(ν+), t ∈ (1− β0, 1]. (EC.15)

Fix t ∈ (1− β0, 1]. We have
∑n

i=1 Ti1B =
∑n

i=1 X
∗
i 1B and for any x ∈ R,

τ(x,∞) = P

(
n∑

i=1

Ti > x

)
⩾ P

(
n∑

i=1

X∗
i > x,B

)
⩾ P

(
n∑

i=1

X∗
i > x

)
− P(Bc)

⩾ P

(
n∑

i=1

X∗
i > x

)
− 1 + β0 = ν+(x,∞)− 1 + β0.

For any x < q−t−1+β0
(ν+), we have ν+(−∞, x] < t − 1 + β0, and τ(−∞, x] ⩽ ν+(−∞, x] + 1 − β0 < t and
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then x < q−t (τ). Hence we have q−t (τ) ⩾ q−t−1+β0
(ν+) and prove (EC.15). Thus, it follows from sharpness of

(EC.13) that

n∑
i=1

Rβi,β0(µi) =

n∑
i=1

ESβ0(κi) ⩾ ESβ0(τ)

=
1

β0

∫ 1

1−β0

q−t (τ)dt

⩾
1

β0

∫ 1

1−β0

q−t−1+β0
(ν+)dt

=
1

β0

∫ β0

0

q−t (ν+)dt = R1−β0,β0(ν+) =

n∑
i=1

Rβi,β0(µi),

(EC.16)

where the first inequality is the well-known subadditivity of ESβ0 . Thus, all inequalities in (EC.16) are sharp.

The fact that the first inequality in (EC.16) is sharp implies that Ti, i = 1, . . . , n share the same tail

event with probability β0 according to Theorem 5 in Wang and Zitikis (2021), i.e., the sets {Ti ⩾ q−1−β0
(κi)} =

{q−1−β0−βi
(µi) ⩽ X∗

i ⩽ q−1−βi
(µi)}, i = 1, . . . , n, (also in (EC.14)) are identical and have probability β0. We

denote this set by B′. Furthermore, B′ does not intersect any Ai, i = 1, . . . , n.

We write Yi = X∗
i |B′ . Hence Yi ∼ µ[1−β0−βi,1−βi] and

∑n
i=1 Yi =

∑n
i=1 X

∗
i on the set B′ and

q+0 (
∑n

i=1 Yi) = E [
∑n

i=1 Yi] = R+
β (µ). Thus,

∑n
i=1 Yi = R+

β (µ) almost surely.

Step 3: We proceed to show that the events Ai, i = 1, . . . , n, are mutually disjoint. We can calculate

∂

∂β′
i

R+
β′(µ) =

1

β′
0

R+
β′(µ)− q−1−β′

i
(µi)−

∑
j ̸=i

q−1−β′
0−β′

j
(µj)

 , β′ ∈ ∆n.

The first-order condition from the optimality of β reads as



R+
β (µ)− q−1−βi

(µi)−
∑
j ̸=i

q−1−β0−βj
(µj) = 0, if β0 > 0 and i ∈ {1, . . . , n} satisfying βi ̸= 0;

R+
β (µ)− q−1 (µi)−

∑
j ̸=i

q−1−β0−βj
(µj) ⩾ 0, if β0 > 0 and i ∈ {1, . . . , n} satisfying βi = 0;

R+
β (µ)−

n∑
j=1

q−1−βj
(µj) = 0, if β0 = 0.

(EC.17)

Denote the sets (the “left-tail” parts of X1, . . . , Xn) by Ci = {Xi < q−1−β0−βi
(µi)}, i = 1, . . . , n. We have a

partition Ω = Ai∪B′∪Ci and P(Ci) = 1−β0−βi, i = 1, . . . , n. (EC.17) shows that P
(
∩n
j=1Cj

)
= 0 because

for any ω ∈ ∩n
j=1Cj , for any fixed i ∈ {1, . . . , n},

n∑
j=1

X∗
j (ω) < q−1−βi

(µj) +
∑
j ̸=i

q−1−β0−βj
(µj) ⩽ R+

β (µ) = q+0

 n∑
j=1

X∗
j

 .

Arguing by contradiction that there exists 1 ⩽ k < l ⩽ n such that P(Ak ∩ Al) > 0. For any fixed
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i ∈ {1, . . . , n}\{k, l}, we have

P(Ci) = P
(
∩n
j=1Cj

)
+ P (∪j ̸=i(Ci ∩Aj))

= P
(
∩n
j=1Cj

)
+ P (∪j ̸=i,k,l(Ci ∩Aj) ∪ (Ci ∩Ak ∩Ac

l ) ∪ (Ci ∩Ac
k ∩Al) ∪ (Ci ∩Ak ∩Al))

⩽ P
(
∩n
j=1Cj

)
+
∑

j ̸=i,k,l

P(Aj) + P(Ak ∩Ac
l ) + P(Ak ∩Ac

l ) + P(Ak ∩Al)

= P
(
∩n
j=1Cj

)
+
∑

j ̸=i,k,l

P(Aj) + P(Ak) + P(Al)− P(Ak ∩Al)

= P
(
∩n
j=1Cj

)
+ 1− β0 − βi − P(Ak ∩Al)

= P
(
∩n
j=1Cj

)
+ P(Ci)− P(Ak ∩Al).

Hence P (∩n
i=1Ci) ⩾ P(Ak ∩Al) > 0, which leads to a contradiction. Thus, A1, . . . , An are mutually disjoint

and P(Bc) = P(∪n
i=1Ai) =

∑n
i=1 P(Ai) = 1 − β0. As the set B′ does not intersect Bc and P(B′) = β0, we

know B′ = B and thus the partition Ω = A1∪· · ·∪An∪B. This completes the first statement in the theorem

on the properties of X∗
i in (22).

Step 4: If β0 = 1, we have that µ is jointly mixable. If β0 < 1, we check that the corresponding X∗
i given

by (23) has distribution µi, i = 1, . . . , n. For each i = 1, . . . , n, if x < q−1−β0−βi
(µi), we have

P(X∗
i ⩽ x) = P(U < 1− β0,K ̸= i, q−1−β0−βi

1−β0
U
(µi) ⩽ x)

= P(K ̸= i)P(q−1−β0−βi
1−β0

U
(µi) ⩽ x)

=
1− β0 − βi

1− β0

1− β0

1− β0 − βi
µi(−∞, x] = µi(−∞, x].

One can similarly check that P(X∗
i > x) = µi(x,∞) if x > q−1−βi

(µi) and P(X∗
i ⩽ x) = µi(−∞, x] if

q−1−β0−βi
(µi) ⩽ x ⩽ µ−

1−βi
(µi). Hence X∗

i ∼ µi, i = 1, . . . , n.

Step 5: We finally show that if β0 < 1, β1, . . . , βn > 0 and the minimum of each of the functions h1, . . . , hn

is attained at x = 1 − β0, then (X∗
1 , . . . , X

∗
n) in (23) attains the maximum of q+0 for µ. According to the

first-order condition (EC.17), we have h1(1− β0) = · · · = hn(1− β0) = R+
β (µ). For all i = 1, . . . , n, we have

hi(x) ⩾ R+
β (µ) for all x ∈ (0, 1 − β0], i.e.,

∑n
i=1 X

∗
i ⩾ R+

β (µ) almost surely on {U ∈ [0, 1 − β0)}. Since∑n
i=1 X

∗
i =

∑n
i=1 Yi = R+

β (µ) on {U ∈ [1− β0, 1]}, we have q+0 (
∑n

i=1 X
∗
i ) = maxν∈Λ(µ) q

+
0 (ν) = R+

β (µ).

B.4 Proofs in Section 7

Proof of Proposition 8. Theorem 4.17 of Rüschendorf (2013) gives

inf
ν∈Λ(µ)

ν(−∞, s] ⩾ 1−Dn(s). (EC.18)

Standard argument inverting (EC.18) gives (30).
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Proof of Theorem 4.

1. For fixed t ∈ [0, 1), denote by x1 = R+
β (µ) the right-hand side (14). We proceed to showD−1

n (1−t) ⩽ x1

and thus the dual bound (30) is not greater than the convolution bound.

Case 1: if the infimum in (14) is attained at β = (β0, β1, . . . , βn) ∈ (1− t)∆n with β0, . . . , βn > 0, the

first-order condition reads as the first equation in (EC.17). Because β0 > 0 and 1 − β0 − βi < 1 − βi,

we have q−1−β0−βi
(µi) < q−1−βi

(µi). Define ri = q−1−β0−βi
(µi) for i = 1, . . . , n. One can check from the

first-order condition that ri = q−1−βi
(µi) + r − x1, and hence r < x1 and r ∈ ∆n(x1). We have

x1 =
1

β0

n∑
j=1

∫ 1−βj

1−β0−βj

q−u (µj)du =
1

β0

n∑
j=1

∫ q−
1−βj

(µj)

q−
1−β0−βj

(µj)

yµj(dy)

=
1

β0

n∑
j=1

∫ x1−r+rj

rj

yµj(dy)

=
1

β0

n∑
j=1

(
(x1 − r + rj)(1− βj)− rj(1− β0 − βj)−

∫ x1−r+rj

rj

µj(−∞, y]dy

)

=
1

β0

n∑
j=1

(
(x1 − r)(1− βj) + rjβ0 − (x1 − r) +

∫ x1−r+rj

rj

µj(y,∞)dy

)

=
1

β0

(
x1β0 − (1− t)(x1 − r) +

n∑
j=1

∫ x1−r+rj

rj

µj(y,∞)dy

)
.

It follows that 1− t =
∑n

j=1
1

x1−r

∫ x1−r+rj
rj

µj(y,∞)dy ⩾ Dn(x1).

Case 2: Suppose that the infimum in (14) is attained at β with some βi = 0 for some i ∈ {1, . . . , n}

and β0 = 1 − t −
∑n

i=1 βi > 0. For i = 1, . . . , n, we have q−1 (µi) > q−t (µi) because t < 1 and define

ri = q−1−β0−βi
(µi) < q−1 (µi). For i ∈ {1, . . . , n} satisfying βi ̸= 0, the first-order condition reads as

the first equation in (EC.17) and gives that ri = q−1−βi
(µi) + r − x1. For i satisfying βi = 0, the

first-order condition reads as the second equation in (EC.17) and gives q−1 (µi) ⩽ x1 − r + ri and

r ⩽ x1 − (q−1 (µi)− ri) < x1, which implies µi(−∞, x1 − r + ri] = 1 and r ∈ ∆n(x1). Similarly,

x1 =
1

β0

x1β0 − (1− t)(x1 − r) +

n∑
j=1

∫ x1−r+rj

rj

µj(y,∞)dy

 .

Therefore,

1− t =
1

x1 − r

n∑
j=1

∫ x1−r+rj

rj

µj(y,∞)dy ⩾ Dn(x1).

Case 3: If the infimum in (14) is attained at some β with β0 = 1 − t −
∑n

i=1 βi = 0, then from (14)

we have the third equation in (EC.17). Define ri = q−1−β0−βi
(µi), i = 1, . . . , n. Then r =

∑n
i=1 ri = x1

and

1− t =

n∑
i=1

βi=

n∑
i=1

µi(ri,+∞) = lim
r′∈∆n(x1)

r′→r

1

x1 − r′

n∑
i=1

∫ x1−r′+r′i

r′i

µi(y,∞)dy ⩾ Dn(x1).
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In all three cases, 1− t ⩾ Dn(x1). Since Dn is decreasing, D−1
n (1− t) ⩽ x1, and thus the dual bound

is not greater than the convolution bound.

2. For fixed t ∈ [0, 1), we proceed to show that the dual bound D−1
n (1 − t) is not smaller than the

convolution bound. We first claim that if quantile functions of µ1, . . . , µn are continuous, then Dn

is strictly decreasing on
(
−∞,

∑n
i=1 q

−
1 (µj)

)
and is constant 0 on

[∑n
i=1 q

−
1 (µj),∞

)
. Indeed, for any

x1 < x2, we have

Dn(x1) = inf
r∈∆n(x1)

{
n∑

i=1

1

x1 − r

∫ x1−r+ri

ri

µi(y,∞)dy

}

⩾ inf
r∈∆n(x2)

{
n∑

i=1

1

x1 − r

∫ x1−r+ri

ri

µi(y,∞)dy

}

⩾ inf
r∈∆n(x2)

{
n∑

i=1

1

x2 − r

∫ x2−r+ri

ri

µi(y,∞)dy

}
= Dn(x2).

We prove that if “=” holds, it must be Dn(x1) = Dn(x2) = 0. Since Dn(x1) = Dn(x2) ∈ [0, n] is

bounded, the infimum is attained at some r with r ⩽ x1. Because µj(·,∞) is decreasing, we have for

j = 1, . . . , n, µj(·,∞) is a constant on [rj , x2−r+rj ]. The fact that quantile functions of µ1, . . . , µn are

continuous implies that these constants can only be 0 or 1, and they cannot be 1 since it is an infimum.

Hence for j = 1, . . . , n, µj(y,∞) ≡ 0 for y ∈ [rj , x2 − r+ rj ], which implies Dn(x1) = Dn(x2) = 0. It is

straightforward to check that Dn(x) = 0 implies x ⩾
∑n

i=1 q
−
1 (µj). Thus we prove the claim. One can

further verify that Dn is continuous.

Now we continue to prove the main result. For fixed t ∈ [0, 1), we have D−1
n (1 − t) <

∑n
i=1 q

−
1 (µj)

and Dn(D
−1
n (1− t)) > 0. As Dn is strictly decreasing and continuous on

(
−∞,

∑n
i=1 q

−
1 (µj)

)
, we have

Dn(D
−1
n (1− t)) = 1− t. Denote by x2 = D−1

n (1− t) the value of the dual bound.

Case 1: Suppose that the infimum of Dn(x2) is attained at r = (r1, . . . , rn) ∈ ∆n(x2). Its first-order

condition reads as, for any i = 1, . . . , n,

µi(ri,∞) +
∑
j ̸=i

µj(x2 − r + rj ,∞) =
1

x2 − r

n∑
j=1

∫ x2−r+rj

rj

µj(y,∞)dy = Dn(x2) = 1− t.

Define βi = µi(x2 − r + ri,∞), i = 1, . . . , n and β0 = 1 − t −
∑n

i=1 βi. One can check βi = 1 − β0 −
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µi(−∞, ri] and β ∈ (1− t)∆n because r < x2. We have

1− t =
1

x2 − r

n∑
j=1

∫ x2−r+rj

rj

µj(y,∞)dy

=
1

x2 − r

n∑
j=1

∫ 1−βj

1−β0−βj

(1− u)dq−u (µj)

=
1

x2 − r

n∑
j=1

(
(x2 − r + rj)βj − rj(β0 + βj) +

∫ 1−βj

1−β0−βj

q−u (µj)du

)

=
1

x2 − r

(x2 − r)(1− t)− x2β0 +

n∑
j=1

∫ 1−βj

1−β0−βj

q−u (µj)du

 .

Therefore,

x2 =
1

β0

n∑
j=1

∫ 1−βj

1−β0−βj

q−u (µj)du,

which implies that the value of the dual bound x2 is not smaller than that of the convolution bound.

Case 2: If the infimum of Dn(x2) is attained at some r with r = x2, then

Dn(x2) = lim
r′∈∆n(x2)

r′→r

n∑
i=1

1

x2 − r′

∫ x2−r′+r′i

r′i

µi(y,∞)dy =

n∑
i=1

µi(ri,∞) = 1− t.

Define βi = µi(ri,∞), i = 1, . . . , n and β0 = 0. We have ri = q−1−βi
(µi), and

x2 =

n∑
i=1

ri =

n∑
i=1

q−1−βi
(µi) = lim

β′∈∆n

β′→β

n∑
i=1

1

β′
0

∫ 1−β′
i

1−β′
0−β′

i

q−u (µi)du ⩾ inf
β′∈∆n

n∑
i=1

1

β′
0

∫ 1−β′
i

1−β′
0−β′

i

q−u (µi)du,

which implies that the value of the dual bound x2 is not smaller than that of the convolution bound.

The statement on the correspondence is shown in the above steps.

C Counter-examples

Example EC.1 (Non-sharpness in Theorem 2). Without loss of generality, we consider the case t = 0. Let

µ be a bi-atomic uniform distribution on {−1, 1}. It is easy to see that supν∈Λ3(µ) q
+
0 (ν) = −1 since any

ν ∈ Λ3(µ) is supported in {−3,−1, 1, 3} with mean 0. On the other hand, for (β0, β1, β2, β3) ∈ ∆3 with

β1 ⩾ β2 ⩾ β3, by symmetry, and the fact that R1−β,β−α is increasing in α and increasing in β, we have

Rβ1,β0
(µ) = −R1−β0−β1,β0

(µ) = −Rβ2+β3,β0
(µ) ⩾ −Rβ2,β0+β3

(µ),

Rβ2,β0(µ) ⩾ Rβ2,β0+β3(µ),
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and

Rβ3,β0(µ) ⩾ Rβ3,β0+β2(µ) ⩾ Rβ3,1−2β3(µ) = 0.

Combining the above three inequalities, we have
∑3

i=1 Rβi,β0(µ) ⩾ 0. Hence,

sup
ν∈Λ3(µ)

q+0 (ν) = −1 < 0 ⩽ inf
β∈∆n

3∑
i=1

Rβi,β0(µ),

showing that (18) is not an equality.

Example EC.2 ((15) does not hold as an equality for an increasing density). Without loss of generality, we

consider the case t = 0. Suppose that µ ∈ M has an increasing density on its support. Then, the cdf of µ is

convex, and hence the left quantile q−u (µ) is a concave function of u ∈ (0, 1). For the concave and increasing

function q−u (µ), we have

1

1− nα

∫ 1−α

(n−1)α

q−u (µ)du ⩾
1

1− 2α

∫ 1−α

α

q−u (µ)du ⩾
∫ 1

0

q−u (µ)du.

Therefore,

inf
α∈(0, 1

n )
nRα,1−nα(µ) = nR0,1(µ).

Note that if (15) holds as an equality, then infν∈Λn(µ) q
−
1 (ν) = nR0,1(µ), which, by Proposition EC.3 below,

implies that µ is n-CM. There are distributions µ with a decreasing density that are not n-CM, and an equiv-

alent condition is obtained by Wang and Wang (2011); see Appendix E for further explanation. Therefore,

(15) does not hold as an equality for some distributions with an increasing density. A specific example is

shown in Figure 3 (right panel).

Example EC.3 ((20) does not hold without a finite mean). By Theorem 4.2 of Puccetti et al. (2019), for

standard Cauchy probability measures µ1, . . . , µn, there exists ν1, ν2 ∈ Γ(µ) such that

q+0 (ν1) = q−1 (ν1) = sup
β∈∆n

n∑
i=1

R1−β0−βi,β0
(µi) = −n log(n− 1)

π

and

q+0 (ν2) = q−1 (ν2) = inf
β∈∆n

n∑
i=1

Rβi,β0
(µi) =

n log(n− 1)

π
.

Hence, we have

inf
ν∈Λ(µ)

q−1 (ν) = sup
β∈∆n

n∑
i=1

R1−β0−βi,β0(µi) = −n log(n− 1)

π

<
n log(n− 1)

π
= inf

β∈∆n

n∑
i=1

Rβi,β0
(µi) = sup

ν∈Λ(µ)

q+0 (ν).
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Example EC.4 (RA fails). In Example 1, µ is a triatomic uniform distribution on {1, 2, 3}, and the con-

volution bound gives supν∈Λ(µ,µ,µ) q
+
0 (ν) ⩽ 6 which is attainable. With the initial matrix below, we see that

RA does not provide 6, but instead it gives the interval [5,5].

RA:


1 1 1

2 2 2

3 3 3

 =⇒


3 1 1

2 2 2

1 3 3

 =⇒ termination

For how RA runs, see Embrechts et al. (2013).

D Well-posedness

Similarly to (21), for µ = (µ1, . . . , µn) ∈ Mn and β = (β0, β1, . . . , βn) ∈ ∆n, we denote by

R−
β (µ) =

n∑
i=1

R1−βi−β0,β0
(µi). (EC.19)

We discuss the attainability of the infimum in infβ∈∆n
R+

β (µ) and the supremum in supβ∈∆n
R−

β (µ). Note

that R+
β (µ) and R−

β (µ) are well defined for β ∈ ∆n. Now we discuss cases with βi taking boundary values

of 0, 1. We discuss whether R+
β (µ) and R−

β (µ) are well defined on the closure ∆n.

1. For β ∈ ∆n ⊂ ∆n, there is no undefined form “∞−∞” in R+
β (µ) and R−

β (µ), which are hence always

well defined.

2. For β ∈ ∆n with βi = 0 for some i ∈ {1, . . . , n} and β0 ∈ (0, 1], we define R−
β and R+

β similarly:

R+
β (µ) =

∑
j ̸=i

Rβj ,β0(µj)+R0,β0(µi), R−
β (µ) =

∑
j ̸=i

R1−βj−β0,β0(µj)+R1−β0,β0(µi),

except “∞−∞” cases that the integral of q−t (µi) at the neighbour of 0 is negative infinite and that of

q−t (µj) at the neighbour of 1 is infinite for some i, j ∈ {1, . . . , n}, i.e., R0,ε(µj) = ∞ and R1−ε,ε(µi) =

−∞ for some ε ∈ (0, 1). R+
β and R−

β are always well defined if µ ∈ Mn
1 .

3. For β ∈ ∆n with β0 = 0, we define

R+
β (µ) =

n∑
i=1

q−1−βi
(µi), R−

β (µ) =

n∑
i=1

q+βi
(µi),

except “∞−∞” cases that q−1 (µi) = ∞ and q−0 (µj) = −∞ for some i, j ∈ {1, . . . , n} and i ̸= j. They

are always well defined if µ1, . . . , µn are all bounded from the positive or negative side.

Because of the continuity of Rβ,α in β, α ∈ [0, 1], it can be proved that the infimum of infβ∈(1−t)∆n
R+

β (µ)

of cases t ∈ [0, 1) and the supremum of supβ∈t∆n
R−

β (µ) of cases t ∈ (0, 1] are attained in the well-defined
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part of ∆n.

E Connection to joint mixability

Joint mixability is closely related to quantile aggregation. The tuple of distributions µ ∈ Mn is said to

be jointly mixable (JM, Wang et al. (2013)) if δC ∈ Λ(µ) for some C ∈ R. Such C is called a center of µ.

The name JM means that the marginal distributions (µ1, . . . , µn) is able to support a joint mix dependence

(i.e., a random vector with a constant sum). Similarly, a probability measure µ on R is n-completely mixable

(n-CM, Wang and Wang (2011)) if the n-tuple (µ, . . . , µ) is JM. Obviously, if µ ∈ Mn
1 is JM, then its center

is unique and equal to the sum of the means of its components. If µ ∈ Mn is JM but it is not in Mn
1 ,

then its center may not be unique (Puccetti et al. (2019)). The determination of joint mixability for a given

µ ∈ Mn is well known to be a challenging problem and analytical results are limited. The main results of

this appendix are a sufficient condition on the sharpness of convolution bounds and some conditions on the

determination of JM.

We first see that JM is a sufficient condition for the bounds in Proposition 6 to be sharp for probability

measures with finite means.

Proposition EC.1. If µ ∈ Mn
1 is JM, then the bounds in Proposition 6 are sharp, and their values are

equal to the unique center of µ.

Proof. Note that since µ = (µ1, . . . , µn) is JM, we know δC ∈ Λ(µ) where C =
∑n

i=1 R0,1(µi). Hence, by

Proposition 6,

inf
β∈∆n

R+
β (µ) ⩾ sup

ν∈Λ(µ)

q+0 (ν) ⩾ q+0 (δC) ⩾ C ⩾ inf
β∈∆n

R+
β (µ).

The case for (19) is similar.

Proposition EC.1 supports Proposition 6 by giving further conditions for the bounds in Proposition 6

to be sharp, which can be checked through existing results on joint mixability in Wang and Wang (2016).

However, unlike Theorem A.2, Proposition EC.1 itself does not offer new ways to calculate quantile ag-

gregation, since the convolution bounds in (18) and (19) are all trivially equal to the center if we know

(µ1, . . . , µn) ∈ Mn
1 is JM.

Next, we look in the converse direction: implications of Theorem 2 and Theorem A.2 on conditions for

JM. Proposition 6 directly implies the following necessary condition for JM, which is also noted by Proposition

3.3 of Puccetti et al. (2019) with a similar argument. If µ is JM with center C, then C = q+0 (ν0) = q−1 (ν0)

for some ν0 ∈ Λ(µ). Hence,

inf
ν∈Λ(µ)

q−1 (ν) ⩽ C ⩽ sup
ν∈Λ(µ)

q+0 (ν).
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Using Proposition 6, we arrive at (where R−
β (µ) is defined at (EC.19))

sup
β∈∆n

R−
β (µ) ⩽ C ⩽ inf

β∈∆n

R+
β (µ).

If the means of µ1, . . . , µn are finite, then by Proposition 7, we have supβ∈∆n
R−

β (µ) ⩾ infβ∈∆n R+
β (µ).

Therefore, a necessary condition for µ ∈ Mn
1 to be JM is

sup
β∈∆n

R−
β (µ) = inf

β∈∆n

R+
β (µ).

We summarize the above simple findings in the following proposition. We use the convention that the closed

interval [a, b] is empty if a > b.

Proposition EC.2. The possible center C of µ = (µ1, . . . , µn) ∈ Mn satisfies

C ∈

[
sup

β∈∆n

R−
β (µ), inf

β∈∆n

R+
β (µ)

]
. (EC.20)

In particular, if µ is JM, then

sup
β∈∆n

R−
β (µ) ⩽ inf

β∈∆n

R+
β (µ), (EC.21)

and further if µ ∈ Mn
1 , then

sup
β∈∆n

R−
β (µ) =

n∑
i=1

R0,1(µi) = inf
β∈∆n

R+
β (µ). (EC.22)

The set ∆n appeared in Proposition EC.2 may be replaced by ∆n if (µ1, . . . , µn) ∈ Mn
1 . We next verify

that for many classes distributions known in the literature, (EC.21)-(EC.22) actually are sufficient for JM,

and all centers are identified with Proposition EC.2. We first present a convenient result which is useful for

the determination of JM for distributions with finite means.

Proposition EC.3. For µ = (µ1, . . . , µn) ∈ Mn
1 , the following statements are equivalent.

(i) µ is JM.

(ii) supν∈Λ(µ) q
+
0 (ν) =

∑n
i=1 R0,1(µi).

(iii) infν∈Λ(µ) q
−
1 (ν) =

∑n
i=1 R0,1(µi).

(iv) supν∈Λ(µ) q
+
0 (ν) = infν∈Λ(µ) q

−
1 (ν).

Proof. Let C =
∑n

i=1 R0,1(µi). By Proposition 7,

sup
ν∈Λ(µ)

q+0 (ν) ⩽ C ⩽ inf
ν∈Λ(µ)

q−1 (ν). (EC.23)
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As a consequence, (iv)⇒(ii)-(iii).

If µ is JM, then there exists ν0 ∈ Λ(µ) such that q+0 (ν0) =
∑n

i=1 R0,1(µi) = q−1 (ν0). This, together with

(EC.23), shows the implication (i)⇒(ii)-(iv).

If supν∈Λ(µ) q
+
0 (ν) = C, then, noting that R0,1(ν) = C for all ν ∈ Λ(µ), we have δC ∈ Λ(µ), since Λ(µ)

is closed under weak convergence (Theorem 2.1 of Bernard et al. (2014)). This shows (ii)⇒(i). Similarly,

(iii)⇒(i).

Next, in view of Theorem 2, we show in Proposition EC.4 that it can be checked through convolution

bounds whether some distributions are JM if they have monotone densities.

Proposition EC.4. µ = (µ1, . . . , µn) ∈ Mn
1 is JM if and only if (EC.22) holds, in the following cases:

(i) Each of µ1, . . . , µn admits a decreasing density on its support.

(ii) Each of µ1, . . . , µn admits an increasing density on its support.

(iii) µ1, . . . , µn are from the same location-scale family with unimodal and symmetric densities on their

supports.

Proof. The necessity of (EC.22) is stated in Proposition EC.2, and hence we only show its sufficiency.

(i) By Theorem 2 and (EC.22), we know

sup
ν∈Λ(µ)

q+0 (ν) = inf
β∈∆n

R+
β (µ) =

n∑
i=1

R0,1(µi).

By Proposition EC.3 (ii)⇒(i), µ is JM.

(ii) This is symmetric to (i).

(iii) Without loss of generality, we may assume that µ1, . . . , µn all have mean zero and they have scale

parameters a1 ⩾ . . . ⩾ an > 0, respectively. By Corollary 3.6 of Wang and Wang (2016), we know that

(µ1, . . . , µn) is JM if and only if 2
∨n

i=1 ai ⩽
∑n

i=1 ai. Take β = (1 − ε, ε, 0, 0, . . . , 0) ∈ ∆n for some

ε ∈ (0, 1). Since µ1, . . . , µn are from the same location-scale family with symmetric densities, we have

−Rε,1−ε(µi)/ai = −R0,1−ε(µi)/ai = R0,1−ε(µ1)/a1 > 0 for i = 1, . . . , n. By (EC.22), we have

0 =

n∑
i=1

R0,1(µi) ⩾
n∑

i=1

R1−β0−βi,β0
(µi) = R0,1−ε(µ1) +

n∑
i=2

Rε,1−ε(µi)

=
R0,1−ε(µ1)

a1

(
a1 −

n∑
i=2

ai

)
.

Therefore, a1 −
∑n

i=2 ai ⩽ 0, which implies 2
∨n

i=1 ai ⩽
∑n

i=1 ai.
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Remark EC.1. By Theorem 3.2 of Wang and Wang (2016), for µ1, . . . , µn ∈ M with decreasing densities,

(µ1, . . . , µn) is JM if and only if

n∨
i=1

(
q−1 (µi)− q+0 (µi)

)
⩽

n∑
i=1

(
R0,1(µi)− q+0 (µi)

)
. (EC.24)

We already know that (EC.22) is necessary for (µ1, . . . , µn) to be JM. One can directly check that (EC.24)

is implied by (EC.22), thus showing the equivalence of (EC.22) and (EC.24).

Remark EC.2. A similar situation of Proposition EC.4 is obtained for distributions without the mean: if

each of µ1, . . . , µn is a standard Cauchy distribution, the set of all centers of (µ1, . . . , µn) is precisely given

by (EC.20). This statement is based on Example 4.1 and Theorem 4.2 of Puccetti et al. (2019).

F Comparison of different methods in computation

In this appendix, we compare three potential ways of computing the quantile aggregation problem or

its approximations. The first two approaches, RA and linear program, require a discretization, whereas the

third approach, the convolution bound, can be applied with either discrete input or functional input.

(a) Original problem: Let [n] := {1, . . . , n}. Consider the quantile aggregation problem

sup
ν∈Λ(µ)

q+0 (ν) = sup{q+0 (X1 + · · ·+Xn) : Xi ∼ µi, i ∈ [n]}, (EC.25)

where µ1, . . . , µn are distributions on R, with supports bounded from below, and µ = (µ1, . . . , µn). Note

that µ1, . . . , µn are assumed to have supports bounded from below because otherwise q+0 may be infinite.

The probability level 0 is chosen here without loss of generality, because any risk aggregation problem

for q+t can be equivalently formulated as one for q+0 as shown in Proposition 1.

(b) Discretization: To tackle problem (EC.25) numerically for given distributions µ1, . . . , µn, a common

step is to discretize using their quantiles, that is, to consider a number m (ideally large) and for each

i ∈ [n], a distribution µm
i over m points (some may be equal) each with probability 1/m:

zi1 = q+0 (µi), . . . , zim = q+(m−1)/m(µi). (EC.26)

The input values of the discrete problem are these zij for i ∈ [n], j ∈ [m]. This discretization is

asymptotically consistent in the following sense: Let µm = (µm
1 , . . . , µm

n ). As m → ∞, since µm
i → µi

weakly, µm
i ⩽st µi (where ⩽st stands for stochastic order), and q+0 is upper semi-continuous, we have

sup
ν∈Λ(µm)

q+0 (ν) → sup
ν∈Λ(µ)

q+0 (ν).
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(c) Rearrangement algorithm (RA): We first write the input values of the discrete problem into a matrix


z11 z21 . . . zn1
...

...
. . .

...

z1m z2m . . . znm

 . (EC.27)

The RA, introduced by Embrechts et al. (2013), tries to maximize the minimal row sum of the matrix

resulting from rotating the elements within each column of (EC.27). Note that rotating elements within

each column corresponds to changing the dependence structure of a discrete random vector while main-

taining its marginals, and the row-sum vector corresponds to the distribution of the sum of components

of the random vector; see Section G.2 for this problem in a different context. The problem of finding the

maximum of the minimal row sum is NP-hard (e.g., Haus (2015)), but RA can compute a suboptimal

answer very quickly, which typically has good accuracy. The theoretical computational complexity of

RA is unknown in the literature. For discrete distributions, as in our setting here, the output of RA is

sN , which is a lower bound on the true value of (EC.25). For continuous distributions, RA outputs an

interval [sN , s̄N ] with sN again being a lower bound for the original (continuous) problem, but there is no

guarantee for s̄N to be either a lower bound or an upper bound for the original problem. RA is the most

popular and standard method in the risk management literature to compute the quantile aggregation

problem; see Embrechts et al. (2013, 2014).

(d) Linear program (LP): Recall that Γ(µ) represents the set of all distributions on Rn with marginals

µ. The problem (EC.25) can be equivalently formulated as

sup
ν∈Λ(µ)

q+0 (ν) = sup

{
x ∈ R :

∫
Rn

1{x1+···+xn⩽x}Π(dx1, . . . ,dxn) = 0 for some Π ∈ Γ(µ)

}
. (EC.28)

Writing Πk = Π({(z1k1
, . . . , znkn

)}) for k = (k1, . . . , kn) ∈ [m]n, which represents the probability

P(X1 = z1k1
, . . . , Xn = znkn

)

for a random vector (X1, . . . , Xn) with the given marginals. The above problem can be formulated as

the following program

sup x

subject to Πk ∈ [0, 1] for k = (k1, . . . , kn) ∈ [m]n∑
k∈[m]n

1{z1
k1

+···+zn
kn

⩽x}Πk = 0;

∑
k:ki=j

Πk =
1

m
for each i ∈ [n] and j ∈ [m].

(EC.29)
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Practically, we need to try to solve for discrete values of x. The method has two steps.

Step 1: We specify a real interval T that covers the range of values for the optimal value of (EC.29).

For each fixed x ∈ T , we define

V (x) = min
∑

k∈[m]n

ykΠk

subject to Πk ⩾ 0 for k = (k1, . . . , kn) ∈ [m]n,∑
k:ki=j

Πk =
1

m
for each i ∈ [n] and j ∈ [m],

(EC.30)

where yk = 1{z1
k1

+···+zn
kn

⩽x} are parameters. Problem (EC.30) is a linear program (LP) withmn variables

and n×m equality constraints.

Step 2: The optimal value output by the algorithm is given by

sup{x ∈ T : the optimal value V (x) in Problem (EC.30) ⩽ 0}. (EC.31)

For each fixed x ∈ T , this method has mn variables and n×m constraints. Note that instead of solving

for each x ∈ T , to search for the optimal x, a bisection approach can replace the specification of T . The

complexity of this problem is discussed in Remark EC.3.

(e) Convolution bound (CB): We directly take the quantile functions of µ1, . . . , µn as input, let t = 0,

and solve for

Bconv = inf
β∈(1−t)∆n

n∑
i=1

Rβi,β0
(µi).

Each term Rβi,β0
(µi) is an integral of the corresponding quantile function. If the marginal distributions

are given as discrete data points, then the input values for CB are the empirical quantile functions.

Although this minimization is not convex and we do not know the theoretical computational complexity

of CB, in all numerical examples we find that it can be computed very fast and accurately.

Next, we provide numerical results to compare the three methods, RA, LP and CB, described above. For

a comparison, we assume that each marginal distribution µi is uniform on m points, denoted by zi1, . . . , z
i
m

as in the discussion above. Note that CB can also take quantile functions as input, whereas RA and LP can

only take discrete input. These m points are specified in two different ways.

(i) They are the values of the quantile functions at different levels as in (EC.26).

(ii) They are randomly sampled from some distributions.

For this specification of the marginal distributions (there is no discretization involved, as the marginal

distributions are themselves discrete), LP produces a true value of (EC.25), RA produces a lower bound on

(EC.25), and CB produces an upper bound on (EC.25).

The numerical results are reported in Table 6. We make the following observations from the results.
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1. All methods become slower when either m or n increases, as expected.

2. LP produces the true value for (EC.25), but it has some drawbacks for implementation. As each LP

problem involves mn variables, the applicability seems to be very limited. For m ⩾ 180 with n = 3, or

m ⩾ 20 with n = 5, the computation is either unavailable in MATLAB or costs more than 24 hours. In

a real risk management problem where loss distributions are typically continuous (such as asset prices

or insurance losses), the value of m needs to be relatively large to ensure good approximation (typically

at least 105; see Embrechts et al. (2013)).

3. RA is fast in most cases and simple in coding. It can handle m = 106 and n = 200 as demonstrated

by Embrechts et al. (2013). However, it only provides a lower bound, and sometimes this lower bound

may not be close to the true value provided by LP. There are no theoretical results on the convergence

of RA.

4. CB is much faster than LP, but slower than RA. CB can handle dimensions up to n = 200. In some

cases studied in this paper, such as continuous distributions with monotone densities, it is theoretically

proved that it produces an exact true value. In our numerical results, the CB value often coincides with,

or is very close to that of LP. It also enjoys the interpretability of the dependence structure (see Section

6). It can directly handle continuous distributions often encountered in risk management without the

need to discretize (for such setting, m is practically infinity). We comment on two disadvantages of

CB. First, in the computation of CB, the convergence is based on the optimization function in the

software (fmincon in MATLAB in our case). There is no theoretical guarantee that this function finds

the global optimum, due to lack of convexity. Nevertheless, in all numerical results where CB and LP

agree, we know that global optimum is reached. Second, in case the conditions in Theorem 2 do not

hold, we do not know whether CB is equal to the original problem (EC.25). Despite the gap due to the

non-convexity in computing CB and the gap between CB and (EC.25), if we obtain a solution β from

the optimization software, the objective value evaluated at β is guaranteed to give an upper bound for

(EC.25).

5. Combining RA and CB gives a theoretically proven interval in which the true value of (EC.25) lies.

This gives a fast and reliable way of finding the range of (EC.25). While RA is practically fast and

commonly used, it only provides a one-sided bound (and arguably the less important side), and CB

essentially closes the other side.

Remark EC.3. This binary search on the values of x in the LP (EC.30) inside (EC.31) can be done efficiently

as V (x) is monotone (although not necessarily strictly monotone). This implies that the number of binary

queries is O(log(length(T )/ε), where length(T ) is the length of the interval T and ε is the (additive) error

tolerance to which we want to compute x. Hence, Problem (EC.29) has a poly(m,n) complexity if Problem

(EC.30) with any fixed x ∈ T has; see Chapter 8.7 of Papadimitriou and Steiglitz (1998) for details.
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Table 6: Comparison of the rearrangement algorithm (RA), the linear program (LP), and the convolution
bound (CB). In (a)-(e), the distribution µi is uniform on a set {zi1, . . . , zim} for each i ∈ [n]. In (f), the
marginal distributions are continuous, and RA produces an interval [sN , s̄N ] using a discretization with
N = 105 steps.

zij = i× j m = 120 zij = i× j m = 160 zij = i× j m = 180

value time value time value time

LP 363 11988s 483 24960s NA >24h

RA 358 66s 478 140s 534 212s

CB 363 1447s 483 1687s 543 2315s

(a) n = 3 and zi1, . . . , z
i
m are equidistant for each i ∈ [n]

zij iid ∼ exp(100× i) m = 60 zij iid ∼ U[0, 100× i2] m = 100

value time value time

LP 589.6 104.7s 499.3 2865.3s

RA 583.2 0.02s 499.3 35.3s

CB 608.0 1.8s 499.3 692.1s

(b) n = 3 and zi1, . . . , z
i
m are randomly generated for each i ∈ [n]

zij = i2 × j m = 30 zij = j2 m = 30

value time value time

LP 436 5280s 1260 6707s

RA 436 0.02s 1230 0.01s

CB 446 0.9s 1260.7 0.5s

(c) n = 4 and zi1, . . . , z
i
m are deterministic for each i ∈ [n]

zij iid ∼ exp(100× i) m = 30 zij iid ∼ Binomial(300, 0.2× i) m = 30

value time value time

LP 845.3 2937s 1932 3091s

RA 828.8 0.03s 1924 0.02s

CB 881.5 1.7s 1935.5 0.9s

(d) n = 4 and zi1, . . . , z
i
m are randomly generated for each i ∈ [n]

zij iid ∼ exp(100× i) m = 15 zij iid ∼ U[0, 100× i2] m = 20

value time value time

LP 1198.0 4988.9s NA >24h

RA 1158.7 0.02s 2715.8 0.03s

CB 1214.0 1.3s 2760.0 1.8s

(e) n = 5 and zi1, . . . , z
i
m are randomly generated for each i ∈ [n]

µi = Gamma(3, 1) n = 200

value time

RA [599.9, 600.0] 1710s

CB 600 2021s

(f) n = 200 with continuous distribution; LP cannot handle such large n
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Next we focus on the complexity of Problem (EC.30). While it has an exponential in n, namely mn,

number of decision variables, its dual problem, given by

max
pij∈R,i=1,...,n,j=1,...,m

n∑
i=1

m∑
j=1

pij
1

m
,

subject to yk −
∑n

i=1 pi,ki
⩾ 0 for any k = (k1, . . . , kn) ∈ [m]n,

(EC.32)

is an LP with n ×m variables and mn constraints. The polynomial number of variables in the dual prob-

lem (EC.32) suggests the potential of yielding poly(m,n)-time algorithms for the primal problem (EC.30).

In particular, via the ellipsoid method (e.g., Lemma 3.2 of Grötschel et al. (1981)), the LP (EC.30) is

polynomial-time solvable if there is a separation oracle for (EC.32) that runs in polynomial time; see Defini-

tion 6.2.2 of Grötschel et al. (2012). However, deducing the availability of such a polynomial-time separation

oracle appears challenging. In fact, (EC.30) belongs to the multi-marginal optimal transport (MOT) prob-

lem (Altschuler and Boix-Adserà (2021, 2023)) with a so-called set-optimization structure (Section 6.1 of

Altschuler and Boix-Adserà (2023)). More precisely, given the fixed matrix z defined by (EC.27) and x,

we define the set S = {k ∈ [m]n : z1k1
+ · · · + znkn

> x}. Based on Definition 6.5 and Theorem 6.8 of

Altschuler and Boix-Adserà (2023), Problem (EC.30) for fixed x has a polynomial complexity if the problem

mink∈S −
∑n

i=1 pi,ki
, for any arbitrary matrix p ∈ Rm×n, has. To this end, neither Altschuler and Boix-

Adserà (2023) or any other works to our best knowledge has worked out the polynomial complexity of the

problem mink∈S −
∑n

i=1 pi,ki with our considered S. With this, it appears that the question of whether

(EC.29) has a polynomial complexity remains open.

G Two further applications

We illustrate the convolution bounds in two additional applications. Section G.1 constructs a new robust

test for simulation calibration. Section G.2 discusses the classic assembly line crew scheduling problem.

G.1 Simulation calibration

In multiple statistical hypothesis testing, quantile aggregation gives critical values for various methods

to combine p-values from different tests among which, most often, no dependence information is available;

see e.g., Ramdas et al. (2019), Vovk and Wang (2020) and Vovk et al. (2022). This problem also arises in

operations research, especially in the context of stochastic simulation model calibration (Kleijnen (1995);

Sargent (2010)).

In simulation analysis, calibration refers to the search for parameters of simulation models to best

match real data. These models are constructed to resemble the hidden dynamics of a system, which are

often complex and not amenable to closed-form analysis. Instead, by running Monte Carlo, we can obtain

the model outputs for prediction and other downstream decision-making tasks such as sensitivity analysis
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and optimization (see, e.g., Law and Kelton (2000) for a range of applications in production and operations

management). However, to ensure that the conclusions of these analyses are reliable, it is critical that the

input parameters in the hidden dynamics are correctly tuned. This calls for the need for calibration, where

the outputs from the simulation model are matched against the real data in order to locate the parameter

values. In a setting of one-dimensional (continuous) output, one could rely on a two-sample goodness-of-fit

test such as the Kolmogorov-Smirnov (KS) test, which looks at the KS statistic

KS = sup
x∈R

|F̂sim(x)− F̂real(x)|.

Here F̂sim and F̂real are the empirical distributions of the simulated and real output data, respectively. Under

the null hypothesis that the parameters are correctly calibrated, the asymptotic distribution of KS is equal

to the supremum difference between two independent scaled Brownian bridges. In the multi-dimensional

case, one can look at multiple KS-statistics, one for each dimension, and further use a Bonferroni correction

to adjust the critical value. More precisely, when the dimension is K, we would look at the KS-statistic

KSk for each dimension of output k = 1, . . . ,K. If any of the KSk is above the adjusted critical value

q1−γ/K , then we conclude that the simulation model is different from the real data. Put another way, if

maxk=1,...,K KSk > q1−γ/K , then we reject the hypothesis that the model is the same as reality.

It is known that the Bonferroni correction is conservative, especially when different dimensions of the

outputs are highly dependent. The question is whether one can improve it without losing validity. This

resembles the problem of so-called p-value aggregation (Ramdas et al. (2019); Vovk and Wang (2020)), which

aims to construct tight family-wise p-values from merging multiple p-values in individual experiments. In

the considered case, a natural alternative way to construct an aggregated statistic over all dimensions is the

sum of individual KS-statistics,
∑K

k=1 KSk. Note that each KSk has the same marginal distribution (with

quantile q1−γ), thus we can use Proposition 2 to derive a new critical value given by

inf
α∈(0,γ/K)

K

γ −Kα

∫ 1−α

1−γ+(K−1)α

qudu.

The Kolmogorov probability density function is decreasing at its tail part. For γ sufficiently small (e.g.,

γ < 0.3), this critical value is sharp among all possible dependence structures of the KSk, since the marginal

densities are monotonically decreasing beyond (1 − γ)-quantile. Particularly, for K = 5, Table 7 lists this

new critical value8 for different γ.

We illustrate our sum-of-KS statistic and newly derived critical values, and compare them with using

the Bonferroni correction, in a multi-class queueing model (M/M/1/∞). In this model, there are 5 types of

customers (k = 1, . . . , 5), each with its own exponential service rate (µk) and Poisson arrival rate (λk). The

8It is known that if F̂real is continuous, then under the null hypothesis, the distribution of each
√
MKSk converges to the

Kolmogorov distribution as the sample size M goes to infinity. But the convergence rate is slow. We use the method in Vrbik
(2018) for the asymptotic approximation (replacing x by x+ 1

6
√
M

+ x−1
4M

in the Kolmogorov cumulative distribution function

F (x)).

63



Table 7: Critical values for
∑5

k=1 KSk in the two-sample test (all sample sizes are M).

M
γ

0.2 0.1 0.05 0.02 0.01

100 0.8875 0.9801 1.0645 1.1667 1.2384
1000 0.2833 0.3127 0.3394 0.3718 0.3945

Table 8: Parameters (µk, λk) of classes k = 1, . . . , 5 in each configuration

Class
Configuration

Both True False µ False λ Both False

1. Slow-service-small-arrival (6, ρ) (6.05, ρ) (6, 0.95ρ) (6.05, 0.95ρ)
2. Slow-service-large-arrival (6, 2ρ) (6.05, 2ρ) (6, 1.95ρ) (6.05, 1.95ρ)

3. Medium-service-medium-arrival (8, 1.6ρ) (8.05, 1.6ρ) (8, 1.45ρ) (8.05, 1.45ρ)
4. Quick-service-small-arrival (10, ρ) (10.05, ρ) (10, 0.95ρ) (10.05, 0.95ρ)
5. Quick-service-large-arrival (10, 2ρ) (10.05, 2ρ) (10, 1.95ρ) (10.05, 1.95ρ)

system is first-come-first-served and starts from empty. Suppose we do not know the arrival and service time

parameters in the model. On the other hand, suppose we have real output data on the average waiting times

for each class of customers among 1000 total arrivals. Such a setting where only output- but not input-level

data are observed can arise due to various administrative or operational constraints; see, e.g., Mandelbaum

and Zeltyn (1998); Frey and Kaplan (2010); Whitt (1981); Goeva et al. (2019). Then, to validate a given set

of parameter values in Table 8, we can generate simulation outputs from several conjectured configurations

(four in our example) and run the aggregated KS tests described above, which treats the average waiting

time of each customer class as one output dimension.

More precisely, we consider four parameter configurations that are listed in Table 8. The first column

shows the true configuration and the rest are incorrectly conjectured. To facilitate the presentation and to

test our approach on several ground-truth models, we define a model parameter ρ =
∑5

k=1
λk

µk
, which can be

viewed as a summary of the traffic intensity. We experiment on three ground-truth settings: ρ = 1.1, 1, 0.9,

representing scenarios with respectively long, medium and short waiting times. For each model parameter

ρ, we conduct 1000 experimental repetitions, where in each repetition we independently generate a synthetic

data set of size M = 100, run simulation with the same size on each of the four configurations depicted in

Table 8, and then use our sum statistic and Bonferroni correction on KS to do multiple hypothesis tests.

The results are summarized in Table 9.

Our sum-of-KS statistic is shown to be useful in the model where data across dimensions are highly

and complicatedly dependent. We find in Table 9 that compared to Bonferroni correction, the new sum

statistic has consistently slightly greater statistical power under various close-to-critical traffic intensities in

this example. The basic reason is that the waiting times of different classes are highly dependent, and hence

the sum statistic takes advantage from the bound (15) on quantile aggregation with dependence uncertainty.

In case of near independence (e.g., small ρ), the Bonferroni correction is known to have a very good power,

and it outperforms the sum-of-KS method. The drawback of this sum-of-KS statistic may be an overemphasis

on the worst-case scenario. There are other methods of multivariate goodness-of-fit tests adapting well to
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Table 9: Testing outputs of two methods. Here, the number of different classes is K = 5, the significant level
is γ = 0.05, the sample size on the synthetic data and simulation runs for each configuration is M = 100
and the number of total arrivals is 1000. By computation, the critical value for the sum statistic is 1.0645
and that for Bonferroni correction is 0.2302. We use 1000 experimental repetitions. Type-I Error means the
percentage of cases that the configuration with both true parameters in Table 8 is mistakenly rejected, a
number set by us. Power records the percentage of cases that the wrong configuration is successfully rejected
in our experiment.

Method
Model Long waiting (ρ = 1.1) Medium waiting (ρ = 1) Short waiting (ρ = 0.9)

Type-I Error Power Type-I Error Power Type-I Error Power
Sum statistic 0.0140 0.5907 0.0100 0.6460 0.0120 0.6353

Bonferroni correction 0.0140 0.5887 0.0080 0.6327 0.0100 0.6247

the environment of dependence, such as Peacock’s test and its later variants.9

G.2 Assembly line crew scheduling

The quantile aggregation problem is closely related to the problem of assembly line crew scheduling,

which we explain in this section.

A manufacturing facility produces items which require the completion of n tasks in series. Suppose that

there are m assembly lines (rows) and n operations (columns). Each operation has m crews to be assigned

to each line. If the i-th operation is put in the j-th assembly line, it costs zij units of time (or another type

of resource) to complete the task. Therefore, we can use the m × n matrix in (EC.27), where the number

zij at (i, j)-position represents the processing time of the i-th crew in the j-th operation. The objective is

to appropriately assign crews in each operation to the lines in order to minimize the makespan, that is, the

maximum total processing time of all assembly lines. For j = 1, . . . , n, denote by µj the distribution measure

for a discrete uniform distribution on the j-th column (m elements). The objective is to find an optimal

arrangement of elements in each column to minimize the maximum row sum (the makespan). We denote the

minimal makespan by smin. A similar problem appears in many other fields, e.g., in healthcare operations

where usage of operating rooms among all types of elective surgeries is to be optimized. This problem is

essentially the same as the matrix rotation problem explained in Appendix F, but minimizing the maximum

row sum instead of maximizing the minimum row sum. These two problems can be converted into each other

by simply putting a negative sign in front of all values zij .

A few remarks on the problem of assembly line crew scheduling and that of quantile aggregation are

needed. Denote by qmin = infν∈Λ(µ) q
−
1 (ν), the infimum value of the quantile aggregation problem with the

same marginals. First, the problem of assembly line crew scheduling is know to be NP-complete; see Hsu

(1984) and Haus (2015). Second, since each arrangement induces a dependence structure among random

variables with marginal distributions µ1, . . . , µn, the two problems are closely connected with one difference:

the assembly line crew scheduling problem only allows for discrete dependence structures taking m different

values in Rn (indeed, it can be seen as a quantile aggregation problem restricted on a discrete probability

space of m states), whereas the quantile aggregation also allows for other dependence structures, such as

9We thank an anonymous referee for pointing out Peacock’s test in this application.
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independence. Third, qmin is a lower bound for smin, and RA can produce an upper bound for smin (RA can

be used to compute both the maximum of minimum row sum or minimum of maximum row sum). CB in

(19) in Proposition 6 produces a lower bound Bconv on qmin and hence also on smin. Fourth, the difference

between qmin and smin is relatively small. These two values often coincide: as seen from our numerical

examples, often RA coincides with CB, making the inequalities in

RA ⩾ smin ⩾ qmin ⩾ Bconv

all exact. Fifth, one can also use the LP method in Appendix F to compute qmin when the values of m and

n are small (see the numerical experiments in Appendix F). This yields a lower bound for smin.

Suppose that a matrix of representation is given by the left-hand side of (EC.33), with a makespan of

87 + 60 + 83 = 230. Let Xi be a uniform discrete random variable valued on the i-th column of the matrix

and µi be the corresponding distribution. For example (i = 1), X1 takes each value of the first column

{44, 66, 67, 71, 87} with probability 1/5. For the discrete distributions µ1, µ2, µ3, the minimal makespan

is at least infν∈Λ(µ) q
−
1 (ν). According to Proposition 6, supβ∈∆n

∑n
i=1 R1−βi−β0,β0(µi) serves as a lower

bound for the minimal makespan and the maximizer β provides a hint to the optimal scheduling rule. In

this example, the explicit bound is attainable: supβ∈∆3

∑3
i=1 R1−βi−β0,β0

(µi) = 160 with the maximizer

β = (0, 0.2, 0.6, 0.2). If an arrangement yields a minimal makespan of 160, it must optimal. Indeed, one

optimal arrangement is given by the right-hand side of (EC.33).

Convolution bound:



44 10 24

66 32 37

67 48 41

71 57 43

87 60 83


=⇒



87 10 43

71 60 24

67 48 41

44 32 83

66 57 37


(EC.33)

There are several algorithms in the literature for the problem of assembly line crew scheduling. Coffman

and Sethi (1976) and Hsu (1984) naturally adopted greedy-type (largest first) methods. Coffman and Yan-

nakakis (1984) improved and developed an algorithm to approximate the problem. Embrechts et al. (2013)

proposed the RA in the context of risk management. These numerical algorithms provide an upper bound

for the minimal makespan because they always return to a plausible scheduling rule.

The k-partitioning problem is a similar problem to the one in this section, as it can be solved by finding

the minimal maximum row sum of a matrix; see Boudt et al. (2018). From a different perspective, our

convolution bound provides analytical assistance for this type of problem. As it is a lower bound for the

minimal makespan, if it is equal to the RA results, we can guarantee that the scheduling rule is optimal.
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