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Abstract

In statistical analysis, many classic results require the assumption that models have finite

mean or variance, including the most standard versions of the laws of large numbers and the

central limit theorems. Such an assumption may not be completely innocent, and it may not

be appropriate for datasets with heavy tails (e.g., catastrophic losses), relevant to financial risk

management. In this paper, we discuss the importance of infinite-mean models in economics,

finance, and related fields, with recent results and examples. We emphasize that many results

or intuitions that hold for finite-mean models turn out to fail or even flip for infinite-mean

models. Due to the breakdown of standard thinking for infinite-mean models, we argue that if

the possibility of using infinite-mean models cannot be excluded, great caution should be taken

when applying classic methods that are usually designed for finite-mean cases in finance and

insurance.
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1 Introduction

The purpose of this article is to review and discuss recent advances in infinite-mean models

and their intriguing behavior and implications in risk management and statistics. The discussion

is by no means exhaustive, but rather it reflects the subjective choices of the authors and their

limitation of knowledge.

Let us first set straight a simple, but perhaps important and puzzling, question. Whereas

whether the world is finite or not may be philosophical or agnostic, it is agreed by most people

that the financial world is finite, because the total amount of money in the world is finite. Why
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are we interested in a model with infinite mean, when the risk variables that we try to model are

eventually bounded?

The short answer is that these infinite-mean models fit statistically better the reality in many

relevant situations, and they provide useful insights on risk management problems, which are some-

times as useful as finite-mean models, but very different in nature, as we will discuss.

Important to infinite-mean models is the principle of power law. Power-law models have

been extensively employed to study various heavy-tailed phenomena such as population incomes,

city sizes, word frequencies, stock returns, and financial losses. They are also made popular to

the public via its connection to the Black Swan of Taleb (2007). Andriani and McKelvey (2007)

and Clauset et al. (2009) discussed the applications and empirical evidence of power-law models.

Although models with finite moments are commonly assumed in many statistical analyses, in the

context of finance and insurance, power-law models with divergent second or even first moments

are ubiquitous.

Since empirical observations are finite by nature, sample moments of all orders are always

finite. If sample moments converge for large numbers of sample sizes, it is useful to take the

“stabilized” values as approximations of the true moments due to the law of large numbers. In

view of the finiteness of sample moments, models with infinite moments may seem problematic for

applications. However, as Mandelbrot (1997) emphasized, the concept of infinite moments is not

“improper” as sample moments do not always converge or may tend to infinity as the sample size

increases. Therefore, the finiteness of sample moments cannot be used to exclude the possibility of

using models with infinite moments (see also p. 88–92 of Mandelbrot (1997)). In practice, of course,

one can avoid infinite moments by either putting bounds to infinite-mean models or replacing their

tail parts with lighter tails. As a cost, these corrections may give varying or even misleading results.

Infinite-mean models are by no means strange or pathological. For an inexperienced reader, let

us consider a uniformly distributed random variable U on [0, 1], or a normally distributed random

variable X with mean 0 and variance 1, both very common in any probabilistic or statistical

analysis. What may not be obvious, although mathematically simple to verify, is that 1/U and

1/X have infinite mean, although they are very natural objects. (Note that X takes the value 0

with probability 0, so the reciprocal 1/X is well-defined.)

Among models with infinite moments, those with infinite means are particularly useful in risk

management, especially for modeling catastrophic risks and operational risks. Section 3 contains

a summary of various examples of infinite-mean models in risk management and related areas. In

this paper, we collect some recent results and phenomena of infinite-mean models across different
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research domains. It turns out that the assumption of having a finite mean is crucial for many

classic results to hold; many of these results are typically flipped for infinite-mean models. We also

emphasize that several commonly used methods in statistics, decision analysis, and risk management

are not useful for infinite-mean models anymore. For instance, the classic central limit theorem

requires a finite second moment and sample moments will not converge for infinite-mean models.

Therefore, if infinite-mean models are the outcomes of careful statistical analysis, standard methods

should be used with considerable caution or possibly avoided.

The rest of the paper is organized as below. Section 2 gives several examples of power-

law distributions. Section 3 exemplified the occurrences of infinite-mean models in many studies.

Standard estimation methods of power-law models are briefly described in Section 4. In Section 5,

we point out several statistical, decision, and risk models that may fail for infinite-mean models.

Sections 6–9 discuss the applications of infinite-mean models in risk aggregation, optimization

and risk sharing, multiple hypothesis testing, optimal bundling, firm growth analysis, and linear

estimators, respectively. Section 10 concludes the paper.

2 Definitions and properties

Many useful models applied to heavy-tailed phenomena fall into the class of power-law dis-

tributions. A random variable X is said to follow a power-law distribution (or a regularly varying

distribution) with tail parameter α > 0, if

P(X > x) =
L(x)

xα
,

where L is a slowly varying function, that is, L(tx)/L(x) → 1 as x → ∞ for all t > 0. We say a

power-law distribution is extremely heavy-tailed if α ≤ 1. A distribution is said to be an infinite-

mean distribution/model if its absolute moment of order 1 is infinite (i.e., a random variable X

follows an infinite-mean distribution if E[|X|] = ∞). We are particularly interested in those models

for X with E[X+] = ∞, where X+ = max{X, 0}, for their financial interpretation. We present

below some important examples of power-law distributions, all of which are infinite-mean models if

their tail parameters are no greater than 1.

The most popular power-law model is arguably the Pareto distribution, with its distribution

function defined as

P(X ≤ x) = 1−
(
θ

x

)α

, x ≥ θ,
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where α > 0 is the tail parameter and θ > 0 is the scale parameter. The nth moment of X is

infinite if and only if the tail parameter α is in (0, n]; in particular, E[X] = ∞ if α ∈ (0, 1]. This

parametrization of the Pareto distribution is known as the Pareto distribution of Type I; see Arnold

(2015) for other parametrizations of Pareto distributions and the related distributional properties.

An important distribution from the Extreme Value Theory (EVT) is the generalized Pareto

distribution (GPD). The generalized Pareto distribution with parameters ξ ∈ R and β > 0 is defined

as

P(X ≤ x) =

 1−
(
1 + ξ xβ

)−1/ξ
, if ξ ̸= 0,

e−x/β, if ξ = 0,

(1)

where x ∈ [0,∞) if ξ ≥ 0 and x ∈ [0,−β/ξ) if ξ < 0. If ξ > 0, the generalized Pareto distribution

is a power-law distribution with a tail parameter being 1/ξ. If ξ ≥ 1, then the generalized Pareto

distribution has infinite mean. By the Pickands-Balkema-de Haan Theorem (Balkema and de Haan,

1974; Pickands, 1975), the generalized Pareto distributions are the only possible non-degenerate

limiting distributions of the excess of random variables beyond a high threshold.

Another important power-law distribution in the EVT literature is the Fréchet distribution

with the distribution function given by

P(X ≤ x) = exp(−x−α), x > 0,

where α > 0 is the tail parameter. If α ≤ 1, then E[X] = ∞. By the Fisher-Tippett-Gnedenko

Theorem, the Fréchet distribution (with location-scale transforms) is one of the three possible non-

degenerate limiting distributions of the maximum of iid random variables (the limiting distributions

are referred to as the extreme value distributions). In particular, if X1, X2, . . . are iid regularly

varying random variables, then there exist sequences of constants {dn} and {cn} where cn > 0

such that (max{X1, . . . , Xn} − dn)/cn converges to the Fréchet distribution (up to location-scale

transforms).

Two other examples of extremely heavy-tailed power-law models are the Cauchy distribution

and the Lévy distribution. The standard Cauchy cumulative distribution function is

P(X ≤ x) =
1

π
arctan(x) +

1

2
, x ∈ R,

and the standard Lévy cumulative distribution function is

P(X ≤ x) = 2− 2Φ

(
1√
x

)
, x ≥ 0,
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where Φ is the cumulative distribution function of the standard normal distribution. The tail indices

of the Cauchy distribution and the Lévy distribution are 1 and 0.5, respectively. The expectation

of the Cauchy distribution does not exist and that of the Lévy distribution is ∞.

The Cauchy distribution is also well-known via its density function, given by

f(x) =
1

π(1 + x2)
, x ∈ R.

This function is also known as “the witch of Agnesi”, getting the name from a book of Maria

Gaetana Agnesi published in 1748. In any college-level probability courses, the Cauchy distribution

is the first example of an infinite-mean distribution, for which the laws of large numbers fail.

Both the Cauchy and the Lévy distributions are special cases of a large class of power-law

distributions called stable distributions. The characteristic function of a stable distribution with

stability parameter α ∈ (0, 2), skewness parameter β ∈ [−1, 1], scale parameter σ = 1 and shift

parameter µ = 0, is

φ(θ) =

 exp
(
−|θ|α(1− iβ sgn(θ) tan πα

2 )
)

if α ̸= 1,

exp
(
−|θ|(1 + iβ 2

π sgn(θ) log |θ|)
)

if α = 1,

θ ∈ R,

where sgn(·) is the sign function. As the name suggests, a linear combination of iid stable random

variables follows the same distribution of the iid random variables, up to location-scale transforms.

Another important property of stable distributions is that they are the only possible limiting distri-

butions of sums of iid random variables; see Samorodnitsky (2017) and Nolan (2020) for properties

of stable distributions. Stable distributions are usually defined via their characteristic functions

because they generally do not have analytical cumulative distribution functions. The few examples

with analytical cumulative distribution functions include the normal distribution, the Cauchy dis-

tribution (α = 1, β = 0), and the Lévy distribution (α = 1/2, β = 1). Stable distributions with

α < 1 and β = 1 are defined on the positive axis and have infinite mean. A stable distribution has

infinite absolute expectation if its tail parameter is less than or equal to 1.

3 Empirical evidence in finance and insurance

Compared with distributions with infinite second or higher moments, statistical models with

infinite mean are less common in finance and insurance literature and thus need more motivation.

Recall that financial asset return data typically show features of finite mean and infinite 4th or 5th
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moments; see the summary of Cont (2001). Moreover, Mandelbrot (1997) provided many examples

of infinite second moments. Nevertheless, there are still many contexts where infinite-mean models

are useful. In the following discussion, we delve into examples in the literature leading to extremely

heavy-tailed power-law models. Our list is only for a simple illustration, and it is by no means

exhaustive.

Catastrophic losses

With standard seismic theory, Ibragimov et al. (2009) illustrated that the tail indices α of

earthquake losses lie in the range [0.6, 1.5]. The tail indices α for some wind catastrophic losses

are around 0.7, as shown by Rizzo (2009). Chen et al. (2024b) reported that the tail indices α of

the wildfire suppression costs in Alberta, Canada are around 0.85. The tail indices of losses caused

by nuclear power accidents are observed in the range of [0.6, 0.7] by Hofert and Wüthrich (2012);

similar observations were made by Sornette et al. (2013).

Operational losses

By analyzing data collected by the Basel Committee on Banking Supervision, Moscadelli (2004)

reported the tail indices α of operational losses in 8 different business lines to lie in the range

[0.7, 1.2]. Notably, 6 out of the 8 tail indices are less than 1, with 2 being significantly less than 1 at

a 95% confidence level. See Nešlehová et al. (2006) for a detailed discussion on the risk management

consequences of infinite-mean operational losses. Cyber risk losses exhibit tail indices α ∈ [0.6, 0.7],

as explored by Eling and Wirfs (2019) and Eling and Schnell (2020).

Large insurance losses

Several significant commercial property losses collected from two Lloyd’s syndicates have tail

indices α considerably less than 1; see Biffis and Chavez (2014). Analyzed by Beirlant et al.

(1999), some fire losses collected by the reinsurance broker AON Re Belgium have tail indices α

approximately equal to 1. Chen et al. (2024b) showed that the tail parameter α for the marine

losses of a French private insurer is around 0.9. Most major damage insurance losses in a standard

Swiss Solvency Test document (FINMA (2021, p. 110)) have default tail parameter α in the range

[1, 2], with α = 1 attained by some aircraft insurance.
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Financial data

According to Silverberg and Verspagen (2007), the tail indices of financial returns from some

technological innovations are less than 1. The tail part of cost overruns in information technology

projects can have tail indices α ≤ 1, as discussed by Flyvbjerg et al. (2022). The tail indices of

detected fraud sizes in firms were estimated to be 0.65 by Cheynel et al. (2024) who also proposed

a theoretical mechanism to explain the heavy-tailed phenomenon. Gabaix et al. (2003) showed that

the market value of the managed assets in top mutual funds has tail indices around 1.

Other infinite-mean power laws

Word frequencies, city sizes, and firm sizes follow Zipf’s law (α ≈ 1); see Zipf (1949), Gabaix

(1999), and Axtell (2001). Interconnected agglomerations of firms in Italy have a tail index around

1; see Andriani and McKelvey (2007). Casualties in major earthquakes and pandemics modelled

by Pareto distributions also have tail indices less than 1; see Clark (2013) and Cirillo and Taleb

(2020). War sizes and intensities fit well with infinite-mean power law models (Clauset et al. (2009)

and Cederman (2003)). Both peak gamma-ray intensity of solar flares and the number of religious

followers have tail indices around 0.8 (Clauset et al. (2009)).

4 Identifying infinite mean using extreme value theory

Since data are finite but our interested models have no finite mean, it is important to verify

whether a given dataset fits with a model with infinite mean. This is typically done by estimating the

tail parameter. It needs to be emphasized that if the possibility of infinite-mean models cannot be

excluded, one should consider using statistical methods based on order statistics rather than those

based on moments. Below we only present some basic estimation methods for the tail parameter

and we refer readers to Embrechts et al. (1997), de Haan and Ferreira (2006), and Reiss and Thomas

(2007) for comprehensive discussions and more advanced methods.

Standard methods to estimate the tail parameter of power-law distributed data include the

classic Hill method and the GPD method from the EVT (see McNeil et al. (2015) and Embrechts

et al. (1997)). Another estimation method is the log-log rank-size estimation (see Ibragimov et al.

(2015) and Gabaix and Ibragimov (2011)). In this section, we briefly describe the Hill method and

the GPD method; we refer to Embrechts et al. (1997) and McNeil et al. (2015) for more details.

Let X1, . . . , Xn be iid non–degenerate random variables following a power-law distribution

with tail parameter α > 0. Denote the order statistics of X1, . . . , Xn by Xn,n, . . . , X1,n, from the

7



smallest to the largest (i.e., Xn,n ≤ · · · ≤ X1,n). The Hill estimator of α, denoted by α̂k,n, is defined

as

α̂k,n =

1

k

k∑
j=1

logXj,n − logXk,n

−1

, 2 ≤ k ≤ n. (2)

Thus the Hill estimator is based on the k largest order statistics of an iid sample; some variations

of the Hill estimator replace k in (2) by k − 1. The value of k is generally small and is chosen

from the Hill plot which gives the Hill estimates α̂k,n for different values of k. If there is a stable

region in the Hill plot where the Hill estimates are close for different k, then the Hill estimates are

obtained from the stable region. In practice, one can roughly choose k such that k/n ∈ [0.01, 0.05]

(see McNeil et al. (2015)). We take the Hill plot for wildfire suppression costs in Alberta, Canada

as an example (Figure 1 (b) of Chen et al. (2024b)); see Figure 1. By choosing a threshold around

the top 5% order statistics of the sample, we can see a stable region after the threshold in Figure

1 and the Hill estimate is around 0.847.
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Figure 1: The Hill plot for wildfire suppression costs: The Hill estimates are plotted as black curves
with the 95% confidence intervals being red curves. Adapted from Chen et al. (2024b).

The Hill method works well for data whose tail distribution is close to a perfect power function

but it can also be misleading in some cases. For instance, the Hill plot for AT&T stock data in

Figure 5.8 of McNeil et al. (2015) does not have a stable region. It is also known that the Hill

method can be sensitive to the serial dependence in the data. Asymptotic properties of the Hill

estimator can be found in Embrechts et al. (1997).

The GPD method assumes that the excess distribution of X1, . . . , Xn over some high threshold

u is a GPD distribution (1). The tail parameter of the GPD distribution can be estimated by the
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maximum likelihood method and the probability-weighted moments method (see Embrechts et al.

(1997)).

However, there is a common method for GPD distribution that does not work for the infinite-

mean case. To diagnose whether a GPD distribution is a good fit for the excess distribution with

threshold u, the sample mean excess function is often used. For v > 0, a sample mean excess

function is defined as

en(v) =

∑n
i=1(Xi − v)1{Xi>v}∑n

i=1 1{Xi>v}
.

If a GPD distribution is a good fit, then en(v) should be “linear” for v ≥ u given large n; this

is because the mean excess function e(v) = E[X − v|X > v], v > 0, is linear in v if X is a GPD

random variable. Such a graphic diagnosis will not work if the GPD distribution has infinite mean.

Klar (2023) proposed a new diagnosis method without moment restrictions.

5 Decision and statistical models that need extra care

5.1 The St. Petersburg paradox

The most famous example of an infinite-mean model in decision making is perhaps the St. Pe-

tersburg paradox. Although it is well known, we briefly discuss it here before moving to a more

formal analysis.

Consider a lottery that yields a payoff of 2n dollars with probability 2−n, for n = 1, . . . ,∞.

This lottery can be achieved easily by throwing a fair coin many times until a tail has been observed,

and a payoff of 2n is made to the player if it takes n rounds to reach a tail (i.e., there are n − 1

heads before this round). It is easy to observe that the expected payoff is
∑∞

n=1 2
−n2n = ∞. Since

this payoff has an infinite mean, for a risk-neutral player the fair price of the lottery should be ∞;

however, few people are willing to pay more than 20 dollars to play this game, thus the paradox.

Daniel Bernoulli’s answer in 1738 (translated version in Bernoulli (1954)) to this paradox is to

use a logarithm utility function to model the decision maker, which leads to a finite expected utility

of the lottery. However, it is easy to design another lottery with an infinite expected utility for the

logarithm utility function. This creates the same trouble as in the original paradox: In theory, the

player should prefer such a lottery, and even a tiny fraction of such a lottery (i.e., multiplying the

payoff by a very small ϵ > 0), to an arbitrarily large constant payoff, which is clearly paradoxical.

There are many other explanations for the paradox, and we omit them. Here, we simply would like

to show that an infinite-mean model can lead to controversial situations, even considering a simple

lottery.
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5.2 Stochastic dominance

Notions of stochastic dominance are commonly used in decision analysis to rank risks; see

Levy (1992, 2016) for wide applications of stochastic dominance. Two commonly used stochastic

dominance relations are stochastic order and convex order. Let X and Y be two random variables.

Then

(i) X is less than Y in stochastic order, denoted by X ≤st Y , if P(X > x) ≤ P(Y > x) for all

x ∈ R;

(ii) X is less than Y in convex order, denoted by X ≤cx Y , if E[u(X)] ≤ E[u(Y )] for all convex

functions u such that the two expectations exist.

These two notions of stochastic dominance have distinct meanings and provide very different

implications in decision makings. In general, X ≤st Y means that Y is “larger” than X. Indeed,

there exists another random variableX ′ such thatX ′ follows the same distribution ofX andX ′ ≤ Y

holds almost surely (e.g., Theorem 1.A.1 of Shaked and Shanthikumar (2007)). On the other hand,

X ≤cx Y means that Y is more “spread-out” than X; for instance, it implies var(X) ≤ var(Y ), but

generally stronger than that. See Shaked and Shanthikumar (2007) and Müller and Stoyan (2002)

for comprehensive treatment of these and other stochastic dominance relations.

When comparing infinite-mean risks, ≤st order always works whereas ≤cx may fail because

the expectation of any increasing convex transform of a positive infinite-mean random variable is

infinity. Both dominance relations work well for finite-mean models but ≤st order is not very useful

in comparing risks with the same mean; e.g., in portfolio selection, it is common that different

portfolios have the same mean. If E[X] = E[Y ] < ∞ and X ≤st Y , then X and Y have the same

distribution (Theorem 1.2.9 of Müller and Stoyan (2002)). Stochastic order ≤st provides very strong

implications in making decisions as explained below.

5.3 Risk measures and expected utilities

We discuss several decision models that can or cannot be applied to infinite-mean models. A

preference is a function ρ : Xρ → R := [−∞,∞], where the domain Xρ is a set of random variables

representing risks. For our discussion, we use the term preference in a very broad sense; it includes

risk measures in the sense of Artzner et al. (1999) and Föllmer and Schied (2016) and preference

models such as the expected utility. For two random losses X and Y , an agent equipped with a

preference model ρ prefers X over Y if ρ(X) ≤ ρ(Y ); for random profits X and Y , the agent prefers

10



X over Y if ρ(Y ) ≤ ρ(X). For the rest of this section, assume that all random variables represent

losses.

Most commonly used preference models for comparing risks have the following two properties.

We write X
d
= Y if X and Y have the same distribution.

(a) Law invariance: ρ(X) = ρ(Y ) for X,Y ∈ Xρ if X
d
= Y .

(b) Monotonicity: ρ(X) ≤ ρ(Y ) for X,Y ∈ Xρ if X ≤st Y .

Decision models that do not respect (a) are often regarded as models for decisions under ambiguity.

We do not discuss them and interested readers may refer to Wakker (2010). We will call a preference

model satisfying (a) and (b) a monotone risk preference.

If random variables X and Y represent losses, an agent equipped with a monotone risk pref-

erence will prefer X over Y as soon as X ≤st Y . We present below some examples of monotone

preference models.

The first examples are Value-at-Risk (VaR) and Expected Shortfall (ES), the two regulatory

risk measures in the insurance and finance sectors. For a random variable X and p ∈ (0, 1), VaR is

defined as

VaRp(X) = inf{t ∈ R : P(X ≤ t) ≥ p},

and ES is defined as

ESp(X) =
1

1− p

∫ 1

p
VaRu(X)du.

If X has infinite mean, VaRp(X) is always finite whereas ESp(X) can be infinite and is thus not

very useful for infinite-mean models. Many useful risk measures for infinite-mean models are in

the class of distortion risk measures such as VaR and Range Value-at-Risk proposed by Cont et al.

(2010) and studied by Embrechts et al. (2018); distortion risk measures coincide with dual utilities

of Yaari (1987) up to a sign change. By contrast, convex risk measures (Föllmer and Schied (2002)),

which have several nice properties, will take infinite values when evaluating infinite-mean losses and

hence are not useful (see Filipović and Svindland (2012)).

The next example is the expected utility model. Let u be an increasing function, called a

utility function, and u(w) represents the utility of wealth w. Since we are dealing with losses, we

flip the sign of the expected utility model, by using an increasing function v (called a disutility

function) given by v(x) = −u(−x), and denote the expected utility model by Ev, that is,

Ev(X) = E[v(X)] = E[−u(−X)].
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An expected utility agent is said to be risk-averse (in the sense of Rothschild and Stiglitz (1970)) if

u is concave (v is convex). Note that risk-averse expected utility may not be useful for comparing

infinite-mean risks as Ev on them can take infinite values due to the concavity of u. However, there

are still some useful examples of expected utility models such as (i) the Markowitz utility function

of Markowitz (1952b) (u has a convex-concave structure on the loss side); (ii) the utility function

in the cumulative prospect theory of Tversky and Kahneman (1992) (u is convex below a reference

point); (iii) agents with limited liability (u is bounded from below).

Although risk-averse expected utility may be infinite for extremely heavy-tailed risks, it does

not necessarily mean that there is no way to distinguish the risks for agents with concave utilities.

Instead of calculating their expected utility, an alternative way to compare risks is the “overtaking

criterion” used by optimal accumulation problems in economics; see von Weizäscker (1965). This

“overtaking criterion” is used to avoid the problem of infinite expected utility. The key observation

here is that, whenever E[v(X)] is well-defined, it can be rewritten as

E[v(X)] =

∫ 1

0
v(F−1

X (p))dp,

where F−1
X is the left quantile function of X, that is, F−1

X (p) = VaRp(X) for p ∈ (0, 1). Applying

this idea to compare infinite-mean losses, we propose the following formulation. For two losses X

and Y , we may say an agent with model Ev prefers X over Y if

∫ 1

0

(
v
(
F−1
X (p)

)
− v

(
F−1
Y (p)

))
dp < 0. (3)

In this form, since X ≤st Y implies F−1
X ≤ F−1

Y on (0, 1), we can conclude that if X ≤st Y then X

is preferred to Y , even if E[v(X)] and E[v(Y )] are not well-defined.

5.4 Laws of large numbers and the central limit theorem

Some classical results for sums of independent random variables in statistical theory may fail

for infinite-mean models. Although this observation is very simple, we would like to emphasize it

as it can be overlooked by practitioners.

The first example is the law of large numbers. Let X1, X2, . . . be a series of iid random

variables and Sn =
∑n

i=1Xi. By the strong law of large numbers, if E[X1] = µ ∈ R, then Sn/n→ µ

almost surely. That is, for a sample of iid observations, the sample mean will converge to the true

expectation. However, if E[X1] = ∞, then Sn/n → ∞ almost surely (see, e.g., Theorem 2.4.5 of

Durrett (2019)). As the sample mean will explode for infinite-mean models, many applications
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based on the law of large numbers (e.g., Monte Carlo method) do not work.

Another example is the central limit theorem which concerns the limiting distribution of Sn.

Assume that X1, X2, . . . are non–degenerate. If E[X2
1 ] < ∞, by the classic central limit theorem,

the only limiting distribution of Sn (after normalization) is the normal distribution. This result

generally does not hold for heavy-tailed random variables as their second or even first moments are

usually infinite. In this case, the limiting distribution of Sn (after normalization) for commonly

used heavy-tailed random variables is a stable distribution; see, e.g., Embrechts et al. (1997).

6 Some results on aggregating infinite-mean risks

6.1 Asymptotic super-additivity of VaR under regular variation

Suppose that X1, . . . , Xn are n identically distributed risks faced by an insurer. It is well

known that if (X1, . . . , Xn) follows the multivariate normal distribution, VaRp is sub-additive for

p ∈ [0.5, 1), i.e.,

VaRp(X1 + · · ·+Xn) ≤ VaRp(X1) + · · ·+VaRp(Xn).

This means that constructing a diversified portfolio helps to reduce the capital reserve level of

the insurer. More generally, the sub-additivity of VaR holds if (X1, . . . , Xn) follows the elliptical

distribution. For the above claims, see, e.g., Theorem 8.28 of McNeil et al. (2015).

The above benefit from diversification however does not always exist outside the elliptical

world. For instance, if X1, . . . , Xn are iid and follow a power-law/regularly varying distribution

with tail parameter α > 0, VaR is asymptotically super-additive for α < 1, i.e.,

lim
p→1

VaRp(X1 + · · ·+Xn)

VaRp(X1) + · · ·+VaRp(Xn)
> 1.

The above inequality flips for α ≥ 1 and VaR is said to be asymptotically sub-additive. There-

fore, diversification may increase the insurer’s risk if X1, . . . , Xn have infinite mean. The asymp-

totic properties of VaR also hold if X1, . . . , Xn are dependent, e.g., multivariate regularly varying

(X1, . . . , Xn) (see Embrechts et al. (2009) and Mainik and Rüschendorf (2010)). We will extend

the discussion of portfolio diversification to a non-asymptotic sense in the following sections.

Besides the marginal behaviors of risks, their dependence structure is also crucial to the

diversification effects. For instance, if power-law risks X1, . . . , Xn are positively dependent via

some Archimedean copula (see Nelsen (2006)), Alink et al. (2004) showed that for infinite-mean

(resp. finite-mean) risks, a stronger dependence makes the portfolio X1 + · · · + Xn “smaller”
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(resp. “larger”) in the tail part. A similar observation for multivariate regularly varying risks

is made in Chapter 13 of Rüschendorf (2013).

An early observation of the detrimental effects of diversification was made by Fama and Miller

(1972). It was shown that for infinite-mean stable models X1, . . . , Xn, diversification makes the

portfolio more “spread-out”, i.e., (X1 + · · ·+Xn)/n becomes more dispersive as n increases. This

was reasserted by Ibragimov (2005) via probability inequalities, which will be discussed later.

6.2 Stochastic dominance for extremely heavy-tailed risks

Since the pioneering work of Markowitz (1952b), diversification has been regarded as an efficient

tool to reduce portfolio risks. In particular, if risks are iid and have a finite mean, diversification

will make the portfolio less “spread-out”, as studied by Samuelson (1967) and Fama and Miller

(1972). However, such results may not hold for infinite-mean risks, as we discussed in Section 6.1.

The comparison among diversified portfolios can be made in a stronger sense. Recently, several

comparisons of infinite-mean models have been made via stochastic dominance relations and prob-

ability inequalities. These results suggest that diversification will make a portfolio of infinite-mean

risks “larger” or more “spread-out”.

Let X1, . . . , Xn be iid extremely heavy-tailed Pareto random variables. For a nonnegative

vector (θ1, . . . , θn), Chen et al. (2024a) showed

θX1 ≤st θ1X1 + · · ·+ θnXn where θ =
∑n

i=1 θn. (4)

Intuitively, the left-hand side of (4) is a non-diversified portfolio on X1 with total exposure θ and the

right-hand side of (4) is a diversified portfolio with exposure θi allocated to Xi for all i = 1, . . . , n.

If X1, . . . , Xn represent losses, (4) suggests that any decision maker who prefers less loss will choose

non-diversification, leading to a diversification penalty (diversification will be preferred ifX1, . . . , Xn

represent profits). This result is “unexpected” in the sense that (i) it holds in the strongest form of

risk comparison, and (ii) it does not hold for finite-mean models; if X1, . . . , Xn have finite mean and

mini θi > 0, (4) holds if and only if X1, . . . , Xn are almost surely equal (Proposition 2 of Chen et

al. (2024a)). Inequality (4) also holds if X1, . . . , Xn are weakly negatively associated super-Pareto

random variables. The class of super-Pareto distributions includes special cases of the generalized

Pareto, the Burr, the paralogistic, and the log-logistic distributions, all with infinite mean, as

studied by Chen et al. (2024a).

With the notion of majorization order, Chen et al. (2024c) generalized (4) by allowing compar-

ison between different diversified portfolios of iid extremely heavy-tailed Pareto random variables.
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For two vectors (θ1, . . . , θn) and (η1, . . . , ηn) in Rn, (θ1, . . . , θn) is dominated by (η1, . . . , ηn) in

majorization order if

n∑
i=1

θi =
n∑

i=1

ηi and
k∑

i=1

θ(i) ≥
k∑

i=1

η(i) for k ∈ [n− 1],

where θ(i) and η(i) represent the ith smallest order statistics of (θ1, . . . , θn) and (η1, . . . , ηn), respec-

tively; see Marshall et al. (2011). Let (θ1, . . . , θn) and (η1, . . . , ηn) ∈ Rn
+ be the exposure vectors of

two portfolios such that (θ1, . . . , θn) is smaller than (η1, . . . , ηn) in majorization order; the portfolio

with exposure vector (θ1, . . . , θn) is more diversified than that with exposure vector (η1, . . . , ηn).

Chen et al. (2024c) showed the following inequality

η1X1 + · · ·+ ηnXn ≤st θ1X1 + · · ·+ θnXn. (5)

Similar to (4), ifX1, . . . , Xn represent losses, (5) means more diversification leads to a worse portfolio

in the sense that diversification makes the portfolio loss “larger” (the observation is flipped if

X1, . . . , Xn represent profits). Inequality (5) also holds if X1, . . . , Xn has a specific type of positive

dependence structure modelled by Clayton copulas. By comparison, if X1, . . . , Xn are iid with finite

mean, by Theorem 3.A.35 of Shaked and Shanthikumar (2007), we have

θ1X1 + · · ·+ θnXn ≤cx η1X1 + · · ·+ ηnXn. (6)

Hence, diversification makes a portfolio of iid finite-mean losses less “spread-out”.

Let (θ1, . . . , θn) and (η1, . . . , ηn) be as before and X1, . . . , Xn be iid extremely heavy-tailed

stable random variables. By properties of stable distributions, Ibragimov (2005) showed that,

P(η1X1 + · · ·+ ηnXn ≥ x) ≤ P(θ1X1 + · · ·+ θnXn ≥ x) for x > 0, (7)

and the above inequality is flipped if x < 0. This result suggests that diversification makes the

portfolio more “spread-out”, distinct from (5); similar observations can be found in Fama and

Miller (1972, p. 271). In particular, (7) implies that (5) holds if X1, . . . , Xn are iid positive one-

sided stable random variables with infinite mean. On the other hand, if X1, . . . , Xn are iid stable

random variables with finite mean, the above inequalities will flip; that is, diversification will make

the portfolio less “spread-out”. The result for finite-mean stable distributions continues to hold

for symmetric log-concave distributions (Proschan (1965)); a distribution with density is said to be

log-concave if its density is log-concave. Inequality (7) also holds for convolutions of risks with joint
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α-symmetric distributions (Ibragimov (2009)). Similar probability inequalities for bounded stable

random variables are studied by Ibragimov and Walden (2007).

6.3 The sum of infinite-mean risks can be a constant, but not unique

The sum of infinite-mean risks can have strange behavior compared to finite-mean risks. Here

we discuss one example that is relevant to risk management.

Suppose that n random variables X1, . . . , Xn follow the same distribution F , and they may be

dependent. If for some constant C ∈ R it holds that P(
∑n

i=1Xi = nC) = 1, then we say that C

is a center of the distribution F . If X1, . . . , Xn have the same finite mean µ ∈ R, it is clear that

C = µ, since E[
∑n

i=1Xi] = nµ. However, if the mean of X1, . . . , Xn does not exist or is infinite,

this becomes unclear. A question stated by Wang (2015) was whether the center C of F is unique.

This question is answered by Puccetti et al. (2019) for Cauchy distributions. They showed that for

every n ≥ 2, there exist n standard Cauchy random variables adding up to a constant nC if and

only if |C| ≤ log(n− 1)/π. Hence, the center is not unique.

The existence of C is formally studied through the notions of complete and joint mixability

(Wang and Wang (2011, 2016)), which can be used as a building block for many optimization

problems such as minimizing the variance or finding the worst-case value of risk measures in risk

aggregation; see Embrechts et al. (2013); Embrechts et al. (2014). The relevance of this problem

to risk management is treated in Chapter 8 of McNeil et al. (2015) and its recent progresses are

summarized in the monograph Rüschendorf et al. (2024).

7 Infinite-mean models in optimization and risk sharing

We next discuss the implications of infinite-mean models in some optimization problems in

risk management.

7.1 Portfolio optimization

Suppose that an agent equipped with a risk preference model ρ faces several iid profits

X1, . . . , Xn and needs to maximize their preference:

To maximize ρ

(
n∑

i=1

θiXi

)
subject to θ1, . . . , θn > 0 and

n∑
i=1

θi = θ,

where θ > 0 represents the total budget of the agent. What can we say about the agent’s op-

timal strategy? This question has been well studied for finite-mean models since the work of
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Markowitz (1952a), and the optimal strategy clearly depends on the agent’s risk attitude. If the

profits have finite mean, the optimal strategy for risk-averse expected utility agents is full diversi-

fication (i.e., (θ1, . . . , θn) = (θ/n, . . . , θ/n)) whereas that for risk-seeking expected utility agents is

non-diversification (i.e., (θ1, . . . , θn) = (θ, . . . , 0)); see Samuelson (1967). Indeed, an expected utility

agent prefers to diversify over iid finite-mean profits if and only if they are risk-averse (Theorem 4

of Chen et al. (2024c)).

For profits with infinite mean (e.g., profits from technology innovations; see Silverberg and

Verspagen (2007)), agents’ risk attitudes may not affect their optimal decisions. Assume that the

profits are iid extremely heavy-tailed Pareto random variables. In this case, as long as an agent is

equipped with a monotone preference model, by (5), full diversification will maximize the agent’s

preference; see Chen et al. (2024c). Consequently, for risk-averse expected utility agents facing iid

profits that follow a Pareto distribution, the optimal strategy is always full diversification; this does

not depend on whether the profits have finite mean or not.

Next, let us consider the case where the agent faces iid losses X1, . . . , Xn. The optimization

problem now becomes:

To minimize ρ

(
n∑

i=1

θiXi

)
subject to θ1, . . . , θn > 0 and

n∑
i=1

θi = θ.

If X1, . . . , Xn have finite mean and the agent is equipped with a risk measure that is consistent with

≤cx order,1 by (6), full diversification is preferred. If X1, . . . , Xn are extremely heavy-tailed Pareto

risks, the optimal decision is clearly no diversification, as for any monotone risk measure ρ, by (4),

we always have ρ(θX1) ≤ ρ(θ1X1+ · · ·+ θnXn). One important consequence is the super-additivity

of VaR:

VaRp(θ1X1) + · · ·+VaRp(θnXn) ≤ VaRp(θ1X1 + · · ·+ θnXn) for all p ∈ (0, 1).

See McNeil et al. (2015) for the consequences of the super-additivity of VaR. Note that this super-

additivity result holds for all significance levels and is thus different from those on regularly varying

distributions, which are in some asymptotic sense (Embrechts et al. (2009)). For agents with concave

utility functions, although the expected utility model may take infinite value for extremely heavy-

tailed risks, the agents can instead use the “overtaking criterion” (3) which implies no diversification

is still preferred.

Another interesting case is when the iid lossesX1, . . . , Xn follow a symmetric stable distribution

1A risk measure ρ is consistent with ≤cx order if for X ≤cx Y , ρ(X) ≤ ρ(Y ).
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with tail parameter less than or equal to 1. If the agent is equipped with VaRp where p ∈ [0.5, 1),

Ibragimov (2009) showed that no diversification minimizes their risk measure. This result is flipped

if p ≤ 0.5 or the tail parameter of the stable distribution is greater than 1; in either case, full

diversification is optimal.

7.2 Risk sharing

Risk sharing is the allocation of risks among multiple parties and has been a fundamental tool

for insurance companies to mitigate risks and build resilience. In the presence of heavy-tailed risks

such as catastrophic losses, however, this standard method may fail and insurance companies may

choose not to share risks or even not to participate in the market; see, e.g., Ibragimov et al. (2009).

Chen et al. (2024b) studied the effects of risk sharing in a risk exchange model. In the risk

exchange economy, each agent is equipped with some position of an individual risk and the risks

are iid. The agents can exchange their risks with other agents by paying/charging premia. The

goal of each agent is to minimize their risk assessment after risk exchange.

We fix some notations. Let X = (X1, . . . , Xn) be the risk vectors for n agents. The initial

exposure vector of agent i, denoted by ai, satisfies ai ·X = aiXi where ai > 0; that is, agent i has

an initial position aiXi. Let w
i ∈ Rn

+ be the exposure vector of agent i on X after risk sharing and

p = (p1, . . . , pn) ∈ Rn
+ be the premium vector for X. The loss position of agent i ∈ [n] after risk

sharing is

Li(w
i,p) = wi ·X− (wi − ai) · p.

Agent i ∈ [n] is equipped with a risk measure ρi and a convex cost function ci with ci(0) = 0. The

risk assessment of agent i is ρi
(
Li(w

i,p)
)
+ ci(∥wi∥ − ∥ai∥). An equilibrium of the market is a

tuple
(
p∗,w1∗, . . . ,wn∗) ∈ (Rn

+)
n+1 if the following two conditions are satisfied.

(a) Individual optimality:

wi∗ ∈ argmin
wi∈Rn

+

{
ρi
(
Li(w

i,p∗)
)
+ ci(∥wi∥ − ∥ai∥)

}
, for each i ∈ [n].

(b) Market clearance:
n∑

i=1

wi∗ =
n∑

i=1

ai.

If the risks are super-Pareto random variables (i.e., extremely heavy-tailed), even if there is

some risk exchange at equilibrium, the agents will merely exchange their entire positions with each

other; hence there is no risk sharing. A similar observation is made by Ibragimov et al. (2011) based
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on a different model. Moreover, the premia for all risks are the same. By contrast, if the risks have

finite mean and the agents use ES as their risk measure, the agents will share risks proportionally

according to their initial risk exposures in an equilibrium. The premia in this case are not the same

as well.

The situation becomes quite different if the agents with initial infinite-mean risks can transfer

their risks to some external agents. The external agents do not have any risks in the initial phase and

can be regarded as institutional investors in the market model. Similarly, an equilibrium is attained

in this setting if all agents, including the external agents, can minimize their risk assessments. If

the external agents have a stronger risk tolerance than the internal agents, both parties may benefit

by transferring losses to the external agents at an equilibrium. Nevertheless, there is still no risk

sharing, i.e., no agent will hold more than one risk at the equilibrium.

In practice, due to the limited liabilities of insurers, one may bound each loss below some

positive threshold. If the risks are positive random variables (e.g., Pareto risks), the bounded risks

will have finite mean. In the model of Chen et al. (2024b), agents equipped with ES will prefer

diversification over bounded risks. However, as studied in a different economic model of Ibragimov

et al. (2009), agents may not always prefer diversification of bounded risks. Their results show that

insurers may fall into a “nondiversification trap” for bounded extremely heavy-tailed losses; that is,

even if insurers can benefit from high-level diversification, they may still prefer non-diversification

as a low degree of diversification is harmful (the value of diversification is U-shaped in the number

of risks).

8 Infinite-mean models in multiple hypothesis testing

Infinite-mean risk models have recently been a popular tool in multiple hypothesis testing, a

statistical problem that is relevant to many fields including risk management, such as testing the

suitability of the credit rating of structured finance products from ratings of different tranches.

In the context of multiple hypothesis testing, a fundamental question is how to combine several

p-values, or test statistics in general, into one p-value. A random variable P is called a p-variable

if P(P ≤ p) ≤ p for all p ∈ (0, 1); realizations of p-variables are called p-values. For our discussions,

it suffices to assume that the p-variables to merge are uniformly distributed on (0, 1), denoted by

U1, . . . , Un.

Many useful methods to combine p-values are via the following generalized weighted averaging

function

Mw
ϕ (p1, . . . , pn) := ψ (w1ϕ(p1) + · · ·+ wnϕ(pn)) , (8)
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where w = (w1, . . . , wn) ∈ [0, 1]n with
∑n

i=1wi = 1, ϕ : [0, 1] → [−∞,∞] is a continuous strictly

monotonic function, and ψ is its inverse. Several previous methods in the class of (8) use quantile

function F−1 or F−1(1−·) as ϕ to transform p-values, where F is a cumulative distribution function;

that is, transformations ϕ(U1), . . . , ϕ(Un) follow distribution F . Some examples are

(i) Fisher’s combination method (Fisher (1948)): ϕ(x) = − log(x) for x ∈ [0, 1], and w =

(1/n, . . . , 1/n);

(ii) the harmonic mean method (Wilson (2019)): ϕ(x) = 1/x for x ∈ [0, 1];

(iii) the generalized mean method (Vovk and Wang (2020)): ϕ(x) = xr for x ∈ [0, 1], where

r ∈ [−∞,∞] (for r ∈ {−∞, 0,∞}, the averaging function is obtained by taking limits, and

this includes the classic Bonferroni correction with r = −∞);

(iv) the Cauchy combination method (Liu and Xie (2020)): ϕ(x) = tan
(
π
(
x− 1

2

))
for x ∈ [0, 1].

Fisher’s combination method and the generalized mean method with r ≥ 0 utilize light-tailed distri-

butions (the exponential and beta distributions) to transform p-variables. In contrast, heavy-tailed

transformations (the Pareto and Cauchy distributions) are used by the harmonic mean method, the

Cauchy combination method, and the generalized mean method with r < 0.

For different choices of combining functionsMw
ϕ and dependence assumptions of p-variables, a

threshold function g is assigned such that the test is valid; that is P(Mw
ϕ (U1, . . . , Un) ≤ g(p)) ≤ p,

p ∈ (0, 1); see Chen et al. (2023) for thresholds of the above methods given different dependence

assumptions. However, the dependence assumption of p-variables is very difficult to verify and

the validity of a test procedure cannot be guaranteed if there is any model misspecification on the

dependence assumption. For instance, Fisher’s combination method assumes p-values are indepen-

dent and its type-I error rate can explode even if the model misspecification is small. Recently,

the harmonic mean and the Cauchy combination methods have received much interest due to their

nice properties against model misspecification on dependence assumptions. Coincidentally, both

methods use infinite-mean distributions to transform p-variables and their performances are similar

and closely connected to the famous Simes method (Simes (1986)) in several senses; see Chen et

al. (2023) for the comparisons of the three methods. Other combining methods based on heavy-

tailed transformations are studied by, e.g., Gui et al. (2023) and Fang et al. (2023). It is by now

clear that transformations to an extremely heavy-tailed distribution have various advantages over

other choices, making the methods of Wilson (2019) and Liu and Xie (2020) quite popular. Under

independence or some other nice dependence models, the threshold g for the Cauchy combination

method can be chosen as precisely g(p) = p, p ∈ (0, 1), and the one with the harmonic mean often
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needs to be corrected substantially; see Chen et al. (2024d). These studies show how infinite-mean

models are useful in statistics even when the underlying problem does not have such a feature.

9 Infinite-mean models in some other settings

We briefly discuss, in a few different contexts, how infinite-mean models lead to different

phenomena, compared to usual finite-mean models. In each of these settings, the corresponding

conclusion flips when switching from finite-mean models to infinite-mean models.

9.1 Optimal bundling

Product bundling is a strategy to sell goods as collections. It turns out that the valuation

distributions may play an important role in determining the optimal bundling strategies. We

briefly describe the Vickrey auction model studied by Palfrey (1983) below. Consider a single seller

who provides m goods to n buyers. Let 2M be the power set of M = [m] := {1, . . . ,m}. A bundling

decision β = {B1, . . . , Bl} is a partition of [m]. For j ∈ [n], the jth buyer’s valuations for goods are

represented by Xj = (X1j , . . . , Xmj) where Xij is their valuation for good i ∈ [m] and X1j , . . . , Xmj

are iid. The valuations of buyers are independent of each other, i.e., X1, . . . ,Xn are independent.

Each buyer does not know the valuations of the other buyers; the only available information is their

own valuations and the distributions of the other buyers’ valuations. For a bundle B ∈ 2M , its

valuation of buyer j is vj(B) =
∑

i∈BXij . In the Vickrey auction, all buyers will simultaneously

submit sealed bids for bundles of goods. The buyer with the highest bid wins the goods and pays

the second highest bid. Buyer j ∈ [n] with realized valuations Xj = xj ∈ Rm has the following

expected surplus for bundle B ∈ 2M

E[Sj(B,xj)] = P
(

max
s∈[n]/{j}

vs(B) < vj(B)

)(
vj(B)− E

(
max

s∈[n]/{j}
vs(B)| max

s∈[n]/{j}
vs(B) < vj(B)

))
.

The expected surplus for a bundling decision is the sum of the expected surplus for each bundle. A

buyer prefers a bundling decision if its expected surplus is larger.

In a market of two buyers, Palfrey (1983) showed that separate auctions (β = {{1}, . . . , {m}},

i.e., one good is sold at a time) are preferred by buyers regardless of the valuation distributions.

In the case of more than two buyers, the optimal bundling to the buyers depends on the valuation

distributions. If the valuations are bounded, Palfrey (1983) showed that the buyers never prefer

separate auctions. However, if the valuations are positive stable random variables with infinite

mean, separate auctions are preferred, as shown in Theorem 4.1 of Ibragimov and Walden (2010).
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9.2 Firm growth analysis

Ibragimov (2014) reconsidered the demand-driven innovation and spatial competition overtime

model of Jovanovic and Rob (1987) in the presence of extremely heavy-tailed customer signals. We

briefly describe below the setting studied by Ibragimov (2014), a simplified version of the original

model.

In each period, a firm has two decisions to make. In period t, the products of the firm

are differentiated by a parameter θ̂t ∈ R+. There exists an “ideal” product θt ∈ R+ but this

information is not available to the firm until they decide θ̂t. Once the firm commits to θ̂t and

learns the “ideal” product θt, the price of the product, denoted by p(θ̂t, θt), is determined. Then,

the firm needs to choose the level of output yt. After that, the firm will receive customers’ signals

about next period’s “ideal” product si,t = θt+1 + ϵi,t, i = 1, . . . , N , where ϵi,t, i = 1, . . . , N , are

iid shocks and N is a random sample size with a known distribution given yt. The signals will

be used to estimate next period’s “ideal” product θt+1, via, e.g., the sample mean of the signals

θ̂t+1 =
∑N

i=1 si,t/N = θt+1+
∑N

i=1 ϵi,t/N . To choose yt, the firm needs to solve the following problem

V (p(θ̂t, θt)) = max
yt

{
ytp(θ̂t, θt)− c(y) + βV (x)dF (x|yt)

}
,

where c is a convex cost function, β ∈ R is a discounting factor, and F (x|yt) is the distribution

function of p(θ̂t+1, θt+1) given yt.

Let y1t and y2t be the outputs of two firms in period t. Denote by RPt = P(y1t+1 > y2t+1|y2t > y1t ),

called the reversal rank probability. Suppose the firms use the sample mean to estimate product

design. If the signals follow a log-concave distribution, as implied by the results of Jovanovic and

Rob (1987), then RPt ≤ 1/2 and RPt diminishes as y2t − y1t increases. The results also hold if the

signals follow a symmetric stable distribution with a tail parameter being strictly greater than 1

(Ibragimov (2014)). These results suggest that if customers’ signals are not extremely heavy-tailed,

the firms’ outputs exhibit some positive persistence (i.e., firms with large outputs are likely to

have large outputs in the next period). However, if the signals follow an extremely heavy-tailed

symmetric stable distribution, the previous results are reversed and firms’ outputs show a pattern of

anti-persistence. Ibragimov (2014) also showed that if the sample median is used as the estimator,

firms’ outputs are persistent regardless of whether the signals are extremely heavy-tailed or not.

22



9.3 Efficiency of linear estimators

Consider the model

Xi = µ+ ϵi, i = 1, 2, . . . ,

where µ is the location parameter and ϵi, i = 1, 2, . . . , are iid symmetric random noises with mode

0. If ϵi, i = 1, 2, . . . , have finite mean, then µ is the population mean. A linear estimator for

µ is θ̂a =
∑n

i=1 aiXi where a = (a1, . . . , an) ∈ [0, 1]n and
∑n

i=1 ai = 1. We write θ̂n := θ̂a for

a = (1/n, . . . , 1/n). If ϵi, i = 1, 2, . . . , have finite second moments, it is common to use variance

to compare two unbiased estimators. However, this approach fails for heavy-tailed noises. We only

present here one possible solution that is the most relevant to our discussion. A formal treatment

of robust statistical methods can be found in Huber and Ronchetti (2009).

To solve this issue, Ibragimov (2007) proposed to compare estimators via peakedness. For

two random variables X and Y , X is said to be more strictly peaked about θ ∈ R than Y if

P(|X − θ| > ϵ) < P(|Y − θ| > ϵ) for all ϵ > 0. An estimator θ̂1 is said to be more P -efficient than

another estimator θ̂2 if θ̂1 is strictly more peaked about θ than θ̂2. If θ̂n becomes more P -efficient as

n increases, θ̂n is said to exhibit monotone consistency. Ibragimov (2007) considered the case when

ϵi, i = 1, 2, . . . , follow a symmetric stable distribution. If the stable distribution has finite mean,

it is shown that θ̂n is the most P -efficient linear estimator and θ̂n exhibits monotone consistency.

However, if the stable distribution does not have finite mean, then θ̂n is the least P -efficient linear

estimator and the P -efficiency of θ̂n decreases as n increases. These results hold for more general

classes of noise distributions in Ibragimov (2007).

10 Conclusion

Heavy-tailed data, prevalent in a wide range of applications, can violate the assumption of a

finite first moment, which is the theoretical foundation of many classic results such as the central

limit theorem. This paper reviews a few recent advancements for infinite-mean models and dis-

cusses the breakdown of standard thinking due to infinite mean in several research areas including

but not limited to portfolio diversification, risk sharing, and multiple hypothesis testing. Most of

the reviewed results for infinite-mean models show a significant divergence compared to their coun-

terparts in finite-mean cases, making it necessary to rethink the impacts of traditional methods in

the presence of infinite mean. This is illustrated by many examples in this paper. Moreover, many

classic methods for finite-mean models are warned to be inappropriate for infinite-mean models.

For instance, the regulatory risk measure Expected Shortfall may yield infinite value when applied
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to infinite-mean losses, making its meaning as a capital reserve difficult to interpret. Consequently,

in the presence of infinite-mean models, decision makers need to take a step back and carefully

reconsider the possible consequences of applying classic methods developed in a finite-mean world.
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