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Abstract

The multiple testing literature has primarily dealt with three types of dependence assumptions
between p-values: independence, positive regression dependence, and arbitrary dependence. In this
paper, we provide what we believe are the first theoretical results under various notions of negative
dependence (negative Gaussian dependence, negative regression dependence, negative association,
negative orthant dependence and weak negative dependence). These include the Simes global null
test and the Benjamini-Hochberg procedure, which are known experimentally to be anti-conservative
under negative dependence. The anti-conservativeness of these procedures is bounded by factors
smaller than that under arbitrary dependence (in particular, by factors independent of the number of
hypotheses). We also provide new results about negatively dependent e-values, and provide several
examples as to when negative dependence may arise. Our proofs are elementary and short, thus
amenable to extensions.
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1 Introduction

Ever since the seminal book by Tukey [42], the subfield of multiple comparisons and multiple hypothesis
testing has grown rapidly and found innumerable applications in the sciences. However, some relatively
basic theoretical questions remain unsolved. For example, we have not encountered concrete theoretical
results on the performance of the Benjamini-Hochberg (BH) procedure [1] when the p-values are negatively
dependent. Closely related to the BH procedure is the Simes global null test, for which we have also not
seen results under negative dependence. This paper begins to fill the aforementioned gaps, and paves the
way for more progress in this area.

One of the main challenges is that there are many definitions of what it means to be “negatively
dependent”. In the Gaussian setting, the definitions simply amount to the signs of covariances being
positive or negative, but one often cares about more nonparametric definitions that apply more generally,
and these are aplenty. It is apriori unclear which definition of dependence will (A) lend itself to analytical
tractability for bounding error rates of procedures, (B) have enough examples satisfying the definition so
as to potentially yield practical insights in some situations. Once a suitable definition has been adopted,
further choices must be made: one must specify whether the dependence is being assumed across all
p-values or only those that are null (for example). The multitude of possibilities is daunting, perhaps
explaining the lack of progress.

The above combination of (A) and (B) has been arguably successfully achieved for positive depen-
dence. Sarkar [33] published an important result settling the Simes conjecture under a notion of positive
dependence called multivariate total positivity of order two, that was studied in depth by Karlin and
Rinott [19] in 1980. Benjamini and Yekutieli [2] strengthened and extended Sarkar’s result: they showed
that the BH procedure controls the false discovery rate (FDR) under a weaker condition called positive
regression dependence on a subset (PRDS). This notion too goes back several decades to Lehmann [22],
who proposed PRD in a bivariate context, and (the elder) Sarkar [34], who generalized PRD to a mul-
tivariate context. This paper will provide the first results under the negative dependence analog of the
PRD condition.

The aforementioned 2001 paper also proved that under arbitrary dependence, the BH procedure run
at target level α on K hypotheses could have its achieved FDR control be inflated a factor of about
logK (sometimes called the Benjamini-Yekutieli or BY correction). This is a huge inflation in modern
contexts where K can be in the millions or more. The above results have arguably led to a practical
dillema. When the BH procedure is applied in situations where PRDS is a questionable assumption (or
is in fact known to not hold), should one apply the aforementioned BY correction? Theoretically perhaps
one should use the correction, but we have rarely seen the BY correction used in practice because it hurts
power a lot.

While we understand the practice of not using the BY correction, the gap between theory and prac-
tice is mildly unsettling. One way out is to seek a better theoretical understanding of what types of
assumptions result in inflation factors of much less than logK, along with some justification that these
could occur in practice (points (A) and (B) from earlier).

It is in the above context that we see that the current paper makes some novel and arguably important
contributions to the literature. Of course, by virtue of being the first, as far as we are aware, nontrivial
result on the performance of Simes and BH under negative dependence, it will hopefully stimulate future
progress. (In fact, we are only aware of one other recent mutliple testing work by Gou and Tamhane [12]
for a different procedure (the Hochberg method) under negative dependence.) But equally importantly,
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the bounds are derived under a very weak notion of negative dependence (and thus easier to satisfy),
and the error inflation factors (or anticonservativeness) are proved to be independent of the number of
hypotheses K, only involving explicit and small constant factors. Thus, the result is not overly pessimistic,
and is a stepping stone to bridging theoretical progress with practical advice.

The rest of this paper is organized as follows. Section 2 presents a few key notions of negative
dependence, along with some examples of when they occur. Section 3 presents results on the Simes
test using negatively dependent p-values. Section 4 briefly discusses the case of negatively dependent
e-values. Section 5 builds on Section 3 to derive results on the FDR of the BH procedure under negative
dependence. Section 6 presents simulation results, before we conclude in Section 7.

2 Notions of negative dependence

Fix an atomless probability space (Ω,F ,P) where all random variables live. The aim of this section is to
introduce several important notions of negative dependence, summarizing some properties and referencing
proofs for the following implications along the way in Figure 1.

Counter-monotonicity (12)

Negative association (7)

Negative Gaussian dependence (11)

Negative regression dependence (10)

Negative orthant dependence (3) plus (5)

Negative lower orthant dependence (3) Negative upper orthant dependence (5)

(Lower) weak negative dependence (1) (Upper) weak negative dependence (2)

Figure 1: Notions of negative dependence.

We define all these notions below, from the weakest to the strongest. For a random vector X =
(X1, . . . , XK), let Fk be the distribution function of Xk for k ∈ K. To begin, we say that X is (lower)
weakly negatively dependent if

P

(⋂
k∈A

{Xk ≤ F−1
k (p)}

)
≤
∏
k∈A

P
(
Xk ≤ F−1

k (p)
)

for all A ⊆ K and p ∈ (0, 1). (1)

We will sometimes write “X1, . . . , XK are weakly negatively dependent” instead of “X is weakly negatively
dependent” (also for other notions of dependence), and this should cause no confusion. Upper weak
negative dependence can be defined by

P

(⋂
k∈A

{Xk > F−1
k (p)}

)
≤
∏
k∈A

P
(
Xk > F−1

k (p)
)

for all A ⊆ K and p ∈ (0, 1), (2)

but we will only need the lower version (1), and so we omit the qualifier “lower” going forward.
Condition (1) is weaker than the notion of negative lower orthant dependence of Block et al. [4], which
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is defined by

P

(⋂
k∈K

{Xk ≤ xk}

)
≤
∏
k∈K

P (Xk ≤ xk) for all (x1, . . . , xK) ∈ RK . (3)

Indeed, we can see that (3) implies (1) by taking xk →∞ for k /∈ A and xk = x for k ∈ A. Further, X is
negative lower orthant dependent if and only if

E

[
K∏
k=1

φk(Xk)

]
≤

K∏
k=1

E [φk(Xk)] for all nonnegative decreasing functions φ1, . . . φK ; (4)

see Theorem 6.G.1 (b) of Shaked and Shanthikumar [37] or Theorem 3.3.16 of Muller and Stoyan [25].
All terms like “increasing” and “decreasing” are in the non-strict sense.

There is a related notion of negative upper orthant dependence:

P

(⋂
k∈K

{Xk > xk}

)
≤
∏
k∈K

P (Xk > xk) for all (x1, . . . , xK) ∈ RK . (5)

Similarly to (4), negative upper orthant dependence is equivalent to

E

[
K∏
k=1

φk(Xk)

]
≤

K∏
k=1

E [φk(Xk)] for all nonnegative increasing functions φ1, . . . φK . (6)

Negative orthant dependence means that both negative lower orthant dependence and negative upper
orthant dependence hold simultaneously.

Negative orthant dependence is in turn weaker than negative association of X, which requires that
for any disjoint subsets A,B ⊆ K, and any real-valued, coordinatewise increasing functions f, g,

Cov(f(XA), g(XB)) ≤ 0, (7)

where XA = (Xk)k∈A, XB = (Xk)k∈B , if f(XA), g(XB) have finite second moments. Equivalently,

E[f(XA)g(XB)] ≤ E[f(XA)]E[g(XB)]. (8)

This in turn implies that for any non-overlapping sets {Ak}k=1,...,` and nonnegative increasing functions
{φk}k=1,...,`, we have

E

[∏̀
k=1

φk(XAk)

]
≤
∏̀
k=1

E[φk(XAk)]. (9)

It is necessary and sufficient to require f and g in (7) to be bounded, which can be seen from an
approximation argument. For negatively associated random variables, all pairwise correlations are
non-positive. Thus, Var(

∑K
k=1Xk) ≤

∑K
k=1 Var(Xk). Shao [38] proved the following coupling result.

Let X1, . . . , XK be negatively associated, and let X∗1 , . . . , X
∗
K be independent random variables such

that Xk and X∗k have the same (marginal) distribution for each k. Then, for all convex functions f ,

E[f(
∑K
k=1Xk)] ≤ E[f(

∑K
k=1X

∗
k)].

A random vector X is said to be stochastically decreasing in Y if E[g(X) | Y = y] is decreasing in
y whenever g is a coordinatewise increasing function such that the conditional expectation exists. X is
negative regression dependent if

X−i is stochastically decreasing in Xi for every i, (10)

where X−i is the vector formed by deleting the i-th coordinate of X. The notion in (10) is called negative
dependence through stochastic ordering by Block et al. [5], and it is the negative analog of the famous
positive regression dependence condition (also called positive dependence through stochastic ordering)
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frequently encountered in multiple testing, under which the Simes test and the Benjamini-Hochberg
procedure (both defined later in the paper) are known to be conservative. The term negative regression
dependence was used by Lehmann [22] in case K = 2.

A random vector X is Gaussian dependent if there exist increasing functions (or decreasing functions)
f1, . . . , fK and a Gaussian vector (Y1, . . . , YK) such that Xk = fk(Yk) for k ∈ K. The correlation matrix
of (Y1, . . . , YK) is called a Gaussian correlation of X, which is unique if X has continuous marginals. For
instance, if Y1, . . . , YK are standard Gaussian test statistics and P1, . . . , PK are the produced one-sided
p-values (as Pk = Φ(−Yk), where Φ is the standard Gaussian CDF), then P is Gaussian dependent.
Further, X is negatively Gaussian dependent if it is Gaussian dependent and its Gaussian correlation
coefficients are non-positive (Xk = fk(Yk) for k ∈ K):

(Y1, . . . , YK) ∼ N(µ,Σ), for some µ,Σ such that Σij ≤ 0 for all i 6= j. (11)

If X is negatively Gaussian dependent, then X has both negative association and negative regression
dependence, implying negative lower orthant dependence and weak negative dependence; see Joag-Dev
and Proschan [18, Section 3.4] and also Lemma 7 in Section 3.3. The statement on negative orthant
dependence can be verified directly by Slepian’s lemma [40].

Finally, there exists an “extremal (most) negative dependence”: (X,Y ) is counter-monotonic if there
exists increasing functions f, g and a random variable Z such that (X,Y ) = (f(Z),−g(Z)) almost surely.
This can be alternatively stated as (X(ω)−X(ω′))(Y (ω)−Y (ω′)) ≤ 0 for almost every pair of (ω, ω′) ∈ Ω2.
In higher dimensions, a random vector X is counter-monotonic if each pair of its components is counter-
monotonic, that is,

(Xi(ω)−Xi(ω
′))(Xj(ω)−Xj(ω

′)) ≤ 0 for almost every (ω, ω′) ∈ Ω2 and every distinct i, j. (12)

The structure (12) imposes strong conditions on the marginal distributions (in particular, the marginal
distributions cannot be continuous when K ≥ 3). A pairwise counter-monotonic random vector has the
smallest joint distribution function among all random vectors with the same marginals. See Puccetti
and Wang [27] for the above statements and other forms of extremal negative dependence. As shown
by Lauzier et al. [21], a pairwise counter-monotonic random vector is negatively associated and negative
regression dependent.

Closure properties. We mention a few relevant closure properties below.
Monotone transformations: All notions of negative dependence are preserved under concordant coor-

dinatewise monotonic transformations (the term concordant here means that we apply either decreasing
transformations to all coordinates or increasing transformations to all coordinates).

Convolution: Suppose that X1 and X2 are independent of each other. If each of X1 and X2 is negative
lower orthant dependent, then X1 + X2 is also negative lower orthant dependent; see [24, Theorem 4.2]
and [23, Corollary 3]. This also holds for negative association by combining Properties P6 and P7 of
Joag-Dev and Proschan [18].

Concatenation: If X1 and X2 are each negatively associated (or negative regression dependent), and
are independent of each other, then so is their concatenation (X1,X2). An example of this type is given
by (X1,−X1, X2,−X2, . . . , XK ,−XK) for any independent X1, . . . , XK .

Marginalization: If X satisfies any notion of negative dependence mentioned in this section, then so
XA for any nonempty A ⊆ K. This can be verified directly from the definition of these concepts.

Examples of negative dependence

Beyond the Gaussian case mentioned above, some other simple examples may be useful for the reader to
keep in mind going forward. These examples can be found in e.g., Joag-Dev and Proschan [18].

Categorical distribution: Suppose that X is a draw from a categorical distribution with K categories,
meaning that it is a binary vector that sums to one. Then X is counter-monotonic, thus both negatively
associated and negative regression dependent.

Multinomial distribution (m balls in K bins): If X is a draw from a multinoulli distribution, meaning

that it takes values in {0, 1}K and
∑K
i=1Xi = m, with each of the

(
K
m

)
possibilities being equally likely,
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then X is negatively associated as well as negative regression dependent. If the possibilities are not
all equally likely, X is negatively orthant dependent [4]. The same conclusions hold for a draw from a
multinomial distribution, since these are just sums of mutually independent multinoullis.

Uniform permutations: Let X be a uniformly random permutation of some fixed vector (x1, . . . , xn).
Then X is negatively associated.

Sampling without replacement: Along similar lines to the above, sampling without replacement leads
to negatively associated random variables. To elaborate: suppose X1, . . . , XK are sampled without
replacement from a bag containing N ≥ K numbers. Then X is negatively associated.

Recentered Gaussians: Block et al. [5] pointed out that if X1, . . . , XK are iid Gaussians, and X̄ :=
(X1 + · · ·+XK)/K, then Z := (X1−X̄, . . . , XK−X̄) is multivariate Gaussian with negative correlations,
and thus negative regression dependent and negatively associated, for example. Hence, so are the p-values
obtained by Pk = Φ(Zk/(1− 1/K)1/2) for k ∈ K. Block et al. [5] also show that several other examples,
like multivariate negative binomial, Dirichlet and multivariate hypergeometric, are all negative regression
dependent.

Tournament performance scores: Data summarizing tournament performance are often negatively
associated. We summarize some examples below. Consider a round-robin tournament between K players,
summarized by a pairwise game matrix X of size K ×K. The first three examples below can be shown
using Properties P6 and P6 of Joag-Dev and Proschan [18], by noting that the scores Xij and Xji are
counter-monotonic, and they are independent of the other scores. Therefore, scores in the K ×K matrix
are negatively associated [18, P7], and so are their row sums [18, P6]. The last example is shown by
Malinovsky and Rinott [23].

Binary outcomes. Suppose each game ends in a win or loss. Let pij denote the probability that
i beats j and they play nij games against each other. Assuming that all games are independent, we
have Xij ∼ Binomial(nij , pij). Let us calculate scores of the K players as Si =

∑
j 6=iXij , and denote

S = (S1, . . . , SK). Then S is negatively associated. (This actually improves a not-so-well known result
by Huber [16] who proved S is negative lower orthant dependent.)

Constant sum games. Suppose at the end of their game(s), each pair of players split a reward rij ≥ 0,
meaning that the rewards Xij , Xji are nonnegative and sum to rij . Defining each player’s scores as
before, Si =

∑
j 6=iXij , we have that S is negatively associated. (Obviously this example generalizes the

previous one, and even allows for ties.)
Random-sum games. If the aforementioned rewards rij are themselves random variables, S remains

negatively associated, as long as (Xij , Xji) is counter-monotonic. This happens in soccer, where the
winning team is often awarded three points (and the losing team zero), but if the match is drawn, both
teams get one point. This means that (Xij , Xji) can take the value (3, 0), (1, 1) or (0, 3).

Knockout tournaments. Moving beyond round-robin tournaments to knockout tournaments like in
tennis grand slams, let Si denote the total number of games won by player i. For example, with 64
players, only the winner i will have Si = 6, the runner-up j will have Sj = 5, the semifinal losers k will
have Sk = 4, and those that lost in the first round have S` = 0. Suppose further that all players are
of equal strength, meaning that all outcomes are fair coin flips. For a completely random schedule of
matches, S is negatively associated. For nonrandom draws (such as via player seedings/rankings), S is
negative orthant dependent.

Appendix A in the supplementary material contains hypothesis tests that give rise to negative de-
pendence. The examples discussed there are tests based on split samples, testing the mean of a bag of
numbers, round-robin tournaments, and cyclical or ordered comparisons.

3 Merging negatively dependent p-values

We begin with a recap of some well known properties of the Simes global null test, before turning to the
new results under negative dependence.
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3.1 Recap: merging p-values with the Simes function

Throughout, K is a positive integer, and P = (P1, . . . , PK) is a random vector taking values in [0, 1]K .
Let P be the true probability measure and write K = {1, . . . ,K}. Following Vovk and Wang [43], a
p-variable P is a random variable that satisfies P(P ≤ α) ≤ α for all α ∈ (0, 1). Let U be the set of all
standard uniform random variables under P.

We first consider the setting of testing a global null. In this setting, we will always assume each of
P1, . . . , PK is uniformly distributed on [0, 1] (thus in U), and this is without loss of generality. Slightly
abusing the terminology, we also call P1, . . . , PK p-values.

For p1, . . . , pK ∈ [0, 1] and k ∈ K, let p(k) be the k-th order statistics of p1, . . . , pK from the smallest
to the largest. Let SK : [0, 1]K → [0, 1] be the Simes function, defined as

SK(p1, . . . , pK) =

K∧
k=1

K

k
p(k),

where a ∧ b := min(a, b). Applying SK to P and choosing a fixed threshold α ∈ (0, 1), we obtain the
Simes test by rejecting the global null if SK(P) ≤ α. The type-1 error of this test is P(SK(P) ≤ α).

We begin from the observation that the Simes inequality

P(SK(P) ≤ α) ≤ α for all α ∈ (0, 1) (13)

holds for a wide class of dependence structures of P. It is shown by Simes [39] that if p-values P1, . . . , PK
are independent or comonotonic (thus identical), then

P(SK(P) ≤ α) = α for all α ∈ (0, 1), (14)

and thus (13) holds as an equality. Moreover, the inequality (13) holds for more general dependence
structures; see e.g., Sarkar [33] and Benjamini and Yekutieli [2]. The inequality (13) may also hold in an
asymptotic sense; see e.g., Finner et al. [11]. Let us define the notion of positive regression dependence
(PRD). A set A ⊆ RK is said to be increasing if x ∈ A implies y ∈ A for all y ≥ x. A random vector P
of p-values is PRD if for any k ∈ K and increasing set A ⊆ RK , the function x 7→ P(P ∈ A | Pk ≤ x) is
increasing on [0, 1].

Proposition 1 (Benjamini and Yekutieli [2]). If the vector of p-values P is PRD, then (13) holds.

If P is Gaussian dependent (i.e., obtained from jointly Gaussian statistics; see Section 3.3) and its
pair-wise correlations are non-negative, then P satisfies PRD. In this case, (13) holds by Proposition 1.
When the correlations are allowed to be negative, things are slightly different: Hochberg and Rom [13]
showed that, for K = 2 and some Gaussian-dependent P with negative correlation,

P(S2(P) ≤ 0.05) ≈ 0.0501. (15)

Thus, (13) is slightly violated. The maximum value of P(SK(P) ≤ α) over all possible dependence
structures of P is known (Hommel [14]) to be:

max
P∈UK

P(SK(P) ≤ α) = (`Kα) ∧ 1 for α ∈ (0, 1), (16)

where `K :=

K∑
k=1

1

k
≈ logK. (17)

There are several other methods of merging p-values under arbitrary dependence [43, 46]. Here, we focus
on negatively dependent p-values and e-values.
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3.2 Simes under negative dependence

We next give a nontrivial upper bound on P(SK(P) ≤ α) when P is weakly negatively dependent.

Theorem 2 (Additive error bounds). For every weakly negatively dependent P ∈ UK , we have

P(SK(P) ≤ α) ≤ α+

K∑
k=2

(
K

k

)(
αk

K

)k
. (18)

We can obtain the more succinct bound that does not depend on K,

P(SK(P) ≤ α) ≤ α+ 2α2 +
9

2
α3 +

1√
8π

(eα)4

1− eα
for all α ∈ (0, 1/e), (19)

and in particular,
P(SK(P) ≤ α) ≤ α+ 2α2 + 6α3 for all α ∈ (0, 0.1]. (20)

Since there exists a weakly dependent P ∈ UK (in particular, independent uniforms) such that P(SK(P) ≤
α) = α, the above bounds are tight up to lower order terms in α.

Recall from (17) that since P(SK(P) ≤ α) ≤ `Kα under any dependence structure, the bounds above
and below can be improved for small K by taking their minimum with `Kα, but we often omit this for
clarity. The above bounds also imply the following multiplicative error bounds.

Corollary 3 (Multiplicative error bounds). For every weakly negatively dependent P ∈ UK , we have

P(SK(P) ≤ α) ≤ 1.26α for all α ∈ (0, 0.1], (21)

and also
P(SK(P) ≤ α) ≤ 3.4α for all α ∈ (0, 1), (22)

meaning that (3.4 ∧ `K)SK(P) is a p-value for any K.

Before we present the proof, a few comments are in order. For K = 2, the right hand side of (18)
becomes α + α2, which equals 0.0525 for α = 0.05. Despite the theorem holding under weakest form
of negative dependence, this value is not so far from the empirically observed value in (15) for negative
Gaussian dependence. Also, for all practical α, the Simes combination results in a valid p-value up to
the small constant factor 1.26. However, to formally call it a p-value, the constant is at most 3.4 (though
this could potentially be lowered closer to 1 through better approximations).

Proof of Theorem 2 and Corollary 3. Define ck = kα/K for k ∈ K. Note that for k ∈ K, {P(k) ≤ ck} =⋃
A∈Bk

⋂
j∈A{Pj ≤ ck}, where Bk = {A ⊆ K : |A| = k} and |A| is the cardinality of A. Bonferroni’s

inequality gives

P(SK(P) ≤ α) = P

(
K⋃
k=1

{P(k) ≤ ck}

)

≤
K∑
k=1

P
(
P(k) ≤ ck

)
=

K∑
k=1

P

 ⋃
A∈Bk

⋂
j∈A
{Pj ≤ ck}

 .

Applying the Bonferroni inequality for every union and (1) for every intersection, we get

P(SK(P) ≤ α) ≤
K∑
k=1

∑
A∈Bk

P

⋂
j∈A
{Pj ≤ ck}


≤

K∑
k=1

∑
A∈Bk

∏
j∈A

P(Pj ≤ ck) =

K∑
k=1

(
K

k

)
ckk. (23)
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This shows (18). Note that, for integers n ≥ k,(
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) . . . (n− k + 1)

k!
≤ nk

k!
.

Stirling’s approximation yields(
n

k

)
≤ nk

k!
≤ nk√

2πkkke−ke1/(12k+1)
≤ nk√

2πkkke−k
=

1√
2πk

(en
k

)k
. (24)

Applying (24) to each term of (23) except for the first three terms, we get

P(SK(P) ≤ α)

≤ α+
2(K − 1)

K
α2 +

9(K − 1)(K − 2)

2K2
α3 +

K∑
k=4

1√
2πk

(
eK

k

)k (
k

K
α

)k

= α+
2(K − 1)

K
α2 +

9(K − 1)(K − 2)

2K2
α3 +

K∑
k=4

1√
2πk

(eα)
k
.

≤ α+ 2α2 +
9

2
α3 +

∞∑
k=4

(eα)
k

√
2πk

. (25)

Therefore, by noting that
∑∞
k=4 (eα)

k
= (eα)4/(1− eα) for α < 1/e, (25) implies the inequality (19),

and (20) follows from (19) by direct computation.
Since any probability is no larger than 1, an upper bound on the probability in (19) for all α ∈ (0, 1)

is given by the following function

s̃K(α) := min

{
α+ 2α2 +

9

2
α3 +

1√
8π

(eα)4

(1− eα)+
, 1

}
, (26)

where 1/0 =∞ (i.e., the upper bound is 1 when α ≥ 1/e).
By (20), s̃K(α)/α ≤ 1.26 for α ≤ 0.1, and thus the multiplier to correct for negative dependence is at

most 1.26 for relevant values of α. We can also verify s̃K(α)/α ≤ 3.4 for all α ∈ (0, 1).

The values of s̃K(α) for common choices of α ∈ {0.01, 0.05, 0.1}, as well as the values of α correspond-
ing to s̃K(α) ∈ {0.01, 0.05, 0.1}, are given in Table 1. As we can see from the table, the simple formula
(20) is a quite accurate approximation of (19).

α 0.0098 0.01 0.0454 0.05 0.0830 0.1

s̃K(α) 0.01 0.0102 0.05 0.0556 0.1 0.1260

α+ 2α2 + 6α3 0.0100 0.0102 0.0501 0.0558 0.1053 0.1260

s̃K(α)/α 1.020 1.020 1.101 1.112 1.205 1.260

Table 1: Values of the upper bounds in Theorem 2

Remark 4. It is clear from the proof of Theorem 2 that it suffices to require (1) to hold for p ∈ [0, α] to
obtain the upper bound in Theorem 2. That is, we only need weak negative dependence to hold when
all components of P are small than or equal to α.

Remark 5. Consider a general procedure that rejects the null hypothesis if p(k) ≤ tk(λ) for some k ∈ K,
where tk(λ) > 0 is a threshold that depends on a parameter λ. The Simes test is a special case that
corresponds to tk(λ) = kλ with λ = α/K. Such procedures are related to the joint error rate control
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of Blanchard et al. [3]. Inspecting the proof of Theorem 2, we note that (23) holds with any choices of
(ck)k∈K, in particular with ck = tk(λ). Therefore, the argument for (25) yields that, under weak negative
dependence, the above procedure has a type-I error rate bounded by

u(λ) = Kt1(λ) +
K(K − 1)

2
(t2(λ))

2
+
K(K − 1)(K − 2)

6
(t3(λ))

3
+

K∑
k=4

1√
2πk

(
eK

k

)k
(tk(λ))

k
.

Choosing λ such that u(λ) ≤ α (this is possible if e.g., tk(λ) is increasing in λ with tk(0) = 0 for each k)
yields a procedure that controls the type-I error at α under weak negative dependence.

The analysis in Remark 5 and (23)–(24) immediately leads to the following result.

Proposition 6. Fix k ∈ K. Consider the procedure that rejects the global null if p(k) ≤ t, where t > 0. If

t ≤ (α/ηk)
1/k

where ηk =
(
K
k

)
, then the above procedure has type-I error control at α under weak negative

dependence. In particular, this holds for t = (2πk)1/(2k)kα1/k/(eK), or simply t = kα1/k/(eK).

Recall that the combination method of Rüger [31] for a fixed k ∈ K rejects the null if p(k) ≤ kα/K
(valid under arbitrary dependence). If k = 2, then the procedure in Proposition 6, rejecting when
p(2) ≤ (2α)1/2/K (valid under weak negative dependence), improves the threshold 2α/K when α ≤ 1/2.
For general k, the procedure is always an improvement over the threshold kα/K when α ≤ e−2.

3.3 Negative Gaussian dependence

Theorem 2 leads to upper bounds on the type-1 error of merging weakly negatively dependent p-values
using the Simes test. Below, we discuss the situation of Gaussian-dependent p-values and e-values.

For a K ×K correlation matrix Σ, denote by GΣ the set of all Gaussian-dependent random vectors
with Gaussian correlation Σ. If, X ∈ GΣ has standard uniform marginals, then its distribution is called
a Gaussian copula (see Nelsen [26] for copulas).

The following lemma gives a characterization of a few negative dependence concepts for Gaussian-
dependent vectors.

Lemma 7. For Gaussian-dependent X ∈ GΣ with continuous marginals, the following are equivalent:

(I) all off-diagonal entries of Σ are non-positive;

(II) X is negatively associated;

(III) X is negative regression dependent;

(IV) X is negative orthant dependent;

(V) X is negative lower orthant dependent;

(VI) X is weakly negatively dependent.

The implications (i)⇒(ii)⇔(iii)⇔(iv)⇔(v)⇔(vi) in Lemma 7 hold true regardless of whether X has
continuous marginals, but (vi)⇒(i) requires this assumption; a counterexample is X = (0, . . . , 0).

Proof. Since all statements are invariant under strictly increasing transforms, we can safely treat X as
having standard Gaussian marginals (and hence jointly Gaussian). For Gaussian vectors, the implication
(i)⇒(ii) is shown by Joag-Dev and Proschan [18], and (i)⇒(iii) is shown by Block et al. [5]. The implica-
tions (ii)⇒(iv)⇒(v)⇒(vi) can be checked by definition; see the diagram in the beginning of Section 2. To
see that (vi) implies (i), suppose that an off-diagonal entry σij of Σ is positive (for contradiction). This
implies P({Xi ≤ 0} ∩ {Xj ≤ 0}) > 1/4 = P(Xi ≤ 0)P(Xj ≤ 0) by direct computation, which violates
weak negative dependence.

10



Suppose that X = (X1, . . . , XK) is negatively Gaussian dependent. If a vector of p-values P is ob-
tained via P = (f1(X1), . . . , fK(XK)) for some decreasing functions (or increasing functions) f1, . . . , fK ,
then P is also negatively Gaussian dependent; the same applies to a vector of e-values.

A vector of p-values P ∈ GΣ∩UK is PRD if and only if all entries of Σ are non-negative (Benjamini and
Yekutieli [2]); it is weakly negatively dependent if and only if all entries of Σ are non-positive (Lemma 7).
In the above two cases, the type-1 error of the Simes test applied to P is controlled by Proposition 1 and
Theorem 2. For the intermediate case where some entries of Σ are positive and some are negative, the
type-1 error is much more complicated, and we only have an asymptotic result. In the result below, (i)
and (iii) are known or follow from existing results, but we briefly explain their proof.

Theorem 8. For Gaussian-dependent P ∈ GΣ ∩ UK , the following statements hold.

(I) If all off-diagonal entries of Σ are non-negative, then

P(SK(P) ≤ α) ≤ α for all α ∈ (0, 1)

(II) If all off-diagonal entries of Σ are non-positive, then

P(SK(P) ≤ α) ≤ α+ 2α2 + 6α3 for α ∈ (0, 0.1].

(III) It always holds that

lim
α↓0

1

α
P(SK(P) ≤ α) ≤ 1.

The first statement above is well known [2], but the other two are new.

Proof. For completeness, we point out that statement (i) follows from Proposition 1 and the fact that
a Gaussian vector with non-negative pair-wise correlations are PRD. Statement (ii) follows from (20)
and Lemma 7. To show statement (iii), define the harmonic average function M−1,K : (p1, . . . , pK) 7→
((p−1

1 + · · · + p−1
K )/K)−1. Theorem 2 (ii) of Chen et al. [7] implies P(M−1,K(P) ≤ α)/α → 1, and

Theorem 3 of Chen et al. [7] gives M−1,K ≤ SK . Combining these two statements, we get P(SK(P) ≤
α) ≤ P(M−1,K(P) ≤ α) = α+ o(α), thus showing statement (iii).

Theorem 8 implies, in particular, that the Simes inequality (13) almost holds for all Gaussian-
dependent vectors of p-values and α small enough. It remains an open question to find a useful upper
bound for P(SK(P) ≤ α) over all Gaussian-dependent P ∈ UK for practical values of α such as 0.05 or
0.1. A simple conjecture is that (20) or a similar inequality holds for all Gaussian-dependent P ∈ UK ,
but a proof seems to be beyond our current techniques. The behaviour of type-I error with varying
correlation in the Gaussian setting has been discussed in, for e.g., Cui et al. [9, Chapter 3].

Remark 9. Part (iii) of Theorem 8 holds true under the condition that each pair of components of P has
a bivariate Gaussian dependence, which is weaker than Gaussian dependence of P. The claim follows
because this condition is sufficient for Theorem 2 (ii) of Chen et al. [7].

Remark 10. Since the probability P(SK(P) ≤ α) is linear in (distributional) mixtures, the result in
Theorem 8 (i) also applies to P being a mixture of positively Gaussian-dependent vectors of p-values.
Similarly, (ii) applies to mixtures of negatively Gaussian-dependent vectors of p-values, and (iii) applies
to mixtures of any Gaussian-dependent ones.

Remark 11. For multivariate Gaussian random vector (Y1, . . . , Yn) with standard Gaussian marginals,
the vector of the absolute values (|Y1|, . . . , |YK |) is generally not Gaussian-dependent, and hence Theorem
8 does not apply to the p-values (P1, . . . , PK) computed from (|Y1|, . . . , |YK |) through Pk = 2Φ(−|Yk|),
k ∈ K. These p-values correspond to two-sided tests for the Gaussian distributions. A well-known
conjecture is that these p-values satisfy the Simes inequality (13); see e.g., Finner et al. [11, Section 7]
for a numerical experiment, and also Remark 20 for a similar conjecture in the context of FDR control.
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3.4 Weighted merging of p-values

Let w = (w1, . . . , wK) ∈ Rn+ denote prior weights on the p-values, where w1 + · · ·+wK = K; the simplex
of such vectors is denoted by ∆K . These may themselves be obtained by e-values from independent
experiments; see Ignatiadis et al. [17], where the requirement that they add up to K may be dropped
(but the terms α2 and α3 will need some correction). The weighted Simes function is

Sw
K(p1, . . . , pK) =

K∧
k=1

K

k
q(k),

where qk = pk/wk for k ∈ K and q(1) ≤ · · · ≤ q(K) are the order statistics of q1, . . . , qK . Clearly, if
w1 = · · · = wK = 1, then Sw

K = SK .

Proposition 12. For weakly negatively dependent p-values and any w ∈ ∆K , the bounds in Theorem 2
hold with Sw

K in place of SK .

Proof. It suffices to show that

P(Sw
K(P) ≤ α) ≤

K∑
k=1

(
K

k

)
ckk

holds, and the remaining steps follow as in the proof of Theorem 2. Using (23) with P1, . . . , PK replaced
by P1/w1, . . . , PK/wK , we only need to check the inequality in∑

A∈Bk

∏
j∈A

P(Pj ≤ wjck) =
∑
A∈Bk

∏
j∈A

(wjck) ≤
(
K

k

)
ckk,

which holds if ∑
A∈Bk

∏
j∈A

wj ≤
(
K

k

)
. (27)

Below we show (27). Let W1, . . . ,Wk be random samples from w1, . . . , wK without replacement. By
definition, we have E[W1] = · · · = E[Wk] = 1 and

1(
K
k

) ∑
A∈Bk

∏
j∈A

wj = E

[
k∏
i=1

Wi

]
.

Since W1, . . . ,Wk are negatively associated (see Section 3.2 of Joag-Dev and Proschan [18]), we have

E

[
k∏
i=1

Wi

]
≤

k∏
i=1

E [Wi] = 1,

and hence (27) holds. This is sufficient to obtain the bounds in Theorem 2.

3.5 Iterated applications of negative dependence

A natural question is the following: if P is negatively dependent, and A,B are two non-overlapping
subsets of size K1,K2, then is it the case that SK1

(PA) and SK2
(PB) are also negatively dependent? (In

what follows, we suppress the subscripts K1 and K2 for readability.) We cannot settle this question for
all definitions of negative dependence, but we can prove the following.

Proposition 13. If P is negatively associated, and {Ak}k=1,...,` are non-overlapping subsets of K, then
(S(PA1

), . . . , S(PA`)) is negative orthant dependent. The same result holds for any monotone p-value
combination rule (such as Fisher’s, Stouffer’s or Bonferroni, median, average, etc.).
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Proof. Recall the implication of negative association (9). For arbitrary constants s1, . . . , s` ≥ 0, choose
the coordinatewise increasing nonnegative functions φk as 1{S(PAk )>sk} to yield

P(S(PA1
) > s1, . . . , S(PA`) > s`) ≤

∏̀
k=1

P(S(PAk) > sk),

and this shows negative upper orthant dependence of (S(PA1
), . . . , S(PA`)). To obtain negative lower

orthant dependence, it suffices to note that (7) holds for componentwise decreasing f, g, and thus (9) also
holds for non-negative componentwise decreasing functions φk chosen as 1{S(PAk )≤sk}.

The above proposition proves useful in group-level FDR control, as we shall see later. For now, we
describe an implication for global null testing with grouped hypotheses in the following corollary.

Corollary 14. If P is negatively associated, and A1, . . . , A` are non-overlapping subsets of K, then

P
(
S(S(PA1

), . . . , S(PA`)) ≤ α
)
≤ 1.52α for all α ∈ [0, 0.083),

and also
P
(
S(S(PA1

), . . . , S(PA`)) ≤ α
)
≤ (3.4 ∧ `K)2α for all α ∈ [0, 1],

meaning that (3.4 ∧ `K)2S(S(PA1
), . . . , S(PA`)) is a valid p-value.

In the first inequality in Corollary 14, the values 0.083 and 1.52 are computed from Table 1 by applying
(21) twice. The second inequality is due to the fact that 3.4S(P) is a p-value by Theorem 2 under weak
negative dependence.

In contrast to Corollary 14, if P is positively regression dependent (PRD), then

P
(
S(S(PA1

), . . . , S(PA`)) ≤ α
)
≤ α.

This inequality was proved by Ramdas et al. [28, Lemma 2(d)]. Surprisingly, it holds despite the fact that
S(PA1

), . . . , S(PA`) are not known to themselves be PRD (even though P is); in fact, the claim under
PRD even holds for overlapping groups. It is likely that under certain types of mixed dependence (such
as positive dependence within groups but negative dependence across groups, or vice versa), intermediate
bounds can be derived.

4 Merging negatively dependent e-values

E-values (Vovk and Wang [45]) are an alternative to p-values as a measure of evidence and significance.
We make a brief but important observation on negatively associated e-values. An e-variable (also called
an e-value, with slight abuse of terminology) for testing a hypothesis H is a random variable E ≥ 0 with
EQ[E] ≤ 1 for each probability measure Q ∈ H. Further, recall that an e-value may be obtained by
calibration from a p-value P , i.e., E = φ(P ) for some calibrator φ, which is a nonnegative decreasing

function φ satisfying
∫ 1

0
φ(t) dt ≤ 1 (typically with an equal sign); see Shafer et al. [36] and Vovk and

Wang [45].

Theorem 15. If e-values E1, . . . , EK are negatively upper orthant dependent, then
∏k
i=1Ei is also an

e-value for each k ∈ K. More generally, E(λ) :=
∏K
i=1(1 − λi + λiEi) is an e-value for any constant

vector λ := (λ1, . . . , λK) ∈ [0, 1]K . In particular, if the e-values are obtained by calibrating negative lower
orthant dependent p-values, then they are negatively upper orthant dependent.

The above proposition is recorded for ease of reference, but its proof is simply a direct consequence of
(6). The condition of negative upper orthant dependence in Theorem 15 is weaker than negative orthant
dependence or negative association. Thus if P is Gaussian dependent, and all off-diagonal entries of Σ
are non-positive, then E :=

∏K
k=1 φk(Pk) is an e-value for any calibrators φ1, . . . , φK .

Products are not the only way to combine negatively dependent e-values. The next proposition lays
out certain admissible combinations.
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Corollary 16. For negatively upper orthant dependent e-values E1, . . . , EK , convex combinations of∏
k∈A

Ek, where A ⊆ K,

are also valid e-values (here the product is 1 if A = ∅). This family includes U-statistics of E1, . . . , EK .
Further, such convex combinations, treated as functions from [0,∞)K → [0,∞), are admissible merging
functions for negative orthant dependent e-values.

The validity follows because averages of arbitrarily dependent e-values are always e-values. The
admissibility follows because these merging functions are admissible within the larger class of merging
functions for independent e-values (see Vovk and Wang [45]).

For independent e-values, Vovk and Wang [44] observed from simulations that the U-statistic

U2 :=
2

K(K − 1)

∑
1≤k<j≤K

EkEj (28)

performs quite well in some numerical experiments. Similarly,

U3 :=
6

K(K − 1)(K − 2)

∑
1≤k<j<`≤K

EkEjE` (29)

can be useful in different situations. Since U2 and U3 are both valid e-values under negative upper orthant
dependence, we will use these e-values in our simulation examples below.

Note that the Simes combination for e-values, given by

SK(e1, . . . , eK) =

K∨
k=1

k

K
e[k], where e[k] is the k-th largest order statistic of e1, . . . , eK ,

does result in a valid e-value under arbitrary dependence, but it is uninteresting because it is dominated
by the average of the e-values, which is also valid under arbitrary dependence as mentioned above. Thus
we only discuss Simes in the context of p-values in this paper.

We end this subsection by presenting an important corollary of Theorem 15 that pertains to the
construction of particular e-values that are commonly encountered in nonparametric concentration in-
equalities. To set things up, following Boucheron et al. [6], we call a mean-zero random variable X as
v-sub-ψ, if the following condition holds: for every λ ∈ Domain(ψ), E[eλX ] ≤ eψ(λ)v, which is simply
a bound on its moment generating function. If X is not mean zero, then it is called v-sub-ψ if the
aforementioned condition is satisfied by X − E[X]. In particular, if ψ(λ) = λ2/2, then X is called v-
subGaussian. In what follows, we use n instead K for the number of random variables involved, as n
here often corresponds to the number of observations instead of the number of tests.

Corollary 17 (Chernoff e-variables). Suppose X1, . . . , Xn are negatively associated, and that each Xi

is vi-sub-ψi. Then, denoting by µi := E[Xi], we have that exp(
∑n
i=1 λi(Xi − µi) −

∑n
i=1 ψi(λi)vi) is an

e-value for any positive constants λ1, . . . , λn in the domains of ψ1, . . . , ψn, respectively.

If the sub-ψ condition holds only for some subset Λ ⊆ Domain(ψ), then so does the final conclusion.
The proof follows directly by invoking Corollary 16 with the e-values Ei := exp(λi(Xi − µ)− ψi(λi)vi).

Such e-values appeared centrally in the unified framework for deriving Chernoff bounds in Howard
et al. [15], and thus we call them Chernoff e-values. As a particular example, assume that for all i, we
have µi = µ, vi = v and ψi(λ) = λ2/2, and we also choose λi = λ. Denoting µ̂n :=

∑n
i=1Xi/n, we obtain

that exp(nλ(µ̂n − µ)− nvλ2/2) is an e-value. Applying Markov’s inequality, we see that

P
(
µ̂n − µ >

log(1/α)

nλ
+ vλ/2

)
≤ α.

Choosing λ =
√

2 log(1/α)/(nv), we get “Hoeffding’s inequality” for averages of subGaussian random

variables: P(µ̂n − µ >
√

2v log(1/α)/n) ≤ α, which is known to hold under negative association.
Other examples of this type can be derived; see for instance Example 2 in Appendix A.1 and Howard

et al. [15, Fact 1 and Lemma 3].
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5 False discovery rate control

5.1 The BH procedure

In this section, we present an implication of our results in controlling the FDR. We will obtain an FDR
upper bound that may not be very practical. Nevertheless, it is the first result we are aware of that
controls FDR under negative dependence (without the Benjamini-Yekutieli corrections of ≈ logK [2]),
and hence it represents an important first step that we hope open the door to future work with tighter
bounds.

Let H1, . . . ,HK be K hypotheses. For each k ∈ K, Hk is called a true null if P ∈ Hk. Let N ⊆ K be
the set of indices of true nulls, which is unknown to the decision maker, and K0 be the number of true
nulls, thus the cardinality of N . For each k ∈ K, Hk is associated with p-value pk, which is a realization
of a random variable Pk. If k ∈ N , then PK is a p-variable, assumed to be uniform under [0, 1]. We write
the set of such P as UKN . We do not make any distribution assumption on Pk for k ∈ K \ N .

A random vector P of p-values is PRD on the subset N (PRDS) if for any null index k ∈ N and
increasing set A ⊆ RK , the function x 7→ P(P ∈ A | Pk ≤ x) is increasing on [0, 1]. If N = K, i.e.,
all hypotheses are null, then PRDS is precisely PRD. For a Gaussian-dependent random vector P with
Gaussian correlation matrix Σ, it is PRDS if and only if Σij ≥ 0 for all i ∈ N and j ∈ K.

A testing procedureD : [0, 1]K → 2K reports rejected hypotheses (called discoveries) based on observed
p-values. We write FD as the number of null cases that are rejected (i.e., false discoveries), and RD as
the total number of discoveries truncated below by 1, that is,

FD = |D(P) ∩N| and RD = |D(P)| ∨ 1.

The value of interest is FD/RD, called the false discovery proportion (FDP), which is the ratio of the
number of false discoveries to that of all claimed discoveries, with the convention 0/0 = 0 (i.e., FDP is 0
if there is no discovery; this is the reason of truncating RD by 1). Benjamini and Hochberg [1] introduced
the FDR, which is the expected value of FDP, that is,

FDRD = E
[
FD
RD

]
,

where the expected value is taken under the true probability. The BH procedure Dα of Benjamini and
Hochberg [1] rejects all hypotheses with the smallest k∗ p-values, where

k∗ = max

{
k ∈ K :

Kp(k)

k
≤ α

}
,

with the convention max(∅) = 0, and accepts the rest. For independent (Benjamini and Hochberg [1])
or PRDS (Benjamini and Yekutieli [2]) p-values, the BH procedure has an FDR guarantee

E
[
FDα
RDα

]
≤ K0

K
α for all α ∈ (0, 1). (30)

Proposition 18 (Benjamini and Yekutieli [2]). If the vector of p-values P is PRDS, then (30) holds.
For arbitrarily dependent p-values, the error bound in (30) is multiplied by `K , similar to (16).

As a consequence of Proposition 18, for Gaussian-dependent P, (30) holds when the correlations are
non-negative. In the setting that all hypotheses are true nulls, i.e., K0 = K, it holds that

E
[
FDα
RDα

]
= P(|Dα(P)| > 0) = P

(⋃
k∈K

{
KP(k)

k
≤ α

})
= P(SK(P) ≤ α).

Hence, in this setting, the FDR is equal to P(SK(P) ≤ α), and (30) becomes (13). If P1, . . . , PK are
independent, and the null p-values are uniform on [0, 1], then (30) holds as an equality, similar to (14).
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5.2 FDR control under negative dependence

We provide an upper bound on the FDR of the BH procedure for weakly negatively dependent p-values,
that shows that the error inflation factor is independent of K (unlike Proposition 18). The proof is based
on some interesting results in a preprint by Su [41].

Theorem 19. If the null p-values are weakly negatively dependent (and allowing for arbitrary dependence
between nulls and non-nulls), then the BH procedure at level α has FDR at most

φ(α,K) := α((− logα+ 3.18) ∧ `K).

The bound is asymptotically tight in the following sense: Fix ε ∈ (0, 1). For all α > 0 small enough
(depending on ε) and K large enough (depending on α and ε), there exist iid uniform null p-values and
some non-null p-values such that the BH procedure has an FDR at least (1− ε)φ(α,K).

Technically, the above bound can be improved to α((− logα + 3.18) ∧ `K K0

K ), but since K0 is unob-
servable, we omit it above for simplicity. The `K multiplier is slightly tighter for small K and α, but
obviously the overall bound still does not grow with K.

Proof. The `Kα bound holds by Proposition 18, so we ignore it. Theorem 1 of Su [41] yields

FDRDα ≤ α+ α

∫ 1

α

FDR0(x)

x2
dx, (31)

where FDR0(x) is the FDR of the BH procedure applied to only the null p-values at level x. We will
apply the upper bound on FDR0(x) obtained from Theorem 2. We assume α ≤ 0.3, because there is
nothing to show for the case α > 0.3 in which the claimed FDR upper bound is larger than 1. Let
α0 = 0.3, which is chosen to be close to 1/e. Note that∫ α0

α

1

x2

∞∑
k=4

(ex)
k

√
2πk

dx =

∫ α0

α

∞∑
k=4

1√
2πk

ekxk−2 dx

=

∞∑
k=4

1

k − 1

1√
2πk

ekxk−1|α0
α ≤

∞∑
k=4

1

k − 1

1√
2πk

ekxk−1|0.30 ≈ 0.2473.

By applying (25) to (31), and using the above upper bound, we get

FDRDα ≤ α+ α

∫ 1

α

1

x2
min

{(
x+ 2x2 +

9

2
x3 +

∞∑
k=4

(ex)
k

√
2πk

)
, 1

}
dx

≤ α+ α

(∫ α0

α

1

x2

(
x+ 2x2 +

9

2
x3 +

∞∑
k=4

(ex)
k

√
2πk

)
dx+

∫ 1

α0

1

x2
dx

)

≤ α+ α

(∫ α0

α

1

x
dx+

∫ α0

0

(
2 +

9

2
x

)
dx+ 0.2474 +

∫ 1

α0

1

x2
dx

)
≤ α+ α (logα0 − logα+ 1.05 + (1/α0 − 1)) ≤ α (− logα+ 3.1792) ,

and this gives the stated upper bound.
Next, we show sharpness. If the null p-values are iid uniform on [0, 1] (but allowing for arbitrary

dependence between nulls and non-nulls), Theorem 3 of Su [41] gives an upper bound

FDRDα ≤ α(− logα+ 1).

A closer examination of the proof of Theorem 4 of Su [41] shows that the FDR in this case (that is, with
iid uniform nulls) can be at least (1− ε)α(− logα+1) for α small enough and K large enough. Therefore,
it suffices to notice that our bound φ(α,K) = α((− logα+ 3.18)∧ `K) and Su [41]’s bound α(− logα+ 1)
are asymptotically equivalent for α sufficiently small and K sufficiently large.
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Although the sharpness statement in Theorem 19 implies that the bound there cannot be improved
essentially, it is unclear whether the bound can be improved if we further assume that all p-values (nulls
and non-nulls) are negatively dependent. We leave this as an open question.

Note that for K = 2, the Simes error bound was α+α2, and so (31) gives FDRDα ≤ α(2−α− logα).
For α ≤ 1/2, this bound is weaker than that of Benjamini and Yekutieli [2], which gives 1.5α.

The FDR upper bound in Theorem 19 (ignoring the `K term) for some α are given in Table 2.

α 0.00603 0.01 0.01334 0.05 0.1

FDR 0.05 0.07784 0.1 0.3087 0.54812

FDR/α 8.292 7.784 7.502 6.175 5.482

Table 2: Values of the FDR upper bounds in Theorem 19.

As seen from Table 2, the upper bound produced by Theorem 19 can be quite conservative in practice,
although it is better than the `K correction of Benjamini and Yekutieli [2] for large K.

A remaining open question is to find a better FDR bound with stronger conditions of negative de-
pendence. On the other hand, the e-BH procedure (Wang and Ramdas [47]) controls FDR for arbitrarily
dependent e-values, which we will compare with in our simulation results.

Remark 20 (Two-sided Gaussain BH conjecture). Consider the two-sided Gaussian p-values in Remark
11, i.e., Pk = 2Φ(−|Yk|) for k ∈ K where (Y1, . . . , Yk) is multivariate Gaussian with standard Gaussian
marginals and an arbitrary correlation matrix. A folklore conjecture is that for such p-values, the BH
procedure at level α controls FDR at α. See Roux [30, Chapter 4] for a discussion. This conjecture holds
true in the case of K = 2, as analyzed by Reiner-Benaim [29].

5.3 Group-level FDR control

Sometimes, data are available at a higher resolution (say single nucleotide polymorphisms along the
genome, or voxels in the brain), but we wish to make discoveries at a lower resolution (say at the gene
level, or higher level regions of interest in the brain). This leads to the question of group-level FDR control
[28]. The K hypotheses are divided into G groups. We have p-values for the K individual hypotheses,
but wish to discover groups that have some signal without discovering too many null groups (a group is
null if all its hypotheses are null, and it is non-null otherwise). In other words, we wish to control the
group-level FDR with hypothesis-level p-values.

A natural algorithm for this is to combine the p-values within each group using, say, the Simes
combination, and then apply the BH procedure to these group-level “p-values”. We use “p-values” in
quotations because while the Simes combination does lead to a p-value under positive dependence (PRDS),
as we have seen it only leads to an approximate p-value if the p-values are negatively dependent. Let us
call this the Simes+BHα procedure; to clarify, it applies the BH procedure at level α to the group-level
Simes “p-values” formed by applying the Simes combination to the p-values within each group, without
any corrections. Then we have the following result.

Proposition 21. If the p-values are negatively associated, the Simes+BHα procedure controls the group-
level FDR at level 3.4α(− log(3.4α) + 3.18).

Proof. By Corollary 3, for negatively associated p-values P, their Simes combination SK(P) multiplied
by 3.4 is a p-value. Moreover, the p-values resulting from applying the Simes combination to each group
are negative orthant dependent by Proposition 13. Running the BHα procedure on these p-values is
equivalent to running the BH3.4α procedure on the ones corrected by multiplying 3.4. Then, the FDR
control follows from Theorem 19.

In contrast to Proposition 21, if the p-values are PRDS, the Simes+BHα procedure controls the group-
level FDR at level α; this follows as a direct consequence of results in Ramdas et al. [28]. As earlier in
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the paper, both instances of 3.4 in Proposition 21 can be replaced by 3.4 ∧ `K , which is tighter for small
K, but it has been omitted for clarity.

The FDR bound in Proposition 21, due to repeatedly applying bounds under negative dependence,
may be quite conservative in practice. Nevertheless, it is the first result on the group-level FDR control
under negative association which does not has an exploding penalty term (compared to the classic BH
procedure) as K →∞, similarly to the case of Theorem 19. Future studies may improve this bound.

As a different grouped setting to consider, suppose we want to control the FDR at the level of the
individual hypotheses, but the p-values happen to be divided intoG groups such that they are independent
across groups and negatively dependent within each group. Then at least two options exist. One option
is to apply the BH procedure to all hypotheses at once (correcting for negative dependence). Another
option is to divide the p-values into K/G independent sets (each containing at most one hypothesis from
each group), and apply the BH procedure at level αG/K separately to each set, and simply take the
union of all discoveries made. It is likely that neither method uniformly dominates the other, and their
relative performance will depend on G,K and the type of dependence.

6 Simulations

We now apply our results in Theorems 2, 15 and 19 to global testing or multiple testing problems, and
illustrate them by means of several simulation experiments.

The test statistics Xk, k ∈ K are generated from correlated z-tests, and they are jointly Gaussian.
The null hypotheses are N(0, 1) and the alternatives are N(δ, 1), where δ ≥ 0. Among the K test statistics,
K0 of them are drawn from the null hypothesis and K −K0 of them are from the alternative hypothesis.
Let π0 = K0/K be the proportion of true null hypotheses.

We compute the p-values P (x) := 1 − Φ(x), for x ∈ {Xk : k ∈ K}; which are based on the most
powerful test (Neyman–Pearson lemma). To compute e-values, we first compute the likelihood ratio:

Lδ(x) :=
exp(−(x− δ)2/2)

exp(−x2/2)
= exp(δx− δ2/2)

of the alternative to the null density (which are obviously unit mean under the null, and hence e-values).
Since δ may not be known to the tester, we take an average of Lδ(x) with respect to δ on [a, b], that is,

E(x) :=
1

b− a

∫ b

a

Lδ(x) dδ =
√

2π exp(x2/2) (Φ(x− a)− Φ(x− b)). (32)

Since mixtures of e-values are also e-values, the above is also an e-value. Note that the validity of
the p-values and e-values defined above only depends on the null hypothesis but not on the alternative
hypothesis (but the power depends on reasonably accurate specification of the alternative). As mentioned
before, if (X1, . . . , XK) is negatively Gaussian dependent, then the p-values, as componentwise increasing
transforms of (X1, . . . , XK), are negatively Gaussian dependent. Similarly, the e-values, as componentwise
decreasing transforms of (X1, . . . , XK), are also negatively Gaussian dependent.

6.1 Testing a global null

We first run simulations to test a global null with various methods combining p-values or e-values. We are
mainly interested in the methods in this paper under negative dependence, and we will also look at their
performance under positive dependence for a comparison. That is, we consider the following settings,
and each simulation will be repeated 10,000 times and we report their average.

1. Negative Gaussian dependence: Set the pairwise correlation of (X1, . . . , XK) to be uniformly chosen
between [−1/(K − 1), 0] in each simulation.1 For this setting, we provide a few different scenarios

1Effectively, we are simulating from mixtures of negatively Gaussian-dependent p-values; see Remark 10. Recall that
−1/(K − 1) is the smallest possible value for the pairwise correlation coefficients of an exchangeable random vector.
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Figure 2: Global null testing (negative Gaussian dependence). All three subplots show power against δ.
The left endpoint of δ = 0 actually represents the achieved type I error, which appears to be controlled
at the nominal level α = 0.05 for all methods. The key observations are in the text.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

δ

0.0

0.2

0.4

0.6

0.8

1.0

p
ow

er

α = 0.05

(a)

K = 100, π0 = 0, negative dependence

0.0 0.5 1.0 1.5 2.0 2.5 3.0

δ

0.0

0.2

0.4

0.6

0.8

1.0

p
ow

er
α = 0.05

(b)

K = 100, π0 = 50%, negative dependence

0.0 0.5 1.0 1.5 2.0 2.5 3.0

δ

0.0

0.2

0.4

0.6

0.8

1.0

p
ow

er

α = 0.05

(c)

K = 100, π0 = 90%, negative dependence

Simes with ℓK correction

Bonferroni

Simes with ND correction

mean e-value

order-2 U-statistic e-value

order-3 U-statistic e-value

product e-value

of (K,π0): we take π0 ∈ {0, 50%, 90%}, corresponding to full signal, rich signal, and sparse signal,
and fix K = 100 in the main text. Additional simulation results for K ∈ {10, 1000}, corresponding
to a smaller pool and a larger pool of hypotheses, are provided in Appendix.

2. Positive Gaussian dependence: Set the pairwise correlation of (X1, . . . , XK) to be uniformly chosen
between [0, 1] in each experiment. For this setting, we consider two different scenarios of (K,π0):
K = 1000 and π0 ∈ {0, 50%}, to illustrate some simple comparative observations.

We let δ vary in [0, 3] and the e-values in (32) will be computed with averaging δ ∈ [a, b] = [0, 3]. Fix the
type-I error upper bound as 0.05. We consider the following seven methods:

(a) the Simes method with `K correction in (16);

(b) the Bonferroni correlation (the minimum of p-values times K);

(c) the Simes method with negative dependence (ND) correction (first row of Table 1);

(d) arithmetic mean of of e-values;

(e) order-2 U-statistic (U2) of e-values in (28);

(f) order-3 U-statistic (U3) of e-values in (29);

(g) the product e-value.

All methods based on e-values are compared against the threshold 20, so that they have a type-I error
guarantee of 0.05. Among these methods, (a), (b) and (d) are valid under arbitrary dependence struc-
tures. Method (c) is valid under both negative Gaussian dependence (Theorem 2) and positive Gaussian
dependence (implying PRD in Proposition 1). The remaining methods (e), (f) and (g) are valid under
negative orthant dependence (Theorem 15).

We plot the rejection probabilities of the above methods in Figure 2 for the setting of negative Gaussian
dependence and in Figure 3 for the setting of positive Gaussian dependence.

From Figure 2, observe that the product e-value has strong power when the signal is full (π0 = 0),
but its performance reduces substantially when the signal is rich (π0 = 50%) or sparse (π0 = 90%). The
U3 e-value performs quite well when the signal is full or rich, and loses power when signal is sparse, and
the U2 e-value is similar to the U3 e-value with lower power. The Simes method with ND correction
performs very well in all cases, and it is similar to the Bonferroni correction in case of sparse signal. The
arithmetic average e-value and the Simes method with `K correction are not very competitive.
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Figure 3: Global null testing (positive Gaussian dependence)
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Figure 3 illustrates that the Simes method with ND correction outperforms the Bonferroni correction
substantially in the setting of positive dependence; note that both are valid in this setting. On the other
hand, although the rejection probabilities of the U2/U3 and product e-values are quite high in Figure 3,
they are not theoretically valid in the setting of positive dependence, by noting that EiEj is not an e-value
if the e-values Ei and Ej are positively correlated. The empirical type-I error of the U2/U3 e-values do
not seem to exceed the nominal value 0.05; this is because 1/20 is practically a conservative bound when
applying to e-values.

6.2 Multiple testing procedures with FDR control

Next, we compare multiple testing procedures with FDR control. The setting is similar to the global
null testing experiment, but we focus on negative dependence only. Set the pairwise correlation to be
−1/(K − 1) for (X1, . . . , XK). Since FDR control is usually applied in large-scale testing, we consider
two specifications of (K,π0): K = 10, 000 or K = 100, 000, and π = 80%.

We let δ vary in [2, 4] and the e-values in (32) will be computed with averaging δ ∈ [a, b] = [2, 4]. Fix
the FDR upper bound as 0.1. Each simulation will be repeated 1,000 times and we report their average.
The procedures that we compare are:

(a) the BH procedure (Section 5.1);

(b) the BH procedure with `K correction (Section 5.1);

(c) the BH procedure with ND correction (first row of Table 2);

(d) the e-BH procedure (applying the BH procedure to 1/E; Wang and Ramdas [47]).

The average numbers of discoveries produced by the four methods are reported in Figure 4. As
expected from its definition, none of the other three methods (b), (c) and (d) is as powerful as the BH
procedure (a), but the BH procedure without correction does not have a theoretical FDR guarantee under
negative dependence. Both BH with `K correlation and e-BH are valid under arbitrary dependence, and
none of them dominates each other. The BH procedure with ND correction performs better than the
other two methods (b) and (d).

Note that the power comparison between the `K correction and the ND correction depends on K,
because `K explodes as K increases but the ND correction is invariant with respect to K. Improvements
to the constants derived in our paper can only exaggerate the difference between (c) and (b,d).

7 Conclusion

This paper provides, to our knowledge, the first bounds for multiple testing methods under negative
dependence, in particular the important Simes test and the BH procedure. Some auxiliary results include
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Figure 4: Multiple testing with FDR control (negative Gaussian dependence)
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error bounds for the weighted Simes test, combining negatively dependent e-values, and some implications
under negative Gaussian dependence.

Practical implications. When faced with negative dependence, a practitioner has two clear alterna-
tives: ignore the dependence and run the BH procedure as is (current practice), or incorporate corrections
for the dependence and run BH at a more conservative error level. If practitioners opt for the first choice,
then our paper’s results show that the inflation in their achieved FDR guarantee will be a simple constant
factor, independent of the number of hypotheses. This is in contrast to the BY correction, which suggests
an FDR inflation potentially growing logarithmically with the number of hypotheses.

Discussions. Seen from Hochberg and Rom [13] and Theorem 2, the type-I error of the Simes test
under negative dependence can be (slightly) inflated. An alternative way to address type-I error inflation
is to explicitly model and estimate the dependence structure and incorporate it into their decision rule.
Copula-based models have been considered in this regard; see e.g., Cui et al. [9, Section 3.5 and 3.6].
This approach is different from the setting of our paper, as we do not have access to model or estimate
the dependence structure explicitly; instead we assume some forms of negative dependence. Some papers
study asymptotic behaviour as K →∞, which is different from our setting; see e.g., Delattre and Roquain
[10] and Kluger and Owen [20].

Open problems. The most interesting open problem is the BH conjecture for negative dependence,
which states that E [FDα/RDα ] ≤ K0

K s̃K(α) for any negatively Gaussian dependent vector of p-values,
where s̃K(α) is in (26). Alternatively, it will be interesting to obtain other multiplicative corrections of
α, i.e., without involving the term − log(α) as in Theorem 19.

Recall that most of our results about Simes and the BH procedure involved the weakest form of
negative dependence that we defined (some results about e-values required stronger notions, though). A
second open problem involves the consideration of whether any of the stronger notions of negative depen-
dence (than weak negative dependence) lead to even better bounds for Simes and BH. Our Theorem 19
assumes weak negative dependence among only null p-values, and it remains unclear whether a better
bound can be obtained by assuming some form of negative dependence among all p-values.

As the number of hypotheses K increases, p-values may typically be less negatively correlated on
average (the average pairwise correlation must be bounded below by −1/(K − 1)). Therefore, one may
expect that for certain types of negative dependence, a large K would lead to a better bound than
Theorem 2. However, it is not immediately clear whether this holds true because the large dimension
also allows for more flexibility of dependence (thus, more cases to defend). Resolving this, perhaps for
specialized models, is left for future work.

Other open problems include extending our results to adaptive Storey-BH-type procedures, to the
weighted BH procedure, and to grouped, hierarchical or multilayer settings [28]. We hope to make
progress on some of these questions in the future.
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A Examples of negative dependence in testing

We give some examples in testing and multiple comparisons where negative dependence naturally appears.

A.1 Four examples

Example 22 (Tests based on split samples). Consider a fixed population x = (x1, . . . , xm) ∈ Rm, and
suppose that K groups of scientists are using samples from the population to test their hypotheses.
The p-value (or e-value) for group k ∈ K is computed by fk(xAk), where Ak is a randomly chosen
subset of {1, . . . ,m} and fk is an increasing function. Since the groups are using different part of the
population, A1, . . . , AK are disjoint sets. Using Theorem 2.11 of Joag-Dev and Proschan [18], which says
that a permutation distribution is negatively associated, we know that the p-values (or e-values) fk(xAk),
k ∈ K, as increasing functions of non-overlapping subsets of negatively associated observations (P6 of
Joag-Dev and Proschan [18]), are negatively associated.

24



Example 23 (Testing the mean of a bag of numbers). Suppose that the data, represented by the vector
X = (X1, . . . , Xn), are drawn without replacement (uniformly) from a bag of N numbers x1, . . . , xN , each

in [0, 1], whose average is µ :=
∑N
i=1 xi/N . Then, we have seen before that X is negatively associated.

Further, it is clear that E[Xi] = µ for each i. Thus (1 + λ(Xi − µ)) is an e-value for any λ ∈ [−1, 1], and
by Corollary 13 in Chi et al. [8],

∏n
i=1(1 + λ(Xi − µ)) is also an e-value. This fact is useful, for example

if we want to test µ ≤ 0.5 against µ > 0.5; in this case, for any λ ∈ [0, 1],
∏n
i=1(1 + λ(Xi − 0.5)) is an

e-value.

Example 24 (Round-robin tournaments). Imagine thatK players play a round-robin tournament (mean-
ing that each pair of players play some number of games against each other). Suppose that we wish to
test the hypotheses that player k ∈ K has no advantage or disadvantage over any other players, or the
global null hypothesis that all players are equally good. Assume that the game outcomes are independent.
Two players being equally good means that whenever they play a game, both players have equal chance
of winning or scoring a certain number. Equivalently, since all sports have player rankings or seedings,
the global null hypothesis effectively states that these rankings are irrelevant. Let (Xm

ij )i,j∈K, m=1,...,Mij

be the results of all games, where Mij is the number of games played between player i and player j, and
Xm
ij = −Xm

ji . The k-th hypothesis is that Xm
kj is symmetrically distributed around 0 for all j and m. For

k ∈ K, let the p-value or e-value be given by Yk = fk(Xm
kj : j 6= k, m = 1, . . . ,Mkj) for some increasing

function fk. Then Y1, . . . , YK are negatively associated using P6 of Joag-Dev and Proschan [18]. One
way to construct p-values and e-values for this testing problem is described in Section A.2.

Example 25 (Cyclical or ordered comparisons). Suppose that X1, . . . , XK are independent random
variables representing scores of K players in a particular order, e.g., pre-tournament ranking. We are
interested in testing whether two players adjacent in the list have equal skills. The k-th null hypothesis,
under some assumptions, Xk and Xk+1 are identically distributed, where we set XK+1 = X1 but we
may safely omit HK . For example, for k ∈ K, a p-value (or e-value) may be obtained in the form
fk(Xk −Xk+1) for some increasing function fk, since the score differences between two adjacent players
are useful statistics. Indeed, we can show a stronger result: For any component-wise increasing functions
hk : R2 → R, i ∈ K and independent random variables X1, . . . , XK , let Yk = hk(Xk,−Xk+1), k ∈ K,
where either XK+1 = X1 or XK+1 is independent of (X1, . . . , XK). Then, the random vector (Y1, . . . , YK)
is negative orthant dependent. This result is shown in Proposition 26 in Section A.2.

A.2 Technical details

Below, we first explain the construction of e-values and p-values for the round-robin tournament test in
Example 24, and then show the statement in Example 25 on negative orthant dependence for ordered
comparison.

One way to test the hypotheses in Example 24 is to first construct e-values for each game, combine
them to get e-values for each pair of players, and then combine them further to get e-values for each
individual player. Finally, to test the global null, one can combine e-values across all players using the
U-statistic of order 2 or 3.

We consider the case where only win, lose and draw are possible outcomes of each game; the case of
general scores is similar. Our e-values for a single game are constructed using the principle of testing by
betting [35]. To elaborate, imagine that for the m-th game between player i, j we have one (hypothetical)

dollar at hand. To form the e-value E
(m)
ij and we bet some fraction ε ∈ [0, 1] that i will beat j. If the game

is a draw, our wealth remains 1. If we were right, our wealth increases to 1 + ε, and if we were wrong, it

decreases to 1 − ε. E(m)
ji is constructed in the opposite fashion: so if E

(m)
ij = 1 + ε, then E

(m)
ji = 1 − ε;

this is the root cause of the resulting negative dependence. Importantly, ε (which could depend on i, j,

but we omit this for simplicity) must be declared before the game occurs. E
(m)
ij represents how much we

multiplied our wealth due to the m-th game and this is an e-value, because under the null hypothesis,
there is an equal chance of gaining or losing ε, so our expected multiplier equals one.

If a pair of players i, j have played Mij games, let the overall e-value for that pair be defined as Eij =∏Mij

m=1E
(m)
ij . In fact the wealth process across those games forms a nonnegative martingale under the
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null, since it is the product of independent unit mean terms; however we will not require this martingale
property in the current analysis. A large Eij means that player i wins many more games than they lose
to j.

Let Ei denotes the e-value for each player i ∈ K, that is, Ei =
∏K
j=1,j 6=iEij . Each Ei is an e-value

for the same reason as before: it is a product of independent unit mean terms. If Ei is large, it reflects
that player i more frequently beat other players than lost to them.

Using Properties P1 and P7 of Joag-Dev and Proschan [18], (Eij)i,j∈K is negatively associated because
its components are constructed from mutually independent random vectors (Eij , Eji) and each of these
vectors is counter-monotonic (hence negatively associated). We can further see that (E1, . . . , EK) is
also negatively associated, because each Ek is an increasing function of (Ekj)k∈K (P6 of Joag-Dev and
Proschan [18]). Thus, a final e-value for the global null test can be calculated using the U-statistic of
order 2 in Equation 28 of Chi et al. [8], E :=

∑
i<j EiEj/

(
K
2

)
, or any other U-statistics as guaranteed by

Corollary 13 of Chi et al. [8].
Next, we show a result verifying the claim of negative orthant dependence in Example 25.

Proposition 26. For any component-wise increasing functions hi : R2 → R, i ∈ K and independent
random variables X1, . . . , XK , let Yi = hi(Xi,−Xi+1), i ∈ K, where either XK+1 = X1 or XK+1 is
independent of (X1, . . . , XK). Then, the random vector (Y1, . . . , YK) is negative orthant dependent.

Proof. Note that negative upper orthant dependence is equivalent to Equation 6 of Chi et al. [8], and the
analogue holds for negative lower orthant dependence by replacing increasing functions with decreasing
ones. Hence, it suffices to show

E

[
K∏
i=1

fi(Xi,−Xi+1)

]
≤

K∏
i=1

E [fi(Xi,−Xi+1)] , (33)

for non-negative component-wise increasing functions f1, . . . , fK , and for non-negative component-wise
decreasing functions f1, . . . , fK . We only show the first case, as the second is similar.

There is nothing to show if K = 1; we assume K ≥ 2 in what follows. First, we consider the case
XK+1 = X1. Let X′ := (X ′1, . . . , X

′
K) be an independent copy of X := (X1, . . . , XK). Define a function

g : R2K → R by

g(x1, . . . , xK , x
′
1, . . . , x

′
K) =

K∏
i=1

fi(xi,−x′i+1).

We first claim that for any (x2, . . . , xK , x
′
2, . . . , x

′
K) ∈ R2K−2, it holds that

E[g(X1, x2, . . . , xK , X1, x
′
2, . . . , x

′
K)] ≤ E[g(X1, x2, . . . , xK , X

′
1, x
′
2, . . . , x

′
K)]. (34)

To see this, it suffices to observe

E[f1(X1,−x2)f2(xK ,−X1)] ≤ E[f1(X1,−x2)f2(xK ,−X ′1)]

due to the Fréchet-Hoeffding (or Hardy-Littlewood) inequality (e.g., Ruschendorf [32, Theorem 3.13])
because f1(X1,−x2) and f2(xK ,−X1) are counter-monotonic. Therefore, (34) holds. It follows that

E[g(X, X1, Z2, . . . , ZK)] ≤ E[g(X, X ′1, Z2, . . . , ZK)]. (35)

holds for all random variables Z1, . . . , ZK (here Z1 does not appear). Using the above argument on X2

we get
E[g(X, Z1, X2, Z3, . . . , ZK)] ≤ E[g(X, Z1, X

′
2, Z3, . . . , ZK)]

holds for all random variables Z1, . . . , ZK (here Z2 does not appear). Letting Z1 = X ′1 we obtain

E[g(X, X ′1, X2, Z3, . . . , ZK)] ≤ E[g(X, X ′1, X
′
2, Z3, . . . , ZK)]. (36)
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Putting (35) and (36) together we get

E[g(X, X1, X2, Z3, . . . , ZK)] ≤ E[g(X, X ′1, X
′
2, Z3, . . . , ZK)].

Repeating the above procedure K times we get

E[g(X,X)] ≤ E[g(X,X′)],

and hence

E

[
K∏
i=1

fi(Xi,−Xi+1)

]
= E[g(X,X)]

≤ E[g(X,X′)] =

K∏
i=1

E
[
fi(Xi,−X ′i+1)

]
=

K∏
i=1

E [fi(Xi,−Xi+1)] .

Therefore, (33) holds.
If we take fK = 1, then (33) becomes

E

[
K−1∏
i=1

fi(Xi,−Xi+1)

]
≤
K−1∏
i=1

E [fi(Xi,−Xi+1)]

for all independent X1, . . . , XK . Since K is arbitrary, by moving from K to K + 1 we obtain that (33)
holds for all independent X1, . . . , XK+1.

B Additional Simulation Results

Some additional simulation results on global null testing described in Section 6.2 of Chi et al. [8] with
K = 10 and K = 1, 000 are provided in Figure 5. The results are qualitatively similar to the case of
K = 100 presented in Section 6.2 of Chi et al. [8].

C A few technical results used in the proofs

Below, we report a few technical results used to prove Theorems 6 and 17 of Chi et al. [8]. Define the
harmonic average function M−1,K : (p1, . . . , pK) 7→ ((p−1

1 + · · ·+ p−1
K )/K)−1.

Theorem 27 (Theorem 2 (ii) of Chen et al. [7]). Suppose that (P1, . . . , PK) ∈ UK , and each pair (Pi, Pj)
follows a bivariate Gaussian copula. Then P (M−1,K(P1, . . . , PK) < α) /α→ 1, as α ↓ 0.

Theorem 28 (Theorem 3 of Chen et al. [7]). For (p1, . . . , pK) ∈ [0, 1]K , M−1,K(p1, . . . , pK) ≤ SK(p1, . . . , pK),
and the inequality holds as an equality if p1 = · · · = pK .

Theorem 29 (Theorem 1 of Su [41]). For arbitrary p-values, the BH procedure Dα at level α satisfies

FDRDα ≤ α+ α

∫ 1

α

FDR0(x)

x2
dx,

where FDR0(x) is the FDR of the BH procedure applied to only the null p-values at level x.
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Figure 5: Global null testing (negative Gaussian dependence). All six subplots show power against δ.
The left endpoint of δ = 0 actually represents the achieved type I error, which appears to be controlled
at the nominal level α = 0.05 for all methods. The key observations are in the text.
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