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Abstract

We address the problem of testing conditional mean and conditional
variance for non-stationary data. We build e-values and p-values for four
types of non-parametric composite hypotheses with specified mean and
variance as well as other conditions on the shape of the data-generating
distribution. These shape conditions include symmetry, unimodality, and
their combination. Using the obtained e-values and p-values, we construct
tests via e-processes, also known as testing by betting, as well as some
tests based on combining p-values for comparison. Although we mainly
focus on one-sided tests, the two-sided test for the mean is also studied.
Simulation and empirical studies are conducted under a few settings, and
they illustrate features of the methods based on e-processes.

Keywords: P-values, e-values, e-processes, symmetry, unimodality

1 Introduction

Testing mean and variance in various settings is a classic problem in statis-
tics. In parametric inference concerning testing the mean, well-known tests like
Student’s t-test and z-test, as well as tests related to variance such as the chi-
squared test and the F-test, are commonly employed; see e.g., Lehmann et al.
[20]. Parametric tests always come with assumptions about the forms of the
population distribution from which samples are derived. Deviating from these
assumptions can lead to significantly flawed results. For situations where these
assumptions might be compromised, non-parametric methods provide a great
alternative. Certainly, non-parametric methods may also make strong assump-
tions on the underlying population, such as finite or bounded moments, but not
on the specific parametric forms. Comprehensive and well-established methods
of non-parametric techniques for testing means and variances can be found in
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e.g., Conover [7] and Hollander et al. [14]. Different from the classic settings,
we will consider the problem of testing composite hypotheses in which data are
not stationary.

Suppose that a tester has sequentially arriving, possibly dependent, data
points X1, X2, . . . , each from an unknown distribution, possibly different. The
tester is interested in testing whether

E[Xi|Fi−1] ≤ µi and var(Xi|Fi−1) ≤ σ2
i for each i, (1)

where Fi−1 is the σ-algebra generated by X1, . . . , Xi−1, and µi and σi are Fi−1-
measurable. All conditional expectations are in the almost sure sense. If inde-
pendence is further assumed, then this problem reduces to the classic problem of
testing mean and variance. Testing conditional mean and conditional variance
is common in some contexts such as forecasting (e.g., Henzi and Ziegel [12]) and
financial risk assessment (e.g., Fissler and Ziegel [8]).

Problem (1) can be interpreted in two different ways, omitting “conditional”
here:

(A) testing both the mean and the variance;

(B) testing the mean under the knowledge of an upper bound on the variance.

The interpretation (A) is relevant when the tester is interested in whether a
time-series has switched away from a given regime with specified mean and
variance bounds. We mainly use interpretation (A), while keeping in mind that
interpretation (B) is useful when comparing with the literature. Of course, one
could also interpret (1) as testing the variance under the knowledge of an upper
bound on the mean.

Clearly, problem (1) is a composition of many complicated, non-parametric,
composite hypotheses on each observation. The key challenge in this setting
is that the data points are not iid, and hence we cannot make inference of the
distributions themselves.

This problem can be addressed with the following general methodology,
called e-testing or testing by betting, a successful example being Waudby-Smith
and Ramdas [37]. We first consider a simpler problem: constructing an e-value
from one random variable from each data point with the corresponding hypoth-
esis on its mean and variance, which corresponds to n = 1. For a general back-
ground on e-values in hypothesis testing; see Vovk and Wang [30], Grünwald et
al. [10], and the review by Ramdas et al. [22]. After obtaining these e-values, we
combine them, usually by forming an e-process, to construct a test for the over-
all hypothesis. Alternatively, we can construct p-values instead of e-values, but
the power of such a strategy is usually quite weak, as seen from our experiments.

Section 2 formally describes the hypotheses and defines e-variables, e-processes,
and p-variables. As mentioned above, we will first address the case of one data
point, i.e., n = 1, presented in Section 3. We consider four types of compos-
ite hypotheses on mean, variance and the shape of the distribution: symmetry,
unimodality and their combination. Our main results are ways that are opti-
mal, in a natural sense, to constructions of p-values and e-values in this setting.
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Although our main methodology is based on e-processes, we present results also
for p-values, which may be useful in multiple testing, not treated in this paper;
for instance, p-values are the inputs of the standard procedure of Benjamini and
Hochberg [2]. Considering a non-parametric composite hypothesis with a given
mean and variance as the baseline case, assuming symmetry approximately im-
proves the baseline p-variable by a multiplicative factor of 1/2, unimodality by
a factor of 4/9, and both by a factor of 2/9. Similarly, the corresponding base-
line e-variable is improved by multiplicative factors of 2, 1, and 2, respectively,
in these scenarios; recall that smaller p-values are more useful, whereas larger
e-values are more useful.

We propose in Section 4 several methods to test using multiple data points,
thus addressing the main task of the tester. The main proposals are e-process
based tests, which follow the idea of testing by betting in Shafer [26], Wasserman
et al. [36] and Waudby-Smith and Ramdas [37]. Although we mainly focus on
one-sided hypotheses, our methodology can be easily adapted to test the two-
sided hypothesis on the mean, that is,

E[Xi|Fi−1] ∈ [µLi , µ
U
i ] and var(Xi|Fi−1) ≤ σ2

i for each i,

where [µLi , µ
U
i ] is an interval or a singleton for each i; this is discussed in Section

4.3.
The closest methodological work related to this paper is Waudby-Smith and

Ramdas [37], where the authors test in a non-parametric setting the condi-
tional mean of sequential data, which are assumed to be bounded within a
pre-specified range, thus a generally smaller class of distributions. Our prob-
lem and methodology are different from Waudby-Smith and Ramdas [37] in the
sense that we assume a bounded variance instead of a bounded range. Since a
bounded range implies bounded variance, the assumption needed to apply our
methodology is weaker than in the setting of Waudby-Smith and Ramdas [37],
following interpretation (B) of the main testing problem. Moreover, we are able
to utilize the additional information on the distributional shape to obtain bet-
ter e-values than without such information. A great advantage of the tests of
Waudby-Smith and Ramdas [37] is that their power adapts to the unknown true
variance of the distribution if data come from an iid population. Our method
based on the growth rate of empirical e-values has a similar feature, which uses
a betting strategy similar to that of Waudby-Smith and Ramdas [37]. Another
closely related methodology is Wang et al. [33], where, other statistical func-
tions are tested other than the mean. Once e-variables are constructed, we
will build e-processes in a similar way to Wang et al. [33]. The methods of
Howard et al. [15, 16] and Wang and Ramdas [35] based on exponential test
supermartingales—exponential processes that form supermartingales with ini-
tial value one—which are e-processes, can also be applied to test (1). These
methods differ from ours as our e-process is obtained by combining individual
e-variables.

Section 5 provides simulation studies for the proposed methods and compare
them with the method of Waudby-Smith and Ramdas [37] when the model
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has both bounded support and bounded variance and with methods based on
exponential test supermartingale of Howard et al. [16] and Wang and Ramdas
[35]. Section 6 contains empirical studies using financial asset return data during
the 2007–2008 financial crisis, further demonstrating the effectiveness of the e-
process based methods. Section 7 concludes the paper. All proofs in the paper
are provided in the Supplementary Material.

2 General setting

2.1 Hypotheses to test

We first describe our main testing problem. Let n be a positive integer or ∞,
and denote by [n] = {1, . . . , n}. Throughout, fix a sample space. Suppose
that data points (Xi)i∈[n] arrive sequentially, each possibly from a different dis-
tribution, and not necessarily independent. A hypothesis is a collection H of
probability measures that govern (Xi)i∈[n]. Denote by Fi the σ-field generated
by X1, . . . , Xi for i ∈ [n] with F0 being the trivial σ-field. The main hypothe-
ses of interest are variations (by adding shape information) of the following
hypothesis

H =
{
Q : EQ[Xi|Fi−1] ≤ µi and varQ(Xi|Fi−1) ≤ σ2

i for i ∈ [n]
}
, (2)

where µi and σi are Fi−1-measurable for each i ∈ [n]; that is, they can be
data-dependent on past observations. A simple case is

H =
{
Q : EQ[Xi|Fi−1] ≤ µ and varQ(Xi|Fi−1) ≤ σ2 for i ∈ [n]

}
, (3)

where µ and σ are two constants; that is, we would like to test whether data
exhibit conditional mean and conditional variance in (−∞, µ]×[0, σ2]. Although
(3) looks simpler, it is indeed equivalent to (2) by noting that µi and σi are Fi−1-
measurable, they can be absorbed into Xi by considering (Xi − µi)/σi instead
of Xi. Therefore, we will focus on the formulation (3) for the rest of the paper.
If data are independent, but not necessarily identically distributed, then the
problem is to test the unconditional mean and variance. We sometimes omit Q
in EQ and varQ when it is clear.

We will further consider hypotheses with additional shape information, by
assuming that some, or all of the distributions of X1, . . . , Xn are unimodal,
symmetric, or both. Below, all terms like “increasing” and “decreasing” are in
the non-strict sense. A distribution on R is unimodal if there exists x ∈ R such
that the distribution has an increasing density on (−∞, x) and a decreasing
density on (x,∞); it may have a point-mass at x. A distribution on R with
mean µ is symmetric if for all x ∈ R it assigns equal probabilities to (−∞, µ−x]
and [µ+ x,∞). If a distribution with mean µ is both unimodal and symmetric,
then its mode must be either µ or an interval centered at µ.

Remark 1. The main question in Waudby-Smith and Ramdas [37] is to test
the conditional mean m with data taking values in [0, 1]. We note that any
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random variable with mean at most m and range [0, 1] has variance at most
1/4 (if m ≥ 1/2) or m(1 − m) (if m < 1/2), attained by a Bernoulli random
variable. Therefore, our hypothesis with µ = m and σ2 = 1/4 or σ2 = m(1−m)
has less restrictive assumptions than their setting (except they formulated two-
sided hypotheses; see Remark 2 below) and in particular, our setting can handle
unbounded data.

Remark 2. Our hypotheses are formulated as one-sided on both µ and σ2.
Certainly, all validity results remain true for the two-sided hypotheses. Testing
EQ[Xi] ≥ µ is symmetric to testing EQ[Xi] ≤ µ, but such symmetry does
not hold for testing the variance. Building e-processes to test the two-sided
hypothesis on the mean is discussed in Section 4.3.

2.2 P-variables and e-variables

We formally define p-variables and e-variables, following Vovk and Wang [30]. A
p-variable P for a hypothesisH is a random variable that satisfiesQ(P ≤ α) ≤ α
for all α ∈ (0, 1) and all Q ∈ H. In other words, a p-variable is stochastically
larger than U[0, 1], often truncated at 1. An e-variable E for a hypothesis H is
a [0,∞]-valued random variable satisfying EQ[E] ≤ 1 for all Q ∈ H. E-variables
are often obtained from stopping an e-process (Et)t≥0, which is a non-negative
stochastic process adapted to a pre-specified filtration, (Fi)i∈[n] in our problem,
such that EQ[Eτ ] ≤ 1 for any stopping time τ and any Q ∈ H.

Some p-variables and e-variables are useless, like P = 1 or E = 1. A p-
variable P for H is precise if supQ∈H Q(P ≤ α) = α for each α ∈ (0, 1), and an

e-variable E for H is precise if supQ∈H EQ[E] = 1. In other words, a p-variable
or an e-variable being precise means that it is not wasteful in a natural sense.
For instance, if supQ∈H EQ[E] < 1, then we can multiply E by a constant larger
than 1. Some imprecise e-variables may also be useful, such as those built on the
Hoeffding inequality; see Hoeffding [13], Howard et al. [16] and Waudby-Smith
and Ramdas [37].

A p-variable P is semi-precise for H if supQ∈H Q(P ≤ α) = α for each
α ∈ (0, 1/2]. Semi-precise p-variables require the sharp probability bound
supQ∈H Q(P ≤ α) = α only for the case α ≤ 1/2 which is relevant for test-
ing purposes. We will see that for some hypotheses, precise p-variables do not
exist unless we rely on external randomization, but semi-precise ones do exist.

Realizations of p-variables and e-variables are referred to as p-values and
e-values. As is customary in the literature, we sometimes, but never in mathe-
matical statements, use the two terms “e-value” and “e-variable” interchange-
ably.
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3 Best p- and e-variables for one data point

3.1 Setting

We begin by considering the simple setting where one data point X is available,
from which we build a p-variable or e-variable for the hypothesis. Although
it may be unconventional to test based on one observation, there are several
situations where this construction becomes useful.

1. Testing by betting: To construct an e-process, one needs to sequentially
obtain one e-value from each observation, or a batch of observations. This
is the main setting in the current paper.

2. Testing multiple hypotheses: One observation is obtained for each hypoth-
esis, and p-values or e-values for each of them are computed and fed into
a multiple testing procedure such as that of Benjamini and Hochberg [2];
this setting is particularly relevant for the procedure of Wang and Ram-
das [34] based on e-values, which yields false discovery rate control under
arbitrary dependence. Even if for some hypotheses there is only one data
point, a p-value or e-value, even moderate, say e = 0.8 or e = 1.2, from
this hypothesis may be useful for the overall testing problem; see Igna-
tiadis et al. [17] where e-values are used as weights, so e = 0.8 or e = 1.2
matters.

3. Testing a global null: One may first obtain a p-value or e-value for each
experiment and then combine them to test the global null, as in meta-
analysis; see Vovk and Wang [29, 30] and the references therein.

E-values are relevant for all of the three contexts, and p-values are relevant for
the second and the third contexts.

We will focus on p-variables, which are decreasing functions of X, and e-
variables, which are increasing functions of X. Thus, a larger value of X indi-
cates stronger evidence against the null; this is intuitive because we are testing
the mean less or equal to µ in (3). This assumption on p-variables and e-variables
will be made throughout the rest of the paper.

Remark 3. In the contexts of multiple testing and sequential e-values, the de-
pendence among several e-values or p-values obtained is preserved from the de-
pendence among the data points, if the monotonicity assumption above holds.
This will be helpful when applying statistical methods based on dependence as-
sumptions; see Benjamini and Yekutieli [3] for the BH (Benjamini and Hochberg
[2]) procedure with positive dependence and Chi et al. [6] for BH with nega-
tive dependence. Both concepts of dependence are preserved under monotone
transforms.

3.2 Two technical lemmas

The following lemma establishes that the infimum of p-variables based on the
same data point X is still a p-variable. This result relies on our assumption
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that p-variables are decreasing functions of X.

Lemma 1. For a given observation X and hypothesis H, the infimum of p-
variables, which are assumed to be decreasing functions of X, is a p-variable.
As a consequence, there exists a smallest p-variable.

Although the smallest p-variable for H exists, it may not be precise. Indeed,
in Theorems 2 and 4 below we will see that there may not exist any precise
p-variable for some hypotheses.

The following lemma allows us to convert conditions on distribution func-
tions into conditions on the corresponding quantile functions. For a probability
measure Q, denote by

TQY (α) = inf{x ∈ R : Q(Y ≤ x) ≥ α} for α ∈ (0, 1);

that is, TQY is the left-quantile function of Y under Q.

Lemma 2. For a random variable P and a hypothesis H,

(i) P is a p-variable if and only if infQ∈H T
Q
P (α) ≥ α for all α ∈ (0, 1);

(ii) P is a precise p-variable if and only if infQ∈H T
Q
P (α) = α for all α ∈ (0, 1);

(iii) P is a semi-precise p-variable if and only if infQ∈H T
Q
P (α) = α for all

α ∈ (0, 1/2) and infQ∈H T
Q
P (α) ≥ α for α ∈ [1/2, 1).

The proof of Lemma 2 is essentially identical to that of Lemma 1 of Vovk
and Wang [29], which gives the equivalence between probability statements and
quantile statements for merging functions of p-values. Our construction for pre-
cise and semi-precise p-variables will be based on computing α 7→ supQ∈H T

Q
X (1−

α) and its inverse function.

3.3 Main results

Recall that we have only one observation, denoted by X. We consider the
following four classes of non-parametric composite hypotheses, where µ ∈ R
and σ > 0.

H(µ, σ) =
{
Q : EQ[X] ≤ µ and varQ(X) ≤ σ2

}
;

HS(µ, σ) = {Q ∈ H(µ, σ) : X is symmetrically distributed};
HU(µ, σ) = {Q ∈ H(µ, σ) : X is unimodally distributed};
HUS(µ, σ) = HU(µ, σ) ∩HS(µ, σ).

For our main results on the “best” p-variables and e-variables, it will be
clear from our proofs that the condition varQ(X) ≤ σ2 in each hypothesis can
be replaced by varQ(X) = σ2, and the condition EQ[X] ≤ µ in each hypothesis
can be replaced by EQ[X] = µ. All results remain true with any combinations of
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the above alternatives. Possible improvement for the two-sided test is discussed
in Section 4.3.

The above four sets of distributions are studied in a very different context
by Li et al. [21] to compute worst-case risk measures under model uncertainty in
finance. Some of our techniques for constructing p-variables use results from Li
et al. [21] and Bernard et al. [4] for finding bounds on quantile, which is called
the Value-at-Risk in finance.

In what follows, for x ∈ R, we write x+ = max{x, 0}, x− = max{−x, 0},
x2+ = (x+)

2, and x2− = (x−)
2. We first consider the simplest case of testing

H(µ, σ).

Theorem 1. A precise p-variable for H(µ, σ) is P = (1+(X−µ)2+/σ2)−1, and
a precise e-variable for H(µ, σ) is E = (X − µ)2+/σ

2.

Theorem 1 can be seen as consequence of Cantelli’s inequality. It may be
interesting to compare P and 1/E obtained from Theorem 1. Note that any
e-variable can be converted into a p-variable via the so-called calibrator e 7→
min{1/e, 1}; see e.g., Vovk and Wang [30]; this is an immediate consequence
of Markov’s inequality. As 1/E is a p-variable for an e-variable E, we have
P ≤ 1/E. In Theorem 1, we obtain 1/P = 1 + E > E, as expected.

In the subsequent analysis, we will compare p-variables and e-variables for
other hypotheses with those in Theorem 1. For a concise presentation, we will
always write

P0 = (1 + (X − µ)2+/σ
2)−1 and E0 = (X − µ)2+/σ

2, (4)

which are the p-variable and e-variable in Theorem 1, and note the connection
P0 = (1 + E0)

−1.
We next consider the hypothesis HS(µ, σ) of symmetric distributions.

Theorem 2. A semi-precise p-variable for HS(µ, σ) is P = min{(2E0)
−1, P0},

and a precise e-variable for HS(µ, σ) is E = 2E0. Precise p-variables do not
exist for HS(µ, σ).

From Theorem 2, the e-variable for HS(µ, σ
2), which we denote by ES is

improved by a factor of two from E0 for H(µ, σ2) due to the additional assump-
tion of symmetry. On the other hand, the p-variable in Theorem 2, denoted by
PS, is improved from P0 by taking an extra minimum with 1/ES. In the most
relevant case that P0 ≤ 1/2, or equivalently, E0 ≥ 1, indicating some evidence
against the null, we have PS = 1/ES.

Next, we will see that the hypothesis HU(µ, σ) of unimodal distributions
admits the same precise e-variable but a quite improved p-variable, compared
to P0 and E0. This class includes, for instance, the commonly used gamma,
beta, and log-normal distributions.

Theorem 3. A precise p-variable for HU(µ, σ) is

P = max

{
4

9
P0,

4P0 − 1

3

}
,

and a precise e-variable for HU(µ, σ) is E = E0.
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We denote the p-variable in Theorem 3 by PU and the e-variable by EU. If P0

is smaller than 3/8, corresponding to (X − µ)/σ > (5/3)1/2, then PU = 4P0/9;
that is, the unimodality assumption reduces the p-variable by a multiplicative
factor of 4/9 compared to H(µ, σ). On the other hand, the e-variable EU does
not get improved at all compared to E0.

The proof of Theorem 3, in particular on the factor of 4/9 for the p-variable,
is based on Theorem 1 of Bernard et al. [4], which gives

sup
Q∈HU(0,1)

TQX (1− α) = max

{(
4− 9α

9α

)1/2

,

(
3− 3α

1 + 3α

)1/2
}

for α ∈ (0, 1),

and applying Lemma 2 by inverting of the above curve as a function of α.
Finally, we consider the hypothesis HUS(µ, σ) of unimodal-symmetric distri-

butions. This class includes, for instance, the popular normal, t-, and Laplace
distributions. To construct a semi-precise p-variable for this hypothesis, we will
use the following lemma of quantile bounds within HUS(µ, σ), which may be
of independent interest. In what follows, 1 is the indicator function; that is,
1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

Lemma 3. For α ∈ (0, 1), it holds that

sup
Q∈HUS(0,1)

TQX (1− α) =

(
2

9α

)1/2

1(0,1/6](α) + 31/2(1− 2α)1(1/6,1/2](α).

The general formula for HUS(µ, σ) can be easily obtained from Lemma 3 via

sup
Q∈HUS(µ,σ)

TQX (1− α) = µ+ σ sup
Q∈HUS(0,1)

TQX (1− α).

Theorem 4. A semi-precise p-variable for HUS(µ, σ) is

P =
2

9E0
1[4/3,∞)(E0) +

3− (3E0)
1/2

6
1(0,4/3)(E0) + 1{0}(E0).

and a precise e-variable for HUS(µ, σ) is E = 2E0. Precise p-variables do not
exist for HUS(µ, σ).

The proof of Theorem 4 relies on Lemma 3, which is a new technical result.
The value 2/9 appeared earlier in Table 1 of Li et al. [21] for α ≤ 1/6, a result
weaker than Lemma 3.

We denote the p-variable obtained from Theorem 4 by PUS and the e-variable
by EUS. One may check that PUS is smaller than both PU and PS unless X ≤ µ,
in which case they are equal to 1. For (X − µ)/σ ≥ (5/3)1/2, or equivalently,
P0 ≤ 3/8, we have the following simple relation:

PS =
P0

2(1− P0)
, PU =

4

9
P0, and PUS =

2P0

9(1− P0)
,
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Table 1: Formulas for p-variables and e-variables

Hypothesis p-variable e-variable

H(0, 1) (1 +X2
+)

−1 X2
+

HS(0, 1)
1
2X

−2 if X ≥ 1
2X2

+
(1 +X2

+)
−1 if X < 1

HU(0, 1)
4
9 (1 +X2)−1 if X ≥ (5/3)1/2

X2
+4

3 (1 +X2
+)

−1 − 1
3 if X < (5/3)1/2

HUS(0, 1)

2
9X

−2 if X ≥ (4/3)1/2

2X2
+

1
2 − 31/2

6 X if 0 < X < (4/3)1/2

1 if X ≤ 0

implying the order P0 > PS > PU > PUS unless P0 = 0. For instance, if we
observe (X − µ)/σ = 3, then the p-values are

P0 =
1

10
= 0.1, PS =

1

18
≈ 0.056, PU =

2

45
≈ 0.044, and PUS =

2

81
≈ 0.025.

On the other hand, the corresponding e-values are

E0 = 9, ES = 18, EU = 9, and EUS = 18.

For a comparison, if we are testing the simple parametric hypothesis N(0, 1)
against N(3, 1) with one observation X = 3, then the corresponding Neyman-
Pearson p-value is 0.00135 and the corresponding likelihood ratio e-value is
90.02. This is not surprising as generally p-values and e-values built for com-
posite hypotheses are more conservative than those for simple hypotheses based
on the same data.

We summarize our construction formulas for p-variables and e-variables in
Table 1 by breaking them down using ranges of X. To obtain the formulas for a
general (µ, σ) other than (0, 1), it suffices to replace X in Table 1 by (X−µ)/σ.

We conclude the section by making a few technical remarks on the obtained
results.

First, all results holds true if the conditions EQ[X] ≤ µ and varQ(X) ≤ σ2 in
each hypothesis is replaced by EQ[X] = µ and varQ(X) = σ2, respectively. Such
modifications narrow the hypotheses and hence all validity statements hold. The
precision statements can be checked with similar arguments to our proofs, and
we omit them. Therefore, knowing varQ(X) = σ2 on top of varQ(X) ≤ σ2, or
EQ[X] = µ on top of EQ[X] ≤ µ, does not lead to more powerful one-sided
p-variables or e-variables.

Second, admissibility of the proposed p-variables and e-variables needs fu-
ture research. For e-variables, admissibility is not difficult to establish, but the
picture is different for p-variables. By Lemma 1, there always exists a smallest
p-variable. It remains unclear whether the p-variables we obtained in Theorems
1-4 are the smallest ones for the four hypotheses, respectively.
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Third, for any hypothesisH, we can define a function g : α 7→ supQ∈H T
Q
X (1−

α). If g is strictly decreasing on (0, 1), as in the case of H(µ, σ) and HU(µ, σ),
then choosing f = g−1 yields a precise p-variable f(X). For H being HS(µ, σ)
and HUS(µ, σ), g is flat on [1/2, 1), making it impossible to find a decreasing f

such that infQ∈H T
Q
f(X)(α) = α for all α ∈ (0, 1).

4 Testing the null hypotheses

4.1 Constructing e-processes

We next build tests based on e-values and p-values in Section 3. Section 4.1
describes the main methodology based on e-processes for the one-sided testing
problem; Section 4.2 describes a few other methods using our results in Section
3; and Section 4.3 discusses the two-sided testing problem on the mean with
given variance.

Let µ ∈ R and σ > 0. We consider the following hypotheses by keeping the
same notation as in Section 3:

H(µ, σ) =
{
Q : EQ[Xi|Fi−1] ≤ µ and varQ(Xi|Fi−1) ≤ σ2 for i ∈ [n]

}
;

HS(µ, σ) = {Q ∈ H(µ, σ) : Xi|Fi−1 is symmetrically distributed for i ∈ [n]};
HU(µ, σ) = {Q ∈ H(µ, σ) : Xi|Fi−1 is unimodally distributed for i ∈ [n]};
HUS(µ, σ) = HU(µ, σ) ∩HS(µ, σ).

Recall that it is without loss of generality to consider µ and σ2 as constants.
We can also test the hypotheses where some data are symmetric or unimodal
and some are not, because we will build e-values from each of them separately.
For simplicity, we only list the above four representative cases. Using a similar
formulation, the hypothesis in Waudby-Smith and Ramdas [37] is

HWSR(µ) = {Q ∈ H(µ, 1) : Xi|Fi−1 is supported in [0, 1] almost surely for i ∈ [n]}.

In the above formulation, the choice of σ = 1 is simply to remove the variance
constraint; see Remark 1.

There are several simple ways to use results in Section 3 to construct an
e-variable or p-variable for the above hypotheses; some of these methods are
more useful than the others. In general, we can compute an e-variable Ei or
p-variable Pi based on Xi for i ∈ [n] using Theorems 1-4, and then combine
them.

Our main proposal is to use e-processes. An e-process M = (Mt)t∈[n] can
be constructed using

Mt =

t∏
i=1

(1− λi + λiEi), (5)

where λi is Fi−1-measurable and takes values in [0, 1). This idea is the main
methodology behind game-theoretic statistics; see Shafer [26], Shafer and Vovk
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[27], and Waudby-Smith and Ramdas [37, Proposition 3]. It has been used by
Waudby-Smith and Ramdas [37] for testing the mean and Wang et al. [33] for
testing risk measures. To find good choices of λ = (λi)i∈[n] is a non-trivial task.
We propose to specify λ in two different ways.

(a) E-mixture method: We first take several λi = λ ∈ [0, 1), which is a
constant for each i ∈ [n], and then average the resulting e-processes from
(5) over these choices to get an e-process. An uninformative choice of the
values of λ may be some points in [0, 0.2]. We avoid choosing λ close to
1 because our e-value may take the value 0 with substantial probability,
leading a small value of EQ[log(1 − λ + λE)]. This quantity measures the
growth rate of an e-process; see Grünwald et al. [10] and Waudby-Smith
and Ramdas [37]. In our simulation and empirical studies, we average over
λ = 0.01× {1, . . . , 20}.

(b) E-GREE method: In the GREE (growth-rate for empirical e-statistics)
method of Wang et al. [33] for λi, i ∈ [n] in (5), λi is determined by solving
the following optimization problem:

λi =

argmax
λ∈[0,1)

1

i− 1

i−1∑
j=1

log(1− λ+ λEj)

 ∧ 1

2
. (6)

To simplify the maximization in (6), a fast and approximate solution can
be obtained using Taylor expansion as in Waudby-Smith and Ramdas [37].
This leads to the following simple formula

λi =

( ∑i−1
j=1(Ej − 1)∑i−1
j=1(Ej − 1)2

)
+

∧ 1

2
. (7)

We will use (7) for all e-GREE related calculations for the following results.
Our unreported simulation suggests that using (6) and using (7) yield very
similar results.

When the hypothesis to test is HWRS(µ), the e-GREE method reduces to the
method of Waudby-Smith and Ramdas [37]; see Section 5.2. An optimization
procedure related to (6) is studied by Kumon et al. [19].

For either the e-GREE or the e-mixture method, we fix α ∈ (0, 1) and
reject the null hypothesis if the e-process M goes beyond 1/α, that is, when
Mt ≥ 1/α for the first time. The Type-I error control is guaranteed by Ville’s
inequality (Ville [28]) as P(supt∈[n]Mt ≥ 1/α) ≤ α, because any e-process
is almost surely upper bounded by nonnegative supermartingales with initial
value one; see Ramdas et al. [23].

The result below clarifies consistency of the e-GREE method in the most
idealistic setting.

Proposition 1. Suppose that data are iid and generated from an alternative
probability Q. The e-GREE method has asymptotic power approaching 1 as

12



n → ∞, that is, Q(supt∈[n]Mt ≥ 1/α) → 1 for any α ∈ (0, 1) if and only if

EQ[E1] > 1.

Although Proposition 1 requires an iid assumption, this assumption is not
needed for consistency in practical situations; a simulation example is in Section
5.1.

4.2 Some other methods

Below we list some other methods, where we assume that n is finite. They
generally do not work well as shown by the simulation studies, but nevertheless
we list them as they follow from our results in Section 3, and they are presented
only for a comparison.

(c) P-Fisher method: Construct a p-variable P using the Fisher combination

P = 1− χ2n(−2(logP1 + · · ·+ logPn)),

where χ2n is the cdf of a chi-square distribution with 2n degrees of freedom.

(d) P-Simes method: Construct a p-variable P using the Simes combination;
see Simes [25],

P = min
i∈[n]

n

i
P(i),

where P(i) is i-th order statistic of P1, . . . , Pn from the smallest to the
largest.

Although in general p-Fisher and p-Simes require independence among p-variables,
they are valid in our setting since our p-variables are conditionally valid, and
they can be combined as if they are iid; a proof of this is presented in the
Supplementary Material.

Then next two methods use all data directly, and requires independence
amongX1, . . . , Xn. A most natural statistic is the sample mean T =

∑n
i=1Xi/n.

Under H(µ, σ), T has at most mean µ and variance at most σ2/n. Moreover,
symmetry of T follows from symmetry of X1, . . . , Xn. Nevertheless, T is not
necessarily unimodal even if X1, . . . , Xn are unimodal, and hence unimodality
of T cannot be used. The following e-variables and p-variables are constructed
by directly applying Theorems 1-4.

(e) E-batch method: An e-variable for H(µ, σ) or HU(µ, σ) is

E0 = n(T − µ)2+/σ
2,

an e-variable for HS(µ, σ) or HUS(µ, σ) is

ES = 2n(T − µ)2+/σ
2.

13



(f) P-batch method: A p-variable for H(µ, σ) or HU(µ, σ) is

P0 = (1 + E0)
−1,

a p-variable for HS(µ, σ) or HUS(µ, σ) is

PS = min{(2E0)
−1, P0}.

All methods described in this section have Type-I error control under the null
hypothesis and with finite sample (with methods (e) and (f) additionally requir-
ing independence) without requiring that the data are identically distributed.

4.3 Two-sided e-values testing the mean given variance

We briefly discuss the two-sided mean testing problem, where the main hypoth-
esis H(µL, µU , σ) to test is{

Q : EQ[Xi|Fi−1] ∈ [µL, µU ] and varQ(Xi|Fi−1) ≤ σ2 for i ∈ [n]
}
,

where µL ≤ µU are constants. The case µL = µU corresponds to testing whether
the mean is equal to a precise value.

Our methodology can be easily adapted to test this hypothesis. First, we
note that the e-variable E given by

E =
(X − µU )2+ + (X − µL)2−

σ2
, (8)

is a precise e-variable for H(µL, µU , σ) formulated on a single observation X.
To see this, it suffices to note that for Q ∈ H(µL, µU , σ),

EQ[E] = EQ
[
(X − µU )2+ + (X − µL)2−

σ2

]
≤ EQ

[
(X − EQ[X])2+ + (X − EQ[X])2−

σ2

]
=

varQ(X)

σ2
≤ 1.

The statement on its precision can be verified similarly to Theorem 1.
If µL = µU = µ, then the e-variable in (8) is

E = (X − µ)2/σ2.

This e-variable satisfies the property that EQ[E] > 1 if EQ[X] ̸= µ and varQ(X) =
σ2; this condition is useful to establish consistency in Proposition 1.

Following the same procedure in Section 4.1 using (8), we obtain e-processes
for the two-sided problem H(µL, µU , σ). Due to a smaller null hypothesis, this
e-process is generally more powerful than the one in Section 4.1 testing the
one-sided mean.

There are special, adversarial scenarios where such two-sided tests may not
be powerful. For instance, if data are independent with E[Xi] < µ and E[Xj ] > µ
appearing in an alternating sequence; this forms a dataset that looks like iid data
with mean µ, thus very difficult to detect. The same challenge exists for other
methods based on e-processes, such as that of Waudby-Smith and Ramdas [37].
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Remark 4. Under the additional information of symmetry, the e-variable in
(8) can be used, but it cannot be multiplied by two as in Theorem 2. In
this case, an alternative way to take advantage of symmetry is to build two
e-processes in Section 4.1: one to test E[Xi|Fi−1] ≤ µU and another one to test
E[−Xi|Fi−1] ≤ −µL. Taking the average of these two e-processes yields a valid
e-process for the null hypothesis. As long as one of the two e-processes has good
power for the true data generating procedure, the average e-process has good
power.

4.4 Power of the e-values with fixed mean and growing
variance

In this section, we analyze the power of the e-variables. For a given e-variable
E, its e-power, using the terminology of Vovk and Wang [32], for an alternative
probability Q is defined as EQ[logE]; see Shafer [26] and Grünwald et al. [10]
for using this quantity as a notion of power. Certainly, the power depends on
the specific alternative Q. We are particularly interested in how the e-power
changes as the variance in the alternative hypothesis grows.

For this purpose, we consider a simplistic, yet representative setting, where
a class of simple alternatives (Qσ)σ>1 is indexed by σ > 1, such that our data
point X under Qσ is distributed as σZ, where Z has a fixed distribution with
mean 0 and variance 1 satisfying the null hypothesis, which can be one ofH(0, 1),
HS(0, 1), HU(0, 1) and HUS(0, 1). Note that in this setting, the mean of the data
is always 0, and only its variance grows under the alternative. We denote by
Q0 a null probability. Below, we will show that the e-power of each e-variable
grows at a rate of log σ as the alternative variance σ2 grows, regardless of the
distribution of Z.

Let E be the e-variable computed based on X as in Section 3. Due to the
construction of the e-process M in (5), the e-power of relevance is defined as

ΠQσ = sup
λ∈[0,1]

EQσ [log(1− λ+ λE)] = sup
λ∈[0,1]

EQ0 [log(1− λ+ λσ2E)],

that is, the best-achievable e-power of in each multiplicative term in the e-
process M .

Proposition 2. Suppose p := Q0(E ≥ 1) > 0. For σ > 1,

(2p log σ − log 2)+ ≤ ΠQσ ≤ 2 log σ. (9)

Moreover, 0 ≤ ΠQσ −ΠQδ ≤ 2(log σ − log δ) for σ > δ > 1.

Proposition 2 suggests that the growth rate of the e-process M is roughly
a constant times log σ when the alternative variance σ2 is larger than 1. An
additional negative term − log 2 in (9) is not surprising, because our conditions
do not guarantee ΠQσ > 0 for σ very close to 1. Below, we give an example to
illustrate the sharpness of bounds in (9).
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Example 1. Suppose that Q0(E = 0) = Q0(E = 2) = 1/2. We can compute

ΠQσ = sup
λ∈[0,1]

1

2

(
log(1− λ) + log(1 + λ(2σ2 − 1))

)
=

1

2
log

σ4

2σ2 − 1
.

It is clear that ΠQσ is approximately equivalent to log σ for large σ, correspond-
ing to the left side of (9) with p = 1/2.

5 Simulation studies

5.1 A comparison of different e-combining methods

In this section, we conduct simulation studies for the non-parametric hypotheses
in Section 4. We set µ = 0 and σ = 1 without loss of generality.

We first concentrate on the null hypothesis H(0, 1), as the other four cases
are similar. For all the methods stated in Section 4, we do not make the as-
sumption that the data are identically distributed. Thus, we generate a sample
of n independent data points, although independence is not needed for methods
(a)-(d), alternating from two different distributions: X1, X3, . . . , follow a nor-
mal distribution, and X2, X4, . . . , follow a Laplace distribution, with the same
mean ν and the same variance η2.1 We denote this data generating process as
NL(ν, η2) with the null parameters being (ν, η2) = (0, 1). We consider two al-
ternatives: (1) Data generated from NL(0, η2) where η > 1; (2) Data generated
from NL(ν, 1) where ν > 0. In our setting, the tester does not know the alter-
nating data generating mechanism. For each alternative model, we compute the
rejection rate over 1000 runs using the thresholds of E ≥ 1/α and P ≤ α, with
α = 0.05, for e-values and p-values, respectively.

For the e-mixture method, we experiment by averaging λ in the interval
[0.01, 0.20] with step size 0.01. The e-GREE method is similar to the e-mixture
method, except that λi is dynamically updated with different i ∈ [n] using the
formula (6).

Figure 1 shows the rejection rates for all methods with data generated from
NL(0, η2) for η ∈ [1, 4], and from NL(ν, 1) for ν ∈ [0, 1]. For alternative model
NL(0, η2), we see that the e-mixture and the e-GREE methods outperform the
other methods, with the e-mixture method being the most powerful. For η <
1.5, the rejection rates of all methods are very low, making it challenging to
distinguish their efficiency. As η > 1.5, both the e-mixture method and the
e-GREE method exhibit significantly higher rejection rates compared to other
methods, demonstrating their effectiveness in testing H(0, 1). The other four
methods have almost no power. For alternative model NL(ν, 1), we observe that
e-batch method and the p-batch method show significant high rejection rates,
since they are quite sensitive to the sample mean. Recall that these methods
rely on independence, so the central limit theorem kicks in.

1The assumption that the two distributions have the same mean and variance is not nec-
essary when evaluating the power of the methods. We assume this only for simplicity.
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Figure 1: Rejection rates for all methods for testing H(0, 1) with sample size
n = 100 over 1000 runs using the threshold 20.

Among all methods, only the e-process based methods satisfy anytime-
validity, that is, decision can be made at any stopping time when data arrive
sequentially. This situation is common in financial applications, where realized
losses accumulate over time; see the empirical study in Section 6.

The testing procedures for HS, HU and HUS are the same as for testing
H. We generate 100 data points from NL(0.5, 2) and calculated the rejection
rates for testing HS, HU and HUS with null hypotheses µ = 0 and σ = 1.
Table 2 displays the rejection rates for all hypotheses. It is clear that the extra
information of symmetry improves the power.

Table 2: Rejection rates of testing H, HS, HU and HUS with n = 100 data
generated from the model NL(0.5, 2).

E-mixture E-GREE P-Fisher P-Simes E-batch P-batch

H 0.419 0.315 0.000 0 0.639 0.664
HS 0.998 0.882 0.000 0 0.900 0.900
HU 0.419 0.315 0.006 0 0.639 0.664
HUS 0.998 0.882 0.763 0 0.900 0.900

5.2 A comparison with the GRAPA method

Recall that our model can also be interpreted as testing the mean under the
knowledge of an upper bound on the variance. This allows us to compare our
testing approach with the GRAPA (Growth Rate Adaptive to the Particular
Alternative) method proposed by Waudby-Smith and Ramdas [37]. GRAPA is
similar to the e-GREE method discussed in Section 4, but it requires the random
variable to be bounded. The e-process (Mt)t∈[n] for the GRAPA method is
constructed as follows:

Mt =

t∏
i=1

(1 + λi(Xi − µ)), (10)
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where µ is the conditional mean being tested and λi is Fi−1-measurable and
takes value in (−1/(1− µ), 1/µ). It is clear that 1 + λi(Xi − µ) is an e-variable
for each i ∈ [n]. Thus, maximizing the growth of (10) is similar to (6), where
λi is determined by solving the following optimization problem:

λi = argmax
λ∈[−c/(1−µ),c/µ]

1

i− 1

i−1∑
j=1

log(1 + λ(Xi − µ)), (11)

where c ∈ (0, 1] is fixed. For faster computation in the context of confidence
sequences, Waudby-Smith and Ramdas [37] also offered an alternative way to
obtain λi, which they called approximate GRAPA method, and λi is determined
by

λi = − c

1− µ
∨ µ̂i−1 − µ

σ̂2
i−1 + (µ̂i−1 − µ)2

∧ c

µ
, (12)

where µ̂i and σ̂
2
i are empirical mean and variance of the observations X1 · · · , Xi.

From (12), it is clear that the GRAPA method is able to use the sample variance
information adaptively. In particular, our e-GREE method in (7) is adaptive
to the empirical variance of the e-values. In the simulation results, we use (11)
and choose c = 1/2.

We compare five methods for testing the mean under various conditions:

(a) GRAPA: The GRAPA method with a bounded support [0, 1].

(b) E-GREE: The e-GREE method with the variance upper bound σ2.

(c) E-mixture: The e-mixture method with the variance upper bound σ2.

(d) E-GREE-2s: The two-sided e-GREE method with the variance upper
bound σ2.

(e) E-mixture-2s: The two-sided e-mixture method with the variance upper
bound σ2.

We note that GRAPA is designed as a two-sided test, although it can easily be
adjusted by restricting λi in (10) to be non-negative.

Remark 5. We could also implement the e-GREE and e-mixture methods with-
out an upper bounded variance but using the bounded support, as described
in Remark 1. Although these methods are valid, they have poor power in our
setting, because their assumption is strictly weaker than both bounded variance
and bounded support. We omit their results.

We set µ = 0.35 and apply both one-sided and two-sided tests on the same
dataset. We generate a sample consisting of n independent data points from a
beta distribution, denoted by Beta(ν, σ2), where ν and σ2 represent the mean
and variance of the beta distribution.2 Here, we use ν and σ2 instead of the

2None of the methods requires that the data follow identical distributions; we use a single
distribution just for simplicity.
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Figure 2: Rejection rates for the GRAPA, the e-GREE, the e-mixture and the
two-sided e-GREE-2s and the e-mixture-2s methods over 1000 runs using the
threshold 20 and µ = 0.35. Data are generated from Beta(ν, σ2) with sample
size n = 20, where ν ≥ 0.35 and σ ∈ {0.05, 0.1, 0.3}.

standard beta parameters α and β for the sake of convenience. Note that the
parameters α and β can be easily recovered based on given mean ν and variance
σ2: α = ν(ν − ν2 − σ2)/σ2 and β = (ν2 + σ2 − ν)(ν − 1)/σ2. Since the beta
distribution has a bounded support [0, 1], we can make meaningful comparisons
between the GRAPA method and the e-GREE and e-mixture methods.

We first compare the rejection rates, using a threshold of 20 over 1000 runs,
for all methods mentioned above under different ν with fixed σ2. We consider
ν ≥ 0.35 and σ = 0.05, σ = 0.1 and σ = 0.3. We use 20 data points for each
run.

Figure 2 shows the performance of the three methods. First, the e-GREE
method is always better than the e-mixture method. Second, the two-sided
versions of both the e-GREE and e-mixture methods show a slight improvement
over their respective one-sided methods, as expected. Third, in case σ = 0.05
and σ = 0.1, the e-GREE method outperforms the GRAPA method; in case
σ = 0.3, the GRAPA method demonstrates superior performance compared to
the other methods. This is intuitive, because the variance information is less
useful for larger σ; recall that for any distribution supported in [0, 1] with mean
µ ≤ 0.35, the maximum possible variance is 0.2275, and σ ≈ 0.477.

Figure 3 shows the average logarithmic e-processes for n up to 50 by using
ν = µ+σ for each alternative model. The relative rankings of these methods are
consistent with their rejection rates, with e-GREE performing the best when σ
is relatively small.

From the simulation results, our general recommendation is to use e-GREE
to construct the e-process when the variance to be tested is relatively small, and
to use GRAPA when the variance to be tested is relatively large compared to
the bounded support.

5.3 A comparison with exponential test supermartingale

Next, we compare our methods with the exponential test supermartingale meth-
ods that directly construct e-processes, rather than using a betting strategy to
combine sequential e-variables.
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Figure 3: Average logarithmic e-processes for the GRAPA, the e-GREE, the
e-mixture and the two-sided e-GREE-2s and the e-mixture-2s methods with
varying sample size and µ = 0.35. Data are generated from Beta(ν, σ2) where
σ ∈ {0.05, 0.1, 0.3} and ν = µ+ σ.

Wang and Ramdas [35] extends the idea from Catoni [5] to construct a non-
negative test supermartingale called the Catoni supermartingale to test mean
and variance in sequential settings. The test supermartingale is constructed as
follows:

MC
t =

t∏
i=1

exp

(
ϕ(λi(Xi − µ))− λ2iσ

2

2

)
, (13)

where ϕ is the influence function and (λi)i∈[n] is any predictable process. Fol-
lowing the recommendation of Wang and Ramdas [35], we choose the influence
function

ϕ(x) =

{
log(1 + x+ x2/2), if x ≥ 0;

− log(1− x+ x2/2), if x < 0.

and (λi)i∈[n] as

λi =

(
2 log(1/α)

i(σ2 + η2i )

)1/2

where ηi =

(
2σ2 log(1/α)

i− 2 log(1/α)

)1/2

. (14)

A different approach by Howard et al. [16] is to use a framework for non-
parametric confidence sequences based on the concept of exponential super-
martingales. They introduce the concept of a “sub-ψ process” in Howard et
al. [16, Definition 1]. Informally, a sub-ψ process is a pair of Ft-adapted pro-
cesses (St, Vt) such that St is the zero-mean deviation of the sample sum from
its estimand at time t and Vt and ψ make the following process

Mψ
t = exp{λSt − ψ(λ)Vt} (15)

dominated by a supermartingale for each λ in an interval [0, λmax). This frame-
work allows for testing mean and variance under a wide variety of assumptions,
including bounded supports, self-normalized bounds, and symmetric conditions.
We refer to Howard et al. [16, Appendix J, Table 3] for a collection of commonly
used ψ functions and variance processes for St =

∑t
i=1(Xi − µ) under various

assumptions. We choose two special cases for comparison with our methods:
the self-normalized bounds test supermartingale, denoted by Mψ,SN

t , and the
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symmetric condition test supermartingale, denoted by Mψ,sym
t . For λ ∈ [0,∞),

these test supermartingales are constructed as follows:

Mψ,SN
t =

t∏
i=1

exp

(
λ(Xi − µ)− λ2(Xi − µ)2 + 2σ2

6

)
, (16)

which also appears in Wang and Ramdas [35, Section 5], and

Mψ,sym
t =

t∏
i=1

exp

(
λ(Xi − µ)− λ2(Xi − µ)2

2

)
. (17)

We follow a simple method of choosing λ suggested by Howard et al. [16, Section
3.2], that is, to use the mixture supermartinagle

∫
exp(λSt − ψ(λ)Vt) dΦ(λ) by

assuming λ ∼ Φ = N(0, 1). Now, we further compare the following methods:

(f) WR23-Catoni: The Catoni method with the variance upper bound σ2.

(g) HRMS21-SN: The self-normalized method with the variance upper bound
σ2.

(h) HRMS21-sym: The sub-ψ method with symmetry, but without variance
information.

(i) E-GREE-sym: The e-GREE method with the variance upper bound σ2

and symmetry.

(j) E-mixture-sym: The e-mixture method with the variance upper bound σ2

and symmetry.

We compare above five methods, along with the e-GREE and e-mixture
methods that do not utilize symmetric information (methods (a) and (b) de-
scribed in the previous section), in testing H(0, 1). Following the same data
generating process as described in Section 5.2, we generate n independent data
points alternating between the normal and Laplace distributions, denoted by
NL(ν, η2). Figure 4 shows rejection rates for above methods with data gener-
ated from three cases: NL(ν, 12) for ν ∈ [0, 1], NL(ν, (1+ ν)2) for ν ∈ [0, 1], and
NL(ν/5, (1 + ν)2) for ν ∈ [0, 2].

For NL(ν, 12), the Catoni method outperforms other methods, while methods
utilizing symmetric information generally perform well. For NL(ν, (1 + ν))2),
where both the mean and variance of the data generating process change, the
power of methods from Howard et al. [16] reduces. In contrast, the power of
our e-value based methods increases, as our construction of e-values is sensitive
to the changes to variance. In the last case, NL(ν/5, (1 + ν)2), the impact of
changes in mean is small and the variance effect is large, e-value based methods
generally outperform others. Although method (h) benefits from not requiring
information about variance or even the existence of variance, it demonstrates
minimal power when testing mean with varying variance, due to its penalization
term −(Xi − µ)2 in the exponential form of (16) and (17). In summary, our
methods are comparatively more powerful when the alternative variance defers
from the null.
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Figure 4: Rejection rates for methods (a), (b) and (f)-(j) for testing H(0, 1)
with sample size n = 100 over 1000 runs using the threshold 20.

6 Empirical study with financial data

In this section, we conduct an empirical study to test the hypothesis H(µ, σ) on
the daily losses of financial assets. We aim to calculate the number of trading
days required to detect evidence for rejecting the null hypothesis H(µ̂, σ̂) during
the 2007–2008 financial crisis period. Here, µ̂ and σ̂ represent the sample mean
and sample variance estimated from historical data prior to the testing period.
That is, we are testing whether the historical estimations before the testing
period are still valid. If the null hypothesis can be rejected at a reasonable
thresholds level rather swiftly, this will serve as evidence of the effectiveness of
e-process methods and could help investors switch strategies in a timely manner.

We choose 20 stocks from 10 different sectors of the S&P 500 list with the
large market capitalization in each sector. Moreover, we include two companies
with the largest market capitalization from the to-be Real Estate sector.3 We
first calculate the daily losses for each of the selected stocks from January 1,
2001 to December 31, 2010. The daily losses are expressed by percentage and
calculate by Lt = −(St+1 − St)/St, where St is the close price at day t. Note
that the positive value represents a loss and negative value represents a gain.
We could also use the log-loss data instead of the linear loss data, but the
difference between the two is minor. We use the loss data from January 1,
2001 to December 31, 2006 to estimate the mean and variance for the null
hypothesis. We compute the e-values using both the e-mixture method and the
e-GREE method based on the construction of (5) as the daily loss from January
1, 2007 fed into the e-process.

Following a methodology similar to the simulation study in Section 5, we
report the evidence against the null hypothesis when the e-process exceeds
thresholds of 2, 5, 10, and 20.4 E-values exceeding 5 or 10 provide substan-
tial evidence to reject the null hypothesis, while a threshold of 20 offers strong
evidence against the null hypothesis. It is important to note that, although a
threshold of 2 may not be substantial enough to reject the null hypothesis, it

3Real Estate becomes the 11th sector of S&P500 in 2016.
4In accordance with Jeffrey’s rule of thumb about e-values (see Jeffreys [18] and Vovk and

Wang [30]), if the e-value falls within the interval of (101/2, 10), the evidence against the null
hypothesis is considered substantial; If the e-value falls within the interval of (10, 103/2), the
evidence against the null hypothesis is regarded as strong.
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Figure 5: Sample path and logarithmic e-process using the e-GREE and the
e-mixture methods testing of H(µ̂, σ̂) for Simon Property (SPG) stock from
January 2007 to January 2008, where µ̂ = −0.001028 and σ̂ = 0.012123 are the
sample mean and variance estimated from historical data for stock SPG from
January 1, 2001 to December 31, 2006.

can still serve as an early warning that the stock’s performance may be different
from its historical path.

To illustrate the e-process detection procedure, we first focus on a single
stock as an example. Figure 5 reports the stock price for Simon Property (SPG)
throughout the detection period and its corresponding e-process initiated on
January 1, 2007. Observing from the e-process figure, it is evident that both the
e-mixture method and the e-GREE method effectively reject the null hypothesis
at thresholds of 2, 5, 10, and 20 before the financial crisis ends. Notably, the
e-GREE method generally takes fewer trading days compared to the e-mixture
method to achieve this rejection across various threshold levels. Also, the null
hypothesis is rejected using e-GREE method prior to another significant decline
in the stock price during February 2009 to June 2009, thus preventing potential
larger losses and underscoring the effectiveness of e-process methods.

Compared to e-batch and other p-variable based methods stated in Section
4, e-process based methods exhibit a unique advantage in sequential settings,
particularly in financial applications where actual losses accumulate sequentially
over time. In such scenarios, the e-process permits the early termination without
a specified sampling period, potentially preventing further losses at an earlier
stage. Table 3 displays the number of trading days required to reject the null
hypothesis at various threshold levels for the selected 20 stocks from 10 different
sectors and the two stocks in Real Estate. The table shows that stocks in sectors
significantly impacted by the 2007–2008 subprime crisis, such as Financials and
Consumer Discretionary, Energy could generally be detected using e-process
based methods. In particular, the representative companies in Real Estate are
rejected the earliest; see the last rows of Table 3. In contrast, for stocks in
sectors less affected by the subprime crisis, such as Technology, Health Care,
and Consumer Staples, we are unable to reject the null hypothesis. This is
intuitive, given that their prices and returns remain relatively stable or even

23



Table 3: The number of trading days taken to detect evidence against H(µ̂, σ̂)
using the e-GREE method and the e-mixture method for different stocks from
January 1, 2007 to December 31, 2010; “–” means no detection is observed till
December 31, 2010.

E-GREE E-mixture

Threshold 2 5 10 20 2 5 10 20

Financials
Bank of America 378 385 385 393 393 394 395 403
Morgan Stanley 429 439 445 447 447 447 447 447

Utilities
The Southern - - - - - - - -
Duke Energy - - - - - - - -

Communication Verizon Comms. - - - - - - - -
Services AT&T - - - - - - - -

Consumer Walmart - - - - - - - -
Staples PepsiCo - - - - - - - -

Consumer Ford Motor 476 491 498 565 546 594 594 594
Discretionary Las Vegas Sands 442 445 447 450 451 454 457 457

Energy
Texas Pacific Land 158 244 261 269 242 261 261 263

Pioneer 496 622 - - - - - -

Material
Southern Copper 476 496 537 - 539 - - -
Air Products 476 516 537 - - - - -

Health Care
Johnson & Johnson - - - - - - - -

Pfizer - - - - - - - -

Technology
Int. Business Machines - - - - - - - -

Microsoft - - - - - - - -

Industrials
General Electric 537 546 578 - - - - -

United Parcel Service 476 524 542 632 542 604 - -

Real Estate
Simon Property 165 224 242 254 223 239 250 253

Prologis 264 271 271 296 270 271 271 275

increase during the financial crisis.

7 Discussion

This paper proposes an e-process based approach for testing mean and variance
from non-stationary data. We consider four classes of non-parametric compos-
ite hypotheses with specified mean and variance bound along with additional
constraints of distribution, such as symmetry, unimodality, or a combination
thereof. For this purpose, our main technical results give the best p-variables
and e-variables in the simple setting where one summary data point is ob-
served. The explicit formulas are summarized in Table 1. Using the obtained
e-variables, we construct an e-process using either the e-mixture method or the
e-GREE method. Simulation studies and empirical analysis are conducted to
show the performance of the proposed methods in comparison with GRAPA
of Waudby-Smith and Ramdas [37] and with the exponential supermartingale
methods of Howard et al. [15, 16] and Wang and Ramdas [35].

As mentioned in Section 3, our constructions of p-values and e-values are
potentially useful for multiple testing, which is not addressed in this paper. The
literature on using e-values in multiple testing is growing recently. For instance,
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e-values are used for false discovery control in knockoffs; see Ren and Barber
[24] for derandomization, Ahn et al. [1] for Bayesian linear models, and Gablenz
and Sabatti [9] for resolution-adaptive variable selection. Finally, the obtained
e-variables may also be useful to build e-confidence regions (see Vovk and Wang
[31]) and e-posterior as (see Grünwald [11]) for (µ, σ2), although we mainly
consider a non-parametric setting.

8 Proofs of all results

We collect all proofs in the paper in this section.

Proof of Lemma 1. Let P be any collection of p-variables for H. For Q ∈ H,
using the fact that the elements of P are comonotonic, we have

Q(inf{P ∈ P} > α) = Q

( ⋂
P∈P

{P > α}

)
= inf
P∈P

Q(P > α) ≥ 1− α.

This implies
Q(inf{P ∈ P} ≤ α) ≤ α.

Hence, the infimum of all p-variables for H is still a p-variable, which is the
smallest one.

For all theorems below, we will prove precision statements for the formulation
of EQ[X] = µ instead of EQ[X] ≤ µ, making these statements stronger. For the
validity statements, it is easy to verify that those p-variables and e-variables are
valid under both formulations.

Proof of Theorem 1. Since the problem is invariant under location shift and
scaling, it suffices to consider the normalized case of (µ, σ) = (0, 1).

It is clear that P is decreasing in X and E is increasing in X.
For Q ∈ H(0, 1), Cantelli’s inequality implies Q(X > x) ≤ 1/(1 + x2) for

x > 0, which implies, for each α ∈ (0, 1),

Q(P ≤ α) = Q(1 +X2
+ ≥ 1/α) = Q

(
X ≥

√
(1− α)/α

)
≤ 1

1 + 1/α− 1
= α.

The inequality above is an equality if Q is chosen such that

Q
(
X =

√
(1− α)/α

)
= α = 1−Q

(
X = −

√
α/(1− α)

)
, (18)

and we can easily verify that EQ[X] = 0 and varQ(X) = 1. This implies that
supQ∈H(0,1)Q(P ≤ α) = α for each α ∈ (0, 1), and therefore P = 1/(1 +X2

+) is
a precise p-variable for H(0, 1).

For Q ∈ H(0, 1), we have EQ[X2
+] ≤ EQ[X2] ≤ 1. To show that E is

precise, let Q be given by (18), which satisfies EQ[X2
+] = α. By taking α ↑ 1 we

know supQ∈H(0,1) EQ[E] = 1, and therefore E = X2
+ is a precise e-variable for

H(0, 1).
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Proof of Theorem 2. We first show the statement on the e-variable. Set (µ, σ) =
(0, 1) as in the proof of Theorem 1. For Q ∈ HS(0, 1), we have 2EQ[X2

+] =
EQ[X2] ≤ 1, with equal sign holding if varQ(X) = 1. Therefore, E = 2X2

+ is a
precise e-variable for HS(0, 1).

Since E = 2X2
+ is an e-variable, by Markov’s inequality, 1/E = (2X+)

−2 is
a p-variable for HS(0, 1). In Theorem 1 we have seen that P0 is a p-variable for
H(0, 1), and hence also a p-variable for HS(0, 1) ⊆ H(0, 1). Using Lemma 1,
the minimum of P0 and (2E0)

−1 is a p-variable for HS(0, 1).
Next, we show that P is semi-precise. For α ∈ (0, 1/2], let Q be chosen such

that

Q
(
X = (2α)−1/2

)
= α = Q

(
X = −(2α)−1/2

)
and Q(X = 0) = 1− 2α.

We can verify that EQ[X] = 0, varQ(X) = 1, and X is symmetrically dis-
tributed. It follows that Q(P ≤ α) = Q(X = (2α)−1/2) = α. This implies
that supQ∈HS(0,1)Q(P ≤ α) = α for α ∈ (0, 1/2]. Therefore, P is a semi-precise
p-variable for HS(0, 1).

Finally, we show that there do not exist precise p-variables for HS(0, 1).
Suppose that P = f(X) is a precise p-variable, where f is a decreasing function.
Note that Q(X ≤ 0) ≥ 1/2 for all Q ∈ HS(0, 1). It follows that Q(P ≥
f(0)) ≥ 1/2 and Q(P < f(0)) ≤ 1/2. If f(0) > 1/2, then for α ∈ [1/2, f(0)],
Q(P ≤ α) ≤ 1/2 < α, implying that P is not precise. If f(0) ≤ 1/2, then, by
taking Q as the point-mass at 0, we have Q(P ≤ 1/2) = 1, implying that P is
not a p-variable. Either way we have a contradiction, and hence does not exist
a precise p-variable.

Proof of Theorem 3. Set (µ, σ) = (0, 1) as in the proof of Theorem 1. By The-
orem 1 of Bernard et al. [4],

sup
Q∈HU(0,1)

TQX (1− α) = max

{√
4

9α
− 1,

√
3− 3α

1 + 3α

}
for α ∈ (0, 1). (19)

Note that P is a decreasing function of X, and we denote this by P = f(X)
where

f(x) = max

{
4

9
(1 + x2+)

−1,
4

3
(1 + x2+)

−1 − 1

3

}
.

For α ∈ (0, 1/6], we have

sup
Q∈HU(0,1)

TQX (1− α) =

√
4

9α
− 1,

and hence

inf
Q∈HU(0,1)

TQP (α) = f

(
sup

Q∈HU(0,1)

TQX (1− α)

)
=

4

9

(
1 +

4

9α
− 1

)−1

= α.
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For α ∈ (1/6, 1), it is

sup
Q∈HU(0,1)

TQX (1− α) =

√
3− 3α

1 + 3α
,

and hence

inf
Q∈HU(0,1)

TQP (α) = f

(
sup

Q∈HU(0,1)

TQX (1− α)

)
=

4

3

(
1 +

3− 3α

1 + 3α

)−1

− 1

3
= α.

Using Lemma 2, we obtain that P is a precise p-variable for HU(0, 1).
As E is an e-variable for H(0, 1), it is also an e-variable for HU(0, 1). To

show that it is precise, fix any a ∈ (0, 1), and let p > 0 and b > 0 satisfy

a2 =
3− 3p

3p+ 2− p2
and b =

1 + p

1− p
a.

Note that such p exists for any a ∈ (0, 1) since the range of (3− 3p)/(3p+ 2− p2)
covers (0, 1). Choose Q such that the distribution of X has a point-mass at −a
with probability p and a uniform density on [−a, b]. We can compute

EQ[X] = −ap+ b− a

2
(1− p) = −ap+ ap = 0,

and

EQ[X2] = a2p+
a2

3
(1− p) +

b2

3
(1− p) =

a2(3p+ 2− p2)

3(1− p)
= 1.

Therefore Q ∈ HU(0, 1). We also have

EQ[E] = EQ[X2
+] = 1− a2p− a2

3
(1− p) ≥ 1− a2.

Since a ∈ (0, 1) is arbitrary, we get supQ∈HU(0,1) EQ[E] = 1, and hence E is a
precise e-variable.

Proof of Lemma 3. For α ≥ 1/2, since Q ∈ HUS(0, 1) is symmetric about 0, we

have TQX (1−α) ≤ 0, with TQX (1−α) = 0 if Q is the point-mass at 0. We assume
α < 1/2 below.

Take any Q ∈ HUS(0, 1), and we will find another distribution R with smaller
variance and the same α-quantile (we omit “left” because the quantile is unique
for Q and R). Note that Q has a decreasing density on (0,∞) and possibly a

point-mass at 0. Denote by x0 = TQX (1−α) and g the density function of Q on
(0,∞). Consider a different distribution R symmetric with respect to 0 which
has uniform density equal to g(x0) on (0, b) for some b > x0 and a point-mass
at 0, such that R([x0, b)) = α = Q([x0,∞)) = R([x0,∞)). Denote by h the
density function of R on (0,∞), and note that h(x) = 0 for x > b. Since Q has
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a decreasing density g on (0,∞), g ≥ h on (0, x0) and g ≤ h on (x0, b). The
above conditions imply∫ x0

0

x2g(x) dx ≥
∫ x0

0

x2h(x) dx and

∫ ∞

x0

x2g(x) dx ≥
∫ ∞

x0

x2h(x) dx, (20)

where the second inequality is due to R([x0,∞)) = Q([x0,∞)). Note that both
inequalities in (20) are equalities if and only if g = h, and equivalently, Q = R.
It follows that EQ[X2] ≥ ER[X2], and hence R ∈ HUS(0, 1). Note that the

condition Q([x0,∞)) = α = R([x0,∞)) guarantees TQX (1−α) = x0 = TRX (1−α);
that is R has the same α-quantile as G.

The above argument shows that it suffices for us to consider distributions
Q which can be represented by a mixture of point-mass at 0 and a uniform
distribution on [−b, b]. We also assume that Q has variance 1; if the variance is
less than 1, then a rescaled distribution from Q has variance 1 and a larger α-
quantile. Let p = Q((0,∞)) ∈ (0, 1/2]. We can compute EQ[X2] = 2pb2/3 = 1,
and hence b = 31/2(2p)−1/2. This gives

TQX (1− α) = b(1− α/p) =

√
3

p

(
1− α

p

)
.

Maximizing the above term over p ∈ (0, 1/2] gives p = 3α if α ≤ 1/6 and p = 1/2
if α ∈ (1/6, 1/2], showing the desired supremum formula in the lemma.

Proof of Theorem 4. Set (µ, σ) = (0, 1) as in the proof of Theorem 1. By Theo-
rem 3, E = 2E0 is an e-variable for HUS(0, 1). It is precise because EQ[2X2

+] = 1
for any Q ∈ HUS(0, 1) with varQ(X) = 1.

The fact that precise p-variables do not exist for HUS(0, 1) follows from the
same argument as in the proof of the corresponding statement in Theorem 2.

It remains to show that P is a semi-precise p-variable for HUS(0, 1). Write
P = f(X) where

f(x) =
2

9x2
1[4/3,∞)(x

2
+) +

3−
√
3x

6
1(0,4/3)(x

2
+) + 1(−∞,0](x).

Using Lemma 3, for α ∈ (0, 1/6], we have

sup
Q∈HUS(0,1)

TQX (1− α) =

√
2

9α
≥
√

4

3

and

inf
Q∈HUS(0,1)

TQP (α) = f

(
sup

Q∈HUS(0,1)

TQX (1− α)

)
=

2

9
× 9α

2
= α.

Similarly, for α ∈ (1/6, 1/2), we have

sup
Q∈HUS(0,1)

TQX (1− α) =
√
3(1− 2α) ∈

(
0,
√

4/3
)
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and

inf
Q∈HUS(0,1)

TQP (α) = f

(
sup

Q∈HUS(0,1)

TQX (1− α)

)
=

3− 3(1− 2α)

6
= α.

Finally, for α ∈ [1/2, 1), we have infQ∈HUS(0,1) T
Q
P (α) = 1 since P(X ≤ 0) ≥ 1/2.

Using Lemma 2, the above three cases together imply that P is a semi-precise
p-variable for HUS(0, 1).

Proof of a statement in Section 4.2. Here we show that p-Simes and p-Fisher
can be applied to conditionally valid p-values. Assume P(Pt ≤ α|Ft−1) ≤ α
for each t = 1, . . . , n and α ∈ (0, 1) under H0. This implies that there exists
P̃t ≤ Pt such that P(P̃t ≤ α|Ft−1) = α for all α ∈ (0, 1). Hence, P̃1, . . . , P̃n
are iid. Applying the combination methods to P̃1, . . . , P̃n yields a valid Type-I
error control. Since P̃t ≤ Pt for each t and the two combination methods are
monotone, we also have a valid Type-I error control when combining P1, . . . , Pn.

Proof of Proposition 1. The assumption that data are iid implies that E1, E2, . . .
are iid. The “only if” statement is trivial since EQ[E1] ≤ 1 implies that (Mt)t≥1

is an e-process for Q, and hence Q(supt∈[n]Mt ≥ 1/α) ≤ α for all n ∈ N. Next
we show the “if” statement. For this, we use Theorem 3 of Wang et al. [33],
which states that, under the iid assumption,

1

t

(
logMT (λ

GREE)− logMt(λ
GRO)

)
L1(Q)−−−−→ 0 as t→ ∞,

where Mt(λ
GREE) is given by (5) with each λi computed form the e-GREE

method, and Mt(λ
GRO) is given by (5) with each λi given by its theoretically

growth-rate optimal value

λ∗ = argmax
λ∈(0,1]

EQ[log(1− λ+ λE1)],

and this gives

1

t
logMt(λ

GRO) = max
λ∈(0,1]

EQ[log(1− λ+ λE1)].

Therefore, we have

1

t
logMt

Q−→ max
λ∈(0,1]

EQ[log(1− λ+ λE1)] as t→ ∞.

It remains to verify maxλ∈(0,1] EQ[log(1 − λ + λE1)] > 1. Note that E[E1] > 1
implies E[E1 ∧ K] > 1 for some K ≥ 1. We denote by Y = E1 ∧ K. Since
E[(Y − 1)+]−E[(Y − 1)−] = E[Y − 1] > 0, there exists some ϵ ∈ (0, 1) such that

1

1 + ϵ
E[(Y − 1)+]−

1

1− ϵ
E[(Y − 1)−] > 0.
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Note that log(1 + x) ≥ x/(1 + ϵ) for x ∈ [0, ϵ) and log(1 + x) ≥ x/(1 − ϵ) for
x ∈ (−ϵ, 0), that is,

log(1 + x) ≥ x+
1 + ϵ

− x−
1− ϵ

for x ∈ (−ϵ, ϵ).

Hence, for λ ∈ (0, ϵ/K), implying λ(Y − 1) ∈ (−ϵ, ϵ), we have

E[log(1− λ+ λE1)] ≥ E[log(1 + λ(Y − 1))]

≥ 1

1 + ϵ
E[λ(Y − 1)+]−

1

1− ϵ
E[λ(Y − 1)−] > 0,

thus showing the desired inequality.

Proof of Proposition 2. First, it is clear that ΠQσ ≥ 0 by choosing λ = 0 in the
supremum. Second, by Jensen’s inequality, for σ > 1,

EQ0 [log(1− λ+ λσ2E)] ≤ log(1− λ+ λσ2EQ0 [E]) ≤ log(1− λ+ λσ2) = 2 log σ.

We next show ΠQσ ≥ 2p log σ − log 2. Note that

EQ0 [log(1− λ+ λσ2E)] ≥ (1− p) log(1− λ) + p log(1− λ+ λσ2).

Maximizing the above term over λ ∈ [0, 1], the maximizer is λ∗ = (pσ2−1)/(σ2−
1). The corresponding maximum value satisfies

(1− p) log
(1− p)σ2

σ2 − 1
+ p log(pσ2) ≥ (1− p) log(1− p) + p log p+ p log σ2

≥ − log 2 + p log σ2,

where we used the fact that x log x+(1− x) log(1− x) on [0, 1] is maximized at
x = 1/2. This shows ΠQσ ≥ 2p log σ − log 2, completing the proof of (9).

Finally, we prove the last statement 0 ≤ ΠQσ − ΠQδ ≤ 2(log σ − log δ) for
σ > δ > 1. For any λ ∈ [0, 1], let λ′ = λδ2/σ2 ∈ [0, 1]. We have

ΠQσ ≥ log(1− λ′ + λ′σ2E) ≥ log(1− λ+ λδ2E).

Taking a supremum over λ ∈ [0, 1] yields ΠQσ ≥ ΠQδ . To show the other
inequality,

ΠQσ ≤ sup
λ∈[0,1]

log

(
σ2

δ2
(1− λ) + λσ2E

)
= log

σ2

δ2
+ sup
λ∈[0,1]

log(1− λ+ λδ2E) = 2 log
σ

δ
+ΠQδ .

This gives ΠQσ −ΠQδ ≤ 2(log σ − log δ) and completes the proof.
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