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Abstract

We provide a new characterization of second-order stochastic domi-

nance, also known as increasing concave order. The result has an intu-

itive interpretation that adding a risk with negative expected value in

adverse scenarios makes the resulting position generally less desirable for

risk-averse agents. A similar characterization is also found for convex or-

der and increasing convex order. The proof techniques for the main result

are based on properties of Expected Shortfall, a family of risk measures

that is popular in banking and insurance regulation. Applications in risk

management and insurance are discussed.

Keywords: Expected Shortfall, stochastic dominance, convex order, de-

pendence, Strassen’s theorem

1 Introduction

Second-order stochastic dominance (SSD), also known as increasing concave

order, is one of the most fundamental tools in stochastic comparison and decision

making under risk (e.g., Hadar and Russell (1969) and Rothschild and Stiglitz

(1970)). For general treatments, we refer to the monographs Müller and Stoyan

(2002) and Shaked and Shanthikumar (2007).
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This short paper provides a new characterization of SSD. Let L1 be the set

of integrable random variables in an atomless probability space (Ω,F ,P), which
we fix throughout. We first give the standard definitions for some stochastic

orders. For X,Y ∈ L1, we say that X dominates Y

(a) in SSD, denoted by X ≥ssd Y , if E[u(X)] ≥ E[u(Y )] for all increasing

concave functions u;

(b) in increasing convex order, denoted by X ≥icx Y , if E[u(X)] ≥ E[u(Y )] for

all increasing convex functions u;

(c) in convex order, denoted by X ≥cx Y , if E[u(X)] ≥ E[u(Y )] for all convex

functions u.

Throughout the paper, “increasing” is in the non-strict sense.

In decision theory, X and Y in comparison are usually interpreted as random

payoffs or wealths. Instead, by interpreting X and Y as losses, SSD can be

converted into increasing convex order, since X ≤ssd Y is equivalent to −X ≥icx

−Y . Increasing convex order is also known as stop-loss order in actuarial science;

see e.g., Dhaene et al. (2002). We write X
d
= Y if X and Y are identically

distributed, which is precisely the symmetric part of each relation above.

Classic results on the representation of SSD are obtained by the celebrated

work of Strassen (1965) and Rothschild and Stiglitz (1970). This representation

result can be summarized as follows: For X,Y ∈ L1, X ≥ssd Y holds if and

only if Y
d
= W + Z for some W,Z ∈ L1 such that W

d
= X and

E[Z|W ] ≤ 0. (1)

See Theorem 4.A.5 of Shaked and Shanthikumar (2007) for this result. Condi-

tion (1) means that (W,W + Z) forms a supermartingale.

The main result of this paper is to provide a different representation of SSD,

where the corresponding condition for the additive payoff is weaker than (1).

Theorem 1. For any X,Y ∈ L1, X ≥ssd Y holds if and only if Y
d
= W + Z

for some W,Z ∈ L1 such that W
d
= X and

E[Z|W ≤ x] ≤ 0 for all relevant values of x. (2)

In (2), relevant values of x are those that satisfy P(W ≤ x) > 0.

Note that (2) implies E[Z] ≤ 0 by taking x → ∞. Condition (2) is clearly

weaker than (1), because the latter can be equivalently written as E[Z|W = x] ≤
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0 for all almost every x in the range of W (here, the conditional expectations are

chosen as a regular version). If Z is a function of W , then (1) is very restrictive,

as it means Z ≤ 0, whereas (2) can hold for a wide range of models that does

not require Z ≤ 0. Moreover, (2) is much easier to check in practice, since the

event {W ≤ x} has a positive probability for every relevant x, whereas the event

{W = x} has zero probability for all x when W is continuously distributed. Two

examples comparing (1) and (2) are presented in Section 4. In Section 5, we

discuss applications of the new condition to risk management and insurance,

including stochastic improvers, marketable insurance contracts, and stop-loss

premium calculation.

The main interpretation of Theorem 1 is that, for a risk-averse decision

maker with random wealth W , adding a risk Z with negative expectation in

adverse scenarios, that is, when W is small, makes the resulting position W +Z

generally less desirable than W ; see Section 6 for more discussions.

To prove Theorem 1, the main step is to justify W + Z ≤ssd W , which we

summarize in the following proposition.

Proposition 2. For any W,Z ∈ L1 satisfying (2), W + Z ≤ssd W holds.

Up to the best of our knowledge, both Theorem 1 and Proposition 2 are new

to the literature.

Proposition 2 is closely related to the main result of Brown (2017), where

the author showed that for W taking values in [0, 1] and Z taking values in

[−1, 1], if E[Z] = 0 and

E[Z|W ≥ x] ≥ 0 for all relevant values of x, (3)

then W + Z ≥cx X. This result also follows from Corollary 3.3 of Li et al.

(2016). Despite the close connection, there are several additional merits of our

results and the proof approach. First, our result works for both SSD and convex

order, whereas the condition (3) of Brown (2017) does not generalize to SSD.

Indeed, Brown (2017, Corollary 1) claimed that (3) together with E[Z] ≤ 0

yields X + Z ≤ssd X, but E[Z] < 0 is not possible if (3) holds; thus SSD

is not covered except for the case of convex order. Similarly, results in Li

et al. (2016) rely on the notion of expectation dependence (Wright (1987); see

Section 6), but our condition (2) is different from expectation dependence unless

E[Z] = 0. Second, our proof techniques are completely different from those of

Brown (2017). Our proof is much shorter, and it is based on risk measures,

in particular, the Expected Shortfall (ES, also known as CVaR or TVaR), one

of the most important risk measures in finance and insurance (McNeil et al.
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(2015)). Thus, the proof is more accessible to scholars in risk management.

Third, our result is formulated on L1 without any restriction on the range of

the random variables, and the proof argument is unified for all random variables

without using discrete approximation or taking limits.

2 Proof of the main result

Let us first define the risk measure ES used in our proof. ES at level p ∈ [0, 1)

is defined by

ESp(X) =
1

1− p

∫ 1

p

QX(t)dt, X ∈ L1,

where

QX(t) = inf{x ∈ R : P(X ≤ x) > t}

is the right t-quantile of X at t ∈ (0, 1). For X ∈ L1, denote by ϕX the function

on [0, 1] given by ϕX(p) = (1−p)ESp(X) on [0, 1) and ϕX(1) = 0. We first state

a few simple facts on ES and the quantile function in the following lemma.

Lemma 3. For X,Y ∈ L1, the following statements hold:

(i) X ≥icx Y if and only if ESp(X) ≥ ESp(Y ) for all p ∈ (0, 1);

(ii) for p ∈ (0, 1), ESp(X) ≥ E[X|B] for any B ∈ F with P(B) = 1− p;

(iii) for p ∈ (0, 1), if P(X < QX(p)) = p, then ESp(X) = E[X|X ≥ QX(p)];

(iv) for p ∈ (0, 1), if P(X < QX(q)) < P(X < QX(p)) for all q ∈ (0, p), then

P(X < QX(p)) = p;

(v) the function ϕX is continuous and concave on [0, 1], and its derivative is

−QX(p) at almost every p ∈ (0, 1).

Proof of Lemma 3. These properties are all well-known or straightforward to

check. For (i), see Theorem 4.A.3 of Shaked and Shanthikumar (2007). For

(ii), see Lemma 3.1 of Embrechts and Wang (2015). For (iii), see Lemma A.7

of Wang and Zitikis (2021). Statement (iv) follows from Lemma 1 of Guan et

al. (2024). Statement (v) follows directly from the definition of ES.

Proof of Proposition 2. Note that W +Z ≤ssd W is equivalent to −W −Z ≥icx

−W , which we show below. Write X = −W . By (i) of Lemma 3, it suffices to
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show ESp(X − Z) ≥ ESp(X) for all p ∈ (0, 1). Denote by PX = {p ∈ (0, 1) :

P(X < Qp(X)) = p}. For p ∈ PX , we have

ESp(X − Z) ≥ E[X − Z|X ≥ QX(p)] [by (ii)]

= ESp(X)− E[Z|X ≥ QX(p)] [by (iii)]

≥ ESp(X). [by (2)]

The argument is complete here if X is continuously distributed, as in that case

PX = (0, 1). We continue with the case that the distribution of X may have

atoms.

Suppose that an interval (a, b) ⊆ (0, 1) does not intersect PX (such intervals

may not exist). For any p ∈ (a, b), let p∗ = inf{q ∈ (0, 1) : QX(q) = QX(p)}. If
p∗ = 0, then q 7→ QX(q) is constant on (0, p), and since p ∈ (a, b) is arbitrary,

we have that q 7→ QX(q) is constant on (0, b). Next suppose p∗ > 0. Since

q 7→ QX(q) is right-continuous, we have QX(p∗) = QX(p). The definition of p∗

implies QX(q) < QX(p∗) for any q ∈ (0, p∗). By (iv), P(X < QX(p∗)) = p∗ and

hence p∗ ∈ PX . This yields p∗ ≤ a. Therefore, q 7→ QX(q) is constant on the

interval (a, b) in both cases.

By (v), ϕX is linear on any interval outside PX and ϕX−Z is concave, and

both are continuous. We claim that these properties and ϕX−Z ≥ ϕX on PX

imply that ϕX−Z ≥ ϕX holds on (0, 1); see Figure 1 for an illustration. This

would be sufficient for X − Z ≥icx X, and below we show this claim.

Suppose that there exists p ∈ (0, 1) such that ϕX−Z(p) < ϕX(p). Since

both ϕX−Z and ϕX are continuous, there exists a neighbourhoold of p on which

ϕX−Z < ϕX . Let a = inf{q ∈ (0, 1) : ϕX−Z < ϕX on (q, p]} and b = sup{q ∈
(0, 1) : ϕX−Z < ϕX on [p, q)}. If a > 0, then by continuity we have ϕX−Z(a) =

ϕX(a) and ϕX−Z(b) = ϕX(b), noting that ϕX−Z(1) = ϕX(1) = 0. If a = 0, then

ϕX−Z(a) ≥ ϕX(a) because

ϕX−Z(0) = E[X]− E[Z] ≥ E[X] = ϕX(0),

where E[Z] ≤ 0 is guaranteed by (2). Therefore, in either case,

ϕX−Z(a) ≥ ϕX(a) and ϕX−Z(b) ≥ ϕX(b). (4)

Note that (a, b) does not intersect PX since ϕX−Z ≥ ϕX on PX . Since ϕX−Z

is concave and ϕX is linear on (a, b), (4) implies ϕX−Z ≥ ϕX on (a, b); see the

areas with dashed lines in Figure 1. This yields a contradiction.
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Figure 1: An illustration of ϕX−Z ≥ ϕX : after the inequality is shown to hold on
PX , it also holds outside PX due to concavity of ϕX−Z and piece-wise linearity
of ϕX (dashed lines).

Proof of Theorem 1. The “if” statement follows from Proposition 2 via X
d
=

W ≥ssd W + Z
d
= Y . The “only if” statement follows from the fact that (1) is

stronger than (2), and thus via the representation mentioned in the introduction

(Theorem 4.A.5 of Shaked and Shanthikumar (2007)).

3 Convex order and increasing convex order

We present a few immediate corollaries of Theorem 1 on increasing convex order

and convex order, commonly used in risk management and actuarial science.

Corollary 4. For any X,Y ∈ L1, X ≤icx Y holds if and only if Y
d
= W + Z
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for some W,Z ∈ L1 such that W
d
= X and

E[Z|W ≥ x] ≥ 0 for all relevant values of x.

Proof. This corollary follows by applying Theorem 1 to the relation −X ≥ssd

−Y , and let −Y
d
= −W − Z with E[−Z| −W ≤ −x] ≤ 0 for all relevant values

of x.

Corollary 5. For any X,Y ∈ L1, the following are equivalent.

(i) X ≤cx Y ;

(ii) X ≥ssd Y and E[X] = E[Y ];

(iii) Y
d
= W + Z for some W,Z ∈ L1 such that W

d
= X and E[Z|W ] = 0.

(iv) Y
d
= W + Z for some W,Z ∈ L1 such that W

d
= X and

E[Z] = 0 and E[Z|W ≤ x] ≤ 0 for all relevant values of x;

(v) Y
d
= W + Z for some W,Z ∈ L1 such that W

d
= X and

E[Z] = 0 and E[Z|W ≥ x] ≥ 0 for all relevant values of x.

Proof. The equivalence between (i), (ii) and (iii) is well known; see e.g., Shaked

and Shanthikumar (2007, Theorems 3.A.4 and 4.A.35). The equivalence be-

tween (ii) and (iv) follows from Theorem 1. The equivalence between (iv) and

(v) follows by noting that for Z with E[Z] = 0,

E[Z|W ≤ x] ≤ 0 ∀x ⇐⇒ E[Z|W > x] ≥ 0 ∀x ⇐⇒ E[Z|W ≥ x] ≥ 0 ∀x,

where the last equivalence is argued by limx↑y{W > x} = {W ≥ y} and

limx↓y{W ≥ x} = {W > y}.

The implication (v) ⇒ (i) in Corollary 5 is also obtained by Li et al. (2016)

and Brown (2017). To compare (iv) and (v) with the classic characterization

(iii), if Z is a function of W , E[Z|W ] = 0 does not hold except for the trivial

case Z = 0, whereas E[Z|W ≤ x] ≤ 0 and E[Z|W ≥ x] ≥ 0 in (iv) and (v) can

hold for many models of Z, thus allowing for flexibility in applications.
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4 Two illustrative examples

We now illustrate our results with two simple examples, one with Gaussian

distributions and one with Bernoulli distributions. The purpose here is to com-

pare the classic condition (1) with our condition (2), and to see how much more

flexibility (2) offers. Note that both (1) and (2) are sufficient conditions for

W + Z ≤ssd W , but they may not be necessary. In both examples below, (2)

allows a larger range of parameters than (1).

Example 1 (Gaussian distributions). It is well known that for two normal

random variables X ∼ N(µX , σ2
X) and Y ∼ N(µY , σ

2
Y ), X ≥ssd Y holds if and

only if

µX ≥ µY and σ2
X ≤ σ2

Y (5)

see e.g., Example 4.A.46 of Shaked and Shanthikumar (2007). Suppose that

(W,Z) is jointly Gaussian with mean vector (µW , µZ) and covariance matrix(
σ2
W ρσWσZ

ρσWσZ σ2
Z

)
,

where ρ is the correlation coefficient. Since SSD is invariant up to location-scale

transforms, we assume µW = 0 and σW = 1 without loss of generality. We

analyze values of the parameters µZ ∈ R, σZ > 0 and ρ ∈ [−1, 1] obtained from

W + Z ≤ssd W , (1), and (2), respectively.

(a) Since E[W + Z] = µZ and var(W + Z) = 1 + σ2
Z + 2ρσZ , we have from (5)

that W + Z ≤ssd W if and only if µZ ≤ 0 and ρ ≥ −σZ/2.

(b) Using the conditional distribution of the bivariate Gaussian distribution, we

have E[Z|W ] = µZ + ρσZW . Condition (1) is µZ + ρσZW ≤ 0. Since the

support of W is the real line, this means µZ ≤ 0 and ρ = 0.

(c) Condition (2) is µZ + ρσZE[W |W ≤ x] ≤ 0 for all x ∈ R. If ρ ≥ 0, this

holds true if and only if µZ ≤ 0, because supx∈R E[W |W ≤ x] = E[W ] = 0.

If ρ < 0, this does not hold for any µZ and σZ , since E[W |W ≤ x] is

unbounded from below.

In this example, condition (2) is more flexible than (1), although it is stronger

than the equivalent condition for SSD. Table 1 summarizes these observations.

Example 2 (Bernoulli distributions). Consider a Bernoulli random variable

W with parameter 1/2 and a random variable Z distributed as W − c for a
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sufficient condition (1) µZ ≤ 0 and ρ = 0

our sufficient condition (2) µZ ≤ 0 and ρ ≥ 0

equivalent condition for SSD µZ ≤ 0 and ρ ≥ −σZ/2

Table 1: Conditions for W + Z ≤ssd W in Example 1 (Gaussian)

sufficient condition (1) c ≥ 1/2 and 1− 2c ≤ ρ ≤ 2c− 1

our sufficient condition (2) c ≥ 1/2 and 1− 2c ≤ ρ

equivalent condition for SSD c ≥ 1/2 and 1− 2c ≤ ρ

Table 2: Conditions for W + Z ≤ssd W in Example 2 (Bernoulli)

constant c ∈ R. Let ρ be the correlation coefficient of (W,Z). Note that ρ fully

determines the joint distribution of (W,Z), where the only degree of freedom is

P(W = Z + c = 1) = (1+ ρ)/4. We analyze values of the parameters c ∈ R and

ρ ∈ [−1, 1] obtained from W + Z ≤ssd W , (1), and (2), respectively.

(a) First, P(W + Z = 2 − c) = P(W + Z = −c) = (1 + ρ)/4 and P(W + Z =

1− c) = (1− ρ)/2. For W +Z ≤ssd W to hold, it is necessary and sufficient

that E[(W +Z)∧ t] ≤ E[W ∧ t] for all t ∈ R, where a∧ b = min{a, b}. Since
W + Z takes values only at three points −c, 1− c, 2− c, it suffices to check

these three points. Checking the point t = 2 − c yields c ≥ 1/2. Checking

the point t = 1 − c yields ρ ≥ 1 − 2c. Checking the point t = −c yields

c ≥ 0. Therefore, the equivalent condition is c ≥ 1/2 and ρ ≥ 1− 2c.

(b) We can directly compute E[Z|W ] = (1−ρ)/2−c+ρW . Therefore, condition

(1) means (1 − ρ)/2 − c ≤ 0 if ρ ≥ 0 and (1 − ρ)/2 − c + ρ ≤ 0 if ρ < 0.

Putting the two cases together, it is 1 − 2c ≤ ρ ≤ 2c − 1 (which implies

c ≥ 1/2).

(c) Note that E[W |W ≤ x] for relevant x takes value 0 or 1/2. Hence, condition

(2) is (1− ρ)/2− c ≤ 0 and (1− ρ)/2− c+ ρ/2 ≤ 0, and thus c ≥ 1/2 and

ρ ≥ 1− 2c.

In this example, condition (2) is more flexible than (1), and it turns out to be

necessary and sufficient. Table 2 summarizes these observations.

In both examples, the condition via (2) and the equivalent SSD condition

are both quite intuitive: the mean of Z is less than 0 (this is necessary for the
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SSD relation), and the correlation of (W,Z) cannot be too small, as negative

correlation reduces the aggregate risk. The condition via (1) does not have this

interpretation.

For a bi-atomic distribution of Z on two arbitrary points (more general than

Z in Example 2), we can check that condition (2) is equivalent to Z+W ≤ssd W

when the spread of Z is less than or equal to 1, and otherwise it is stronger than

necessary. We omit these calculations.

5 Risk management and insurance applications

In this section, we provide three applications of our main results: stochastic

improvers, insurance marketability, and stop-loss premium calculation.

5.1 Risk reducers and stochastic improvers

As a risk management tool, the concept of risk reducers is introduced by Cheung

et al. (2014) and further studied by He et al. (2016). A risk reducer for X ∈ L1

(Cheung et al. (2014)) is an additive payoff Z ∈ L1 such thatX+Z ≤cx X+E[Z].

Intuitively, risk reducers are random payoffs Z that make the combined payoff

X + Z less risky than the original wealth X adjusted by the mean of Z.

Inspired by this, we define a stochastic improver for X ∈ L1, that is, an

additive payoff Z ∈ L1 such that X+Z ≥ssd X. Recall that risk-averse expected

utility agents are modelled by increasing concave utility functions. The intuition

of a stochastic improver is that every risk-averse expected utility agent would

prefer X +Z over X, and thus the additive payoff Z improves the utility of the

agent with random wealth X.

Note that X+Z ≥ssd X+E[Z] is equivalent to X+Z ≤cx X+E[Z]. Hence,

for Z with E[Z] = 0, it is a risk reducer if and only if it is a stochastic improver.

However, for random variables with non-zero mean, these two concepts are gen-

erally incompatible. If E[Z] ≥ 0, then a risk reducer is necessarily a stochastic

improver, because

X + Z ≥ssd X + E[Z] ≥ssd X.

However, the converse is not true; a stochastic improver need not be a risk

reducer. For instance, for any nonnegative X ∈ L2 with positive variance, we

have X+X ≥ssd X but var(X+X) > var(X+E[X]); therefore X is a stochastic

improver for itself but not a risk reducer; in fact, X +X ≥cx X + E[X] holds

(Theorem 3.A.17 of Shaked and Shanthikumar (2007)), the opposite of being a

risk reducer. Moreover, a risk reducer Z is not a stochastic improver if E[Z] < 0.
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Denote by SX the set of all stochastic improvers for X ∈ L1, and let

NX = {Z ∈ L1 : E[Z|X + Z ≤ x] ≥ 0 for all relevant values of x}.

The definition of SSD implies that the set SX is convex. The following result

connects the above two sets by using our main result.

Proposition 6. For X ∈ L1, NX ⊆ SX .

Proof. It suffices to verify that for Z ∈ NX , X + Z ≥ssd X. Let W = X + Z.

Using Proposition 2, the condition E[−Z|W ≤ x] ≤ 0 for all relevant x is

sufficient for W ≥ssd W − Z, which is X + Z ≥ssd X.

One may wonder whether the converse statement to Proposition 6 also holds,

that is, SX = NX . The quick answer is negative. As we see in Table 1, for two

standard Gaussian random variables W and Z, W − Z ≤ssd W if and only if

the correlation coefficient between W and Z is smaller than or equal to 1/2.

By writing X = W − Z, the above condition is equivalent to Z ∈ SX . On the

other hand, Z ∈ NX if and only if the correlation coefficient between W and Z

is nonpositive. Therefore, Z ∈ SX but Z ̸∈ NX .

There is a special setting in which SX and NX coincide. A random vector

(X,Y ) is comonotonic if there exist increasing functions f and g such that

X = f(X + Y ) and Y = g(X + Y ) almost surely. He et al. (2016) studied risk

reducers Z when (X,X+Z) is comonotonic. Below we obtain a characterization

of stochastic improvers under the same assumption of comonotonicity.

Proposition 7. Let X,Z ∈ L1 be such that (X,X + Z) is comonotonic. Then

Z ∈ NX if and only if Z ∈ SX .

Proof. The “only-if” statement follows from Proposition 6. We show the “if”

statement below. Suppose Z ̸∈ NX . By definition of NX , there exists x ∈ R
such that E[Z|X + Z ≤ x] < 0 and P(X + Z ≤ x) > 0. Let A = {X + Z ≤ x}
and p = 1−P(A). Since E[Z] ≥ 0 as required by Z ∈ SX , we have P(A) ∈ (0, 1).

It follows that

E[X + Z|A] = E[X|A] + E[Z|A] < E[X|A]. (6)

Let W = −X. Since (X,X + Z) is comonotonic, (W,1A) is also comonotonic.

Therefore, for almost every ω ∈ A and ω′ ∈ Ac, we have W (ω) ≥ W (ω′). Such

A is called a p-tail event of W by Wang and Zitikis (2021); intuitively, it is a

set on which W takes larger values than on its complement. By definition, A is
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also a p-tail event of −X−Z = W −Z. Lemma A.7 of Wang and Zitikis (2021)

gives E[W |A] = ESp(W ) and E[W − Z|A] = ESp(W − Z). Putting the above

observations with (6), we have ESp(W −Z) > ESp(W ), and hence by Lemma 3

part (i), W − Z ≤icx W cannot hold. This means that X + Z ≥ssd X does not

hold, and Z ̸∈ SX . Thus, Z ∈ SX implies Z ∈ NX .

Applying Proposition 7 to Z−E[Z] with (X,X+Z) comonotonic, we obtain

that the following conditions are equivalent:

(a) Z − E[Z] is a stochastic improver for X;

(b) Z is a risk reducer for X;

(c) E[Z|X + Z ≤ x] ≥ E[Z] for all relevant x.

This result can be compared with He et al. (2016, Theorem 3.2), which states

that for Z that is σ(X)-measurable with (X,X +Z) comonotonic, (b) is equiv-

alent to

(d) E[Z|X ≤ x] ≥ E[Z] for all relevant x.

The condition (d) is called negative expectation dependence of Z on X (Wright

(1987)). Generally, the two conditions (c) and (d) are not equivalent even if

(X,X+Z) is comonotonic; for instance, if X is a constant, then (d) always holds

true but (c) never holds true unless Z is also a constant. Nevertheless, when Z

is σ(X)-measurable, (d) implies (c) because the set of events {{X ≤ x} : x ∈ R}
contains {{X + Z ≤ y} : y ∈ R} in this case. Therefore, Proposition 7 implies

Theorem 3.2 of He et al. (2016) as a special case when Z is σ(X)-measurable

and condition (d) holds.

An example of a stochastic improver satisfying the conditions in Proposition

7 is the purchase of a protective put in a Black–Scholes financial market. Below,

a random vector (X,Y ) is counter-monotonic if (X,−Y ) is comonotonic.

Example 3 (Protective put). Consider a continuous-time financial market

model with 0 interest rate on a time interval [0, T ]. For simplicity, we will

assume a Black–Scholes market with a stock price process (Xt)t∈[0,T ] that has

a nonpositive return rate and constant volatility. The assumption of nonposi-

tive return rate is unusual, but it is needed for the analysis below. For details

on the Black–Scholes market model used in this example, see Shreve (2004).

This market is complete, and thus any payoff can be priced with a risk-neutral

probability measure Q. For t ∈ [0, T ], let Ft = σ(Xs : s ≤ t) and Pt be the

time-t price of a put option that gives the payoff (K − XT )+ at maturity T ,
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where K > 0 represents the strike price. The strategy of holding the stock and

purchasing the put option is called a protective put. The Black–Scholes formula

gives that Pt is a decreasing function of Xt for each t ∈ [0, T ]. Let Zt = Pt−P0,

that is, the time-t value of purchasing the put option at time 0. Girsanov’s

theorem gives the explicit formula of Yt := E[dQ/dP|Ft], which guarantees that

Yt is an increasing function of Xt under the assumption of nonpositive return

rate. Hence,

P0 = EQ[Pt] = E
[
E
[
dQ

dP
|Ft

]
Pt

]
≤ E

[
dQ

dP

]
E[Pt] = E[Pt],

where the inequality is due to the counter-monotonicity of (Pt, Yt). Moreover,

Xt + Zt is an increasing function of Xt for t ∈ [0, T ], which can be seen from

e.g., the put-call parity. Using counter-monotononicity of (Pt, Xt + Zt), which

implies negative expectation dependence of Pt on Xt + Zt, we have, for any

relevant x ∈ R,

E[Zt|Xt + Zt ≤ x] = E[Pt − P0|Xt + Zt ≤ x] ≥ E[Pt]− P0 ≥ 0.

Therefore, the conditions in Proposition 7 hold for (Xt, Zt), and hence Zt is a

stochastic improver for Xt. In conclusion, for any risk-averse expected utility

agent, entering a protective put at time 0 improves the expected utility of the

future payoff at each time spot up to the maturity. Recall that this conclusion

only holds if the asset has a nonpositive return rate, making it undesirable for

most investors. The assumption of nonpositive return is replaced by that of a

nonnegative return if the investor has a short position of the stock. In that case,

a call option is a stochastic improver, following the above argument.

5.2 Widely marketable insurance contracts

Next, we consider an insurance market. Let L1
+ be the set of nonnegative

random variables in L1, and elements in L1
+ represent insurable losses in this

section. Cheung et al. (2014) introduced the concept of universal markability.

An indemnity schedule is a function I : R+ → R+ satisfying 0 ≤ I(x) ≤ x

for each x ≥ 0. An indemnity schedule I is universally marketable if for any

X ∈ L1
+, w ∈ R, and increasing concave utility function u, a solution P ∗ to the

equation

E[u(w −X + I(X)− P )] = E[u(w −X)], P ∈ R, (7)
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satisfies P ∗ ≥ E[I(X)]. Intuitively, it means that every risk-averse expected

utility agent with insurable loss X would accept to purchase the insurance con-

tract with payoff I(X) at some price higher than or equal to the mean of I(X);

the insurance price being no less than the mean of the payoff is a natural re-

quirement for the insurance provider to participate (see Arrow (1963)); later we

will discuss a few examples where this is violated. Cheung et al. (2014, Theorem

3) showed that an indemnity schedule is universally marketable if and only if it

is 1-Lipschitz.

Below, we offer a different angle. In an insurance market, the indemnity

schedule I and the loss X are not separately considered; for instance, the in-

demnity schedule should be different for property insurance and for health in-

surance. Therefore, instead of looking for I that is marketable for all X, it

is natural to look for I that is marketable for a specific X. Moreover, the in-

surance company may be concerned about a different premium principle than

the expected value (see e.g., Denneberg (1990) and Wang et al. (1997)). We let

P0 ≥ 0 represent the minimum acceptable price for the insurer for the indemnity

I; in the previous setting it is P0 = E[I(X)].

To incorporate the above two features, we say that an indemnity schedule

I is widely marketable for (X,P0) ∈ L1
+ × R+ if for any w ∈ R and increasing

concave utility function u, a solution P ∗ to (7) satisfies P ∗ ≥ P0. Here, we

choose the word “widely” to reflect that this requirement is less general than

universal marketability (which holds for all X), but it is still quite broad, as it

applies to all risk-averse expected utility agents. Our main results allow us to

study this property for flexible choices of P0, which is summarized in the next

proposition.

Proposition 8. Let I be an indemnity schedule, X ∈ L1
+, and P0 ∈ R+. If

E[I(X)|X − I(X) ≥ x] ≥ P0 for all relevant x, then I is widely marketable for

(X,P0).

Proof. Since the utility function u is increasing and concave, a solution P ∗ ≥ P0

to (7) exists for every u if −X + I(X) − P0 ≥ssd −X. By Proposition 2 with

W = −X + I(X)−P0 and Z = P0 − I(X), a sufficient condition for the desired

SSD relation is

E[P0 − I(X)| −X + I(X)− P0 ≤ x] ≤ 0 for all relevant values of x.

By rearranging terms, the above condition is equivalent to E[I(X)|X − I(X) ≥
x] ≥ P0 for all relevant x.
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Due to the specification of X and P0, the indemnity I in Proposition 8 need

not be continuous (see the example below), thus a wider class of indenmity

schedules than those in Theorem 3 of Cheung et al. (2014) can be included.

Example 4 (Fixed idenmity plan). Let the indenmity schedule I be given by

I(x) = 1{x≥1}. That is, an pre-determined payment of 1 is paid if the loss

reaches or exceeds 1. This kind of contract is called a fixed indemnity plan in

health insurance (e.g., a fixed amount is paid upon hospital admission). Clearly,

I is not continuous, but it satisfies all conditions to be an indemnity schedule.

Suppose that X is exponentially distributed with mean 1. We can compute, for

x ∈ [0, 1],

E[I(X)|X − I(X) ≥ x] = P(X ≥ 1|X − I(X) ≥ x)

=
P(X ≥ 1 and X − I(X) ≥ x)

P(X − I(X) ≥ x)

=
P(X ≥ 1 + x)

P(X ∈ [x, 1) ∪ [1 + x,∞))

=
e−(1+x)

e−(1+x) + e−x − e−1
=

1

1 + e− ex
≥ e−1.

Moreover, for x > 1, E[I(X)|X − I(X) ≥ x] = 1. Therefore, with any P0 ∈
[0, e−1], I is widely marketable for (X,P0). In particular, I is widely marketable

for (X,E[I(X)]), by noting E[I(X)] = e−1.

If P0 > E[I(X)], then the condition E[I(X)|X − I(X) ≥ x] ≥ P0 in Propo-

sition 8 cannot hold for all relevant x. Therefore, if the insurance company

charges more than the expected value of the insurance payment, then its con-

tract cannot be attractive to all risk-averse expected utility agents (although it

may still be attractive to a subset of such agents). This is because risk-averse

agents include risk-neutral ones, who do not want to pay anything more than

the expected insurance payment and are not the typical insurance buyers. This

may be seen as a limintation of the applicability of Proposition 8. The same lim-

intation applies to the formulation of Cheung et al. (2014), which relies on the

stronger condition P0 = E[I(X)]. On the positive side, the additional flexibility

of P0 provided by Proposition 8 allows an insurance company to quantitatively

understand how to attract all risk-averse expected utility agents for a particular

product, if they wish to, by lowering their premium to the level that the condi-

tion in Proposition 8 holds. This is relevant in the contexts of many different

insurance products, commercial promotions, and government subsidized insur-

ance. In each of these contexts, the insurance company may have an incentive
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to let the premium go below the expected insurance payment.

5.3 Stop-loss premium calculation

The SSD relation is also closely related to the stop-loss premium in insurance.

Let X ∈ L1
+ be an insurable loss. For a deductible level d ≥ 0, the insurance

contract that pays (X − d)+ is called a stop-loss insurance contract, which is

a popular form of insurance coverage; Arrow (1963) showed that the stop-loss

contract is the optimal form for a risk-averse insured and a risk-neutral insurer

under general conditions. The stop-loss premium of X with deductible d is

then defined as E[(X−d)+], widely studied in actuarial science; see e.g., Denuit

and Vermandele (1998) and Dhaene et al. (2002). Our results imply a simple

relation on the stop-loss premiums of two random losses.

Proposition 9. If X ∈ L1
+ and Z ∈ L1 satisfy E[Z|X ≥ x] ≥ 0 for all relevant

values of x, then for any deductible d ≥ 0, X+Z has a larger stop-loss premium

than X.

Proposition 9 is a straightforward consequence of Corollary 4 and the well-

known fact that the partial order over L1
+ induced by stop-loss premiums at all

deductible levels is equivalent to increasing convex order; see e.g., Dhaene et al.

(2002).

6 Further discussions

In this section we discuss some issues related to our results. We first present an

extension of the representation in Theorem 1.

In the formulation of Theorem 1, in addition to the additive payoff Z, we

relied on an extra random variable W
d
= X satisfying Y

d
= W + Z instead

of directly using W = Y − Z. This is needed in the classic representation

(called the Strassen theorem); see Theorem 4.A.5 of Shaked and Shanthikumar

(2007). The technical reason for such a construction is that the existence of W

satisfying certain distributional requirements depends on the choice of Y and

the underlying probability space. For instance, an independent noise to Y does

not exist if the σ-algebra of Y is equal to F .

In a recent paper, Nutz et al. (2022) established a refinement of the Strassen

theorem by allowing W = Y − Z in an arbitrary atomless probability space.

This refinement, based on the theory of martingale optimal transport, is highly

non-trivial. Using this result, we obtain a representation without involving an
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additional random variableW . Our results in the previous sections are presented

in their current forms for consistency with the classic theorem of Strassen in its

most familiar form. In what follows, X ≥st Y means P(X > x) ≥ P(Y > x) for

all x ∈ R.

Theorem 10. For any X,Y ∈ L1, X ≤cx Y holds if and only if X
d
= Y − Z

for some Z ∈ L1 such that E[Z] = 0 and

E[Z|Y − Z ≤ x] ≤ 0 for all relevant values of x. (8)

Moreover, X ≥ssd Y holds if and only if X ≥st Y − Z for some Z ∈ L1 such

that (8) holds.

Proof. The second equivalence is a direct consequence of the first one by decom-

posing ≥ssd into ≥st and ≤cx; see Theorem 4.A.6 of Shaked and Shanthikumar

(2007). Below we only show the first equivalence. The “if” statement follows

from Corollary 5 with W = Y −Z. For the “only if” statement, by Theorem 3.1

of Nutz et al. (2022), there exists W ∈ L1 such that W
d
= X and E[Y |W ] = W .

Let Z = Y −W . It follows that E[Y −W |W ] = 0 and hence E[Z|Y − Z] = 0.

Therefore, Z satisfies both X
d
= Y − Z and (8).

We make another remark regarding the our results and comonotonicity. As-

sume that X and Y in Theorem 1 are comonotonic. By choosing Z = Y −X

and W = X, condition (2) becomes

E[X|X ≤ x] ≥ E[Y |X ≤ x] for all relevant values of x.

If X is continuously distributed, then, using comonotonicity, this condition is∫ p

0

QX(t)dt ≤
∫ p

0

QY (t)dt for all p ∈ (0, 1),

which is a well-known equivalent condition for X ≥ssd Y (see Lemma 3).

We conclude the paper by discussing the interpretation of our representa-

tion results in relation to dependence concepts. As usual, W is interpreted as

the random wealth of a decision maker. In case E[Z] = 0, the condition (2)

is positive expectation dependence of Z on W (Wright (1987)); see Li et al.

(2016) for its generalizations to higher order. Therefore, the implication from

(2) to W + Z ≥cx W , which is Proposition 2 with E[Z] = 0, yields the intu-

itive interpretation that adding a positively expectation dependent pertubation

increases the risk. Generally speaking, adding a positively dependent (in some
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vague sense) noise is risky; see Dhaene et al. (2002) and Puccetti and Wang

(2015) for summaries on the intimate links between dependence concepts and

stochastic orders. However, if E[Z] ̸= 0, then (2) no longer has an interpretation

of positive dependence, as cov(W,Z) may be negative (see Example 2). Indeed,

(2) is strictly weaker than the combination of positive expectation dependence

and E[Z] ≤ 0. The resulting relation W+Z ≤ssd W now means that an additive

payoff with negative expected value in adverse scenarios of the random wealth

W (i.e., on events of the form {W ≤ x}), even if positively dependent, makes

the overall position less desirable for any decision makers who respect SSD, that

is, those who prefer more wealth to less and are risk averse.
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