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Abstract

We establish the first axiomatic theory for diversification indices using six intuitive ax-

ioms: non-negativity, location invariance, scale invariance, rationality, normalization, and

continuity. The unique class of indices satisfying these axioms, called the diversification

quotients (DQs), are defined based on a parametric family of risk measures. A further ax-

iom of portfolio convexity pins down DQ based on coherent risk measures. DQ has many

attractive properties, and it can address several theoretical and practical limitations of ex-

isting indices. In particular, for the popular risk measures Value-at-Risk and Expected

Shortfall, the corresponding DQ admits simple formulas and it is efficient to optimize in

portfolio selection. Moreover, it can properly capture tail heaviness and common shocks,

which are neglected by traditional diversification indices. When illustrated with financial

data, DQ is intuitive to interpret, and its performance is competitive against other diversi-

fication indices.

Keywords: Expected Shortfall, axiomatic framework, diversification benefit, portfolios,

quasi-convexity

1 Introduction

Portfolio diversification refers to investment strategies that spread out among many assets,

usually with the hope to reduce the volatility or risk of the resulting portfolio. A mathematical

formalization of diversification in a portfolio selection context was made by Markowitz (1952),

and some early literature on diversification includes Sharpe (1964), Samuelson (1967), Levy and

Sarnat (1970) and Fama and Miller (1972), amongst others.
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Although diversification is conceptually simple, the question of how to measure diversifica-

tion quantitatively is never well settled. An intuitive, but non-quantitative, approach is to simply

count the number of distinct stocks or industries of substantial weight in the portfolio; see e.g.,

Green and Hollifield (1992), Denis et al. (2002) and DeMiguel et al. (2009) in different contexts.

This approach is heuristic as it does not involve statistical or stochastic modeling. The second

approach is to compute a quantitative index of the portfolio model, based on e.g., the volatil-

ity, variance, an expected utility, or a risk measure; this idea is certainly along the direction of

Markowitz (1952). In addition, one may empirically address diversification by combining both

approaches; see e.g., Tu and Zhou (2011) for the performance of different diversified portfolio

strategies, D’Acunto et al. (2019) in the context of robo-advising, and Berger and Eeckhoudt

(2021) from the perspective of risk aversion and ambiguity aversion. Green and Hollifield (1992)

studied conditions under which the two approaches are roughly in-line with each other.

In this paper, we take the second approach by assigning a quantifier, called a diversification

index, to each modeled portfolio. Carrying the idea of Markowitz (1952), we start our journey

with a simple index, the diversification ratio (DR) based on the standard deviation (SD). For

a random vector X = (X1, . . . , Xn) representing future random losses and profits of individual

components in a portfolio in one period,1 DR based on SD is defined as

DRSD(X) =
SD (

∑n
i=1 Xi)∑n

i=1 SD(Xi)
; (1)

see Choueifaty and Coignard (2008). One can also replace SD by variance. Intuitively, with a

smaller value indicating a stronger diversification, the index DRSD quantifies the improvement of

the portfolio SD over the sum of SD of its components, and it has several convenient properties.

Nevertheless, it is well-known that SD is a coarse, non-monotone and symmetric measurement of

risk, making it unsuitable for many risk management applications, especially in the presence of

heavy-tailed and skewed loss distributions; see Embrechts et al. (2002) for thorough discussions.

Risk measures, in particular the Value-at-Risk (VaR) and the Expected Shortfall (ES),

are more flexible quantitative tools, widely used in both financial institutions’ internal risk

management and banking and insurance regulatory frameworks, such as Basel III/IV (BCBS

(2019)) and Solvency II (EIOPA (2011)). ES has many nice theoretical properties and satisfies

the four axioms of coherence (Artzner et al. (1999)), whereas VaR is not subadditive in general,

but it enjoys other practically useful properties; see Embrechts et al. (2014, 2018), Emmer et al.

(2015) and the references therein for more discussions on the issues of VaR versus ES.

Some indices of diversification based on various risk measures have been proposed in the

literature. For a given risk measure ϕ, an example of a diversification index is DR in (1) with

1We focus on the one-period losses to establish the theory. This is consistent with the vast majority of literature

on risk measures and decision models.
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SD replaced by ϕ; see Tasche (2007). For a review of diversification indices, see Koumou (2020).

We find several demerits of DR built on a general risk measure ϕ such as VaR or ES in Section 2.

A natural question is whether we can design a suitable index based on risk measures to quantify

the magnitude of diversification, which avoids the deficiencies of DR. Answering this and related

questions is the main purpose of this paper.

We take an axiomatic approach to find our desirable diversification indices. Axiomatic

approaches for risk and decision indices have been prolific in economic and statistical decision

theories; see e.g., the recent discussions of Gilboa et al. (2019) and the monographs Gilboa

(2009) and Wakker (2010). Closely related to diversification indices, risk measures (Artzner et

al. (1999); Frittelli and Rosazza Gianin (2002); Föllmer and Schied (2016)) and acceptability

indices (Cherny and Madan (2009)) also admit sound axiomatic foundation; the particular cases

of VaR and ES are studied by Chambers (2009) and Wang and Zitikis (2021).

In Section 3, as our main contributions, we establish the first axiomatic foundation of diver-

sification indices.2 This axiomatic theory leads to the class of diversification quotients (DQs), the

main object of this paper, which have an interpretation parallel to DR. Six simple axioms—non-

negativity, location invariance, scale invariance, rationality, normalization, and continuity—are

introduced and justified for their desirability in quantifying diversification. Their interpretations

are self-evident and they describe the basic requirements for a diversification index. In Theorem

1, these six axioms characterize DQ based on monetary and positive homogeneous risk measures.

A seventh axiom of portfolio convexity, planting an intuitive ordering over portfolio weights in

the index, further pins down DQ based on coherent risk measures in Theorem 2. Further,

Proposition 1 gives conditions for which such DQ has the range of a standard interval. Portfolio

convexity means that, with a given list of assets, combining a portfolio with a better-diversified

one does not lead to worse diversification than the original portfolio, reflecting a fundamental

principle in economics (Mas-Colell et al. (1995)). The financial interpretation of DQ is that

it quantifies the improvement of a risk-level parameter (such as the parameter in VaR or ES)

caused by pooling assets, and this is discussed in Section 3.4.

A detailed analysis of the properties of DQ based on general risk measures is discussed in

Section 4, which reveals that DQ has many appealing features, both theoretically and practically.

In addition to standard operational properties (Proposition 2), DQ has intuitive behaviour for

several benchmark portfolio scenarios (Theorem 3). Moreover, DQ allows for consistency with

stochastic dominance (Proposition 3) and a fair comparison across portfolio dimensions (Propo-

sition 4). We proceed to focus on VaR and ES in Section 5. It turns out that DQs based on VaR

2A different list of desirable axioms for diversification indices is studied by Koumou and Dionne (2022). Their

framework is mathematically different from ours as their diversification indices are mappings of portfolio weights,

instead of mappings of portfolio random vectors. They did not provide axiomatic characterization results.
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and ES have convenient alternative formulations (Theorem 4) and a natural range of [0, n] and

[0, 1], respectively (Proposition 5). Further, they report intuitive comparisons between normal

and t-models and it has the nice feature that it can capture heavy tails and common shocks.

In Section 6, efficient algorithms for DQs based on VaR and ES in portfolio optimization

based on empirical observations are obtained (Proposition 6). Our new diversification index

is applied to financial data in Section 7, where several empirical observations highlight the

advantages of DQ. We conclude the paper in Section 8 by discussing a number of implications

and promising future directions for DQ. Some additional results, proofs, and some omitted

numerical results are relegated to the E-Companion.

Notation. Throughout this paper, (Ω,F ,P) is an atomless probability space, on which

almost surely equal random variables are treated as identical. A risk measure ϕ is a mapping

from X to R, where X is a convex cone of random variables on (Ω,F ,P) representing losses faced

by a financial institution or an investor (i.e., a sign flip from Artzner et al. (1999)), and X is

assumed to include all constants (i.e., degenerate random variables). For p ∈ (0,∞), denote by

Lp = Lp(Ω,F ,P) the set of all random variables X with E[|X|p] < ∞ where E is the expectation

under P. Furthermore, L∞ = L∞(Ω,F ,P) is the space of all (essentially) bounded random

variables, and L0 = L0(Ω,F ,P) is the space of all random variables. Write X ∼ F if the random

variable X has the distribution function F under P, and X
d
= Y if two random variables X and

Y have the same distribution. Further, denote by R+ = [0,∞) and R = [−∞,∞]. Terms such

as increasing or decreasing functions are in the non-strict sense. For X ∈ L0, ess-sup(X) and

ess-inf(X) are the essential supremum and the essential infimum of X, respectively. Let n be a

fixed positive integer representing the number of assets in a portfolio, and write [n] = {1, . . . , n}.

It does not hurt to think about n ⩾ 2 although our results hold also (trivially) for n = 1.

The vector 0 represents the n-vector of zeros, and we always write X = (X1, . . . , Xn) and

Y = (Y1, . . . , Yn).

2 Preliminaries and motivation

The main object of the paper, a diversification index D is a mapping from Xn to R, which

is used to quantify the magnitude of diversification of a risk vector X ∈ Xn representing portfolio

losses. Our convention is that a smaller value of D(X) represents a stronger diversification in a

sense specified by the design of D.

As the evaluation of diversification is closely related to that of risk, diversification indices

in the literature are often defined through risk measures. An example of a diversification index

is the diversification ratio (DR) mentioned in the Introduction based on measures of variability
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such as the standard deviation (SD) and variance (var):

DRSD(X) =
SD (

∑n
i=1 Xi)∑n

i=1 SD(Xi)
and DRvar(X) =

var (
∑n

i=1 Xi)∑n
i=1 var(Xi)

,

with the convention 0/0 = 0. We refer to Rockafellar et al. (2006), Furman et al. (2017) and

Bellini et al. (2022) for general measures of variability. DRs based on SD and var satisfy the

three simple properties below, which can be easily checked.

[+] Non-negativity: D(X) ⩾ 0 for all X ∈ Xn.

[LI] Location invariance: D(X+ c) = D(X) for all c = (c1, . . . , cn) ∈ Rn and all X ∈ Xn.

[SI] Scale invariance: D(λX) = D(X) for all λ > 0 and all X ∈ Xn.

The first property, [+], simply means that diversification is measured in non-negative values,

where 0 typically represents a fully diversified or hedged portfolio (in some sense). The property

[LI] means that injecting constant losses or gains to components of a portfolio, or changing the

initial price of assets in the portfolio,3 does not affect its diversification index. The property

[SI] means that rescaling a portfolio does not affect its diversification index. The latter two

properties are arguably natural, although they are not satisfied by some diversification indices

used in the literature (see (2) below). A diversification index satisfying both [LI] and [SI] is

called location-scale invariant.

Next, we define the two popular risk measures in banking and insurance practice. The VaR

at level α ∈ [0, 1) is defined as

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− α}, X ∈ L0,

and the ES (also called CVaR, TVaR or AVaR) at level α ∈ (0, 1) is defined as

ESα(X) =
1

α

∫ α

0

VaRβ(X)dβ, X ∈ L1,

and ES0(X) = ess-sup(X) = VaR0(X), which may be ∞. The probability level α above is

typically very small, e.g., 0.01 or 0.025 in BCBS (2019); note that we use the “small α” conven-

tion. Artzner et al. (1999) introduced coherent risk measures ϕ : X → R as those satisfying the

following four properties.

[M] Monotonicity: ϕ(X) ⩽ ϕ(Y ) for all X,Y ∈ X with X ⩽ Y .4

3Recall that Xi represents the loss from asset i. Suppose that two agents purchased the same portfolio of

assets but at different prices of each asset. Denote by X the portfolio loss vector of agent 1. The portfolio loss

vector of agent 2 is X + c, where c is the vector of differences between their purchase prices. The two agents

should have the same level of diversification regardless of their purchase prices, as they hold the same portfolio.

4The inequality X ⩽ Y between two random variables X and Y is pointwise.
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[CA] Constant additivity: ϕ(X + c) = ϕ(X) + c for all c ∈ R and X ∈ X .

[PH] Positive homogeneity: ϕ(λX) = λϕ(X) for all λ ∈ (0,∞) and X ∈ X .

[SA] Subadditivity: ϕ(X + Y ) ⩽ ϕ(X) + ϕ(Y ) for all X,Y ∈ X .

ES satisfies all four properties above, whereas VaR does not satisfy [SA]. We say that a risk

measure is monetary if it satisfies [CA] and [M], and it is MCP if it satisfies [M], [CA] and [PH].

For discussions and interpretations of these properties, we refer to Föllmer and Schied (2016).

Some diversification indices are defined via risk measures, such as DR (e.g., Bürgi et al.

(2008), Mainik and Rüschendorf (2010) and Embrechts et al. (2015)) and the diversification

benefit (DB, e.g., Embrechts et al. (2009) and McNeil et al. (2015)). For a risk measure ϕ, DR

and DB based on ϕ are defined as5

DRϕ(X) =
ϕ (
∑n

i=1 Xi)∑n
i=1 ϕ(Xi)

and DBϕ(X) =

n∑
i=1

ϕ(Xi)− ϕ

(
n∑

i=1

Xi

)
. (2)

In contrast to DR, a larger value of DB represents a stronger diversification, but this convention

can be easily modified by flipping the sign to consider −DBϕ. By definition, DR is the ratio of

the pooled risk to the sum of the individual risks, and thus a measurement of how substantially

pooling reduces risk; similarly, DB measures the difference instead of the ratio.

DR has a number of deficiencies. First, the value of DRϕ is not necessarily non-negative,

violating [+]. Since the risk measure ϕ may take negative values,6 it would be difficult to

interpret the case where either the numerator or denominator in DR is negative, and this makes

optimization of DR troublesome. An example is a portfolio of credit default losses, where VaR

of individual losses is often 0 or negative but VaR of the portfolio loss is positive; see McNeil

et al. (2015, Example 2.25). Second, for common risk measures, DR violates [LI], meaning that

adding a risk-free asset changes the value of DR. Third, DR is not necessarily quasi-convex in

portfolio weights; this point is more subtle and will be explained later. In addition to the above

drawbacks, we also find that DR has wrong incentives for some simple models; for instance,

it suggests that an iid portfolio of t-distributed risks is less diversified than a portfolio with a

common shock and the same marginals; see Section 5.2 for details. Similarly to DR, the index

DB satisfies [LI] for ϕ satisfying [CA], but it does not satisfy [SI] for common risk measures, and

it may take both positive and negative values.

In financial applications, the risk measures VaR and ES are specified in regulatory docu-

ments such as BCBS (2019) and EIOPA (2011), and therefore it is beneficial to stick to VaR

5If the denominator in the definition of DRϕ(X) is 0, then we use the convention 0/0 = 0 and 1/0 = ∞.

6A negative value of a risk measure has a concrete meaning as the amount of capital to be withdrawn from a

portfolio position while keeping it acceptable; see Artzner et al. (1999).
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or ES as the risk measure when assessing diversification. Both DRVaRα and DRESα satisfy [SI],

but they do not satisfy [+] or [LI].7 It remains unclear how one can define a diversification index

based on VaR or ES satisfying these properties. In the remainder of the paper, we will introduce

and study a new index of diversification to bridge this gap.

3 Diversification indices: An axiomatic theory

In this section, we fix X = L∞ as the standard choice in the literature of axiomatic theory

of risk measures. In addition to [+], [LI] and [SI] introduced in Section 2, we propose four new

axioms. The first six axioms together characterize a new class of diversification indices, that is,

diversification quotients (DQ) based on MCP risk measures. With the seventh axiom of portfolio

convexity, we further pin down the class of DQ based on coherent risk measures.

3.1 Axioms of rationality, normalization, and continuity

We first present three axioms, which depend on a risk measure ϕ. These three axioms are

standard and weak in the sense that they do not impose a specific functional structure on D

other than some forms of monotonicity, normalization, and continuity.

For a risk measure ϕ, we say that two vectors X,Y ∈ Xn are ϕ-marginally equivalent if

ϕ(Xi) = ϕ(Yi) for each i ∈ [n], and we denote this by X
m≃ Y. In other words, if an agent

evaluates risks using the risk measure ϕ, then she would view the individual components of X

and those of Y as equally risky. Similarly, denote by X
m
⪰ Y if ϕ(Xi) ⩽ ϕ(Yi) for each i ∈ [n],

and by X
m
≻ Y if ϕ(Xi) < ϕ(Yi) for each i ∈ [n]. The other three desirable axioms are presented

below, and they are built on a given risk measure ϕ, such as VaR or ES, typically specified

exogenously by financial regulation.

[R]ϕ Rationality: D(X) ⩽ D(Y) for X,Y ∈ Xn satisfying X
m≃ Y and

∑n
i=1 Xi ⩽

∑n
i=1 Yi.

To interpret the axiom [R]ϕ, consider two portfolios X and Y satisfying X
m≃ Y. If further∑n

i=1 Xi ⩽
∑n

i=1 Yi holds, then the total loss from portfolio X is always less or equal to that

from portfolio Y, making the portfolio X safer than Y. Since the individual components in X

and those in Y are equally risky, the fact that X is safer in aggregation is a result of the different

diversification effects in X and Y, leading to the inequality D(X) ⩽ D(Y). This axiom is called

rationality because a rational agent always prefers to have smaller losses.

Next, we formulate our idea about normalizing representative values of the diversification

index. First, we assign the zero portfolio 0 the value D(0) = 0, as it carries no risk in every

7An impossibility result (Proposition EC.1) is presented in Appendix B, which suggests that it is not possible

to construct non-trivial diversification indices like DR and DB satisfying [+], [LI] and [SI].

7



sense.8 A natural benchmark of a non-diversified portfolio is one in which all components are

the same. Such a portfolio Xdu = (X, . . . ,X) will be called a duplicate portfolio, and we

may, ideally, wish to assign the value D(Xdu) = 1. However, since the zero portfolio 0 is

also duplicate but D(0) = 0, we will require the weaker assumption D(Xdu) ⩽ 1 for duplicate

portfolios.9 Lastly, we should understand for what portfolios D(X) ⩾ 1 needs to occur. We say

that a portfolio Xwd = (X1, . . . , Xn) is worse than duplicate, if there exists a duplicate portfolio

Xdu = (X, . . . ,X) such that Xwd
m
≻ Xdu and

∑n
i=1 Xi ⩾ nX. Intuitively, this means that each

component of Xwd is strictly less risky than X, but putting them together always incurs a larger

loss than nX; in this case, diversification creates nothing but a penalty to the risk manager,

and we assign D(Xwd) ⩾ 1.10 Existence of worse-than-duplicate portfolios is characterized in

Appendix C.1. Putting all of the considerations above, we propose the following normalization

axiom.

[N]ϕ Normalization: D(0) = 0, D(X) ⩽ 1 if X is duplicate, and D(X) ⩾ 1 if X is worse than

duplicate.

Finally, we propose a continuity axiom which is mainly for technical convenience.

[C]ϕ Continuity: For {Yk}k∈N ⊆ Xn and X ∈ Xn satisfying Yk m≃ X for each k, if (
∑n

i=1 Xi −∑n
i=1 Y

k
i )+

L∞

−→ 0 as k → ∞, then (D(X)−D(Yk))+ → 0.

The axiom [C]ϕ is a special form of semi-continuity. To interpret it, consider portfolios X

and Y that are marginally equivalent. If the sum of components of X is not much worse than

that of Y in L∞, then the axiom says that the diversification of X is not much worse than the

diversification of Y. This property allows for a special form of stability or robustness11 with

respect to statistical errors when estimating the distributions of portfolio losses.

One can check that the axioms [R]ϕ, [N]ϕ and [C]ϕ are satisfied by DRVaRα and DRESα if

we only consider positive portfolio vectors. The axioms are not satisfied by DRSD because SD is

not monotone and hence the inequalities
∑n

i=1 Xi ⩽
∑n

i=1 Yi and
∑n

i=1 Xi ⩾ nX used in [R]ϕ

and [N]ϕ are not relevant for SD.

8Indeed, the value of D(0) may be rather arbitrary; this is the case for DR where 0/0 occurs.

9Theorem 3 gives some mild conditions that yield D(Xdu) = 1 for the class D characterized in this section.

10Such situations may be regarded as diversification disasters; see Ibragimov et al. (2011).

11In the literature of statistical robustness, often a different metric than the L∞ metric is used; see Huber and

Ronchetti (2009) for a general treatment. Our choice of formulating continuity via the L∞ metric is standard in

the axiomatic theory of risk mappings on L∞.
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3.2 Portfolio convexity

The next axiom, different from the three above, imposes a natural form of convexity on the

diversification index. Portfolio diversification is intrinsically connected to convexity of ordering

relations. Quoting Mas-Colell et al. (1995, p. 44), “Convexity can also be viewed as the formal

expression of a basic inclination of economic agents for diversification.” For this purpose, we

propose an axiom of portfolio convexity in this section.

Let a random vectorX ∈ Xn represent losses from n assets and a vectorw = (w1, . . . , wn) ∈

∆n of portfolio weights, where ∆n is the standard n-simplex, given by

∆n = {x ∈ [0, 1]n : x1 + · · ·+ xn = 1} .

The total loss of the portfolio is w⊤X. We write w ⊙ X = (w1X1, . . . , wnXn), which is the

portfolio loss vector with the weight w. The portfolio convexity axiom is formulated below.

[PC] Portfolio convexity: The set {w ∈ ∆n : D(w ⊙X) ⩽ d)} is convex for each X ∈ Xn and

d ∈ R.

Intuitively, portfolio convexity means that, for a given vector X of assets, combining a

portfolio strategy with a better-diversified one on the same set of assets does not result in a

portfolio that is less diversified than the original portfolio. As convexity is the decision-theoretic

counterpart of diversification, [PC] is desirable for diversification indices.

Remark 1. Axiom [PC] is equivalent to quasi-convexity of w 7→ D(w ⊙ X) for each X ∈ Xn;

that is, D((λw + (1− λ)w′)⊙X) ⩽ D(w ⊙X) ∨D(w′ ⊙X) for all λ ∈ [0, 1], w,w′ ∈ ∆n and

X ∈ Xn.

Remark 2. Convexity or quasi-convexity of X 7→ D(X) is not natural or desirable. For instance,

combining two diversified portfolios (X,Y ) and (Y,X) may result in a duplicate portfolio; see

Example 3 in Appendix C.2. Convexity of w 7→ D(w ⊙X), which is stronger than [PC], is not

desirable either; see Example 4 in Appendix C.2.

The four axioms introduced above, together with the three in Section 2, lead to a class of

diversification indices, which we define next.

3.3 Characterization results

We first formally introduce the diversification index DQ relying on a parametric class of

risk measures, which will be characterized in two results below.

Definition 1. Let ρ = (ρα)α∈I be a class of risk measures indexed by α ∈ I = (0, α) with

α ∈ (0,∞] such that ρα is decreasing in α. For X ∈ Xn, the diversification quotient based on
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the class ρ at level α ∈ I is defined by

DQρ
α(X) =

α∗

α
, where α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi)

}
, (3)

with the convention inf(∅) = α.

We first characterize DQ based on MCP risk measures by six axioms without [PC].

Theorem 1. A diversification index D : Xn → R satisfies [+], [LI], [SI], [R]ϕ, [N]ϕ and [C]ϕ

for some MCP risk measure ϕ if and only if D is DQρ
α for some α and decreasing class ρ of

MCP risk measures. Moreover, in both directions of the above equivalence, it can be required that

ρα = ϕ.

Theorem 1 gives the first axiomatic characterization of diversification indices, to the best

of our knowledge. The proof techniques to show the important “only if” statement of Theorem

1 are based on a sophisticated analysis of an auxiliary mapping

R : X → [0,∞], R(X) = inf

{
D(X) : X ⩽

n∑
i=1

Xi, X
m≃ 0

}
,

and this is explained in Appendix A.

Next, we incorporate portfolio convexity into our axiomatic framework. For this purpose,

it is natural to build the diversification indices based on risk measures with convexity. When

formulated on monetary risk measures, convexity represents the idea that diversification reduces

the risk; see Föllmer and Schied (2016). For risk measures that are not constant additive, Cerreia-

Vioglio et al. (2011) argued that quasi-convexity is more suitable than convexity to reflect the

consideration of diversification; moreover, convexity and quasi-convexity are equivalent if [CA]

holds. A risk measure is linear if it satisfies ϕ(aX + bY ) = aϕ(X) + bϕ(Y ) for all X,Y ∈ X and

a, b ∈ R. Since linear risk measures correspond to expectations (under monotonicity), which do

not reflect diversification, we will focus on non-linear ones. The next theorem characterizes DQ

based on coherent risk measures.

Theorem 2. Suppose n ⩾ 4 and ϕ is a non-linear coherent risk measure. A diversification index

D : Xn → R satisfies [+], [LI], [SI], [R]ϕ, [N]ϕ, [C]ϕ and [PC] if and only if D is DQρ
α for some

α and decreasing class ρ of coherent risk measures with ρα = ϕ.

The conditions n ⩾ 4 and non-linearity of ϕ are essential to the proof of Theorem 2. They

are harmless for financial applications since typical portfolios have more than a few components,

and common risk measures are not linear.

Although portfolio convexity is crucial for diversification indices, making Theorem 2 a

central result, we present Theorem 1 separately for the following reasons. First, Theorem 1
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Table 1. Summary of axioms satisfied by diversification indices DRϕ, DBϕ and DQρ
α (with

ϕ = ρα), where X+ is the set of non-negative elements in X and α ∈ (0, 1)

Index Domain [+] [LI] [SI] [R]ϕ [N]ϕ [C]ϕ [PC]

DRVaRα and DRESα Xn × × √ × × × ×

DRVaRα Xn
+

√ × √ √ √ √ ×

DRESα Xn
+

√ × √ √ √ √ √

DRSD Xn √ √ √ × × × √

DRvar Xn √ √ √ × × × ×

−DBVaRα Xn × √ × √ × √ ×

−DBESα Xn × √ × √ × √ √

DQVaR
α Xn √ √ √ √ √ √ ×

DQES
α Xn √ √ √ √ √ √ √

reveals the fundamental properties needed to pin down the form of DQ and this helps to clarify

the role of [PC]. Second, the proof of Theorem 2 is technically built on Theorem 1. Third,

the class of DQ characterized by Theorem 1 allows for DQ based on VaR, which is popular in

financial regulation.

In the next proposition, we show that for sub-linear risk measures, DQ satisfies [PC] (thus,

the “if” direction of Theorem 2 does not need [M] and [CA] for ρ), and its range is [0, 1] under

mild conditions, avoiding non-degeneracy. A risk measure is sub-linear if it satisfies subadditivity

and positive homogeneity (equivalently, convexity and positive homogeneity).

Proposition 1. Let ρ = (ρβ)β∈I be a decreasing class of sub-linear risk measures and α ∈ I.

Then DQρ
α satisfies [PC]. If n ⩾ 3, ρα is non-linear and there exists X ∈ X such that β 7→ ρβ(X)

is strictly decreasing, then {DQρ
α(X) : X ∈ Xn} = [0, 1].

Given a sub-linear risk measure ρα, the conditions in Proposition 1 for {DQρ
α(X) : X ∈

Xn} = [0, 1] are mild and satisfied by e.g., DQ based on the family of ES. In contrast to DQ,

DR based on sub-linear risk measures may not satisfy [PC] since the denominator in (2) may

be negative. For a clear comparison, we summarize in Table 1 the axioms satisfied by the

diversification indices that appear in the paper.

3.4 Interpretation of DQ

DQ based on MCP or coherent risk measures have been characterized axiomatically, but we

have not interpreted the meaning of DQ in (3). For an interpretation, consider a decreasing class

of risk measures (ρβ)β∈I . The values of risk measures typically represent the capital requirement

11



Figure 1. Conceptual symmetry between DQ and DR

∑n
i=1 ρβ (Xi)

ρβ
(∑n

i=1 Xi

)
DRρα(X) =

ρα
(∑n

i=1 Xi

)∑n
i=1 ρα (Xi)

β

∑n
i=1 ρα(Xi)

α∗ α0

ρα
(∑n

i=1 Xi

)

DQρ
α(X) = α∗/α

of a risky asset, and hence β is interpreted as a parameter of risk level (as in VaRβ or ESβ),

that is, a smaller β means a larger capital requirement for the same risk. Notice from (3) that,

under mild conditions, α∗ is uniquely determined by

ρα∗

(
n∑

i=1

Xi

)
=

n∑
i=1

ρα(Xi).

Therefore, α∗ is the parameter of risk level achieved by pooling, assuming that the portfolio

maintains the same total capital requirement assessed by ρα when there is no pooling, that is,∑n
i=1 ρα(Xi). As DQρ

α(X) = α∗/α, DQ is the ratio of the risk-level parameters before and after

pooling. To summarize,

the index DQ quantifies the improvement of the risk-level parameter caused by pooling assets.

In the most relevant case ρα (
∑n

i=1 Xi) <
∑n

i=1 ρα(Xi), we present in Figure 1 the con-

ceptual symmetry between DQ, which measures the improvement by pooling in the horizontal

direction, and DR, which measures an improvement in the vertical direction. In particular, in

the case of VaR, DQ measures the probability improvement, whereas DR measures the quantile

improvement; see Theorem 4 and (7) below.

Remark 3. The idea of improvement of risk level is closely related to acceptability indices,

proposed by Cherny and Madan (2009). More precisely, an acceptability index for a loss X ∈ X

is defined by AIρ(X) = sup{γ ∈ R+ : ρ1/γ(X) ⩽ 0} for a decreasing class of coherent risk

measures (ργ)γ∈R+
, which has visible similarity to α∗ in (3); see Kováčová et al. (2020) for

optimization of acceptability indices. If ρ is a class of risk measures satisfying [CA], then

DQρ
α(X) =

1

α

(
AIρ

(
n∑

i=1

(Xi − ρα(Xi))

))−1

.
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Dhaene et al. (2012) studied several methods for capital allocation, among which the quantile al-

location principle computes a capital allocation (C1, . . . , Cn) such that
∑n

i=1 Ci = VaRα(
∑n

i=1 Xi)

and Ci = VaRcα(Xi) for some c > 0. The constant c appearing as a nuisance parameter in the

above rule has a visible mathematical similarity to DQVaR
α . Mafusalov and Uryasev (2018)

studied the so-called buffered probability of exceedance, which is the inverse of the ES curve

β 7→ ESβ(X) at a specific point x ∈ R; note that α∗ in (3) is obtained by inverting the ES curve

β 7→ ESβ(
∑n

i=1 Xi) at
∑n

i=1 ESα(Xi).

We close the section with discussions on the construction of DQ. First, DQ can be con-

structed from any monotonic parametric family of risk measures. All commonly used risk mea-

sures belong to a monotonic family, as this includes VaR, ES, expectiles (e.g., Bellini et al.

(2014)), mean-variance (e.g., Markowitz (1952) and Maccheroni et al. (2009)), and entropic risk

measures (e.g., Föllmer and Schied (2016)); some choices do not guarantee all axioms to hold.

Our results imply that using ES or expectiles guarantees all axioms and non-degeneracy for DQ.

In addition, there are ways to construct DQ from a single risk measure; see Appendix C.3. DQ

can also be axiomatized using preferences instead of risk measures; see Appendix C.4.

DQ can be used as a normative tool for measuring diversification. In this context, the choice

of the parametric family of risk measures is up to the user, and DQ serves as a versatile tool

that accommodates various risk attitudes. The choice of risk measures (e.g., VaR, ES) and the

determination of the confidence level (α) should be aligned with the risk tolerance, objectives, and

regulatory requirements of the decision maker. For instance, conservative investors, prioritizing

capital preservation, may gravitate towards the family of ES at a high level α, which reflects an

assessment of downside risk, whereas those with aggressive risk preferences may opt for VaR or

ES at a lower level α. Most generally, we would recommend the use of DQ based on ES, which

has a natural and strong connection to financial regulation and tail risk management, and the

parameter α allows for flexibility in the assessment of tail risk.

4 Properties of DQ

In this section, we study the properties of DQ defined in Definition 1. For the greatest

generality, we do not impose any properties of risk measures in the decreasing family ρ = (ρα)α∈I ,

i.e., the family ρ is not limited to MCP or coherent risk measures, so that our results can be

applied to more flexible contexts in which some of the seven axioms are relaxed. In this section,

X is not restricted to L∞.
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4.1 Basic properties

We first make a few immediate observations by the definition of DQ. From (3), we can see

that computing DQρ
α is to invert the decreasing function β 7→ ρβ(

∑n
i=1 Xi) at

∑n
i=1 ρα(Xi). For

the cases of VaR and ES, I = (0, 1), α∗ ∈ [0, 1], and DQ has simple formulas; see Theorem 4

in Section 5. For a fixed value of
∑n

i=1 ρα(Xi), DQ is larger if the curve β 7→ ρβ(
∑n

i=1 Xi) is

larger, and DQ is smaller if the curve β 7→ ρβ(
∑n

i=1 Xi) is smaller. This is consistent with our

intuition that a diversification index is large if there is little or no diversification, thus a large

value of the portfolio risk, and a diversification index is small if there is strong diversification.

In Theorem 1, we have seen that DQ satisfies [SI] and [LI] if ρ is a class of MCP risk

measures. These properties of DQ can be obtained based on a more general version of properties

[CA] and [PH] of risk measures, allowing us to include SD and the variance. The results are

summarized in Proposition 2, which are straightforward to check by definition.

[CA]m Constant additivity with m ∈ R: ϕ(X + c) = ϕ(X) +mc for all c ∈ R and X ∈ X .

[PH]γ Positive homogeneity with γ ∈ R: ϕ(λX) = λγϕ(X) for all λ ∈ (0,∞) and X ∈ X .

Proposition 2. Let ρ = (ρα)α∈I be a class of risk measures decreasing in α. For each α ∈ I,

(i) if ρβ satisfies [PH]γ with the same γ across β ∈ I, then DQρ
α satisfies [SI].

(ii) if ρβ satisfies [CA]m with the same m across β ∈ I, then DQρ
α satisfies [LI].

(iii) if ρα satisfies [SA], then DQρ
α takes value in [0, 1].

It is clear that [CA] is [CA]m with m = 1 and [PH] is [PH]γ with γ = 1. More properties

of DQs on the important families of VaR and ES will be discussed in Section 5. In particular,

we will see that the ranges of DQVaR
α and DQES

α are [0, n] and [0, 1], respectively.

Example 1 (Liquidity and temporal consistency). In risk management practice, liquidity and

time-horizon of potential losses need to be taken into account; see BCBS (2019, p.89). If liquidity

risk is of concern, one may use a risk measure with [PH]γ with γ > 1 to penalize large exposures

of losses. For such risk measures, DQρ
α remains scale invariant, as shown by Proposition 2. On

the other hand, if the risk associated to the loss X(t) at different time spots t > 0 is scalable by

a function f > 0 (usually of the order f(t) =
√
t in standard models such as the Black-Scholes),

then DQ is consistent across different horizons in the sense that DQρ
α(X(t)) = DQρ

α(X(s)) for

two time spots s, t > 0, given that ρβ(Xi(t)) = f(t)ρβ(Xi(1)) for i ∈ [n], t > 0 and β ∈ I.

Next, we explain that the values taken by DQ are consistent with our usual perceptions of

portfolio diversification. For a given risk measure ϕ and a portfolio risk vector X, we consider

the following three situations which yield intuitive values of DQ.
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(i) There is no insolvency risk with pooled individual capital, i.e.,
∑n

i=1 Xi ⩽
∑n

i=1 ϕ(Xi) a.s.;

(ii) diversification benefit exists, i.e., ϕ (
∑n

i=1 Xi) <
∑n

i=1 ϕ(Xi);

(iii) the portfolio relies on a single asset, i.e., X = (λ1X, . . . , λnX) for some X ∈ X and

λ1, . . . , λn ∈ R+. A duplicate portfolio relies on a single asset.

The above three situations receive special attention because they intuitively correspond to very

strong diversification, some diversification, and no diversification, respectively. Naturally, we

would expect DQ to be very small for (i), DQ to be smaller than 1 for (ii), and DQ to be 1 for

(iii). It turns out that the above intuitions all check out under very weak conditions that are

satisfied by commonly used classes of risk measures.

Before presenting this result, we fix some technical terms. For a class ρ of risk measures

ρα decreasing in α, we say that ρ is non-flat from the left at (α,X) if ρβ(X) > ρα(X) for

all β ∈ (0, α), and ρ is left continuous at (α,X) if α 7→ ρα(X) is left continuous. A random

vector (X1, . . . , Xn) is comonotonic if there exists a random variable Z and increasing functions

f1, . . . , fn on R such that Xi = fi(Z) a.s. for every i ∈ [n]. A risk measure is comonotonic-

additive if ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for comonotonic (X,Y ). Each of ES and VaR satisfies

comonotonic-additivity, as well as any distortion risk measures (Yaari (1987), Kusuoka (2001))

and signed Choquet integrals (Wang et al. (2020)). We denote by ρ0 = limα↓0 ρα. Note that

ρ0 = ess-sup for common classes ρ such as VaR, ES, expectiles, and entropic risk measures.

Theorem 3. For given X ∈ Xn and α ∈ I, if ρ is left continuous and non-flat from the left at

(α,
∑n

i=1 Xi), the following hold.

(i) Suppose ρ0 ⩽ ess-sup. If for ρα there is no insolvency risk with pooled individual capital,

then DQρ
α(X) = 0. The converse holds true if ρ0 = ess-sup.

(ii) Diversification benefit exists if and only if DQρ
α(X) < 1.

(iii) If ρα satisfies [PH] and X relies on a single asset, then DQρ
α(X) = 1.

(iv) If ρα is comonotonic-additive and X is comonotonic, then DQρ
α(X) = 1.

In (i), we see that if there is no insolvency risk with pooled individual capital, then

DQρ
α(X) = 0. In typical models, such as some elliptical models in Section 5.2,

∑n
i=1 Xi is un-

bounded from above unless it is a constant. Hence, for such models and ρ satisfying ρ0 = ess-sup,

DQρ
α(X) = 0 if and only if

∑n
i=1 Xi is a constant, thus full hedging is achieved. This is also con-

sistent with our intuition of full hedging as the strongest form of diversification. The existence

of diversification benefit is the main idea behind coherent risk measures of Artzner et al. (1999).

By (ii), DQ and DR agree on whether diversification benefit exists under mild conditions, and

this intuition is consistent with Artzner et al. (1999).
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Remark 4. We require ρ to be left continuous and non-flat from the left to make the inequality in

(ii) holds strictly. This requirement excludes, in particular, trivial cases like X = c ∈ Rn which

gives DQVaR
α (X) = 0 by definition. In case the conditions fail to hold, DQρ

α(X) < 1 may not

guarantee ρα (
∑n

i=1 Xi) <
∑n

i=1 ρα(Xi), but it implies the non-strict inequality ρα (
∑n

i=1 Xi) ⩽∑n
i=1 ρα(Xi), and thus the portfolio risk is not worse than the sum of the individual risks.

4.2 Stochastic dominance and dependence

In this section, we discuss the consistency of DQ with respect to stochastic dominance, as

well as the best and worst cases for DQ among all dependence structures with given marginal

distributions of the risk vector.

For a diversification index, monotonicity with respect to stochastic dominance yields con-

sistency with common decision-making criteria such as the expected utility model and the rank-

dependent utility model. A random variable X (representing random loss) is dominated by a

random variable Y in second-order stochastic dominance (SSD) if E[f(X)] ⩽ E[f(Y )] for all

decreasing concave functions f : R → R provided that the expectations exist, and we denote this

by X ⩽SSD Y .12 A risk measure ϕ is SSD-consistent if ϕ(X) ⩾ ϕ(Y ) for all X,Y ∈ X whenever

X ⩽SSD Y . SSD consistency is known as strong risk aversion in the classic decision theory lit-

erature (Rothschild and Stiglitz (1970)). SSD-consistent monetary risk measures, which include

all law-invariant convex risk measures such as ES, admit an ES-based characterization (Mao and

Wang (2020)).

Proposition 3. Assume that ρ = (ρα)α∈I is a decreasing class of SSD-consistent risk measures.

For X,Y ∈ Xn and α ∈ I, if
∑n

i=1 ρα(Xi) ⩽
∑n

i=1 ρα(Yi) and
∑n

i=1 Xi ⩽SSD

∑n
i=1 Yi, then

DQρ
α(X) ⩾ DQρ

α(Y).

Proposition 3 follows from the simple observation that{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi)

}
⊆

{
β ∈ I : ρβ

(
n∑

i=1

Yi

)
⩽

n∑
i=1

ρα(Yi)

}
,

and we omit the proof.

Assume ρ is a class of SSD-consistent risk measures (e.g., law-invariant convex risk mea-

sures). Proposition 3 implies that if the sum of marginal risks is the same for X and Y (this holds

in particular if X and Y have the same marginal distributions), then DQ is decreasing in SSD of

the total risk. The dependence structures which maximize or minimize DQ for X with specified

marginal distributions are discussed in Appendix D.1. For instance, a comonotonic portfolio has

the largest DQ (thus the smallest diversification) among all portfolios with the same marginal

distributions; this observation is related to Proposition 2 (iii) and Theorem 3 (iv).

12If X and Y represent gains instead of losses, then SSD is typically defined via increasing concave functions.
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4.3 Consistency across dimensions

All properties in the previous sections are discussed under the assumption that the dimen-

sion n ∈ N is fixed. Letting n vary allows for a comparison of diversification between portfolios

with different dimensions. In this section, we slightly generalize our framework by considering

a diversification index D as a mapping on
⋃

n∈N Xn; note that the input vector X of DQ and

DR can naturally have any dimension n. We present two more useful properties of DQ in this

setting. For X ∈ Xn and c ∈ R, (X, c) is the (n + 1)-dimensional random vector obtained by

pasting X and c, and (X,X) is the (2n)-dimensional random vector obtained by pasting X and

X.

[RI] Riskless invariance: D(X, c) = D(X) for all n ∈ N, X ∈ Xn and c ∈ R.

[RC] Replication consistency: D(X,X) = D(X) for all n ∈ N and X ∈ Xn.

Riskless invariance means that adding a risk-free asset into the portfolio X does not affect its

diversification. For instance, the Sharpe ratio of the portfolio does not change under such an

operation. Replication consistency means that replicating the same portfolio composition does

not affect D. Both properties are arguably desirable in most applications due to their natural

interpretations.

Proposition 4. Let ρ = (ρα)α∈I be a class of risk measures decreasing in α. For α ∈ I,

(i) If ρβ satisfies [CA]m with m ∈ R for β ∈ I and ρα(0) = 0 then DQρ
α satisfies [RI].

(ii) If ρβ satisfies [PH] for β ∈ I, then DQρ
α satisfies [RC].

We further show in Proposition EC.7 that if [RI] is assumed, then the only option for DR

is to use a non-negative ϕ (which is a subclass of DQ). Thus, if [RI] is considered as desirable,

then DQ becomes useful compared to DR as it offers more choices, and in particular, it works

for any classes ρ of monetary risk measures with ρα(0) = 0 including VaR and ES. Both DQ and

DR satisfy [RC] and [RI] for MCP risk measures.

Example 2. Let ϕ be a risk measure satisfying [CA], such as ESα or VaRα. Suppose that

ϕ(
∑n

i=1 Xi) = 1 and
∑n

i=1 ϕ(Xi) = 2, and thus DRϕ(X) = 1/2. If a non-random payoff of c > 0

is added to the portfolio, then DRϕ(X,−c) = (1 − c)/(2 − c), which turns to 0 as c ↑ 1, and

it becomes negative as soon as c > 1. Hence, DRϕ is improved or made negative by including

constant payoffs (either as a new asset or added to an existing asset). This creates problematic

incentives in optimization. On the other hand, DQ does not suffer from this problem due to [LI]

and [RI].
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5 DQ based on the classes of VaR and ES

Since VaR and ES are the two most common classes of risk measures in practice, we focus

on the theoretical properties of DQVaR
α and DQES

α in this section. We fix the parameter range

I = (0, 1), and we choose Xn to be (L0)n when we discuss DQVaR
α and (L1)n when we discuss

DQES
α , but all results hold true if we fix X = L1.

5.1 General properties

We first provide alternative formulations of DQVaR
α and DQES

α . The formulations offer

clear interpretations and simple ways to compute the values of DQs. The formula (6) below

can be derived from the optimization formulation for the buffered probability of exceedance in

Proposition 2.2 of Mafusalov and Uryasev (2018).

Theorem 4. For a given α ∈ (0, 1), DQVaR
α and DQES

α have the alternative formulas

DQVaR
α (X) =

1

α
P

(
n∑

i=1

Xi >

n∑
i=1

VaRα(Xi)

)
, X ∈ Xn, (4)

and

DQES
α (X) =

1

α
P

(
Y >

n∑
i=1

ESα(Xi)

)
, X ∈ Xn, (5)

where Y = ESU (
∑n

i=1 Xi) and U ∼ U[0, 1]. Furthermore, if P(
∑n

i=1 Xi >
∑n

i=1 ESα(Xi)) > 0,

then

DQES
α (X) =

1

α
min

r∈(0,∞)
E

[(
r

n∑
i=1

(Xi − ESα(Xi)) + 1

)
+

]
, (6)

and otherwise DQES
α (X) = 0.

As a first observation from Theorem 4, it is straightforward to compute DQVaR
α and DQES

α

on real or simulated data by applying (4) and (5) to the empirical distribution of the data.

Theorem 4 also gives DQVaR
α a clear economic interpretation as the improvement of insol-

vency probability when risks are pooled, making the discussion in Section 3.4 more concrete.

Suppose that X1, . . . , Xn are continuously distributed and they represent losses from n assets.

The total pooled capital is sα =
∑n

i=1 VaRα(Xi), which is determined by the marginals of X

but not the dependence structure. An agent investing only in asset Xi with capital computed by

VaRα has an insolvency probability α = P(Xi > VaRα(Xi)). On the other hand, by Theorem 4,

α∗ is the probability that the pooled loss
∑n

i=1 Xi exceeds the pooled capital sα. The improve-

ment from α to α∗, computed by α∗/α, is precisely DQVaR
α (X). From here, it is also clear that

DQVaR
α (X) < 1 is equivalent to P (

∑n
i=1 Xi > sα) < α.
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To compare DQVaR
α with DRVaRα , recall that the two diversification indices can be rewritten

as

DQVaR
α (X) =

P (
∑n

i=1 Xi > sα)

α
and DRVaRα(X) =

VaRα (
∑n

i=1 Xi)

sα
. (7)

From (7), we can see a clear symmetry between DQ, which measures the probability improve-

ment, and DR, which measures the quantile improvement. DQ and DR based on ES have a

similar comparison.

The range of DQ based on VaR is different from that based on ES, which is [0, 1] by

Proposition 1. We summarize them below.

Proposition 5. For α ∈ (0, 1) and n ⩾ 2, {DQVaR
α (X) : X ∈ Xn} = [0,min{n, 1/α}] and

{DQES
α (X) : X ∈ Xn} = [0, 1].

Both DQVaR
α and DQES

α take values on a bounded interval. In contrast, the diversification

ratio DRVaRα is unbounded, and DRESα is bounded above by 1 only when the ES of the total

risk is non-negative.

Remark 5. It is a coincidence that DQVaR
α for α < 1/n and DRvar both have a maximum value

n. The latter maximum value is attained by a risk vector (X/n, . . . ,X/n) for any X ∈ L2.

5.2 Capturing heavy tails and common shocks

In this section, we analyze three simple normal and t-models to illustrate some features of

DQ regarding heavy tails and common shocks in the portfolio models. Here, we only present

some key observations. A detailed study of DQs based on VaR and ES for elliptical distributions

and multivariate regularly varying models, including explicit formulas to compute DQ for these

models, can be found in Han et al. (2023).

Let Z = (Z1, . . . , Zn) be an n-dimensional standard normal random vector, and let ξ2 have

an inverse gamma distribution independent of Z. Denote by itn(ν) the joint distribution with n

independent t-marginals t(ν, 0, 1), where the parameter ν represents the degrees of freedom; see

McNeil et al. (2015) for t-models. The model Y = (Y1, . . . , Yn) ∼ itn(ν) can be stochastically

represented by

Yi = ξiZi, for i ∈ [n], (8)

where ξ1, . . . , ξn are iid following the same distribution as ξ, and independent of Z. In contrast, a

joint t-distributed random vector Y′ = (Y ′
1 , . . . , Y

′
n) ∼ t(ν,0, In) has a stochastic representation

Y′ = ξZ, that is,

Y ′
i = ξZi, for i ∈ [n]. (9)

In other words, Y′ is a standard normal random vector multiplied by a heavy-tailed common

shock ξ. All three models Z,Y,Y′ have the same correlation matrix, the identity matrix In.
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Table 2. DQs/DRs based on VaR, ES, SD and var, where α = 0.05, n = 10 and ν = 3; numbers

in bold indicate the most diversified among Z,Y,Y′ according to the index D

D DQVaR
α DQES

α DRVaRα DRESα DRSD DRvar

Z ∼ N(0, In) 2.0× 10−6 1.9× 10−9 0.3162 0.3162 0.3162 1

Y ∼ itn(3) 0.0235 0.0124 0.3569 0.2903 0.3162 1

Y′ ∼ t(3,0, In) 0.0502 0.0340 0.3162 0.3162 0.3162 1

D(Z) < D(Y) Yes Yes Yes No No No

D(Y) < D(Y′) Yes Yes No Yes No No

Table 3. DQs/DRs based on VaR, ES, SD and var, where α = 0.05, n = 10 and ν = 4; numbers

in bold indicate the most diversified among Z,Y,Y′ according to the index D

D DQVaR
α DQES

α DRVaRα DRESα DRSD DRvar

Z ∼ N(0, In) 2.0× 10−6 1.9× 10−9 0.3162 0.3162 0.3162 1

Y ∼ itn(4) 0.0050 0.0017 0.3415 0.2828 0.3162 1

Y′ ∼ t(4,0, In) 0.0252 0.0138 0.3162 0.3162 0.3162 1

D(Z) < D(Y) Yes Yes Yes No No No

D(Y) < D(Y′) Yes Yes No Yes No No

Because of the common shock ξ in (9), large losses from components of Y′ are more likely

to occur simultaneously, compared to Y in (8), which does not have a common shock. Indeed,

Y′ is tail dependent (Example 7.39 of McNeil et al. (2015)) whereas Y is tail independent. As

such, at least intuitively (if not rigorously), diversification for portfolio Y′ should be considered

as weaker than Y, although both models are uncorrelated and have the same marginals.13 By

the central limit theorem, for ν > 2, the component-wise average of Y (scaled by its variance)

is asymptotically normal as n increases, whereas the component-wise average of Y′ is always

t-distributed. Hence, one may intuitively expect the order D(Z) < D(Y) < D(Y′) to hold.

In Tables 2 and 3, we present DQ and DR for a few different models based on N(0, In),

t(ν,0, In), and itn(ν). We choose n = 10 and ν = 3 or 4,14 and thus we have five models in

total. As we see from Tables 2 and 3, DQs based on both VaR and ES report a lower value for

itn(ν) and a larger value for t(ν,0, In), meaning that diversification is weaker for the common

13On a related note, as discussed by Embrechts et al. (2002), correlation is not a good measure of diversification

in the presence of heavy-tailed and skewed distributions.

14Most financial asset log-loss data have a tail-index between [3, 5], which corresponds to ν ∈ [3, 5]; see e.g.,

Jansen and De Vries (1991).
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shock t-model (9) than the iid t-model (8). For the iid normal model, the diversification is

the strongest according to DQ. In contrast, DR sometimes reports that the iid t-model has a

larger diversification than the common shock t-model, which is counter-intuitive. In the setting

of both Tables 2 and 3, a risk manager governed by DQVaR
α would prefer the iid portfolio over

the common shock portfolio, but the preference is flipped if the risk manager uses DRVaRα . A

more detailed analysis on this phenomenon for varying α ∈ (0, 0.1] is presented in Figure EC.1

in Appendix E, and consistent results are observed.

6 Portfolio selection with DQ

Next, we focus on the optimal diversification problem

min
w∈∆n

DQVaR
α (w ⊙X) and min

w∈∆n

DQES
α (w ⊙X); (10)

recall that a smaller value of DQ means better diversification.15 Recall from Table 1 that

the first optimization is not quasi-convex and the second one is quasi-convex (Proposition 1).

We do not say that optimizing a diversification index has a decision-theoretic benefit; here we

simply illustrate the advantage of DQ in computation and optimization. Whether optimizing

diversification is desirable for individual or institutional investors is an open-ended question

which goes beyond the current paper; we refer to Van Nieuwerburgh and Veldkamp (2010),

Boyle et al. (2012) and Choi et al. (2017) for relevant discussions.

For the portfolio weight w, DQ based on VaR at level α ∈ (0, 1) is given by

DQVaR
α (w ⊙X) =

1

α
inf

{
β ∈ (0, 1) : VaRβ

(
n∑

i=1

wiXi

)
⩽

n∑
i=1

wiVaRα(Xi)

}
,

and DQ based on ES is similar. In what follows, we fix α ∈ (0, 1) and X = (X1, . . . , Xn) ∈ Xn,

where X is L0 for VaR and L1 for ES, as in Section 5. Write 0 = (0, . . . , 0) ∈ Rn and xρ
α =

(ρα(X1), . . . , ρα(Xn)) for a given risk measure ρ.

Proposition 6. Fix α ∈ (0, 1) and X ∈ Xn. The optimization of DQVaR
α (w ⊙X) in (10) can

be solved by

min
w∈∆n

P
(
w⊤ (X− xVaR

α

)
> 0
)
. (11)

15A possible alternative formulation to (10) is to use DQ as a constraint instead of an objective in the optimiza-

tion. This is mathematically similar to a risk measure constraint (e.g., Basak and Shapiro (2001), Rockafellar and

Uryasev (2002) and Mafusalov and Uryasev (2018)), but with a different interpretation, as DQ is not designed to

measure or control risk.
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Assuming P(Xi > ESα(Xi)) > 0 for each i ∈ [n], the optimization of DQES
α (w⊙X) in (10) can

be solved by the convex program

min
v∈Rn

+\{0}
E
[(
v⊤ (X− xES

α

)
+ 1
)
+

]
, (12)

and the optimal w∗ is given by v/∥v∥1.

Proposition 6 offers efficient algorithms to optimize DQVaR
α and DQES

α in real-data appli-

cations. The values of xVaR
α and xES

α can be computed by many existing estimators of the

individual losses (see e.g., McNeil et al. (2015)). In particular, a simple way to estimate these

risk measures is to use an empirical estimator. More specifically, if we have data X(1), . . . ,X(N)

sampled from X satisfying some ergodicity condition (being iid would be sufficient), then the

empirical version of the problem (11) is

minimize

N∑
j=1

1{w⊤(X(j)−x̂VaR
α )>0} over w ∈ ∆n, (13)

where x̂VaR
α is the empirical estimator of xVaR

α based on sample X(1), . . . ,X(N); see McNeil et

al. (2015). Write y(j) = X(j) − x̂VaR
α and zj = 1{w⊤y(j)>0} for j ∈ [n]. Problem (13) involves a

chance constraint (see e.g., Luedtke (2014) and Liu et al. (2016)). By using the big-M method

(see e.g., Shen et al. (2010)) via choosing a sufficient large M (e.g., it is sufficient if M is larger

than the components of y(j) for all j), (13) can be converted into the following linear integer

program:

minimize
∑N

j=1 zj

subject to w⊤y(j) −Mzj ⩽ 0,
∑n

i=1 wi = 1,

zj ∈ {0, 1}, wi ⩾ 0 for all j ∈ [N ] and i ∈ [n].

(14)

Similarly, the optimization problem (12) for DQES
α can be solved the empirical version of the

problem (12), which is a convex program:

minimize

N∑
j=1

max
{
v⊤
(
X(j) − x̂ES

α

)
+ 1, 0

}
over v ∈ R+, (15)

where x̂ES
α is the empirical estimator of xES

α based on sample X(1), . . . ,X(N). Both problems (14)

and (15) can be efficiently solved by modern optimization programs, such as CVX programming

(see e.g., Matmoura and Penev (2013)).

Additional linear constraints, such as those on budget or expected return, can be easily

included in (11)-(15), and the corresponding optimization problems can be solved similarly.

Tie-breaking needs to be addressed when working with (13) since its objective function

takes integer values. In dynamic portfolio selection, it is desirable to avoid adjusting positions

too drastically or frequently. Therefore, in the real-data analysis in Section 7.3, among tied

22



optimizers, we pick the closest one (in L1-norm ∥ · ∥1 on Rn) to a given benchmark w0, the

portfolio weight of the previous trading period. With this tie-breaking rule, we solve

minimize ∥w −w0∥1 over w ∈ ∆n subject to

N∑
j=1

1{w⊤y(j)>0} ⩽ m∗, (16)

where m∗ is the optimum of (13). A tie-breaking for (15) may need to be addressed similarly

since (15) is not strictly convex.

7 Numerical illustrations

To illustrate the performance of DQ, we collect historical asset prices from Yahoo Finance

and conduct three sets of numerical experiments based on the data. We use the period from

January 3, 2012, to December 31, 2021, with a total of 2518 observations of daily losses and

500 trading days for the initial training. In Section 7.1, we first compare DQs and DRs based

on VaR and ES. In Section 7.2, we calculate the values of DQVaR
α and DQES

α under different

selections of stocks. Finally, we construct portfolios by minimizing DQVaR
α , DQES

α and DRSD

and by the mean-variance criterion in Section 7.3.

7.1 Comparing DQ and DR

We first identify the largest stock in each of the S&P 500 sectors ranked by market cap in

2012. Among these stocks, we select the 5 largest stocks16 to build our portfolio. We compute

DQVaR
α , DQES

α , DRVaRα and DRESα on each day using the empirical distribution in a rolling

window of 500 days, where we set α = 0.05.

Figure 2 shows that the values of DQ and DR are between 0 and 1. This corresponds to the

observation in Theorem 3 that DQρ
α < 1 is equivalent to DRρα < 1. DQ has a similar temporal

pattern to DR in the above period of time, with a large jump when COVID-19 exploded, which

is more visible for DQ than for DR. We remind the reader that DQ and DR are not meant to

be compared on the same scale, and hence the fact that DQ has a larger range than DR should

be taken lightly. We also note that the values of DQVaR
α are in discrete grids. This is because

the empirical distribution function takes value in multiples of 1/N there N is the sample size

(500 in this experiment) and hence DQVaR
α takes the values k/(Nα) for an integer k; see (4). If

a smooth curve is preferred, then one can employ a smoothed VaR through linear interpolation.

This is a standard technique for handling VaR; see McNeil et al. (2015, Section 9.2.6) and Li

and Wang (2022, Remark 8 and Appendix B).

16XOM from ENR, AAPL from IT, BRK/B from FINL, WMT from CONS, and GE from INDU.
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Figure 2. DQs and DRs based on VaR and ES with α = 0.05
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7.2 DQ for different portfolios

In this section, we fix α = 0.05 and calculate the values of DQVaR
α and DQES

α under different

portfolio compositions of stocks. We consider portfolios with the following stock compositions:

(A) the two largest stocks from each of the 10 different sectors of S&P 500;

(B) the largest stock from each of 5 different sectors of S&P 500 (as in Section 7.1);

(C) the 5 largest stocks, AAPL, MSFT, IBM, GOOGL and ORCL, from the Information Tech-

nology (IT) sector;

(D) the 5 largest stocks, BRK/B, WFC, JPM, C and BAC, from the Financials (FINL) sector.

Figure 3. DQs based on VaR (left) and ES (right) with α = 0.05

2014 2015 2016 2017 2018 2019 2020 2021 2022

0

0.2

0.4

0.6

0.8

1

1.2

A B

C D

2014 2015 2016 2017 2018 2019 2020 2021 2022

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B

C D

24



We make a few observations from Figure 3. Both DQVaR
α and DQES

α provide similar com-

parative results. The order (A)⩽(B)⩽(C)⩽(D) is consistent with our intuition.17 First, portfolio

(A) of 20 stocks has the strongest diversification effect among the four compositions. Second,

portfolio (B) across 5 sectors has stronger diversification than (C) and (D) within one sector.

Third, portfolio (C) of 5 stocks within the IT sector has a stronger diversification than portfolio

(D) of 5 stocks within the FINL sector, consistent with the fact that the stocks in the IT sector

are less correlated. Moreover, DQVaR
α for the FINL sector is larger than 1 during some period

of time, which means that there is no diversification benefit if risk is evaluated by VaR. All DQ

curves based on ES show a large up-ward jump around the COVID-19 outbreak; such a jump

also exists for curves based on VaR but it is less pronounced.

7.3 Optimal diversified portfolios

In this section, we fix α = 0.1 and build portfolios via DQVaR
α , DQES

α , DRSD, and the

mean-variance criterion in the Markowitz (1952) model.18 The optimal portfolio problems using

DRSD and the Markowitz model are well studied in literature; see e.g. Choueifaty and Coignard

(2008). We compare these portfolio wealth with the equal weighted (EW) portfolio and the

simple buy-and-hold (BH) portfolio. For an analysis on the EW strategy, see DeMiguel et al.

(2009).

We apply the algorithms in Proposition 6 to optimize DQVaR
α and DQES

α , which are ex-

tremely fast. A tie-breaking is addressed for each objective as in (16). Minimization of DRSD

and the Markowitz model can be solved by existing algorithms. The initial wealth is set to 1,

and the risk-free rate is r = 2.84%, which is the 10-year yield of the US treasury bill in Jan

2014. The target annual expected return for the Markowitz portfolio is set to 10%. We optimize

the portfolio weights in each month with a rolling window of 500 days. That is, in each month,

roughly 21 trading days, starting from January 2, 2014, we use the preceding 500 trading days

to compute the optimal portfolio weights using the method described above. The portfolio is

rebalanced every month. We choose the 4 largest stocks from each of the 10 different sectors of

S&P 500 ranked by market cap in 2012 as the portfolio compositions (40 stocks in total). The

portfolio performance is reported in Figure 4, and the cumulative distribution of the sorted port-

folio weights, averaged over each month, is shown in Figure 5. Summary statistics, including the

annualized return (AR), the annualized volatility (AV), the Sharpe ratio (SR), and the average

17The observations here are consistent with those from applying DRSD (which is also a DQ) in the same setting;

see Appendix G.

18One may try other portfolio criteria other than mean-variance. For instance, Levy and Levy (2004) found

that portfolio strategies based on prospect theory perform similarly to the mean-variance strategies.
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Figure 4. Wealth processes for portfolios, 40 stocks, Jan 2014 - Dec 2021
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trading proportion (ATP), are reported in Table 4.19

From these results, we can see that the portfolio optimization strategies based on minimizing

DQ perform quite well, similarly to those based on DRSD, and better than the Markowitz

strategy. Moreover, ATP and portfolio weight distribution are similar across the strategies

based on the three diversification indices and the Markowitz strategy. In contrast, the EW and

BH strategies have more uniform portfolio weight distributions and smaller ATP, as anticipated.

We remark that it is not our intention to analyze which diversification strategy generates the

highest return, which is a challenging question that needs a separate study; also, we do not

suggest diversification should or should not be optimized in practice. The empirical results

here are presented to illustrate how our proposed diversification indices work in the context of

portfolio selection. More empirical results with some other datasets and portfolio strategies are

given in Appendix G, and the results show similar patterns.

8 Concluding remarks

In this paper, we put forward six axioms to jointly characterize a new class of indices of

diversification, and a seventh axiom to specialize this class. The new diversification index DQ has

favourable features both theoretically and practically, and it is contrasted with its competitors,

19ATP is an approximation of trading costs, and it is computed as the average of
∑T

t=1 |wt
i − wt−

i | over

i = 1, . . . , n, where T = 96 is the total number of months, wt
i is the portfolio weight of asset i at the beginning

of month t, and wt−
i is the portfolio weight of asset i at the end of month t− 1, with w1−

i set to w1
i . Note that

for BH, ATP is 0 because there is no trading, whereas for EW, ATP is positive, as rebalancing occurs at the end

of each month.

26



Figure 5. Cumulative portfolio weights, 40 stocks, Jan 2014 - Dec 2021
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Table 4. Annualized return (AR), annualized volatility (AV), Sharpe ratio (SR), and average

trading proportion (ATP) for different portfolio strategies from Jan 2014 to Dec 2021

% DQVaR
α DQES

α DRSD Markowitz EW BH

AR 12.56 14.59 14.36 7.93 11.91 12.88

AV 14.64 15.74 14.99 12.98 15.92 14.34

SR 66.40 74.66 76.85 39.22 56.95 70.02

ATP 19.29 14.75 15.61 18.79 4.43 0

in particular DR. At a high level, because of the conceptual symmetry in Figure 1 (see also (7)),

we expect both DQ and DR to have advantages and disadvantages in different applications,

and none should fully dominate the other. Nevertheless, we find many attractive features of

DQ through the results in this paper, which suggest that DQ may be a better choice in many

situations.

We summarize these features below. Some of these features are shared by DR, but many

are not. (i) DQ defined on a class of MCP risk measures can be uniquely characterized by six

intuitive axioms (Theorem 1). DQ defined on a class of coherent risk measures can be uniquely

characterized by further adding the axiom of portfolio convexity (Theorem 2). These two results

lay an axiomatic foundation for using DQ as a diversification index. (ii) DQ further satisfies

many properties for common risk measures (Propositions 1-4). These properties are not shared

by the corresponding DR. (iii) DQ is intuitive and interpretable with respect to dependence and

common perceptions of diversification (Theorem 3). (iv) DQ can be applied to a wide range of
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risk measures, such as the regulatory risk measures VaR and ES, as well as expectiles. In cases

of VaR and ES, DQ has simple formulas and convenient properties (Theorem 4 and Proposition

5). (v) Portfolio optimization of DQs based on VaR and ES can be computed very efficiently

(Proposition 6). (vi) DQ can be easily applied to real data and it produces results that are

consistent with our usual perception of diversification (Section 7).

Among the class of DQ, for most applications, we generally recommend the use of DQ

based on ES for the following reasons: (a) it satisfies all seven axioms of intuitive appeal; (b)

it has a simple optimization formula that is very convenient in portfolio optimization; (c) it is

closely connected to financial regulation as ES is the standard risk measure of Basel IV; (d) it

has a flexible parameter α that allows for reflecting the sensitivity to the tail risk of the decision

maker; (e) it is conceptually easy to interpret as the (usually unique) level β of the ES family

such that ESβ(
∑n

i=1 Xi) =
∑n

i=1 ESα(Xi).

We also mention a few interesting questions on DQ, which call for thorough future study.

(i) DQ is defined through a class of risk measures. It would be interesting to formulate DQ using

expected utility or behavioral decision models, to analyze the decision-theoretic implications of

DQ. For instance, DQ based on entropic risk measures can be equivalently formulated using

exponential utility functions. Alternatively, one may also build DQ directly from acceptability

indices (see Remark 3). (ii) To compute DQ, one needs to invert the decreasing function β 7→

ρβ(
∑n

i=1 Xi). In the case of VaR and ES, the formula for this inversion is simple (Theorem

4). For more complicated classes of risk measures, this computation may be complicated and

requires detailed analysis. (iii) For general distributions and risk measures other than VaR and

ES, finding analytical formulas or efficient algorithms for optimal diversification using either DQ

or DR is a challenging task. (iv) Further analysis of DQ without scale-invariance, such as those

built on star-shaped risk measures (Castagnoli et al. (2022)), may further generalize the domain

of application.
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Föllmer, H. and Schied, A. (2016). Stochastic Finance. An Introduction in Discrete Time. Fourth Edition.

Walter de Gruyter, Berlin.

Frittelli, M. and Rosazza Gianin, E. (2002). Putting order in risk measures. Journal of Banking and

Finance, 26,1473–1486.

Furman, E., Wang, R. and Zitikis, R. (2017). Gini-type measures of risk and variability: Gini shortfall,

capital allocation and heavy-tailed risks. Journal of Banking and Finance, 83, 70–84.

Gilboa, I. (2009). Theory of Decision under Uncertainty. Cambridge University Press, Cambridge.

Gilboa, I. Maccheroni, F., Marinacci, M. and Schmeidler, D. (2010). Objective and subjective rationality

in a multiple prior model. Econometrica, 78(2), 755–770.

Gilboa, I., Postlewaite, A. and Samuelson, L. (2019). What are axiomatizations good for? Theory and

Decision, 86(3–4), 339–359.

Green, R. C. and Hollifield, B. (1992). When will mean-variance efficient portfolios be well diversified?

The Journal of Finance, 47(5), 1785–1809.

30



Guan, Y., Jiao, Z. and Wang, R. (2022). A reverse Expected Shortfall optimization formula. North

American Actuarial Journal. DOI: 10.1080/10920277.2023.2249524.

Han, X., Lin, L. and Wang, R. (2023). Diversification quotients based on VaR and ES. Insurance:

Mathematics and Economics, 113, 185–197.

Huber, P. J. and Ronchetti E. M. (2009). Robust Statistics. Second ed., Wiley Series in Probability and

Statistics. Wiley, New Jersey. First ed.: Huber, P. (1980).

Ibragimov, R., Jaffee, D. and Walden, J. (2011). Diversification disasters. Journal of Financial Eco-

nomics, 99(2), 333–348.

Jakobsons, E., Han, X. and Wang, R. (2016). General convex order on risk aggregation. Scandinavian

Actuarial Journal, 2016(8), 713-740.

Jansen, D. W. and De Vries, C. G. (1991). On the frequency of large stock returns: Putting booms and

busts into perspective. The Review of Economics and Statistics, 73(1), 18–24.

Klibanoff, P., Marinacci, M. and Mukerji, S. (2005). A smooth model of decision making under ambiguity.

Econometrica, 73(6), 1849–1892.

Koumou, G. B. (2020). Diversification and portfolio theory: A review. Financial Markets and Portfolio

Management, 34(3), 267–312.

Koumou, G. B. and Dionne, G. (2022). Coherent diversification measures in portfolio theory: An ax-

iomatic foundation. Risks, 10(11), 205.
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Technical appendices

Outline of the appendices

We organize the technical appendices as follows. The proofs of the main results, Theorems

1–4, are presented in Appendix A. Additional results, discussions, and proofs of propositions are

presented in Appendices B (for Section 2), C (for Section 3), D (for Section 4), E (for Section

5), and F (for Section 6). Finally, in Appendix G, we present other examples for the optimal

portfolio problem that complement the empirical studies in Section 7.3.

A Proofs of Theorems 1–4

Proof of Theorem 1. For X ∈ Xn and a risk measure ϕ : X → R, denote by S(X) =
∑n

i=1 Xi

and Xϕ = (X1 − ϕ(X1), . . . , Xn − ϕ(Xn)).

We first verify the “if” statement. Using the definition of DQ and properties of MCP risk

measures, it is straightforward to verify [+], [LI], [SI]. Below we check the other three axioms.

To show [R]ϕ, for X,Y ∈ Xn such that X
m≃ Y and

∑n
i=1 Xi ⩽

∑n
i=1 Yi, we have∑n

i=1 ρα(Xi) =
∑n

i=1 ρα(Yi) and ρβ(
∑n

i=1 Xi) ⩽ ρβ(
∑n

i=1 Yi) for all β ∈ I. Hence,

DQρ
α(X) =

1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi)

}

⩽
1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Yi

)
⩽

n∑
i=1

ρα(Yi)

}
= DQρ

α(Y).

To show [N]ϕ, it is straightforward that DQρ
α(0) = 0. Let X = (X, . . . ,X) for any X ∈ X .

We have

DQρ
α(X) =

1

α
inf{β ∈ I : ρβ(nX) ⩽ nρα(X)} ⩽

α

α
= 1.

If Y
m
≻ (X, . . . ,X) and

∑n
i=1 Yi ⩾ nX, then

∑n
i=1 ρα(Yi) < nρα(X) ⩽ ρα(

∑n
i=1 Yi). Hence,

DQρ
α(Y) ⩾ 1.

To show [C]ϕ, for X ∈ Xn, we have a∗X = inf{β ∈ I : ρβ(S(Xρα)) ⩽ 0}. If a∗X = 0, it is

clear that DQρ
α(X) = 0 and [C]ϕ holds as DQρ

α(Y
k) ⩾ 0 for any Yk ∈ Xn. Now, we assume

a∗X > 0. For any 0 ⩽ β < a∗X, we have ρβ(S(Xρα
)) > 0. Since Yk m≃ X for each k and

(S(X)−S(Yk))+
L∞

−→ 0 as k → ∞, for any ε > 0, there exists K such that S(Xρα
)−S(Yk

ρα
) ⩽ ε

for all k ⩾ K. For any 0 < δ < a∗X, let 0 < ε < ρa∗
X−δ(S(Xρα)). It is clear that 0 < ε <

ρβ(S(Xρα
)) for all 0 < β < a∗X − δ. Hence, for all 0 < β < a∗X − δ, there exists K such that

0 < ρβ(S(Xρα
)) − ε ⩽ ρβ(S(Y

k
ρα
)) for all k ⩾ K, which implies a∗Yk ⩾ a∗X − δ. Therefore,

(DQρ
α(X)−DQρ

α(Y
k))+ → 0.
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Next, we show the “only if” statement. Assume that D : Xn → R satisfies [+], [LI], [SI],

[R]ϕ, [N]ϕ and [C]ϕ. Note that Xϕ
m≃ Yϕ for all X,Y ∈ Xn since ϕ(X − ϕ(X)) = 0 for any

X ∈ X . Hence, by using [R]ϕ, we know that S(Xϕ) = S(Yϕ) implies D(Xϕ) = D(Yϕ). Further,

by [LI], we have D(X) = D(Y) if S(Xϕ) = S(Yϕ). This means that D(X) is determined by

S(Xϕ). Define the mapping

R : X → [0,∞], R(X) = inf{D(X) : X ⩽ S(Xϕ), X ∈ Xn}, (EC.1)

with the convention inf ∅ = ∞. Next, we will verify several properties of R.

(a) R(S(Xϕ)) = D(X) for X ∈ Xn. The inequality R(S(Xϕ)) ⩽ D(X) follows directly from

(EC.1). To see the opposite direction of the inequality, suppose R(S(Xϕ)) < D(X). By

(EC.1), there exists Y ∈ Xn such that D(Y) < D(X) and S(Xϕ) ⩽ S(Yϕ). This contradicts

[R]ϕ of D.

(b) R(λX) = R(X) for all λ > 0 and X ∈ X . This follows directly from (EC.1), [SI] of D and

positive homogeneity of ϕ which gives (λX)ϕ = λXϕ.

(c) R(X) ⩽ R(Y ) for all X,Y ∈ X with X ⩽ Y . This follows directly from (EC.1).

(d) R(0) = 0. This follows directly from (EC.1) and D(0) = 0 in [N]ϕ.

(e) limc↓0 R(S(Xϕ)−c) = R(S(Xϕ)) forX ∈ Xn. LetX = S(Xϕ). By (c), we have limc↓0 R(X−

c) ⩽ R(X). Assume limc↓0 R(X−c) < R(X); that is, there exists δ > 0 such that R(X−c) <

R(X) − δ for all c > 0. Let ck = 1/k for k ∈ N. By (EC.1), there exists a sequence

{Yk}k∈N such that X − ck ⩽ S(Yk
ϕ) and D(Yk

ϕ) < D(Xϕ) − δ. For {Yk
ϕ}k∈N, we have

0 ⩽ (S(Xϕ) − S(Yk
ϕ))+ ⩽ ck, which implies (S(Xϕ) − S(Yk

ϕ))+
L∞

−→ 0 as k → ∞. By

[C]ϕ, we have (D(Xϕ) − D(Yk
ϕ))+ → 0; that is, for any δ > 0, there exists K ∈ N such

that D(Xϕ) − δ ⩽ D(Yk
ϕ) for all k > K, which is a contradiction. Therefore, we have

limc↓0 R(S(Xϕ)− c) = R(S(Xϕ)).

Let I = (0,∞). For each β ∈ (0,∞), let Aβ = {X ∈ X : R(X) ⩽ β}. Since R is monotone,

Aβ is a decreasing set; i.e., X ∈ Aβ implies Y ∈ Aβ for all Y ⩽ X. Moreover, Aβ is conic; i.e.,

X ∈ Aβ implies λX ∈ Aβ for all λ > 0. Moreover, we have Aβ ⊆ Aγ for β ⩽ γ, and Aβ ̸= ∅

since 0 ∈ A0.

Let ρβ(X) = inf{m ∈ R : X−m ∈ Aβ} for β ∈ I. Since ρβ is defined via a conic acceptance

set, (ρβ)β∈I is a class of MCP risk measures; see Föllmer and Schied (2016). It is also clear that

ρβ is decreasing in β. Note that X ∈ Aβ implies ρβ(X) ⩽ 0. Hence,

R(X) = inf{β ∈ I : R(X) ⩽ β} = inf{β ∈ I : X ∈ Aβ} ⩾ inf{β ∈ I : ρβ(X) ⩽ 0}.
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For X ∈ {S(Xϕ) : X ∈ Xn}, using (e), we have R(X −m) ⩽ β for all m > 0 implies R(X) ⩽ β.

Then we have

inf{β ∈ I : ρβ(X) ⩽ 0} = inf{β ∈ I : R(X −m) ⩽ β for all m > 0} ⩾ inf{β ∈ I : R(X) ⩽ β}.

Therefore, inf{β ∈ I : ρβ(S(Xϕ)) ⩽ 0} = inf{β ∈ I : R(S(Xϕ)) ⩽ β} = R(S(Xϕ)) for all

X ∈ Xn. Using (a), we get, for all X ∈ Xn,

D(X) = R(S(Xϕ)) = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ϕ(Xi)

}
.

Take a duplicate portfolio X = (X, . . . ,X). Together with [PH] of ρβ , D(X) ⩽ 1 implies

D(X, . . . ,X) = inf {β ∈ I : ρβ(X) ⩽ ϕ(X)} ⩽ 1,

which is equivalent to ρβ(X) ⩽ ϕ(X) for β > 1. For m < ϕ(X), take any Y = (Y1, . . . , Yn)

satisfying S(Yϕ) ⩾ X−m; such Y may not exist. Let Z = (Y1−ϕ(Y1)+m/n, . . . , Yn−ϕ(Yn)+

m/n), yielding
∑n

i=1 Zi =
∑n

i=1 Yi −
∑n

i=1 ϕ(Yi) +m ⩾ X and (Z1 . . . , Zn)
m
≻ (X/n, . . . ,X/n).

Hence, Z is worse than duplicate. By [LI] and [N]ϕ, we have D(Y) = D(Z) ⩾ 1. Since

D(Y) ⩾ 1 for all such Y, by (EC.1), we have R(X − m) ⩾ 1. The above observation implies

ρ1−ε(X) ⩾ ϕ(X) for any ε > 0 since ρ1−ε(X) = inf{m ∈ R : R(X −m) ⩽ 1− ε}. Therefore, we

get ρ1−ε ⩾ ϕ ⩾ ρ1+ε for all ε > 0. Let ρ̃1 = ϕ, and ρ̃β = ρβ for β ̸= 1. The class ρ̃ = (ρ̃β)β∈I

of MCP risk measures is decreasing in β by the above argument. Moreover, for any X ∈ X ,

since the two decreasing curves β 7→ ρβ(X) and β 7→ ρ̃β(X) differ at only one point, their (left)

inverses coincide, and we have, for all X ∈ Xn,

inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ϕ(Xi)

}
= inf

{
β ∈ I : ρ̃β

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρ̃1(Xi)

}
,

which implies D = DQρ̃
1 on Xn. A reparametrization via ρ̂β = ρ̃β/α leads to D = DQρ̂

α and

ρ̂α = ϕ.

The next two remarks are useful in the proof of Theorem 2.

Remark EC.1. In the proof of Theorem 1, the constructed class of risk measures (ρβ)β∈I exhibits

right continuity in β. This is established based on the condition
⋂

β>β∗ Aβ = Aβ∗ .

Remark EC.2. For a non-linear coherent risk measure ϕ, there exists Y ∈ X such that ϕ(Y ) +

ϕ(−Y ) > 0. Suppose otherwise. Since ϕ is coherent risk measure, we have ϕ(Y ) + ϕ(−Y ) ⩾ 0,

and this implies ϕ(Y )+ϕ(−Y ) = 0 for all Y ∈ X . We obtain ϕ(Y ) ⩽ ϕ(X+Y )+ϕ(−X) = ϕ(X+

Y )−ϕ(X) and ϕ(X+Y ) ⩽ ϕ(X)+ϕ(Y ) for any X,Y ∈ X . This implies ϕ(X+Y ) = ϕ(X)+ϕ(Y )

for any X,Y ∈ X , contradicting the non-linearity of ϕ.
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Proof of Theorem 2. For the“if” statement, since a coherent risk measure is also MCP, it follows

that DQρ
α satisfies [+], [LI], [SI], [R]ϕ and [N]ϕ, [C]ϕ by Theorem 1. Next, we show that DQρ

α

satisfies [PC].

For any X ∈ Xn, let rXβ : ∆n → R be given by

rXβ (w) = ρβ

(
n∑

i=1

wiXi

)
−

n∑
i=1

ρα (wiXi)

for β ∈ I. From [PH] of ρα, we have rXβ (w) = ρβ (
∑n

i=1 wiXi)−w⊤xρ
α. Convexity of ρβ implies

convexity of w 7→ rXβ (w). Hence, for the portfolio weight λw + (1− λ)v ∈ ∆n, DQ based on ρ

at level α ∈ (0, 1) is given by

DQρ
α((λw + (1− λ)v)⊙X) =

1

α
inf
{
β ∈ I : rXβ (λw + (1− λ)v) ⩽ 0

}
⩽

1

α
inf
{
β ∈ I : λrXβ (w) + (1− λ)rXβ (v) ⩽ 0

}
⩽

1

α
max

{
inf{β ∈ I : rXβ (w) ⩽ 0}, inf{β ∈ I : rXβ (v) ⩽ 0}

}
= max {DQρ

α(w ⊙X),DQρ
α(v ⊙X)} ,

which gives us quasi-convexity of w 7→ DQρ
α(w⊙X). By Remark 1, we have that DQρ

α satisfies

[PC].

For the “only if” statement, we have constructed a class of MCP risk measures ρ =

(ρβ)β∈(0,∞) with ρα = ϕ in the proof of Theorem 1. We will further show that ρ is a class

of convex risk measures using [PC].

For any λ ∈ [0, 1], w,v ∈ ∆n, X ∈ Xn and β ∈ (0,∞), if rXβ (w) ⩽ 0 and rXβ (v) ⩽ 0, then

we have DQρ
α(w⊙X) ⩽ β and DQρ

α(v⊙X) ⩽ β. By [PC], we have DQρ
α((λw+(1−λ)v)⊙X) ⩽

β. As discussed in Remark EC.1, ρβ is right-continuous for any X ∈ X . Hence, we have

rXβ (λw + (1− λ)v) ⩽ 0. That is, the set {w ∈ ∆n : rXβ (w) ⩽ 0} is convex for any X ∈ Xn and

β ∈ I.

Let Conv{X−ρα(X) : X ∈ X} be the convex hull of {X−ρα(X) : X ∈ X}. Next, we show

that Conv{X − ρα(X) : X ∈ X} = {X ∈ X : ρα(X) ⩽ 0}. For any Z ∈ Conv{X − ρα(X) : X ∈

X}, there exist (λ1, . . . , λn) ∈ ∆n and X1, . . . , Xn ∈ X such that Z =
∑n

i=1 λi(Xi − ρα(Xi)).

Since ρα is convex, we have

ρα(Z) = ρα

(
n∑

i=1

λi(Xi − ρα(Xi))

)
⩽

n∑
i=1

λiρα(Xi − ρα(Xi)) = 0.

Hence, Conv{X − ρα(X) : X ∈ X} ⊆ {X ∈ X : ρα(X) ⩽ 0}.

On the other hand, since ρα is a non-linear coherent risk measure, as noted in Remark

EC.2, there exists Y0 such that ρα(Y0) + ρα(−Y0) > 0. Let Y1 = 1 − Y0. For any Z ∈ X with

ρα(Z) ⩽ 0, we can find θ > 0 such that

Z = (1− 2λ)(X − ρα(X)) + λ(θY0 − ρα(θY0)) + λ(θY1 − ρα(θY1))
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with λ = −ρα(Z)/(θρα(Y0) + θρα(−Y0)) and X = 1/(1−2λ)Z. It is clear that λ ∈ [0, 1/2] holds

if θ is sufficiently large. Hence, Z ∈ Conv{X−ρα(X) : X ∈ X}. This implies Conv{X−ρα(X) :

X ∈ X} ⊇ {X ∈ X : ρα(X) ⩽ 0}.

Therefore, for any X,Y ∈ X with ρα(X) ⩽ 0 and ρα(Y ) ⩽ 0, we can find w,v ∈ ∆n

and X ∈ Xn with n ⩾ 4 such that X = w⊤(X − xρ
α) and Y = v⊤(X − xρ

α). Since rβ(w) =

ρβ
(
w⊤(X− xρ

α)
)
, we have ρβ(X) = rXβ (w), ρβ(Y ) = rXβ (v) and ρβ(λX+(1−λ)Y ) = rXβ (λw+

(1− λ)v). If ρβ(X) ⩽ 0 and ρβ(Y ) ⩽ 0, we have rXβ (λw + (1− λ)v) ⩽ 0 for any λ ∈ [0, 1]; that

is ρβ(λX + (1 − λ)Y ) ⩽ 0. Hence, ρβ is quasi-convex. Since ρβ is MCP, we further have ρβ is

coherent.

Proof of Theorem 3. (i) As
∑n

i=1 Xi ⩽
∑n

i=i ρα(Xi) a.s. and ρ0 ⩽ ess-sup, it is clear that α∗ = 0

in (3), which implies DQρ
α(X) = 0. Conversely, if DQρ

α(X) = 0, then α∗ = 0. By definition of

ρ0 and DQρ
α, this implies ρ0(

∑n
i=1 Xi) ⩽

∑n
i=1 ρα(Xi), and hence

∑n
i=1 Xi ⩽

∑n
i=1 ρα(Xi) a.s.

(ii) We first show the “only if” statement. As ρ is left continuous and non-flat from the left

at (α,
∑n

i=1 Xi) and
∑n

i=1 ρα(Xi)− ρα (
∑n

i=1 Xi) > 0, there exists δ > 0 such that

ρβ

(
n∑

i=1

Xi

)
− ρα

(
n∑

i=1

Xi

)
<

n∑
i=1

ρα(Xi)− ρα

(
n∑

i=1

Xi

)

for all β ∈ (α− δ, α). Hence, we have α∗ ⩽ α− δ < α, which leads to DQρ
α(X) < 1.

Next, we show the “if” statement. As DQρ
α(X) < 1, we have α > α∗. By (3), there exists

β ∈ (α∗, α) such that
n∑

i=1

ρα(Xi) ⩾ ρβ

(
n∑

i=1

Xi

)
.

Because ρ is non-flat from the left at (α,
∑n

i=1 Xi), we have

n∑
i=1

ρα(Xi) ⩾ ρβ

(
n∑

i=1

Xi

)
> ρα

(
n∑

i=1

Xi

)
.

(iii) If ρα satisfies [PH], for X = (λ1X, . . . , λnX) where λ1, . . . , λn ⩾ 0, we have

α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

λiX

)
⩽

n∑
i=1

λiρα(X)

}
.

It is clear that ρα (
∑n

i=1 λiX) = (
∑n

i=1 λi)ρα(X). Together with the non-flat condition and

ρβ (
∑n

i=1 λiX) >
∑n

i=1 λiρα(X) for all β < α, we have α∗ = α, and thus DQρ
α(X) = 1.

(iv) If ρα is comonotonic-additive and X is comonotonic, then

α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα(Xi) = ρα

(
n∑

i=1

Xi

)}
,

which, together with the non-flat condition, implies that α∗ = α, and thus DQρ
α(X) = 1.
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Proof of Theorem 4. We first show (4). For any X ∈ X , t ∈ R and α ∈ (0, 1), by Lemma 1 of

Guan et al. (2022), P(X > t) ⩽ α if and only if VaRα(X) ⩽ t. Hence,

P

(
n∑

i=1

Xi >

n∑
i=1

VaRα(Xi)

)
= inf

{
β ∈ (0, 1) : P

(
n∑

i=1

Xi >

n∑
i=1

VaRα(Xi)

)
⩽ β

}

= inf

{
β ∈ (0, 1) : VaRβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi)

}
,

and (4) follows. The formula (5) for DQES
α follows from a similar argument to (4) by noting that

Y is a random variable with VaRα(Y ) = ESα(
∑n

i=1 Xi).

Next, we show the last statement of the theorem. If P(
∑n

i=1 Xi >
∑n

i=1 ESα(Xi)) = 0,

then DQES
α (X) = 0 by Theorem 3 (i).

Below, we assume P(
∑n

i=1 Xi >
∑n

i=1 ESα(Xi)) > 0. The formula (6) is very similar to

Proposition 2.2 of Mafusalov and Uryasev (2018), where we additionally show that the minimizer

to (6) is not 0. Here we present a self-contained proof based on the well-known formula of ES

(Rockafellar and Uryasev (2002)),

ESβ(X) = min
t∈R

{
t+

1

β
E [(X − t)+]

}
, for X ∈ X and β ∈ (0, 1).

Using this formula, we obtain, by writing X ′
i = Xi − ESα(Xi) for i ∈ [n],

DQES
α (X) =

1

α
inf

{
β ∈ (0, 1) : ESβ

(
n∑

i=1

Xi

)
−

n∑
i=1

ESα(Xi) ⩽ 0

}

=
1

α
inf

{
β ∈ (0, 1) : min

t∈R

{
t+

1

β
E

[(
n∑

i=1

X ′
i − t

)
+

]}
⩽ 0

}

=
1

α
inf

{
β ∈ (0, 1) :

1

β
E

[(
n∑

i=1

X ′
i − t

)
+

]
⩽ −t for some t ∈ R

}

=
1

α
inf

{
β ∈ (0, 1) : E

[(
r

n∑
i=1

X ′
i + 1

)
+

]
⩽ β for some r ∈ (0,∞)

}

=
1

α
inf

r∈(0,∞)
E

[(
r

n∑
i=1

X ′
i + 1

)
+

]
.

Let f : [0,∞) → [0,∞), r 7→ E[(r
∑n

i=1 X
′
i + 1)

+
]. It is clear that f(0) = 1. Moreover,

f(r) ⩾ rE
[
(X ′

i)+
]
→ ∞ as r → ∞.

By Theorem 1 (iii), we have DQES
α (X) ⩽ 1, and hence infr∈(0,∞) f(r) ⩽ α < 1. The continuity

of f yields infr∈(0,∞) f(r) = minr∈(0,∞) f(r), and thus (6) holds.

B Additional results for Section 2

In this appendix, we present an impossibility result showing a conflicting nature of the three

natural properties [+], [LI] and [SI] for some diversification indices defined via risk measures. As
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mentioned in Section 2, the most commonly used diversification indices depend on X through

its values assessed by some risk measure ϕ. That is, given a risk measures ϕ and a portfolio X,

the diversification index can be written as

D(X) = R

(
ϕ

(
n∑

i=1

Xi

)
, ϕ(Xi), . . . , ϕ(Xn)

)
for some function R : Rn+1 → R. (EC.2)

We will say that D is ϕ-determined if (EC.2) holds. Often, one may further choose R so that

D(X) decreases in ϕ(
∑n

i=1 Xi) and increases in ϕ(Xi) for each i ∈ [n], for a proper interpretation

of measuring diversification.

We show that a diversification index based on an MCP risk measure, such as VaR or ES

satisfying all three properties [+], [LI] and [SI] can take at most 3 different values. In this case,

we will say that the diversification index D is degenerate. In fact, this result can be extended

to more general properties [PH]γ and [CA]m with γ ∈ R and m ∈ R of the risk measure ϕ, with

definitions given at the beginning of Section 4.

Proposition EC.1. Fix n ⩾ 1. Suppose that a risk measure ϕ satisfies [PH]γ and [CA]m with

γ ∈ R and m ̸= 0. A diversification index D is ϕ-determined and satisfies [+], [LI] and [SI] if

and only if for all X ∈ Xn,

D(X) = C11{d<0} + C21{d=0} + C31{d>0}, (EC.3)

where d = DBϕ(X) =
∑n

i=1 ϕ(Xi)− ϕ (
∑n

i=1 Xi) for some C1, C2, C3 ∈ R+ ∪ {∞}.

We first present a lemma to prepare for the proof of Proposition EC.1.

Lemma EC.1. A function R : Rn+1 → R satisfies, for all x0 ∈ R, x = (x1, . . . , xn) ∈ Rn,

c = (c1, . . . , cn) ∈ Rn and λ > 0, (i) R (x0 +
∑n

i=1 ci,x+ c) = R(x0,x) and (ii) R(λx0, λx) =

R(x0,x), if and only if there exist C1, C2, C3 ∈ R such that

R(x0,x) = C11{r<0} + C21{r=0} + C31{r>0}, (EC.4)

where r =
∑n

i=1 xi − x0, for all x0 ∈ R and x ∈ Rn.

Proof. First, we show that R in (EC.4) satisfies (i) and (ii). Assume r < 0. For any c ∈ Rn and

λ > 0, it is clear that x0 +
∑n

i=1 ci <
∑n

i=1(xi + ci) and λx0 <
∑n

i=1 λxi. Therefore, (i) and (ii)

are satisfied. The cases of r = 0 and r > 0 follow by the same argument.

Next, we verify the “only if” part. Given x = (x1, . . . , xn) and y = (y1, . . . , yn) satisfying∑n
i=1 xi =

∑n
i=1 yi, let c = y − x. For any x0 ∈ R, we have

∑n
i=1 ci =

∑n
i=1(yi − xi) = 0.

Therefore,

R(x0,x) = R

(
x0 +

n∑
i=1

ci,x+ c

)
= R(x0,y).
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Thus, the value of R(x0,x) only depends on x0 and
∑n

i=1 xi. Let R̃ : R2 → R be a function such

that R̃ (x0,
∑n

i=1 xi) = R(x0,x). From the properties of R, R̃ satisfies R̃(a+ c, b+ c) = R̃(a, b)

for any c ∈ R, and R̃(λa, λb) = R(a, b) for any λ > 0. Hence, we have

R̃(a, b) = R̃(a− b, 0) = R̃(1, 0) for a > b,

R̃(a, b) = R̃(0, b− a) = R̃(0, 1) for a < b,

and

R̃(a, b) = R̃(a− a, b− a) = R̃(0, 0) for a = b.

Let C1 = R̃(1, 0), C2 = R̃(0, 0) and C3 = R̃(0, 1). We have R(x0,x) = R̃(x0,
∑n

i=1 xi), which

has the form in (EC.4).

Proof of Proposition EC.1. Let us first prove sufficiency. By definition, D satisfies [+] and D is

ϕ-determined. Next, we prove D satisfies [LI] and [SI]. Similarly to Lemma EC.1, we only prove

the case d < 0. It is straightforward that

ϕ

(
n∑

i=1

λXi

)
= λγϕ

(
n∑

i=1

Xi

)
< λγ

n∑
i=1

ϕ(Xi) =

n∑
i=1

ϕ(λXi),

and

ϕ

(
n∑

i=1

(Xi + ci)

)
= ϕ

(
n∑

i=1

Xi

)
+m

n∑
i=1

ci <

n∑
i=1

(ϕ(Xi) +mci) =

n∑
i=1

ϕ(Xi + ci).

Thus, we have D(λX) = C1 and D(X+ c) = C1, which completes the proof of sufficiency.

Next, we show the necessity. Define the set

A =

{(
ϕ

(
n∑

i=1

Xi

)
, ϕ(X1), . . . , ϕ(Xn)

)
: (X1, . . . , Xn) ∈ Xn

}
.

Note that ϕ satisfies [PH]γ with γ ̸= 0 since [CA]m for m ̸= 0 implies ρ(2) ̸= ρ(1), which in

turn implies γ ̸= 0. We always write x = (x1, . . . , xn) and c = (c1, . . . , cn). Consider the two

operations (x0,x) 7→ (x0 +
∑n

i=1 ci,x + c) for some c ∈ Rn and (x0,x) 7→ (λx0, λx) for some

λ > 0. Let r(x0,x) =
∑n

i=1 xi − x0. By using [CA]m and [PH]γ of ϕ, we have that (see also the

proof of Lemma EC.1) the regions A+ := {(x0,x) : r(x0,x) > 0}, A0 := {(x0,x) : r(x0,x) = 0}

and A− := {(x0,x) : r(x0,x) < 0} are closed under the above two operations, and each of them

is connected via the above two operations. Therefore, A is the union of some of A+, A0 and

A−.

We define a function R : Rn+1 → R. For (x0,x) ∈ A, let R(x0,x) = D(X1, . . . , Xn), where

(X1, . . . , Xn) is any random vector such that x0 = ϕ(
∑n

i=1 Xi) and x = (ϕ(X1), . . . , ϕ(Xn)).

The choice of (X1, . . . , Xn) is irrelevant since D is ϕ-determined. For (x0,x) ∈ Rn+1 \ A, let

R(x0,x) = 0. We will verify that R satisfies conditions (i) and (ii) in Lemma EC.1.
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For (x0,x) ∈ A, there exists X = (X1, . . . , Xn) ∈ Xn such that x0 = ϕ(
∑n

i=1 Xi) and

x = (ϕ(X1), . . . , ϕ(Xn)). For any c ∈ Rn, using [CA]m with m ̸= 0 of ϕ and [LI] of D, we obtain

R

(
x0 +

n∑
i=1

ci,x+ c

)
= R

(
ϕ

(
n∑

i=1

Xi

)
+

n∑
i=1

ci, ϕ(X1) + c1, . . . , ϕ(Xn) + cn

)

= R

(
ϕ

(
n∑

i=1

(
Xi +

ci
m

))
, ϕ
(
X1 +

c1
m

)
, . . . , ϕ

(
Xn +

cn
m

))
= D (X+ c/m) = D(X) = R (x0,x) .

Using [PH]γ with γ ̸= 0 of ϕ and [SI] of D, for any λ > 0, we obtain

R(λx0, λx) = R

(
λϕ

(
n∑

i=1

Xi

)
, λϕ(X1), . . . , λϕ(Xn)

)

= R

(
ϕ

(
n∑

i=1

λ1/γXi

)
, ϕ(λ1/γX1), . . . , ϕ(λ

1/γXn)

)
= D(λ1/γX) = D(X) = R (x0,x) .

Hence, R satisfies (i) and (ii) in Lemma EC.1 on A. By definition, R satisfies (i) and (ii) also

on Rn+1 \ A. Since A and Rn+1 \ A are both closed under the two operations, we know that R

satisfies (i) and (ii) on Rn+1.

Using Lemma EC.1, we have R has the representation (EC.4), which gives

D(X) = C11{d<0} + C21{d=0} + C31{d>0}

with d =
∑n

i=1 ϕ(Xi)−ϕ (
∑n

i=1 Xi) and C1, C2, C3 ∈ R for all X ∈ Xn. As D satisfying [+], we

have C1, C2, C3 ∈ R+ ∪ {∞}.

C Additional results and proofs for Section 3

C.1 Existence of worse-than-duplicate portfolios

We discuss the existence of worse-than-duplicate portfolios. First, note that if a vector

Xwd = (Xwd
1 , . . . , Xwd

n ) is worse than a duplicate portfolio Xdu = (X, . . . ,X) under a given

MCP risk measure ϕ, then we have

ϕ

(
n∑

i=1

Xwd
i

)
⩾ ϕ(nX) = nϕ(X) >

n∑
i=1

ϕ(Xwd
i )

and thus ϕ violates subadditivity with Xwd. Therefore, a necessary condition for the existence

of a vector that is worse than a duplicate under a MCP risk measure ϕ is that ϕ violates

subadditivity.

We further provide a necessary and sufficient condition for the existence or non-existence

of duplicate portfolios.

41



Lemma EC.2. For a monotone risk measure ϕ, there exists a worse-than-duplicate portfolio if

and only if there exist X,X1, . . . , Xn ∈ X with X1 + · · ·+Xn = nX such that ϕ(X) > ϕ(Xi) for

i ∈ [n].

Proof. This follows directly by monotonicity.

A risk measure ϕ : X → R is scale-continuous if the mapping λ 7→ ϕ(λX) on (0, 1) is

continuous for every X. This condition is very weak; for instance it is weaker than continuity

on any Lp-space X .

Proposition EC.2. For a monotone risk measure ϕ scale-continuous on X = L∞, there exists

no worse-than-duplicate portfolio if and only if ϕ is quasi-convex.

Proof. If ϕ is quasi-convex, then for any X1, . . . , Xn,

ϕ

(
X1

n
+ · · ·+ Xn

n

)
⩽ max{ϕ(X1), . . . , ϕ(Xn)}. (EC.5)

By Lemma EC.2, there exists no worse-than-duplicate portfolio. Conversely, if exists no worse-

than-duplicate portfolio, then (EC.5) holds for all X1, . . . , Xn. It suffices to verify that this

implies quasi-convexity of ϕ. That is, we need to show that for λ ∈ (0, 1) and X1, X2,

ϕ(λX1 + (1− λ)X2) ⩽ max{ϕ(X1), ϕ(X2)}. (EC.6)

First, suppose that λ = p/nq where p, q ∈ N. Repeatedly applying (EC.5) q times, we get, for

all Y1, . . . , Ym where m = nq,

ϕ

(
m∑
i=1

Yi

m

)
⩽ max{ϕ(Y1), . . . , ϕ(Ym)}. (EC.7)

Letting Yi = X1 for i ⩽ p and Yi = X2 for i > p in (EC.7), we get (EC.6). Next, consider a

general λ ∈ (0, 1). Let X ′
1 = λX1/t and X ′

2 = (1 − λ)X2/(1 − t), where t = p/nq ∈ (0, 1) for

some p, q ∈ N. Using (EC.7), we get

ϕ(λX1 + (1− λ)X2) = ϕ(tX ′
1 + (1− t)X ′

2) ⩽ max{ϕ(X ′
1), ϕ(X

′
2)}. (EC.8)

Sending t → λ and using continuity we obtain the desired result.

C.2 Examples and proofs related to portfolio convexity

In the first example, we show that convexity or quasi-convexity of X 7→ D(X) should not

hold for a diversification index D.

Example 3 (Quasi-convexity on Xn is not desirable). Let (X,Y ) ∈ X 2 represent any diversified

portfolio (e.g., with iid normal components), and assume that Z := (X+Y )/2 is not a constant.
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Since the portfolio (Z,Z) relies only on one asset and has no diversification benefit, for a good

diversification index D we naturally want D(Z,Z) to be larger than both D(X,Y ) and D(Y,X);

recall that D(Z,Z) = 1 in the setting of Theorem 3 (iii). This argument shows that it is

unnatural to require D to be convex or quasi-convex on X 2; the case of Xn is similar. Indeed,

if a real-valued D satisfies [SI] and convexity on Xn, then it is a constant; this is shown in the

proposition below.

Proposition EC.3. A mapping D : Xn → R satisfies [SI] and convexity if and only if D(X) = c

for all X ∈ X and some constant c ∈ R.

Proof. If D is a constant for all X ∈ Xn, it is clear that D satisfies [SI] and convexity. Next we

will show the “only if” part. Let d0 = D(0) ∈ R.

(i) If d0 ⩾ D(X) for all X ∈ Xn and there exists X0 such that D(X0) < d0, then

D

(
1

2
X0 +

1

2
(−X0)

)
= D(0) >

1

2
D(X0) +

1

2
D(−X0),

which contradicts the convexity of D.

(ii) If there exists X0 such that d0 < D(X0), then, by [SI] of D,

D

(
1

2
0+

1

2
X0

)
= D(X0) >

1

2
D(0) +

1

2
D(X0),

which contradicts the convexity of D.

By (i) and (ii), we can conclude that D only takes the value d0.

From the proof of Proposition EC.3, we see that the conflict between convexity and [SI]

holds for real-valued mappings on any closed convex cone, not necessarily on Xn.

In the second example, we see that convexity of w 7→ D(w ⊙X) is not desirable either for

a good diversification index.

Example 4 (Convexity in w is not desirable). Let Z be standard normal and ε > 0 be a small

constant. Consider a portfolio vector X = ((1 − ε)Z,−εZ). Let w = (1, 0) and v = (ε, 1 − ε).

Note that w ⊙ X = (1 − ε)(Z, 0) and v ⊙ X = (ε − ε2)(Z,−Z). The portfolio w ⊙ X is not

diversified since it has only one non-zero component, and the portfolio v⊙X is perfectly hedged

since the sum of its components is 0. Hence, for a good diversification index D, it should hold

that D(w ⊙ X) = 1 and D(v ⊙ X) = 0; Theorem 3 confirms this. On the other hand, the

portfolio (
1

2
w +

1

2
v

)
⊙X =

1

2

(
(1− ε2)Z,−(ε− ε2)Z

)
is not well diversified since its second component is very small compared to its first component.

Intuitively, for ε ≈ 0, we expect D((w/2 + v/2)⊙X) ≈ 1 > D(w ⊙X)/2 +D(v ⊙X)/2. This
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shows that w 7→ D(w⊙X) is not convex. One can verify that this is indeed true if D is DQ or

DR based on commonly used risk measures such as SD, VaR (α < 1/2) and ES.

Proof of Proposition 1. Since the proof of Theorem 2 solely relies on convexity and positive

homogeneity of ρα to show [PC], it is clear that DQρ
α satisfies [PC].

The subadditivity of ρα implies that DQρ
α takes value in [0, 1]. Consequently, {DQρ

α(X) :

X ∈ Xn} ⊆ [0, 1]. We only need to show [0, 1] ⊆ {DQρ
α(X) : X ∈ Xn}.

Since ρα is non-linear and sub-linear, there exists Y such that ρα(Y )+ρα(−Y ) > 0 following

the argument of Remark EC.2. Consider Xθ = (X, θY,−θY, 0, . . . , 0) with θ ⩾ 0. We have

DQρ
α(X

θ) =
1

α
inf{β ∈ I : ρβ(X) ⩽ ρα(X) + θρα(Y ) + θρα(−Y )}.

It is clear that DQρ
α(X

0) = 1, and there exists θ̃ such that DQρ
α(X

θ̃) = 0 with ρα(X)+ θ̃ρα(Y )+

θ̃ρα(−Y ) > ρ0(X). Since β 7→ ρβ(X) is strictly decreasing, its generalized inverse is continuous

and we can conclude {DQρ
α(X

β) : β ∈ [0, θ̃]} = [0, 1]. Hence, [0, 1] ⊆ {DQρ
α(X) : X ∈ Xn}.

C.3 Constructing DQ from a single risk measure

In this section, we discuss how to construct DQ from only a single risk measure ϕ. For

commonly used risk measures like VaR and ES, a natural family ρ with ρα = ϕ exists. If in some

applications one needs to use a different ϕ which does not belong to an existing family, we will

need to construct a family of risk measures for ϕ.

First, suppose that ϕ is MCP. A simple approach is to take ρα = (1 − α)ess-sup + αϕ for

α ∈ (0, 1). Clearly, ρ1 = ϕ. As ϕ is MCP, we have ϕ(X) ⩽ ϕ(ess-sup(X)) = ess-sup(X) for all

X ∈ L∞. Hence, ρ is a decreasing class of MCP risk measures. Therefore, DQρ
1 satisfies the six

axioms in Theorem 1. Moreover, by checking the definition, this DQ has an explicit formula

DQρ
1(X) =

(
ess-sup (

∑n
i=1 Xi)−

∑n
i=1 ϕ(Xi)

ess-sup (
∑n

i=1 Xi)− ϕ (
∑n

i=1 Xi)

)
+

.

If
∑n

i=1 Xi ⩽
∑n

i=1 ϕ(Xi), we have ess-sup(
∑n

i=1 Xi) ⩽
∑n

i=1 ϕ(Xi) and DQρ
1(X) = 0; this is

also reflected by Theorem 3 when ess-sup(
∑n

i=1 Xi) > ϕ(
∑n

i=1 Xi).

For any arbitrary risk measure ϕ, we can always define the decreasing family {ϕ+/α : α ∈ I}

for constructing DQ; here ϕ+ is the positive part of ϕ. This approach leads to DQs that are also

DRs.

Proposition EC.4. For a given ϕ : X → R+, let ρ = (ϕ/α)α∈(0,∞). For α ∈ (0,∞), we have

DQρ
α = DRϕ. The same holds if ρ = (bE+ cϕ/α)α∈(0,∞) for some b ∈ R and c > 0 and X = L1.
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Proof. First, we compute α∗ by the definition of DQρ
α. For any X ∈ (L1)n,

α∗ = inf

{
β ∈ (0,∞) : bE

[
n∑

i=1

Xi

]
+

c

β
ϕ

(
n∑

i=1

Xi

)
⩽ b

n∑
i=1

E [Xi] +

n∑
i=1

c

α
ϕ(Xi)

}

= inf

{
β ∈ (0,∞) :

ϕ (
∑n

i=1 Xi)

β
⩽

∑n
i=1 ϕ(Xi)

α

}
.

If ϕ(
∑n

i=1 Xi) = 0 and
∑n

i=1 ϕ(Xi) = 0, then α∗ = 0. If ϕ(
∑n

i=1 Xi) > 0 and
∑n

i=1 ϕ(Xi) = 0,

then α∗ = ∞ because the set on which the infimum is taken is empty. If ϕ(
∑n

i=1 Xi) > 0 and∑n
i=1 ϕ(Xi) > 0, then α∗ = αϕ(

∑n
i=1 Xi)/

∑n
i=1 ϕ(Xi). Hence, DQρ

α(X) = DRϕ(X) holds for

all X ∈ (L1)n. By the same argument, for ρ = (ϕ/α)α∈(0,∞), we get DQρ
α(X) = DRϕ(X) for all

X ∈ Xn.

As a result of Proposition EC.4, DQ built on the family ρ of the mean-SD functions given

by ρα(X) = E[X] + SD(X)/α is precisely DRSD.

C.4 Axiomatization of DQ using preferences

The axioms [R]ϕ, [N]ϕ and [C]ϕ are formulated based on an exogenously specified risk

measure ϕ, usually by financial regulation. This choice can also be endogenized in the context

of internal decision making. In this section, we provide an axiomatization of DQ as in Theorem

1 without specifying a risk measure ϕ. We first define the preference of a decision maker over

risks. A preference relation ⪰ is defined by a non-trivial total preorder20 on X . As usual, ≻ and

≃ correspond to the antisymmetric and equivalence relations, respectively. On the preference ⪰

of risk, the relation X ⪰ Y means the agent prefers X to Y for any X,Y ∈ X . We will use the

following axioms.

[A1] X ⩽ Y =⇒ X ⪰ Y .

[A2] X ⪰ Y =⇒ X + c ⪰ Y + c for any c ∈ R.

[A3] X ⪰ Y =⇒ λX ⪰ λY for any λ > 0.

[A4] For any X ∈ X , there exists c ∈ R such that X ≃ c.

The four axioms are rather standard and we only briefly explain them. The axiom [A1] means

that the agent always prefers a smaller loss. The axioms [A2] and [A3] mean that if the agent

prefers one random loss over another, then this is preserved under any strictly increasing linear

20A preorder is a binary relation on X , which is reflexive and transitive. A binary relation ⪰ is reflexive if

X ⪰ X for all X ∈ X , and transitive if X ⪰ Y and Y ⪰ Z imply X ⪰ Z. A non-trivial total preorder is a

preorder that in addition is complete, that is, X ⪰ Y or Y ⪰ X for all X,Y ∈ X , and there exist at least two

alternatives X, Y such that X is preferred over Y strictly.
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transformations. The axiom [A4] implies that any random losses can be equally favourable as a

constant loss which is commonly referred to as a certainty equivalence.

A numerical representation of a preference ⪰ is a mapping ϕ : X → R, such that X ⪰

Y ⇐⇒ ϕ(X) ⩽ ϕ(Y ) for all X,Y ∈ X . In other words, ⪰ is the preference of an agent favouring

less risk evaluated via ϕ. There is a simple relationship between preferences satisfying [A1]-[A4]

and MCP risk measures.

Lemma EC.3. A preference satisfies [A1]–[A4] if and only if it can be represented by an MCP

risk measure ϕ.

Proof. The “if” statement is straightforward to check, and we will show the “only if” statement.

The preference ⪰ can be represented by a risk measure ϕ through X ⪰ Y ⇐⇒ ϕ(X) ⩽ ϕ(Y ) for

all X,Y ∈ X since ⪰ is separable by [A1] and [A4]; see Debreu (1954) and Drapeau and Kupper

(2013). If ϕ(0) = ϕ(1), then by using [A1]–[A3], the preference ⪰ is trivial, contradicting our

assumption on ⪰. Hence, using [A1], ϕ(0) < ϕ(1), we can further let ϕ(0) = 0 and ϕ(1) = 1. It

is then straightforward to verify that ϕ is MCP from [A1]-[A3].

Similarly to Section 3, but with the preference ⪰ replacing the risk measure ϕ, we denote

by X
m≃ Y if Xi ≃ Yi for each i ∈ [n], by X

m
⪰ Y if Xi ⪰ Yi for each i ∈ [n], and by X

m
≻ Y if

Xi ≻ Yi for each i ∈ [n]. With this new formulation and everything else unchanged, the axioms

of rationality, normalization and continuity are now denoted by [R]⪰, [N]⪰ and [C]⪰.

Proposition EC.5. A diversification index D : Xn → R satisfies [+], [LI], [SI], [R]⪰, [N]⪰ and

[C]⪰ for some preference ⪰ satisfying [A1]–[A4] if and only if D is DQρ
α for some decreasing

families ρ of MCP risk measures. Moreover, in both directions of the above equivalence, it can

be required that ρα represents ⪰.

Proof. The proof follows from Theorem 1 by noting that Lemma EC.3 allows us to convert

between a preference ⪰ satisfying [A1]-[A4] and an MCP risk measure ϕ.

Theorem 2 also admits a formulation via preferences similar to Proposition EC.5.

C.5 Uniqueness of the risk measure family representing a DQ

Proposition EC.6 below shows that the choice of the risk measure family is unique up to

strictly increasing transformation of the parameter if the ordering structure on portfolio diver-

sification is specified by a given ordering relation ⪰ on Xn that can be numerically represented

by a DQ.

Proposition EC.6. Let n ⩾ 3, I = [0, 1], α ∈ I and ϕ is a positively homogeneous risk measure

with ϕ(Y )+ϕ(−Y ) > 0 for some Y ∈ X . Suppose that a weak order ⪰ is numerically represented
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by both DQρ
α and DQτ

α such that {DQρ
α(X) : X ∈ Xn} = {DQτ

α(X) : X ∈ Xn} = [0, 1], where

ρ = (ρβ)β∈I and τ = (τβ)β∈I are continuous decreasing families of risk measures satisfying

ϕ = ρα = τα. Then, there exists a strictly increasing f : (0, α) → (0, α) such that τβ = ρf(β) for

all β ∈ (0, α).

Proof. Since ⪰ is represented by both DQρ
α and DQτ

α, there exists a strictly increasing function

g : [0, 1] → [0, 1] such that DQρ
α = g(DQτ

α). Let f(β) = g(β/α) for β ∈ (0, α).

Assume that there exists β∗ ∈ (0, α) such that τβ∗(X) > ρf(β∗)(X). By positive homogene-

ity of ϕ and ϕ(Y )+ϕ(−Y ) > 0, there exists ε > 0 such that τβ∗(X) > ϕ(X)+ϕ(εY )+ϕ(−εY ) >

ρf(β∗)(X). Let X = (X, εY,−εY, 0, . . . , 0). Since β 7→ ρβ(X) and β 7→ τβ(X) are continuous, we

have

g(DQτ
α(X)) = f (inf {β ∈ I : τβ(X) ⩽ ϕ(X) + ϕ(εY ) + ϕ(−εY )}) > f(β∗)

and

DQρ
α(X) = inf {β ∈ I : ρβ(X) ⩽ ϕ(X) + ϕ(εY ) + ϕ(−εY )} ⩽ f (β∗) ,

which contradicts DQρ
α(X) = g(DQτ

α(X)).

D Additional results and proofs for Section 4

In this section, we present additional results, proofs, and discussions supplementing Sections

4.2 and 4.3.

D.1 Worst-case and best-case dependence for DQ (Section 4.2)

We assume that two random vectors X and Y have the same marginal distributions, and

we study the effect of the dependence structure. We will assume that a tuple of distributions

F = (F1, . . . , Fn) is given and each component has a finite mean. Let

YF = {(X1, . . . , Xn) : Xi ∼ Fi for each i = 1, . . . , n} .

For X,Y ∈ YF, we say that X is smaller than Y in sum-convex order, denoted by X ⩽scx Y, if∑n
i=1 Xi ⩾SSD

∑n
i=1 Yi; see Corbett and Rajaram (2006). We refer to Shaked and Shanthikumar

(2007) for a general treatment of multivariate stochastic orders. With arbitrary dependence

structures, the best-case value and worst-case value of DQρ
α are given by

inf
X∈YF

DQρ
α(X) and sup

X∈YF

DQρ
α(X).

For some mapping on Xn, finding the best-case and worst-case values and structures over YF is

known as a problem of risk aggregation under dependence uncertainty; see Bernard et al. (2014)

and Embrechts et al. (2015).
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If ρ = (ρα)α∈I is a class of SSD-consistent risk measures such as ES, then, by Proposition

3, DQρ
α is consistent with the sum-convex order on YF. This leads to the following observations

on the corresponding dependence structures.

(i) It is well-known (e.g., Rüschendorf (2013)) that the ⩽scx-largest element of YF is comono-

tonic, and thus a comonotonic random vector has the largest DQρ
α in this case. Note that

such ρ does not include VaR. Indeed, as we have seen from Proposition 5, DQVaR
α (X) = 1

for comonotonic X under mild conditions, which is not equal to its largest value n.

(ii) In case n = 2, the ⩽scx-smallest element of YF is counter-comonotonic, and thus a comono-

tonic random vector has the smallest DQρ
α.

(iii) For n ⩾ 3, the ⩽scx-smallest elements of YF are generally hard to obtain. If each pair

(Xi, Xj) is counter-monotonic for i ̸= j, then X is a ⩽scx-smallest element of YF. Pair-

wise counter-monotonicity puts very strong restrictions on the marginal distributions. For

instance, it rules out all continuous marginal distributions; see Puccetti and Wang (2015).

(iv) If a joint mix, i.e., a random vector with a constant component-wise sum, exists in YF,

then any joint mix is a ⩽scx-smallest element of YF by Jensen’s inequality. See Puccetti

and Wang (2015) and Wang and Wang (2016) for results on the existence of joint mixes.

In case a joint mix does not exist, the ⩽scx-smallest elements are obtained by Bernard et

al. (2014) and Jakobsons et al. (2016) under some conditions on the marginal distributions

such as monotonic densities.

In optimization problems over dependence structures (see e.g., Rüschendorf (2013) and Em-

brechts et al. (2015)), the above observations yield guidelines on where to look for the optimizing

structures.

D.2 Proofs and related discussions on RI and RC (Section 4.3)

Here we present the proof of Proposition 4 and an additional result (Proposition EC.7) on

the properties RI and RC.

Proof of Proposition 4. (i) For any n ∈ N, X ∈ (Lp)n and c ∈ R, by [CA]m of (ρα)α∈I ,

DQρ
α(X, c) =

1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi + c

)
⩽

n∑
i=1

ρα(Xi) + ρα(c)

}

=
1

α
inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
+mc ⩽

n∑
i=1

ρα(Xi) +mc

}
= DQρ

α(X),

and hence DQρ
α satisfies [RI].
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(ii) For any n ∈ N and X ∈ (Lp)n, by [PH] of (ρα)α∈I ,

DQρ
α(X,X) =

1

α
inf

{
β ∈ I : ρβ

(
2

n∑
i=1

Xi

)
⩽ 2

n∑
i=1

ρα(Xi)

}
= DQρ

α(X),

and hence DQρ
α satisfies [RC].

Proposition EC.7. Let ϕ : Lp → R be a continuous and law-invariant risk measure.

(i) Suppose that DRϕ is not degenerate for some input dimension. Then DRϕ satisfies [RI]

and [+] if and only if ϕ satisfies [CA]0, [±] and ϕ(0) = 0.

(ii) If ϕ satisfies [PH], then DRϕ satisfies [RC].

Proof. (i) We first show the “if” part. If ϕ satisfies [CA]0 and ϕ(0) = 0, then ϕ(c) = ϕ(0) = 0

for all c ∈ R. For any n ∈ N, X ∈ (Lp)n and c ∈ R,

DRϕ(X, c) =
ϕ (
∑n

i=1 Xi + c)∑n
i=1 ϕ(Xi) + ϕ(c)

=
ϕ (
∑n

i=1 Xi)∑n
i=1 ϕ(Xi)

= DRϕ(X).

Thus, DRϕ satisfies [RI].

For the “only if” part, we first assume ϕ(0) ̸= 0. Since DRϕ satisfies [RI], for all n ∈ N,

c ∈ R and X = 0 ∈ Rn, we have

DRϕ(X, c) =
ϕ (c)

nϕ(0) + ϕ(c)
= DRϕ(X) =

ϕ (0)

nϕ(0)
=

1

n
.

The above equality means that ϕ(c) = nϕ(0)/(n − 1) holds for any n ∈ N and c ∈ R, and

thus we have ϕ(0) = 0, which violates the assumption ϕ(0) ̸= 0. Hence, ϕ(0) = 0.

If there exists c1 ∈ R such that ϕ(c1) ̸= 0, then by [RI] and ϕ(0) = 0, we have

DRϕ(c1, 0, 0, . . . , 0, c) =
ϕ(c1 + c)

ϕ(c1) + ϕ(c)
= DRϕ(c1, 0, 0, . . . , 0) =

ϕ(c1)

ϕ(c1)
= 1,

and thus ϕ(c1 + c) = ϕ(c1) + ϕ(c) as long as ϕ(c1) or ϕ(c) is not zero. If both of ϕ(c1) and

ϕ(c) are 0, then ϕ(c1 + c) = 0. To sum up, ϕ is additive on R. Since ϕ is also continuous

on R, we know that ϕ is linear, that is, ϕ(c) = βc for some β ∈ R.

Suppose that there exists X such that ϕ(X) ̸= 0; otherwise there is nothing to show. Using

[RI] and ϕ(0) = 0, we have, for c ∈ R,

DRϕ(X, 0, 0, . . . , 0, c) =
ϕ(X + c)

ϕ(X) + ϕ(c)
= DRϕ(X, 0, . . . , 0) = 1,

which implies ϕ(X + c) = ϕ(X) + ϕ(c) = ϕ(X) + βc.

Using the fact that DRϕ is not degenerate for some dimension n, there exists X =

(X1, . . . , Xn) such that DRϕ(X) ∈ R\{0, 1}. Note that ϕ(
∑n

i=1 Xi) ̸= 0 and
∑n

i=1 ϕ(Xi) ̸=

0. Hence,

DRϕ(X, 1) =
ϕ(
∑n

i=1 Xi + 1)∑n
i=1 ϕ(Xi) + ϕ(1)

=
ϕ(
∑n

i=1 Xi) + β∑n
i=1 ϕ(Xi) + β

= DRϕ(X) =
ϕ(
∑n

i=1 Xi)∑n
i=1 ϕ(Xi)

.
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This implies β = 0, ϕ(c) = 0 for all c ∈ R and ϕ(X + c) = ϕ(X) for all X ∈ Lp such that

ϕ(X) ̸= 0. For any X ∈ Lp such that ϕ(X) = 0 and c ∈ R, we have

DRϕ(X, 0, . . . , 0, c) =
ϕ(X + c)

ϕ(X) + ϕ(c)
=

ϕ(X + c)

ϕ(X)
=

ϕ(X)

ϕ(X)
= DRϕ(X, 0, . . . , 0),

which implies ϕ(X + c) = 0 = ϕ(X). Therefore, ϕ satisfies [CA]0.

Finally, we show ϕ is either non-negative or non-positive by considering the following three

cases.

(a) Assume that there exists X ∈ Lp such that ϕ(X) + ϕ(−X) > 0. If there exists Y ∈ Lp

such that ϕ(Y ) < 0, then by continuity of ϕ and ϕ(0) = 0, there exists m > 0 such

that 0 < −ϕ(mY ) < ϕ(X) + ϕ(−X). We have

DRϕ(mY,X,−X, 0, . . . , 0) =
ϕ(mY )

ϕ(mY ) + (ϕ(X) + ϕ(−X))
< 0,

which contradicts the fact that DRϕ is non-negative. Hence, ϕ(Y ) ⩾ 0 for all Y ∈ L∞.

(b) By the same argument, if there exists X ∈ Lp such that ϕ(X) + ϕ(−X) < 0, then

ϕ(Y ) ⩽ 0 for all Y ∈ L∞.

(c) Assume ϕ(X) + ϕ(−X) = 0 for all X ∈ L∞. Suppose that there exists Y ∈ L∞ such

that ϕ(Y ) < 0. Using Lemma 1 of Wang and Wu (2020) again, there exist Z,Z ′ ∈ L∞

satisfying Z
d
= Z ′ and Z − Z ′ d

= Y − E[Y ]. For Z = (Z,−Z ′, 0, . . . , 0), using the law

invariance of ϕ, we have

DRϕ(Z) =
ϕ (Z − Z ′)

ϕ(Z) + ϕ(−Z ′)
=

ϕ (Y − E[Y ])

ϕ(Z) + ϕ(−Z ′)
=

ϕ (Y )

ϕ(Z) + ϕ(−Z)
=

ϕ(Y )

0
= −∞,

which contradicts DRϕ(Z) ⩾ 0. Hence, ϕ(X) ⩾ 0 for all X ∈ L∞. Together with

ϕ(X) + ϕ(−X) = 0, we get ϕ(X) = 0. To extend this to Lp, we simply use continuity.

For X ∈ Lp, let YM = (X ∧M)∨ (−M). Hence, YM ∈ L∞ and YM
Lp

−→ X as M → ∞.

As a result, we have ϕ(X) = limM→∞ ϕ(YM ) = 0.

In conclusion, we have ϕ(Y ) ⩾ 0 or ϕ(Y ) ⩽ 0 for allX ∈ Lp. Case (c) is not possible because

it contradicts that DRϕ is not degenerate. Cases (a) and (b) are possible, corresponding

to, for instance, (a) ϕ = SD; (b) ϕ = −SD.

(ii) If ϕ satisfies [PH], then for any n ∈ N and X ∈ (Lp)n,

DRϕ(X,X) =
ϕ (2

∑n
i=1 Xi)

2
∑n

i=1 ϕ(Xi)
=

ϕ (
∑n

i=1 Xi)∑n
i=1 ϕ(Xi)

= DRϕ(X).

Hence, DRϕ satisfies [RC].

In Proposition EC.7, we show that if [RI] is assumed, then the only option for DR is to use

a non-negative ϕ (we can use −ϕ if ϕ is non-positive) such as var or SD. By Proposition EC.4,

all such DRs belong to the class of DQs.
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E Additional results and proofs for Section 5

In this section, we present the proof for Proposition 5 and an additional numerical result

to complement those in Section 5.2.

Proof of Proposition 5. This statement on ES follows from Proposition 1; for the one on VaR,

see Theorem 1 (i) of Han et al. (2023).

Figure EC.1. D(Y′)/D(Y) based on VaR and ES for α ∈ (0, 0.1] with fixed n = 10
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We look at the models Y′ and Y in the setting of Tables 2 and 3. In Figure EC.1, we

observe that the values of D(Y′)/D(Y) for D = DQVaR
α or DQES

α are always smaller than 1 for

α ∈ (0, 0.1], while the values of D(Y′)/D(Y) for D = DRVaRα are only smaller than 1 when α

is relatively small. We always observe that, if the desired relation D(Y′)/D(Y) < 1 holds for

D = DRVaRα or DRESα then it holds for D = DQVaR
α or DQES

α , but the converse does not hold.

This means that if the iid model is preferred to the common shock model by DR, then it is also

preferred by DQ, but in many situations, it is only preferred by DQ not by DR. Similarly to

Tables 2 and 3, the iid normal model shows a stronger diversification according to DQ, and this

is not the case for DR.

F Proofs for Section 6

Proof of Proposition 6. For the case of DQVaR
α (X), (4) in Theorem 4 gives that to minimize

DQVaR
α (X) is equivalent to minimize

P
(
w⊤X > w⊤xVaR

α

)
= P

(
w⊤ (X− xVaR

α

)
> 0
)

over w ∈ ∆n.
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Next, we discuss the case of DQES
α (X). Let f(v) = E[(v⊤(X− xES

α ) + 1)+] for v ∈ Rn
+. It

is clear that f is convex. Furthermore, for any i ∈ [n], we have, for almost every v ∈ Rn
+,

∂f

∂vi
(v) = E

[
(Xi − ESα(Xi))1{v⊤(X−xES

α )+1>0}
]

= E
[
(Xi − ESα(Xi))1{{v⊤(X−xES

α )+1>0}∩{Xi−ESα(Xi)>0}}
]

+ E
[
(Xi − ESα(Xi))1{{v⊤(X−xES

α )+1>0}∩{Xi−ESα(Xi)<0}}
]
.

The set {(v⊤X−xES
α )+1 > 0}∩{Xi−ESα(Xi) > 0} increases in vi and the set {(v⊤X−xES

α )+1 >

0} ∩ {Xi − ESα(Xi) < 0} decreases in vi. Hence, vi 7→ ∂f/∂vi(v) is increasing. Furthermore,

∂f/∂vi(v) → E[(Xi − ESα(Xi))1{Xi−ESα(Xi)>0}] > 0 as vi → ∞. Also, ∂f/∂vi(v) → E[Xi −

ESα(Xi)] < 0 as v ↓ 0 component-wise. Hence, there exists a minimizer v∗ of the problem

minv∈Rn
+\{0} E[(v⊤(X− xES

α ) + 1)+].

Let A = {v ∈ Rn
+ \{0} : P(v(X−xES

α ) > 0) > 0} and B = {v ∈ Rn
+ \{0} : P(v(X−xES

α ) >

0) = 0}. If B is empty, it is clear that minw∈∆n
DQES

α (w⊙X) = minv∈Rn
+\{0} E[(v⊤(X−xES

α )+

1)+] by Theorem 4.

If B is not empty, assume v∗ ∈ A. For any vA ∈ A, vB ∈ B and k > 0, we have

E
[(
(vA + kvB)

⊤(X− xES
α ) + 1

)
+

]
⩽ E

[(
v⊤
A(X− xES

α ) + 1
)
+

]
.

This implies f(v∗ + kvB) = f(v∗) for all k > 0, which contradicts ∂f/∂vi(v) > 0 as vi → ∞.

Hence, we have v∗ ∈ B. For w∗ = v∗/∥v∗∥, we have P((w∗)⊤(X − xES
α ) > 0) = 0 and

DQES
α (w∗ ⊙ X) = 0 by Theorem 4, which means that w∗ is the minimizer of the problem

minw∈∆n DQES
α (w ⊙X).

G Additional empirical results for Section 7

In this section, we present some omitted empirical results to complement those in Sections

7.2 and 7.3. In Section 7.2, the values of DQs based on VaR and ES are reported under different

portfolio compositions of stocks during the period from 2014 to 2022. Using the same stock

compositions in (A)-(D), we calculate the values of DRs based on SD and var (recall that they

are also DQs), to see how they perform. The results are reported in Figure EC.2.

We can see that the same intuitive order (A)⩽(B)⩽(C)⩽(D) as in Figure 3 in Section 7.2

holds for DRSD, showing some consistency between DQs based on VaR and ES and DRSD. The

values of DRSD are between 0 and 1. On the other hand, the values of DRvar are all larger

than 1, and portfolio (A) of 20 stocks has the weakest diversification effect according to DRvar

among the four compositions. This is not in line with our intuition, but is to be expected since

variance has a different scaling effect than SD, and more correlated stocks lead to a larger value
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Figure EC.2. DRs based on SD (left) and var (right)

2014 2015 2016 2017 2018 2019 2020 2021 2022

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A B

C D

2014 2015 2016 2017 2018 2019 2020 2021 2022

1

2

3

4

5

6

7

8

9

10

A B

C D

of DRvar in general. For example, DRvar equals 1 even for an iid normal model of arbitrarily

large dimension (which is often considered as quite well-diversified), and DRvar equals n if the

portfolio has one single asset. These observations show that DRvar is difficult to interpret if it

is used to measure diversification across dimensions.

In Section 7.3, we used the period from January 3, 2012, to December 31, 2021, to build up

the portfolios. Next, we consider two different datasets from Section 7.3, first using the period

2002-2011 and second using 20 instead of 40 stocks, to see how the results vary.

Figure EC.3. Wealth processes for portfolios, 40 stocks, Jan 2004 - Dec 2011
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For the first experiment, we choose the four largest stocks from each of the 10 different

sectors of S&P 500 ranked by market cap in 2002 as the portfolio compositions and use the
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Figure EC.4. Cumulative portfolio weights, 40 stocks, Jan 2004 - Dec 2011
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Table EC.1. Annualized return (AR), annualized volatility (AV), Sharpe ratio (SR) and average

trading proportion (ATP) for different portfolio strategies from Jan 2004 to Dec 2011

% DQVaR
α DQES

α DRSD Markowitz EW BH

AR 9.46 8.13 9.10 7.98 5.30 6.23

AV 16.65 21.45 20.92 11.98 20.15 15.53

SR 30.48 17.47 22.58 30.06 4.57 11.94

ATP 37.23 28.59 20.24 24.56 5.04 0

period from January 3, 2002, to December 31, 2011, to build up the portfolio. The risk-free rate

r = 4.38%, and the target annual expected return for the Markowitz portfolio is set to 5% due

to infeasibility of setting 10%. The results are reported in Figures EC.3, EC.4 and Table EC.1.

Table EC.2. Annualized return (AR), annualized volatility (AV), Sharpe ratio (SR) and average

trading proportion (ATP) for different portfolio strategies from Jan 2014 to Dec 2021

% DQVaR
α DQES

α DRVaRα DRESα DRSD Markowitz EW BH

AR 13.54 14.79 12.77 13.85 14.37 8.59 12.74 14.22

AV 13.43 15.90 14.41 14.53 14.29 12.74 14.68 13.96

SR 79.69 75.17 68.89 75.79 80.67 45.14 67.40 81.54

ATP 16.07 19.24 64.77 57.56 11.81 15.19 4.45 0
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Figure EC.5. Wealth processes for portfolios, 20 stocks, Jan 2014 - Dec 2021
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Figure EC.6. Cumulative portfolio weights, 20 stocks, Jan 2014 - Dec 2021
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For the second experiment, we choose the top two stocks from each sector to build the

portfolios, and all other parameters are the same as in Section 7.3. The results, including two

other portfolios built by DRVaRα and DRESα , are reported in Figures EC.5 and EC.6 and Table

EC.2. Since we do not find an efficient algorithm for computing DRVaRα and DRESα , we use the

preceding 500 trading days to compute the optimal portfolio weights using the random sampling

method, which is relatively slow and not very stable. (If the previous month has an optimal

weight w∗
t−1, then 105 new weights are sampled from λw∗

t−1+(1−λ)∆n, where λ is chosen as 0.9.

Tie-breaking is done by picking the one that is closest to w∗
t−1. We set w∗

0 = (1/n, . . . , 1/n).)

The results show similar observations to those in Section 7.3. The additional observation from
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Table EC.2 is that DR strategies have much larger ATP than the others, but this may be partially

caused by our random sampling algorithms to optimize DR.
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