
A theory of multivariate stress testing

Pietro Millossovich1,2, Andreas Tsanakas1, and Ruodu Wang3

1Bayes Business School, City, University of London

2DEAMS, University of Trieste

3Department of Statistics and Actuarial Science, University of Waterloo

June 2024

Abstract

We present a theoretical framework for stressing multivariate stochastic models. We consider a stress

to be a change of measure, placing a higher weight on multivariate scenarios of interest. In particular,

a stressing mechanism is a mapping from random vectors to Radon-Nikodym densities. We postulate

desirable properties for stressing mechanisms addressing alternative objectives. Consistently with our

focus on dependence, we require throughout invariance to monotonic transformations of risk factors. We

study in detail the properties of two families of stressing mechanisms, based respectively on mixtures of

univariate stresses and on transformations of statistics we call Spearman and Kendall’s cores. Further-

more, we characterize the aggregation properties of those stressing mechanisms, which motivate their

use in deriving new capital allocation methods, with properties different to those typically found in the

literature. The proposed methods are applied to stress testing and capital allocation, using the simulation

model of a UK-based non-life insurer.

Keywords: Dependence, probability distortion, risk measure, sensitivity analysis, stress testing, sys-

temic risk.

1 Introduction

Stress testing quantifies the response of a risk model to changes in assumptions, which may reflect

shifts in the environment, occurrence of adverse events or movements in parameter values. This can be an

internal exercise for a firm, e.g. for performing sensitivity analysis (Broadie and Glasserman, 1996, Hong

and Liu, 2009, Borgonovo and Plischke, 2016) and model validation (Pesenti et al., 2019), or for allocating

capital (Dhaene et al., 2012, Asimit et al., 2019) and measuring performance (Bauer and Zanjani, 2016).

Stress testing can also apply across a market, by considering its connectedness and, thus, systemic risk

(Brechmann et al., 2013, Gandy and Veraart, 2017). As stress testing allows the monitoring of financial

institutions’ exposures and of system vulnerabilities, it serves as a cornerstone of financial risk management
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and regulation (Duffie, 2018, Prudential Regulatory Authority, 2019, Financial Policy Committee, 2019); for

more on stress test design see Rebonato (2010), Orlov et al. (2021), and Parlatore and Philippon (2022).

When performing stress tests, analysts change the statistical properties of risk factors that represent an

institution’s exposure or drive a system’s behaviour. But there can be many different ways to effect such a

change. A natural question – which is precisely the gap in the academic literature we aim to address – arises:

How should one choose a well-justified stress test, with properties appropriate to a specific application? In

the decision-theoretic (Gilboa, 2009, Wakker, 2010) and risk management (Artzner et al., 1999, Föllmer and

Schied, 2011) literatures, such questions are typically answered using axiomatic approaches, which specify

desirable (as well as undesirable) properties, in order to identify useful forms of decision criteria, such as

utilities and risk measures. In our context of stress testing, we also need to identify suitable properties of

stress tests and mechanisms for generating them. In order to engage in systematic study of such stressing

mechanisms, we first need to introduce a theoretical framework with the associated mathematical formalism.

The main contributions of the paper then lie in the formulation of such a new framework, in the justification

of technical properties within it, and in theoretical results guiding the design of stressing mechanisms for

various applications.

It is well understood that the aggregate risk in a system, be that a financial portfolio or a whole market, is

profoundly affected by the dependence between uncertain inputs or risk factors – see the extensive treatment

of McNeil et al. (2015) and references therein. This motivates the need for carefully and explicitly integrat-

ing stochastic dependence considerations into the design of stress tests. Nonetheless, to our knowledge, a

theoretical framework that performs this integration task is currently missing from the academic literature.

In this paper, we address this gap in the literature, by systematically studying multivariate stressing mech-

anisms, formally understood as Radon-Nikodym densities depending on random vectors of risk factors. Our

stressing methods are endogenous by design, in which the risk factors themselves generate stress scenarios,

different from settings with exogenously specified stress scenarios (e.g. Cambou and Filipović, 2017). Our

approach is also distinct from the literature on systemic risk, which considers dependencies primarily from

the perspective of network connections, and sees external shocks (instead of distortions of the probabilistic

model) as sources of stress (Eisenberg and Noe, 2001).

In Section 2, we define stressing mechanisms via changes of probability measure. Such an approach

focuses on how to stress a given model, rather than, e.g., estimating or approximating an unknown quantity

of interest, and is common in the financial risk management (Breuer et al., 2012) and sensitivity analysis

literatures (Pesenti et al., 2019). Defining stresses via measure changes affords numerical benefits, as it

does not require repeated simulation under alternate model assumptions. However, these literatures do not

explicitly integrate dependence considerations into the design of stress tests and the few papers that take

a genuinely multivariate perspective, e.g., McNeil and Smith (2012), Pesenti et al. (2021), deploy rather

different frameworks.

We address this issue in Section 3, where we postulate desirable properties, or axioms, for multivariate

stressing mechanisms. While alternative properties, e.g., on the way stressing should impact the multivariate
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risk factor distribution, may be justified in different contexts, we consistently require an invariance property,

which means that a stressing mechanism does not change when risk factors are subject to increasing trans-

formations. Hence, stressing mechanisms are directly related to the dependence structure of risk factors.

The invariance property has three interrelated implications: stressing mechanisms do not depend on arbi-

trary (non-linear) changes of scale; the stressed distribution of any risk factor depends only on its baseline

distribution and the copula of the risk factors; stressing mechanisms can be formulated on the space of risk

factors, without reference to specific portfolio structures.

On the technical side, our framework is related to the theory of risk measures, as developed by numerous

authors, indicatively Artzner et al. (1999), Rockafellar et al. (2000), Szegö (2005), Pflug and Romisch (2007),

Föllmer and Schied (2011); for a broad and complementary perspective, see Aven (2016). In fact, the

stressing mechanisms introduced here can be directly used to construct new multivariate risk measures,

e.g., as risk factors’ expectations under a change of measure. Nevertheless, our framework has a different

technical foundation than the classical theory of risk measures, be it univariate or multivariate – this also

makes axiomatic characterizations more challenging. Risk measures are functions that map a random variable

(or random vector) to a real number (or vector). In contrast, our stressing mechanisms are mappings from

a random vector to a Radon-Nikodym derivative, and thus have a more complex mathematical structure.

Our approach is more flexible than the distributional transforms studied by Liu et al. (2021), which map

univariate to univariate distributions. Our framework is also quite different from dynamic or systemic risk

measures studied by e.g., Riedel (2004) and Biagini et al. (2019), which map a random variable to one in a

subspace via operations such as conditional expectation or optimization, or from multivariate risk measures,

e.g., Prékopa (2012), Farkas et al. (2015), Prékopa and Lee (2018).

We introduce and study in depth two classes of invariant stressing mechanisms in Section 4. First, we

consider mixtures of univariate stressing mechanisms. We prove a representation result which shows that

an invariant stressing mechanism belongs to this class if and only if it satisfies a technical property, which

roughly means that only minimal information is used to generate the stressing mechanism. Second, we intro-

duce Spearman and Kendall stressing mechanisms, whose construction is directly inspired by the stochastic

quantities underlying (multivariate) rank correlation coefficients. Besides other desirable properties, such

stressing mechanisms preserve independence between risk factors. Furthermore, we study the aggregation

properties of those multivariate stressing mechanisms by stochastically comparing their impact on marginal

distributions, to that obtained by stressing one risk factor at a time. We show that mixture stresses produces

diversification credits, while (dual) Spearman stresses produce aggregation penalties.

Detailed examples of stressing mechanisms, addressing different design criteria, are presented throughout

Section 4. Through these examples we sometimes extend given classes of stressing mechanisms. In particular,

in Section 4.4 we show how to strengthen (or indeed induce) dependence between risk factors, in a Multivariate

Pareto, Gaussian, and independent setting. Furthermore, in Section 4.5, we modify our stressing mechanisms

in order to effect changes in the volatility, rather than the size of individual risk factors.

The versatility of the proposed stressing mechanisms, and their distinct aggregation properties, allow
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us to deploy them in different contexts. We demonstrate this in Section 5, where we apply our methods

to a real-life economic capital model, provided by a UK-based insurer. One of the key tasks of sensitivity

analysis is assessing the comparative importance of uncertain model inputs (Borgonovo and Plischke, 2016).

For such an application, mixture stresses are shown to be effective tools. By comparing consistently designed

multivariate and univariate stresses, we assess variable importance in a new way that combines conceptual

coherence with computational efficiency. Furthermore, capital allocation methods are often understood

via measure changes (e.g. Furman and Zitikis, 2008). We show that capital allocations derived via (dual)

Spearman stressing mechanisms address two known practical problems with standard Euler-type allocations

(Tasche, 2004): instability of the allocation to local risk mitigations and excessive diversification credits

for small uncorrelated risks. Thus, with our framework, we contribute new capital allocations with distinct

properties, addressing issues that have often prevented the operationalization of extant methods. Our real-life

example thus demonstrates the effectiveness of the proposed framework in addressing two key applications

of stress testing.

2 Stressing mechanisms

2.1 Notation and terminology

Fix an atomless probability space (Ω,F ,P). We call P the baseline probability measure. Let X be the

set of all random variables in this probability space and X = (X1, . . . , Xd) ∈ X d be a random vector of

interest. We consider that X represents a vector of risk factors. FX is the joint cumulative distribution

function of X and FXi is its i-th margin, i = 1, . . . , d. Let F̄X(x) = P(X > x), x ∈ Rd, with corresponding

margins F̄Xi . Throughout the paper, all inequalities on vectors are component-wise; furthermore, terms such

as “increasing” and “decreasing” are understood in the non-strict sense.

We denote by U ⊂ X the set of all standard uniform random variables. If the random vector X has

continuous margins, we define Ui = FXi(Xi), Ūi = F̄Xi(Xi), i = 1, . . . , d, such that U = (U1, . . . , Ud) ∈ Ud.

Thus, Ui is the uniform transform of the random variable Xi such that F−1
Xi

(Ui) = Xi almost surely. For the

existence of uniform transforms, without requiring continuity, see Föllmer and Schied (2011, Lemma A.28).

The joint distribution CX of U is the copula of X, meaning that we can write FX(x)

= CX(F1(x1), . . . , Fd(xd)); the joint distribution C̄X of Ū = (Ū1, . . . , Ūd) ∈ Ud, is the survival copula of X

(Denuit et al., 2006, Sec. 4.4.1). In the case that distributions have discontinuities, the vector X generally

admits more than one copula. We show in Appendix A how to uniquely construct from X a vector of uniform

transforms U ∈ Ud and identify CX as the joint distribution of this U. For simplicity of exposition we will

assume throughout the paper that – unless otherwise specified – marginal distributions of risk factors are

continuous; with the understanding that our arguments easily generalise to the discontinuous case, following

Appendix A.

Let R ⊂ X be the set of non-negative integrable random variables with expectation 1. Each element
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Z ∈ R is a Radon-Nikodym density of a probability measure QZ , that is, Z = dQZ/dP. Let Md be the

set of distributions on Rd and Fd be the set of measurable functions mapping Rd to R. Further, denote by

M =M1 and F = F1.

Some notions of dependence will be essential throughout the paper, since our setting is multivariate in

nature. A random vector X ∈ X d is comonotonic if there are increasing functions f1, f2, . . . , fd ∈ F and

some random variable Z ∈ X such that Xi = fi(Z). The pairs (Xi, Ui), as defined above, are comonotonic.

Conversely, V,W are countermonotonic, if we can write V = f1(Z), W = f2(Z), for an increasing function

f1, a decreasing function f2, and some random variable Z. The pairs (Xi, Ūi) are countermonotonic.

For distributions G,H ∈ Md, we say that H stochastically dominates G and write G �st H, if for any

X ∼ G, Y ∼ H and any increasing function f ∈ Fd, it holds that E[f(X)] 6 E[f(Y)]; with slight abuse

of notation, we will also write X �st Y. We say that X ∈ X d is stochastically increasing in W ∈ X , if for

w1 6 w2 it holds that P(X 6 · | W = w1) �st P(X 6 · | W = w2). For distributions G,H ∈M, we say that

H dominates G in increasing convex order and write G �icx H, if for any X ∼ G, Y ∼ H and any increasing

convex function f ∈ F, it holds that E[f(X)] 6 E[f(Y )]; again, we will also write X �icx Y .

2.2 Definition of stressing mechanisms

Given the vector of risk factors X, we are interested in stressing its distribution. We do this by the

means of a Radon-Nikodym density, such that the stressing of the distribution of X arises through a change

of measure.

Definition 1. A stressing mechanism is a mapping η : X d → R satisfying the following properties:

(i) Relevance. For all X ∈ X d, η(X) is σ(X)-measurable, i.e. the realized value of η(X) is determined by

the realized value of X.

(ii) Law-invariance. For all X, Y ∈ X d, (η(X),X)
d
= (η(Y),Y) if X

d
= Y.

A stressing mechanism can therefore be understood as a reweighting of outcomes. The property of

relevance implies that X summarizes all information necessary for stressing. Note that the relevance property

forces η(c) = 1 for all constant vectors c ∈ Rd, such that, if risk factors have zero variance, there can be no

stressing. Law invariance requires that vectors of risk factors with the same distribution will be stressed in

the same way. We will also allow a stressing mechanism to be only defined on a subset of X d.

Stressing mechanisms can be represented as functions of the risk factors X and their distribution FX.

Proposition 1. A mapping η : X d → R is a stressing mechanism if and only if there exists Φ :Md → Fd
such that for all X ∈ X d,

η(X) = Φ[FX](X) a.s.

Proposition 1 suggests that one can directly use the form η(X) = Φ[FX](X). We shall call Φ in the

above relation the generator of η. Consider a stressing mechanism η with generator Φ. For a random vector
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X, we call the distribution of X under Qη(X) the post-stress distribution of X, and we denote this by F ηX. In

other words, for x ∈ Rd,

F ηX(x) = Qη(X)(X 6 x) = E[η(X)1{X6x}] =

∫
y6x

Φ[FX](y)dFX(y). (1)

In general we denote the i-th margin of F ηX as [F ηX]i and expectations under Qη(X) by Eη(X). As in most of

the paper we keep X fixed, when there is no scope for misunderstanding, we will in the sequel simplify those

notations to F ηXi , Q
η, and Eη.

2.3 Applications of stressing mechanisms

We now briefly introduce two particular applications of stressing mechanisms that we discuss extensively

in the paper.

2.3.1 Stress testing of financial portfolios

We consider stress testing from an internal company perspective. For a given financial institution, e.g.,an

insurer, let the function f ∈ Fd represent its portfolio structure, such that Y := f(X) is the portfolio loss, see

Figure 1 (left). The triple (X, f,P) can be understood as an internal model, used for risk and performance

management purposes. The insurer is interested in the behaviour of the model output Y under alternative

specifications of the risk factor distribution FX. This motivates stressing mechanisms of the form

η(X) =
ζ(f(X))

E[ζ(f(X))]
, Φ[FX](x) =

ζ(f(x))

E[ζ(f(X))]
, (2)

for some ζ such that ζ(f(X)) is integrable, so that the Radon-Nikodym derivative depends on outcomes of

the portfolio loss. Cambou and Filipović (2017), motivated by model uncertainty, propose choices of the

function ζ using φ-divergence minimization, given constraints on the probabilities of specified events under

Qη. In a related approach framed in the terms of sensitivity analysis, Pesenti et al. (2019) use entropy

minimization arguments, given constraints on risk measures of the portfolio loss Y = f(X). However, these

approaches do not address the question of how to directly stress the (possibly numerous) risk factors of an

internal model, in a consistent and parsimonious way that explicitly reflects their dependence structure and

is not specific to a particular portfolio structure.

A further step is to apply a stressing mechanism across institutions in a financial market, aiming to

capture systemically important events. This process is illustrated in Figure 1 (right), which depicts a market

with three participants, with respective aggregation functions f (1), f (2) and f (3), each of which maps the

shared risk factors X to its portfolio loss. A change of measure specified appropriately for all institutions

would allow each of them to recalculate their portfolio loss distribution under stressed conditions and report

e.g. their increased capital needs to the regulator. If stress testing is performed in such a manner, one has

to consider that each of the participating companies will have a different internal model, which implies,
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Figure 1: Left: Stylized representation of risk aggregation in an internal model; right: internal models across
a market.

in an extension of our setting, their use of different baseline probability measures. Then a challenge for a

regulator is to specify a stressing mechanism η, which can produce stressed models for different institutions

in a consistent way. Such a stressing mechanism should be easy to specify and implement on very different

models and not depend on a given portfolio structure, or choices on the marginal distributions Fi.

2.3.2 Capital allocation

A special case of risk aggregation occurs within linear portfolios, Y = X1 + · · ·+Xd, where Xi represents

the loss from the i-th line of business (or asset position). Then, for a stressing mechanism of the form

ϕ(Y ) = ζ(Y )
/
E[ζ(Y )], we can interpret the quantities

Eϕ(Y )[Y ] = E
[
Y

ζ(Y )

E[ζ(Y )]

]
, Eϕ(Y )[Xi] = E

[
Xi

ζ(Y )

E[ζ(Y )]

]

as, respectively, the total capital requirement for the portfolio and the capital allocated to the i-th line of

business (Furman and Zitikis, 2008, Dhaene et al., 2012). In the case of distortion risk measures (Wang et al.,

1997, Acerbi and Tasche, 2002), the choice ζ(y) = ξ(FY (y)), y ∈ R is made (for continuous FY ), where ξ is

a density on [0, 1).

Following such an approach, modifications to one line of business change the stressing mechanism

and, thus, the allocated capital to other lines of business. This presents practical challenges in industry

applications, as large risk exposures end up dominating the aggregate capital. For example, consider a

portfolio with additional exposure to Xi, that is, (X1, . . . , (1 + w)Xi, . . . , Xd) for some w > 0. Then the

aggregate loss is Yw := Y + wXi and the corresponding stressing mechanism ϕ(Yw) = ζ(Yw)
/
E[ζ(Yw)]. Let

E[X] = 0 and Xj ⊥ Xi for all i 6= j, i, j ∈ {1, . . . , n}. Then, as w →∞, we have that Eϕ(Yw)[Xj ]→ 0, such

that small well diversified positions do not attract a risk load, which can create perverse incentives for line

managers. Furthermore, there is a conflict between basing an allocation method on a portfolio risk measure

and satisfying reasonable criteria for stability of the allocation to local risk mitigation (Guan et al., 2023).
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In the two applications discussed above, the need has arisen for mechanisms that (i) are functions of

the whole vector X rather than only a function of them, e.g., a portfolio loss f(X); and (ii) are invariant to

increasing transforms of individual elements of X, while reflecting its dependence structure.

3 Properties of stressing mechanisms

Naturally, one can design a variety of meaningful stressing mechanisms. For the purposes of this paper,

we list a number of potentially desirable properties for a given stressing mechanism η. We emphasize that

we do not consider all properties below attractive in all circumstances – instead we see them as a menu of

possibilities that can be chosen from, depending on the problem context.

(a) Invariance. For all X ∈ X d and all strictly increasing functions f1, . . . , fd on R, η
(
(f1(X1), . . . , fd(Xd))

)
= η(X) holds.

(b) Joint stressing. For all X ∈ X d, FX �st F
η
X.

(c) Marginal increasingness (with respect to a given partial order � onM). For all X,Y ∈ X d and each

i = 1, . . . , d, FXi � FYi implies F ηXi � F
η
Yi

.

(d) Independence preserving. If X ∈ X d has independent components under P, then it does so under

Qη(X).

(e) Symmetry. For all X ∈ X d and all permutations σ of {1, . . . , d}, η
(
(Xσ(1), . . . , Xσ(d))

)
= η(X) holds.

(f) Constancy. For all 1 < k < d, X ∈ X k and c ∈ Rd−k, it holds that η
(
(X, c)

)
= η

(
(X, 0, . . . , 0)

)
.

(g) Directness. η is invariant and there exists f : [0, 1]d → R+ measurable such that η(U) = f(U) holds

for all U ∈ Ud.

Invariance to increasing transformations (a) represents a requirement that the stressing mechanism does

not change when strictly increasing transformations are applied to the risk factors. This property ensures

that stressing is not contingent on the particular scale that any given risk factor is expressed in. For example,

in financial risk modeling, asset returns can be expressed as either linear returns or log-returns, depending

on the convention in a particular context. These two choices are technically equivalent and should not lead

to different stress scenarios and results. The invariance property is key to our paper, as it addresses the

different but related issues identified in the discussion of Section 2.3. Note that for an invariant stressing

mechanism η, we can write η(X) = η(U), such that we use as input the vector of uniform transforms U ∈ Ud,

as constructed in Section 2.1 and Appendix A. As the stressing mechanism does not depend on the marginal

distributions, the focus is placed on the dependence structure of X, a critical concern for multivariate stress

testing. At the same time, a careful selection of an invariant stressing mechanism can also have desired effects

on marginal distributions, e.g.,by making their tails heavier, as discussed in Example 1.
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Joint stressing (b) implies that risk factors become larger, in the usual stochastic order, under the post-

stress distribution. In particular, the joint probability of risk factors concurrently exceeding a high threshold

becomes higher. If one understands such joint exceedances as adverse events, this indicates that stressing

increases portfolio risk. It is apparent that joint stressing implies that marginal distributions of risk factors

increase in stochastic dominance, that is, FXi �st F
η
Xi

, i = 1, . . . , d. Of course, one may not necessarily

consider high joint values of X as adverse, e.g., in highly non-linear models with complex interactions.

Nonetheless, the joint stressing property allows monitoring the movement of portfolio positions when risk

factors are stochastically increased or indeed decreased by stressing decreasing functions of risk factors; in

the context of an invariant stressing mechanism this just means substituting Ūi = 1− Ui for Ui.

Furthermore, sometimes the aim of stress testing is to modify risk factors’ volatility, rather than to

stochastically increase or decrease them. In such settings the joint-stressing property is generally not de-

sirable. We defer a more systematic discussion of this point to Section 4.5, where we introduce stressing

mechanisms that satisfy a specific variability stressing property that is well suited to the context of invariant

stressing mechanisms. Furthermore, in Example 1 we introduce a two-tailed stress and in Example 7 a stress

on risk factors’ covariance structure.

Marginal increasingness (c) is defined with respect to a specific partial stochastic order onM, e.g., �st.

It means that if we compare two models and their margins are ordered under P, they should be ordered

similarly under Qη, such that stressing both models preserves the ordering structure. For a related argument

in the context of distributional regression, see Henzi et al. (2021). We consider marginal increasingness a

generally desirable property. It is particularly useful when concurrently and consistently stressing different

models, as in the regulatory context of Section 2.3.1.

The independence preserving property (d) reflects situations where risk factors are independent under

the baseline model and a decision maker does not want to artificially introduce dependence via the stressing

mechanism. Dependence may be implausible for some risk factors, e.g.,in an insurance context, between the

California Earthquake and UK Windstorm & Flood scenarios specified by the UK’s regulator (Prudential

Regulatory Authority, 2019). Hence, in such situations, stressing only impacts the marginal distributions

of the risk factors. Independence preserving will not be desirable in those situations where stress testing

is meant to exacerbate positive correlation between risk factors, e.g.,in the case of a systemic risk stress.

Examples 5, 6 and 7 in Section 4.4 show how one can design stressing mechanisms that increase dependence

within particular models (or even induce such dependence, when X is independent under P).

Symmetry (e) implies that the order of risk factors in the random vector X has no impact on the

stressing mechanism. Such a property means that all risk factors, are, in some sense, stressed in the same

way; the stressing mechanism does not ex ante consider some risk factors as more important or relevant than

others. Thus symmetry is characteristic of a bottom-up approach to stress testing, where risk factors are

stressed in a consistent way, and their comparative impacts (e.g. on the portfolio position) are monitored.

Symmetry is not always desirable: for example, if stress testing happens as part of model risk management,

in order to evaluate the worst plausible distribution for individual risk factors, it makes sense to stress risk
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factors differently, depending on the extent that their distribution is subject to uncertainty. While we often

focus on symmetric stressing mechanisms, this is not a limitation of our framework: even symmetric stressing

mechanisms such as those of Section 4.2 can be easily extended. Furthermore, in Section 5.2 we show how

the comparison of asymmetric and symmetric stresses provides a means for identifying the main risk drivers

in a portfolio.

Constancy (f) means that the particular values of risk factors that are constant have no impact on the

stressing mechanisms. This makes sure that a risk factor being volatile is a precondition for its realization

having an effect on stress testing.

Directness (g) is a technical property, strengthening invariance (a). A direct stressing mechanism de-

pends on the realized value of U only, and not on its distribution. Direct stressing mechanisms can be

applied without explicit knowledge of the copula CX. Directness is a quite a strong property, and we will see

in Theorem 1 that it imposes some specific forms of η.

Finally, we note that it is important to consider the way that stressing mechanisms reflect risk diversi-

fication and aggregation – in particular, the ways that stressing the full vector of risk factors has different

implications to stressing a single risk factor. This discussion parallels and is connected to the subadditivity

property of risk measures (Artzner et al., 1999). However, given that we do not assume any (e.g., linear)

portfolio structure, subadditivity does not directly transfer to our setting. In Section 4.3 we introduce a

diversification/aggregation property, explain how it applies to broad classes of stressing mechanisms, and

discuss its relation to subadditivity in more detail.

Any of the above properties may hold just on a subset of X d. This permits focusing attention on random

vectors that satisfy particular properties. A vector X ∈ X d is associated if we have that E[g(X)h(X)] >

E[g(X)]E[h(X)], for all increasing functions g, h ∈ Fd such that the expectations exist. Association is

a general positive dependence property, encompassing cases such as independence, comonotonicity, and

implying positive quadrant dependence (Denuit et al., 2006, Sec. 7.2.3). We then denote by X d+ the set

of associated random vectors in X d. Furthermore, we denote by X d⊥ ⊂ X d+ the set of independent random

vectors in X and by X d(C) := {X : CX = C} the set of vectors that share a given copula C. We now show

how some of the stipulated properties hold on subsets of X d.

Proposition 2. For a given stressing mechanism η, the following hold.

i) Let Φ be the generator of η. If, for all X ∈ X d+, the function x 7→ Φ[FX](x) is increasing, then η satisfies

joint stressing on X d+.

ii) For a given copula C, any invariant stressing mechanism is marginally increasing with respect to �st on

X d(C).

iii) Any invariant stressing mechanism satisfies constancy.

It can be noted that, unless in some very special cases, the converse of Proposition 2(i) does not hold.
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4 Classes of invariant stressing mechanisms

4.1 Mixture stressing mechanisms

The first class of stressing mechanisms we consider is based on mixtures. For stressing mechanisms

η1, . . . , ηk it is apparent that η =
∑k
i=1 λiηi, where (λ1, . . . , λk) ∈ ∆k = {λ ∈ [0, 1]k :

∑k
i=1 λi = 1} the

standard simplex in Rk, is again a stressing mechanism. Here, we focus on mixtures of univariate stressing

mechanisms.

We first explain the simple case of univariate stressing mechanisms, which will be the basis for a

characterization result. Assuming invariance, a univariate stressing mechanism on X can be represented by

η : U → R. Since we know that U is uniform, η will have the form η(U) = g(U), for some g ∈ G, where

G is the set of probability density functions over [0, 1]. Hence, univariate invariant stressing mechanisms

satisfy the directness property discussed in Section 3. Let now ĝ(u) =
∫ u

0
g(v)dv, u ∈ [0, 1], the cumulative

distribution function of g. For x ∈ [0, 1] and any continuously distributed X with distribution FX , we have

for such η that

F ηX(x) = E[g(FX(X))1{X6x}] =

∫ FX(x)

0

g(u)du = ĝ ◦ FX(x), x ∈ R.

(Again we refer to Appendix A for the case that distributions are not continuous – all our arguments

in this section still hold under the generalized definition of U .) Hence, the post-stress distribution F ηX

is a probability distortion of FX . Probability distortions are characterized by Liu et al. (2021) among

distributional transforms via a property similar to the invariance. It is clear that FX �st F
η
X if and only if

ĝ(t) 6 t for all t ∈ [0, 1]; this condition is weaker than increasingness of g. Let G∗ ⊂ G be the set of functions

g ∈ G satisfying ĝ(t) 6 t for all t ∈ [0, 1].

Direct stressing mechanisms are precisely represented by mixtures of univariate stressing mechanisms.

Theorem 1. An invariant stressing mechanism η is direct if and only if it is a mixture of univariate stressing

mechanisms, i.e., there exist functions g1, . . . , gd ∈ G and λ ∈ ∆d such that

η(U) =

d∑
i=1

λigi(Ui), a.s., (3)

where U = (U1, . . . , Ud) ∈ Ud. Moreover, assuming (3) holds,

(i) η is jointly stressing on X d⊥ if and only if gi ∈ G∗ for each i with λi > 0;

(ii) η is symmetric if and only if g1 = · · · = gd and λ1 = · · · = λd = 1/d;

(iii) η is independence preserving if and only if it is univariate, i.e., at most one of λ1g1, . . . , λdgd is not a

constant.
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(iv) η is marginally increasing with respect to �icx on X d⊥, if and only if gi is increasing for each i with

λi > 0.

We showed in Proposition 2 that all stressing mechanisms satisfy marginal increasingness with respect

to the stochastic order �st, on vectors sharing a copula. As Theorem 1(iv) shows, for the mixture stressing

mechanisms considered here and the case of independent risk factors, we can also satisfy such a property

with respect to the increasing convex order, if the functions gi are increasing.

Example 1 (Univariate stresses). A simple special case of a stressing mechanism is one that only depends

on a single risk factor; for example consider the (direct and invariant) stressing mechanisms of the form:

ηi(Xi) = (1− θ)Ū−θi , θ ∈ (0, 1).

It is easy to show that, if we use such a stressing mechanism, the tail of the marginal distribution of Xi

becomes heavier, in the sense that

F̄
ηi(Xi)
Xi

(x) =

∫ ∞
x

(1− θ)F̄Xi(t)−θdFXi(t) = F̄Xi(x)1−θ,

which also demonstrates how the post-stress marginal distribution stochastically dominates FXi .

If we additionally assume that Xi is Pareto distributed, Xi ∼ Par(α, b), then under Qηi the distribution

of Xi remains Pareto, but with a reduced tail index (1 − θ)α, indicating a heavier tail. Alternatively, if Xi

is exponentially distributed with rate parameter β, its post-stress distribution is also exponential, with rate

parameter (1− θ)β. Note that Pareto and Exponential tails are canonical modelling tools for the excesses of

random variables above high thresholds, see e.g., McNeil et al. (2015, Sec. 5.2). Furthermore, we can also

stress both tails of the marginal distributions, by a simple adjustment to the univariate stresses considered

so far,

η̃i(Xi) = 2−θ(1− θ)
(
U−θi 1{Ui<0.5} + Ū−θi 1{Ui>0.5}

)
, θ ∈ (0, 1),

which can be used as a building block for more complex stresses. The tail impacts are similar to those dis-

cussed earlier, but now apply to both tails. For example, if Fi is a Laplace (double exponential) distribution,

simple calculation shows that F η̃ii is again Laplace, but with higher scale parameter. Naturally, asymmetry

can also be introduced by assigning different exponents to the two terms of η̃i.

If we assume independence of X, the distribution of the remaining risk factors X−i is unaffected by the

use of the stresing mechanism ηi(Xi). Let us consider the case that the random vector X is not independent.

How does the stressing mechanism ηi impact the distribution of the whole vector X? One way to characterize

the post-stress distribution of X is via inverse Rosenblatt transforms, as considered by Rüschendorf and

de Valk (1993) and Pesenti et al. (2021). We can always represent the risk factors by

X = ψ(Xi,V ) =
(
ψ(1)(Xi,V ), . . . , ψ(n)(Xi,V )

)
a.s.,
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where ψ : Rd → Rd and V ∼ Ud−1. Then, under Qηi(Xi), the vector (Xi,V) remains independent and

V remain uniform. This, together with the representation X = ψ(Xi,V ) also allows easy simulation of X

under Qηi(Xi).

Example 2 (Mixtures of univariate stresses). Now consider stressing mechanisms of the form:

η(X) =

d∑
i=1

λi(1− θ)Ū−θi , for (λ1, . . . , λd) ∈ ∆d, θ ∈ (0, 1),

noting that this directly generalizes Example 1 above. Denoting g(u) = (1 − θ)(1 − u)−θ, we can write for

any f ∈ Fd

Eη [f(X)] =

d∑
i=1

λiE [f(X)g(Ui)] = E

[
d∑
i=1

1Aif(X)g(Ui)

]
,

where Ai are events independent of X, with P(Ai) = λi, i = 1, . . . , d. The first equality shows how the

mixture stressing mechanism can be understood as a weighted average of the ‘cascade’ stresses discussed in

Example 1, each starting at a different Xi. The second equality shows how one can evaluate the expectations

under Qη, by choosing at random, within each simulated scenario, with respect to which marginal to stress

the model.

The case where X is independent yields a simple form for the post-stress marginal distributions:

F ηXi = λiĝ ◦ FXi + (1− λi)FXi ,

where ĝ is the cumulative distribution function corresponding to g. In particular, for our choice of univariate

stress with g(u) = (1− θ)(1− u)−θ, we have that

F̄ ηXi(x) = λiF̄Xi(x)1−θ + (1− λi)F̄Xi(x).

Hence, the marginal post-stress survival functions are expressed as mixtures of the baseline distributions and

their (heavier-tailed) transformed ones. In this way, stressing can be seen to represent a contamination of the

marginal distributions with respect to heavier tailed ones, as is often done in the study of model uncertainty

(e.g. Cont et al., 2010, Pesenti et al., 2021).

4.2 Spearman and Kendall stressing mechanisms

The second class of stressing mechanisms we study are based on quantities we term Spearman’s and

Kendall’s cores. These are defined below.

Definition 2. For any X ∈ X d, with U and Ū the associated vectors of uniforms as defined in Section 2.1

we define the following quantities:
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i) The random variables S(X) = U1 · . . . · Ud and S̄(X) = Ū1 · . . . · Ūd are called respectively Spearman’s

core and Spearman’s dual core.

ii) The random variables K(X) = CX(U) and K̄(X) = C̄X(Ū) are called respectively Kendall’s core and

Kendall’s dual core.

Spearman’s and Kendall’s cores play a key role in the construction of dependence measures. For d = 2 the

Spearman and Kendall rank correlation coefficients are defined respectively by rS(X1, X2) = 12E[S(X)]− 3

and rK(X1, X2) = 4E[K(X)]− 1. For d > 2, these variables can be understood as summaries of multivariate

dependence; for example the distribution of K(X) is intrinsically linked with Archimedean copulas (Genest

and Rivest, 1993). We find the Spearman and Kendall’s (dual) cores attractive building blocks for stressing

mechanisms, as they give suitable summaries of the multivariate behaviour of X, without reference to the

marginal distributions or a particular portfolio structure.

Some elementary properties of Spearman’s and Kendall’s cores are stated below.

Proposition 3. The following properties of (dual) Spearman’s and Kendall’s cores hold:

i) If X is independent, then K(X) = S(X) and K̄(X) = S̄(X).

ii) If X is comonotonic, S(X) = Udi , S̄(X) = Ūdi , K(X) = Ui, and K̄(X) = Ūi, for any i = 1, . . . , d.

iii) If, for some i, j, the pair (Xi, Xj) is countermonotonic, then K(X) = K̄(X) = 0.

iv) A(X) �st V , for any V ∈ U and A ∈ {S, S̄,K, K̄}.

We focus here on a class of stressing mechanisms that are defined as powers of (dual) Spearman’s and

Kendall’s cores. Specifically, we consider stressing mechanisms of the form

η(X) =
A(X)θ

E [A(X)θ]
, A ∈ {S,K}, θ > 0,

η(X) =
A(X)−θ

E [A(X)−θ]
, A ∈ {S̄, K̄}, 0 < θ < 1,

(4)

when these are well-defined. Such stressing mechanisms satisfy a number of the properties we formulated in

Section 3.

Proposition 4. Stressing mechanisms of the form (4) satisfy, on their domain, the following properties:

i) Invariance, independence preserving, and symmetry.

ii) Joint stressing on X d+.

iii) Marginal increasingness with respect to the order �icx on X d⊥.

Finally, we note that it is easy in this framework to produce stressing mechanisms that are not symmetric

e.g.,by η(X) = Uθ11 · . . . · U
θd
d

/
E[Uθ11 · . . . · U

θd
d ], for some θ1, . . . , θd > 0. We do not pursue this route further
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in the current paper, as we do not consider a priori reasons for stressing one particular risk factor more

than another. Furthermore, similarly to the additive mixtures of univariate stressing mechanisms in (3),

we may define a class of multiplicative mixtures via η(X) = g1(U1) · . . . · gd(Ud)/E[g1(U1) · . . . · gd(Ud)] for

some suitably chosen positive univariate functions g1, . . . , gd. The Spearman stressing mechanisms belong

to this class via the specification g1(u) = · · · = gd(u) = uθ. For concision, we omit a thorough discussion of

this broader class of stressing mechanisms here. Such more flexible constructions can give rise to stressing

mechanisms designed to impact on the variability of risk factors.

The following two examples present applications of the dual Spearman and the Kendall stressing mech-

anisms.

Example 3 (Dual Spearman and independence). Once again we building upon the univariate construc-

tion of Example 1. Assume that the vector of risk factors X is independent. A decision maker wants to stress

the marginal distributions of X but not induce artificially dependence between its elements. Consider Spear-

man’s dual stressing mechanism η(X) = S̄(X)−θ/E
[
S̄(X)−θ

]
, θ ∈ (0, 1), and recall that, by independence

of X, we have S̄(X) = K̄(X) = Ū1 · . . . · Ūd. Then, by Proposition 4, we have that X remains independent

under Qη. Furthermore, for the marginals we have

F̄ ηXi(x) = F̄Xi(x)1−θ > F̄Xi(x), i = 1, . . . , d,

which demonstrates how the post-stress marginal distribution stochastically dominates FXi . Note that, in

contrast to the univariate stress of Example 1, this transformation holds for all risk factors, rather than

just a single one. Furthermore, expectations of the risk factors Xi under Qη can be directly interpreted as

distortion risk measures – specifically, Eη[Xi] corresponds to the proportional hazards transform of Wang

(1996).

A fuller discussion of the case of (dual) Spearman stressing mechanisms under independence of X is

given in Appendix C.

Example 4 (Kendall and benchmark risk factors). Here show how a stressing mechanism based on

Kendall’s core can be constructed via the comparison of X to a suitably defined benchmark. Define X(i), i =

1, . . . , n, as independent copies of X and denote

W :=

n∨
i=1

X(i) =
(

max
(
X

(1)
1 , . . . , X

(n)
1

)
, . . . ,max

(
X

(1)
d , . . . , X

(n)
d

))
,

the component-wise maximum of X(i), i = 1, . . . , n. Consider the stressing mechanism based on Kendall’s
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core η(X) = K(X)n/E [K(X)n]. Then, for any function g ∈ Fd, we have:

Eη[g(X)] =
1

E[K(X)n]
E [g(X) · FX(X)n]

=
1

E[K(X)n]
E [g(X) · P (X > W|X)]

=
1

E[K(X)n]
E
[
g(X) · 1{X>W}

]
Hence, the post-stress joint density of X, fηX(x), is proportional to the quantity E[fX(x)1{x>W}]. To

interpret this relation, let first n = 1 and view X = X(1) a benchmark set of risk factors. Then, the stressing

mechanism places a non-zero weight on only those states where the risk factors dominate the benchmark X.

For n > 1, we have the stricter requirement that X must dominate the component-wise maximum of the

benchmark vectors X(1), . . . ,X(n).

4.3 Diversification, aggregation and capital allocation

In the theory of risk measurement, considerations of subadditivity are fundamental (Artzner et al., 1999).

Subadditivity requires that the pooling of risk exposures results in a portfolio with a lower risk measurement

than the sum of its parts, reflecting diversification benefits. A less used alternative is superadditivity (e.g.,

Tsanakas, 2009, Wang et al., 2015), which postulates that (under certain dependence assumptions) the risk

of pooled positions would be higher than the sum of its parts, leading to an aggregation penalty. The

sub/super-additivity properties do not transfer naturally to our current context of stress testing, since we are

generally not dealing with linear portfolios. First, as we make no assumption that a portfolio loss is linear

in X, the comparison of a stressed portfolio with a sum of risk assessments (e.g., post-stress expectations)

pertaining to elements of Xi is not meaningful. Second, we may not be able to naturally interpret stressing

mechanisms applied to sums of vectors of risk factors, since if we have two non-linear portfolios f(X) and

h(Y), it does not generally follow that X + Y are risk factors of a meaningful portfolio (think for example a

situation where Xi represents an interest rate or an inflation index, rather than an asset value).

Nonetheless, it is important to consider the ways that risk aggregation is treated in our context of

multivariate stressing, albeit under a somewhat different conceptualisation. When using stressing mechanisms

(3) and (4), individual risk factors are stressed according to their dependence with all other elements of X.

Here we consider how post-stress distributions of risk factors compare to the situation when risk factors are

stressed one-by-one in a ‘stand-alone’ manner. This reasoning leads to the property:

• Diversification/aggregation. Consider the multivariate stressing mechanism η : X d 7→ R and the

univariate stressing mechanism ηi : X 7→ R. For a given vector X ∈ X d, the pair (η, ηi) satisfies

diversification, if F
η(X)
Xi

�st F
ηi(Xi)
Xi

; conversely, the pair (η, ηi) satisfies aggregation, if F
ηi(Xi)
Xi

�st

F
η(X)
Xi

. Furthermore, the pair (η, ηi) is diversification neutral if F
η(X)
Xi

= F
ηi(Xi)
Xi

The diversification/aggregation property codifies the requirement that a risk factor stochastically in-
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creases or decreases, when we move from univariately stressing it (via ηi(Xi)) to multivariately stressing

it (via η(X)). However, to make a meaningful comparison, we need to consider a natural way of reducing

the dimension of a stressing mechanism’s input vector, from d to 1. In particular, for symmetric stressing

mechanisms of form (3) (hence with λi = 1/d, gi = g for all i), we define for each i = 1, . . . , d, ηi : X → R by

ηi(Xi) = g(Ui). (5)

Similarly, for stressing mechanisms of form (4), focusing here on Spearman’s core, we define for A = S and

A = S̄ respectively, for each i = 1, . . . , d,

ηi(Xi) = (1 + θ)Uθi , θ > 0,

ηi(Xi) = (1− θ)Ū−θi , θ ∈ (0, 1).
(6)

We then obtain the following result.

Proposition 5.

i) Let the stressing mechanisms η and ηi have respectively the form (3) and (5), with λ1 = · · · = λd = 1/d,

g1 = · · · = gd = g, and g increasing. Then, for each i = 1, . . . , d, the pair (η, ηi) satisfies diversification

for all X ∈ X d. In particular, (η, ηi) is diversification neutral if X is comonotonic.

ii) Let the stressing mechanisms η and ηi have respectively the form (4) and (6), with A ∈ {S, S̄}. Then,

the pair (η, ηi) satisfies aggregation for each i = 1, . . . , d such that X−i is stochastically increasing in

Xi. In particular, (η, ηi) is diversification neutral if X is independent.

Proposition 5 demonstrates the different aggregation behaviours of the stressing mechanisms (3) and

(4). Part i) shows that symmetric and increasing mixture-based stressing mechanisms induce a diversification

credit with respect to stand-alone stresses on risk factors. Part ii) shows that Spearman-based stressing

mechanisms induce, under positive dependence, an aggregation penalty.

We may now examine the connection between the diversification property and subadditivity, in the

special case of a linear portfolio Z =
∑d
i=1Xi. Denote the stressing mechanism ζ(Z) = g(UZ), where g is as

in Proposition 5i). Then we may interpret ρ(Z) := Eζ(Z)[Z] as a portfolio risk measure and correspondingly

denote by ρ(Xi) = Eηi(Xi)[Xi] the stand-alone risk measure for position Xi – in fact ρ is a distortion risk

measure (Wang et al., 1997). A sufficient condition for subadditivity of the risk measure ρ is Eζ(Z) [Xi] 6

Eηi(Xi)[Xi] for all i. If that condition holds, as it does for increasing g, we have

ρ(Z) =

d∑
i=1

Eζ(Z)[Xi] 6
d∑
i=1

Eηi(Xi)[Xi] =

d∑
i=1

ρ(Xi).

Notice now that the diversification/aggregation property and Proposition 5 invite comparisons between

Eη(X) [Xi] and Eηi(Xi)[Xi]. Thus, switching from a risk-measure- to a stressing-mechanism-view relies on
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substituting for ζ(Z) the stressing mechanism η(X), which depends on the random vector X and does

not presume any specific portfolio structure, linear or otherwise; in particular, Proposition 5i) gives us

Eη(X) [Xi] 6 Eηi(Xi)[Xi] as an analogue to the subadditivity condition. Using similar arguments, the stressing

mechanisms of Proposition 5ii) can be understood as having an aggregation property that is analogous to

superadditivity under positive dependence.

The preceding arguments take a particular interpretation in the context of capital allocation. In the

discussion of Section 2.3.2, we argued that with standard capital allocation approaches, the scale of positions

has a disproportionate effect on allocated capital amounts. The invariant stressing mechanisms of equations

(3) and (4) do not, by construction, suffer from such effects. Furthermore, Proposition 5 allows us to elaborate

on how such stressing mechanisms reward diversification or penalize aggregation in portfolios.

Let each risk factor represent the loss from a line of business, such that Z =
∑d
i=1Xi is the portfolio loss.

For a stressing mechanism η, we interpret Eη(X)[Z] as the portfolio’s capital requirement and by Eη(X)[Xi] the

capital allocated to the i-th line of business. The stand-alone capital for the i-th line of business is given by

Eηi(Xi)[Xi], which, for ηi as in (5) and (6), is a distortion risk measure of Xi (Wang et al., 1997). A recurring

concern in the literature is that the capital allocated to any Xi be no more than the stand-alone capital

of the same line, were it to leave the portfolio, as this would create incentives for portfolio fragmentation

(Denault, 2001, Tsanakas, 2009).

The stochastic ordering relations in Proposition 5 translate directly to ordering of the expectations of

(or allocated capitals to) Xi under different stressing mechanisms. Thus the stressing mechanisms (3) are

consistent with standard game theoretic criteria, given the implication that the allocated capital Eη(X)[Xi]

is generally less than that stand-alone capital Eηi(Xi)[Xi]. On the other hand, the mechanisms (4), penalize

risk aggregation in a way that is typically not considered in the capital allocation literature. Here, if the

losses are independent, each is allocated a stand-alone level of capital Eηi(Xi)[Xi] given by a distortion risk

measure – hence individual risks are not ‘diversified away’. Furthermore, in the case of positive dependence,

an aggregation penalty is applied. We will investigate this further via the numerical example of Section 5.3.

4.4 Stressing risk factor dependence

In Examples 1–4, we introduced stressing mechanisms that impact the joint distribution of X. Nonethe-

less, the construction of these stresses does not focus on the dependence of X; in particular, the Spearman

and Kendall stresses preserve risk factor Independence. Here we introduce via examples stressing mechanisms

that are specifically designed to impact on the dependence structure of X. Examples 5 and 7 show how to

stress within a multivariate Pareto or Gaussian (copula) context, while Example 6 presents a method for

inducing an Archimedean copula between risk factors, when X is independent under the baseline model.

Example 5 (Dual Kendall and Multivariate Pareto). We consider the case that X follows a standard

multivariate Pareto model, that is, X ∼ MPard(α) with joint survival function (e.g. Denuit et al., 2006, Sec.
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7.2.4.1):

F̄X(x) =

(
d∑
i=1

xi + 1

)−α
, x > 0, α > 0.

For this distribution, any pair of variables has Kendall’s rank correlation equal to rK(Xi, Xj) = 1
1+2α . Such a

model may be used if X represent losses from different lines of business. Then, in a stress testing exercise, we

may be interested in finding out how the overall risk profile changes, if both the heavy-tailedness of margins

and the dependence between elements of X increases.

Consider the stressing mechanism based on the dual Kendall’s core, η(X) = K̄(X)−θ/E
[
K̄(X)−θ

]
, θ ∈

(0, 1). Then, direct calculation (see Appendix C) leads to the post-stress distribution:

F̄ ηX(x) =

(
d∑
i=1

xi + 1

)−(1−θ)α

, x > 0,

which is in the same family, with a modified tail index. The bivariate Kendall’s rank correlation coefficient

becomes 1
1+2(1−θ)α , demonstrating a strengthening of the dependence between elements of X.

Given the invariance of Kendall’s dual stressing mechanism, the same process as in Example 5 can be

followed, not only in the case of a multivariate Pareto distribution, but more generally in the case when X

has a Clayton survival copula, which is precisely the copula of the multivariate Pareto distribution. Before

proceeding, we recall some basic facts about Archimedean copulas, see e.g., McNeil et al. (2015, Sec. 7.4).

A function φ is completely monotonic on an interval [a, b], if it satisfies (−1)k ∂
k

dtk
φ(t) > 0, for all k ∈ N, t ∈

(a, b). Given a completely monotonic function φ : [0,∞) → [0, 1] with φ(0) = 1 and limt→∞ φ(t) = 0,

an Archimedean copula with generator φ is defined by Cφ(u) = φ
(
φ−1(u1) + · · ·+ φ−1(ud)

)
. Archimedean

copulas satisfy a number of positive dependence properties, including association, as well as the somewhat

stronger property of MTP2; for details see Müller and Scarsini (2005). The Clayton copula discussed above,

is a special case of an Archimedean copula with generator φ(t) = (1 + t)−1/λ, λ > 0.

Example 6 (Inducing dependence via Achimedean copulas). In an alternative setting, we may start

with a vector of risk factors X that is independent, and seek a stressing mechanism under which X becomes

dependent. This can be achieved in the general case of Archimedean copulas.

When starting from independent X, we can always design a stressing mechanism such that the post-

stress copula of X belongs to an Archimedean family. Specifically, this is achieved by introducing a stressing

mechanism of the form

η(X) =

∫ ∞
0

tdS(X)t−1dG(t),

where G is a distribution on R+. The choice G is associated with the Archimedean copula one wants to

achieve (e.g., for the Clayton copula above G is a Γ(1/λ) distribution), see Appendix C for more details.

Note that the stressing mechanism η we use here is a (continuous) mixture over t of stressing mechanisms of

the form S(X)t−1. Insofar, it is conceptually related, but distinct, from the mixture stressing mechanisms of
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Section 4.1.

Finally, in previous examples, stressing generally aimed at making the vector of risk factors stochastically

larger. Such stresses are obviously suitable in situations where large outcomes of risk factors are associated

with adverse events. However this is not a universally applicable setting, as it may be desirable to examine

the impact of increasing specifically the volatility (and more broadly, covariance) of risk factors, e.g., when

modelling multivariate asset returns. We do this in Example 7 below.

Example 7 (Covariance stresses for Multivariate Normal risk factors). Here, we diverge from

previous forms of stressing mechanisms, to discuss stressing mechanisms of the type

η(X) = c · exp

(
−1

2
Z>AZ

)
, (7)

where Z = (Z1, . . . , Zd)
> with Zi = Φ−1(Ui), i = 1, . . . , d, A ∈ Rd×d is symmetric and positive definite, and

c is a normalization constant. If X is has a Gaussian copula, then Z is multivariate normally distributed,

with standard margins and correlation matrix R, Z ∼ Nd(0,R), then it is easily shown that

Z
Qη(X)

∼ Nd

(
0,Σ = (R−1 + A)−1

)
,

since, by the properties of A, the matrix Σ is a covariance matrix. Given the construction of the random

vector Z via U, the stressing mechanism (7) is invariant – hence selecting a matrix A with a target Σ

in mind does not depend on the marginal distribution specification. The stressing mechanism (7) impacts

the correlation parameter of the Gaussian copula of X as well as the marginal distributions. As Σ =

{σi,j}i,j=1,...,d is a covariance matrix, the copula of X under Qη(X) is parameterised by the corresponding

correlation matrix R∗ = {r∗i,j}i,j=1,...,d, r
∗
i,j = σi,j/

√
σi,iσj,j . Furthermore, the marginal distribution of Xi

becomes F
η(X)
i (x) = Φ

(
1√
σi,i

Φ−1(Fi(x))
)

. In the special case where X is multivariate normally distributed

(i.e., it has both a Gaussian copula and normal margins), the stressed distribution is again multivariate

normal, with margins that have unchanged mean and standard deviation scaled by the volatility stress factor
√
σi,i. (We note that a stressing mechanism related to (7) was proposed by Wang (2007), who was interested

in stressing means rather than volatilities and used a linear rather than a quadratic form in the exponent.)

These transformations become more transparent in a simple example where d = 2 and X is independent,

such that R = Id is the identity matrix. Let

A =

a b

b a

 , a > |b|.

Then the stressed covariance matrix of Z is

Σ = (A + Id)
−1 =

 a+1
(a+1)2−b2 − b

(a+1)2−b2

− b
(a+1)2−b2

a+1
(a+1)2−b2 .
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Simple manipulations show that the correlation and variance induced by stressing mechanism are

r∗1,2 = − b

a+ 1
, σi,i =

1

(a+ 1)
(
1− (r∗1,2)2

) , i = 1, 2.

Hence, to induce a positive correlation through stressing, it is enough to set b < 0, while to induce a volatility

stress greater than 1, one needs to choose a < 1
1−(r∗1,2)2 − 1; taking a < 0 would be sufficient for this.

4.5 Stressing risk factor variability

In much of the discussion of previous sections it was implicitly or explicitly assumed that a stress is

meant to make a risk factor stochastically larger – this is reflected by the joint stressing property that is

satisfied by the stressing mechanisms we examined most closely, that is, the mixture and Spearman stressing

mechanisms of (3) and (4) respectively. (Furthermore, the risk factor Xi can be made stochastically smaller

by swapping Ui and Ūi.) Nonetheless, such a setting is not universally applicable. In many cases a risk

analyst may want to consider non-monotonic transformations of risk factors, particularly with a view to

stressing their variability. We have already considered some stressing mechanisms that focus on making risk

factors more volatile rather than stochastically larger, namely, the two-tailed stress η̃i(Xi) of Example 1 and

the Gaussian/covariance stress of Example 7.

Here we take a more systematic perspective and show how one can extend the mixture and Spearman

stressing mechanisms of (3) and (4) in order to impact the variability of risk factors. We note that in our

context of invariant stressing mechanisms, many variability concepts like the variance or, more generally, the

convex order cannot be meaningfully applied, as they depend explicitly on statistics that are not invariant

to monotonic transformations (e.g., risk factor means). For that reason, we consider as an alternative the

quantile spread order (Townsend and Colonius, 2005, Bellini et al., 2022), which is defined as follows. The

quantile spread of a distribution G ∈ M1 is the function given by QSG(p) := G−1(p) − G−1(1 − p), for

p ∈ (1/2, 1). Then, for distributions G,H ∈ M1, we say that H dominates G in quantile spread order,

and write G �QS H, if for any p ∈ (1/2, 1) it holds that QSG(p) 6 QSH(p). The quantile spread order is

a symmetric version of the dispersive order in Shaked and Shanthikumar (2007, Section 3.B). We can now

formulate the following variability property of stressing mechanisms.

• Quantile-spreading. The stressing mechanism η(X) is quantile-spreading for Xi if FXi �QS F
η(X)
Xi

.

Hence, if η(X) satisfies this property for Xi, the spread between, e.g., the 95th and 5th quantiles of Xi

increases after stressing the risk factors.

Now we can proceed by defining stressing mechanisms that satisfy this property (we will discuss stressing

mechanisms that instead reduce risk factor variability at the end of this section). We start by considering

univariate stressing mechanisms of the form:

ηi(Xi) =
U−θi Ū−θi

B(1− θ, 1− θ)
, 0 < θ < 1, (8)
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where B(·, ·) is the Beta function providing here the normalization constant; see also Wirch and Hardy (1999)

for a related approach to risk measurement. The stressing mechanisms (8) include components that are both

increasing and decreasing in the risk factor Xi. The impact on the distribution of Xi is characterised below.

Proposition 6. The stressing mechanism (8) is quantile-stressing for Xi. Furthermore, F
ηi(Xi)
Xi

(1/2) =

FXi(1/2).

Hence the univariate stressing mechanisms (8) increase the variability of a risk factor in the sense of

quantile spreading, while keeping the median unchanged. We can now use ηi(Xi) as building block for

multivariate stressing mechanisms that are analogous to mixture and (dual) Spearman stresses:

ηM (X) =

d∑
i=1

λiηi(Xi), (λ1, . . . , λd) ∈ ∆d (9)

ηS(/X) =

∏d
i=1 ηi(Xi)

E
[∏d

i=1 ηi(Xi)
] =

S(X)−θS̄(X)−θ

E
[
S(X)−θS̄(X)−θ

] . (10)

The properties of those multivariate stresses are now characterised as follows.

Proposition 7. For the stressing mechanisms (8), (9) and (10) the following hold:

i) If X is independent, then for each i = 1, . . . , d,

FXi �QS F
ηM (X)
Xi

�QS F
ηi(Xi)
Xi

= F
ηS(X)
Xi

.

ii) If X is comonotonic, then for each i = 1, . . . , d,

FXi �QS F
ηM (X)
Xi

= F
ηi(Xi)
Xi

�QS F
ηS(X)
Xi

,

where for the last ordering relation we assume dθ < 1.

Through Proposition 7, we see once more how Spearman-type stressing mechanisms induce more penal

multivariate stresses, compared to those constructed by mixtures of univariate ones.

Finally, we note that there are applications where an adverse scenario corresponds to reducing (rather

than increasing) risk factor variability, as is the case in options with convex pay-offs, like straddles and

strangles. This can be easily addressed in our framework. As an alternative to (8), consider ηi(Xi) =

Uθi Ū
θ
i /B(1 + θ, 1 + θ), θ > 1. An argument analogous to the proof of Proposition 6 shows that adopting

such a stressing mechanism induces quantile shrinking, that is, FXi �QS F
η(X)
Xi

.

22



5 Real-data application

5.1 Data

Here we illustrate the use of the stressing mechanisms introduced in previous sections, in two applica-

tions: stress testing of a simulation model and capital allocation. The applications are based on a dataset

provided by a UK-based non-life insurer, including n = 105 simulated scenarios from a number of random

variables in the insurer’s economic capital model. The variables that we will consider here are:

• Xi, i = 1, . . . , 16: losses from d = 16 lines of business in $m, gross of reinsurance (i.e. not taking into

account the losses recovered from reinsurance contracts).

• Y : Net Portfolio Loss in $m. This includes all assets held and reinsurance recoveries, as well as losses

from different sources of risk, such as market, operational, and credit risks.

As is not untypical when dealing with complex computational models (e.g. Pesenti et al., 2021), this model

is largely a black box to us. We do not have a parametric form for the distributions of Xi, which are

themselves outputs of sub-models. Furthermore we do not have access to the relationship between gross

losses X = (X1, . . . , X16) and the Net Portfolio Loss Y ; in general it holds that Y = g(X,V) for some

non-linear function g and additional sources of uncertainty V.

A summary of the statistical behaviour of X is given in Figure 2, where we show box plots of Xi, i =

1, . . . , 16, and a heatmap of their Spearman rank correlation matrix. It can be observed that the marginal

distributions tend to be very skewed, while the correlations are positive, with mostly low values, but with

some pairs in the higher range of 0.4-0.6.

Figure 2: Distributional characteristics of gross losses X. (left: box plot; right: rank correlation matrix)

The framework developed in previous sections is standing on the assumption that an existing multivari-

ate model is available to the user, either through distributional specification or – as in this section – through

simulation of the underlying risk factors. In Appendix D we show that empirical versions of our stressing

mechanisms are easily derived and produce stressed multivariate distributions that converge to those ob-
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tained under a fully specified model and this is the approach we follow in the present analysis. Note that

numerical evaluation relies on re-weighting given simulated scenarios and hence there is no need to proceed

with expensive additional evaluations of model functions – or indeed direct access to the data generating

mechanism (Pesenti et al., 2019).

5.2 Stress testing gross losses

We begin by monitoring how the model output Y responds to stressing model outputs Xi, following the

particular forms of marginal and mixture stressing mechanisms discussed in Examples 1 and 2. In particular,

to stress individual lines of business and the portfolio loss, we use

ηi(Xi) = (1− θ)Ū−θi , i = 1, . . . , 16

η(X) =
1− θ
d

d∑
j=1

Ū−θj , θ = 0.5.

The choice of θ = 0.5 is made on order to effect a substantial change in the distribution of X in a specific way:

if FXi has a Pareto-type right tail, F
ηi(Xi)
Xi

will then also have Pareto-type tail with the tail index halved.

The use of the same value of θ ensures that lines of business and the portfolio are stressed in a consistent

manner. Alternative approaches to defining the stress parameter could be based on the overall plausibility of

such as stress, measured by the (e.g. Kullback-Leibler) divergence between the baseline and stressed models,

see Breuer and Csiszár (2013).

These changes can be observed in Figures 3a) and b), where we show the quantile functions of two

particular lines of business: Cargo (X1) and Treaty (X16). In dashed blue lines we plot the baseline quantile

function; in solid red the quantile functions under the mixture stress η; in solid green the quantile functions

under the marginal stresses η1(X1) and η16(X16). It is seen how both the mixture and marginal stresses

produce an increase in stochastic dominance to the marginal distributions of X1 and X16. This effect is

much more pronounced for the marginal stresses focusing on the individual line of business, consistently with

Proposition 5i).

In Figure 3c) and d) we plot, under the same stressing mechanisms, the quantile function of the net

portfolio loss Y . The only difference between those two plots is the positioning of the green line. We see

that the impact on Y of stressing X1 is approximately the same as that of stressing the whole vector X via

the mixture stress η(X). On the other hand, we observe that applying the stressing mechanism η16(X16)

impacts the portfolio Y more than the mixture stress, which indicates the higher importance of X16 in the

portfolio.

Following these observations, we use all stress testing mechanisms η1(X1), . . . , η16(X16), to investigate

the relative importance of different lines of business to the portfolio loss. In Figure 4a) we show the impact
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Figure 3: a), b) Quantiles of X1 and X16; c), d) quantiles of Y . Dashed blue: baseline model; red: model
under mixture stress η(X); green: model under marginal stresses η1(X1) (a, c) and η16(X16) (b, d).

of stressing on the marginal tail properties of X. Specifically we plot the mean excess ratios

Eη(X) [Xi/ti − 1|Xi > ti] , Eηi(Xi) [Xi/ti − 1|Xi > ti] , i = 1, . . . , 16,

for thresholds ti = F−1
Xi

(0.99). These quantities are directly linked to the tail properties of marginal distri-

butions (McNeil et al., 2015, Sec. 5.2.3). Consistently with previous arguments, the marginal stresses have a

higher impact on tails of marginal distributions FXi compared to the mixture stress.

In Figure 4b), the relative importance of different lines of business is illustrated, by depicting (in green

bars) the 99th quantile of Y under stresses η1(X1), . . . , η16(X16). All those stresses produce an increase to

F−1
Y (0.99), compared to the baseline (blue dashed line). However these impacts are not homogeneous, with

some marginal stresses moving the portfolio loss quantile more. We can consider X3, X7, X12, X13, X16 as the

most important lines of business in the portfolio, since the respective marginal stresses produce an impact

on the 99th portfolio quantile that is more than the benchmark given by the mixture stress (red line).

We next consider the way that stressing mechanisms impact upon the dependence dependence structure

of X. In Figure 5a), the values of the pairwise (Spearman) rank correlations of X under the mixture stress

η(X) are plotted, against the baseline model. It is seen that there is no substantial impact of η(X) on

correlations, with some very modest positive effect observed for higher values.
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Figure 4: a) Mean excess ratios of X1, . . . , X16; b) 99th quantile of the Net Portfolio Loss Y under baseline
and stressed models. Blue corresponds to the baseline model, red to the mixture stress η(X); green to
marginal stresses ηi(Xi), i = 1, . . . , d.

We now show how correlation can be induced between risk factors, following the approach of Example

6. We focus our attention on the random variables X7 and X16, representing gross losses from, respectively,

a Marine Liability and a Treaty line. According to Figure 4b), both these variables are important drivers of

portfolio loss; at the same time, from Figure 2 we note that their pairwise sample rank correlation is quite low

(Spearman and Kendall measures of rank correlation are r̂S(X7, X16) = 0.079, r̂K(X7, X16) = 0.053). It is

then of interest to monitor the impact of a bivariate stress on (X7, X16), which also increases the dependence

strength between those two variables.

For this purpose we use a stressing mechanism of the form

ξ(X7, X16) =

∫ ∞
0

t2(Ū7 · Ū16)t−1dG(t),
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Figure 5: a) Pairwise rank correlations under the mixture stress η(X) against baseline model; b) quantiles
of the portfolio loss Y under the bivariate stress ξ(X7, X16); c) scatter plot of sample ranks of X7, X16; d)
scatter plot of sample ranks of X7, X16, re-sampled with respect to the stressing mechanism ξ(X7, X16).

where G is a Gamma distribution with shape parameter a = 2 and scale parameter equal to b = 1−(1−p)−1/a

log(1−p) ,

where p = 0.75. If the variables X7, X16 were independent under P, they would have a bivariate Clayton

survival copula under Qξ, with Kendall’s rank correlation equal to rK(X7, X16) = 1
1+2a = 0.2. The choice

of the scale parameter is such that the p-th quantile of the post-stress marginal distributions is the same as

that of the baseline marginals. While (X7, X16) are likely not independent in the given model, we use this

stressing mechanism in the expectation that, due to the low sample correlation, we will reach meaningful

results.

Following this process, we find that the post-stress bivariate distribution of (X7, X16) has sample rank

correlation r̂ξK(X7, X16) = 0.238, which is very close to the target value. In Figures 5 c) and d) we show

scatter plots of the sample ranks of those two variables, under the baseline model and under (i.e., re-sampled

from) Qξ. The way that the stressing mechanism ξ(X7, X16) has induced dependence is clearly visible. In

Figure 5b) the quantiles of Y are plotted. It is seen that the bivariate stress has a profound impact on the

portfolio risk, given that it impacts the joint tail of (X7, X16).
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5.3 Capital allocation

Here we use stressing mechanisms of the type (4) in order to derive a capital allocation mechanism,

which, consistently with the discussion in Example 2.3.2 and Section 4.3, provides an alternative to standard

capital allocation approaches.

We carry out the allocation exercise on the portfolio of gross losses. Define the total gross loss as Z =∑16
i=1Xi. We assume that the total capital for the portfolio of gross losses is given by an Expected Shortfall

or Conditional Value-at-Risk risk measure (McNeil et al., 2015, Sec. 2.3.4) at confidence level p = 0.975,

that is, (assuming continuity) the capital to be allocated is equal to ESp(Z) = E
[
Z | Z > F−1

Z (p)
]

= 1740.7,

where the quantile threshold used is the Value-at-Risk of Z, that is, VaRp(Z) = F−1
Z (p). Following the

standard Euler approach (Tasche, 2004), the capital allocated to Xi is deui := E
[
Xi | Z > F−1

Z (p)
]
.

We now formulate an alternative. Let η(X) = S̄(X)−θ/E
[
S̄(X)−θ

]
, where we calibrate θ = 0.202, such

that Eη(X)[Z] = ESp(Z). Consequently, we define the (dual) Spearman allocation, dspi := Eη(X)[Xi]. Figure

6 shows the Euler and Spearman allocations, in parts a) (dark red) and b) (dark green) respectively; the

allocations are plotted against each other in Figure 6. It is seen how the allocations produced are broadly

consistent, with the difference that the Euler allocation seems to penalise more severely X16.

We now consider the case that a modification in the portfolio takes place. We assume that a non-linear

reinsurance product is bought by the company to protect against X16. Specifically, this reduces the tail

risk of the 16-th line of business, as its loss now becomes X̃16 = X16 − 0.9
(
X16 − F−1

X16
(0.8)

)
+
. In Figure 6,

parts a), b), the Euler and Spearman allocations for the modified portfolio are shown in light red and light

green respectively and are plotted against each other in part d). For both methods, we see that the capital

allocated to the 16-th line of business drops substantially, reflecting the protection by the reinsurance bought.

For the Spearman allocation it is clear that this modification impacts only the capital allocated to the X16,

with other lines of business unaffected – this is an implication of invariance of the stressing mechanism η.

However, for the Euler allocation all lines of business are affected. Some of those changes would in practice

be unwelcome. For example, we see that in response to a reduction in the risk of X16 (and therefore to the

risk of the portfolio), the capital allocated to X6 and X7 actually increases. As discussed in Section 2.3.2

this is an organizationally unwelcome situation, which would in practice be untenable.

Following Section 4.3, in the presence of positive dependence, the Spearman allocation produces allo-

cated capital amounts that dominate stand-alone risk. In our case, given the positive dependence seen from

Figure 2, it is reasonable to expect that

dspi > ρθ(Xi) :=

∫ 1

0

F−1
Xi

(u)(1− θ)(1− u)1−θdu,

where ρθ is the distortion risk measure derived from the proportional hazards transform (Wang, 1996). Hence,

in the presence of positive dependence, we can view the stand-alone risk ρθ(Xi) as a lower bound for dspi ,

which is attained in the case of independence. Given that ρθ(Xi) > E[Xi], we can say that in the Spearman

allocation the risk of Xi is not ‘diversified away’.
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Figure 6: a) Euler allocation for the original (dark red) and modified (light red) portfolio; b) Spearman allo-
cation for the original (dark green) and modified (light green) portfolio; c)-d) Spearman vs Euler allocations.

In Figure 7a) (returning to the original portfolio) we show that the stand-alone risk ρθ(Xi) captures

the volatility of gross losses. Specifically, we plot the excess risk over the mean ρθ(Xi)/E[Xi] − 1 against

coefficients of variation for the gross losses, against the losses’ coefficients of variation. The essentially linear

relationship confirms that the stand-alone risk captures loss volatility.
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Using the Spearman allocation in the presence of positive dependence induces an aggregation penalty

dspi − ρθ(Xi). This should reflect the extent to which Xi is positively dependent to the other variables in X.

To capture this effect (if somewhat crudely), we plot in Figure 7b) the aggregation penalty, normalized by

the standard deviation of Xi, against the average rank correlation of Xi to other risks, that is, the quantity

ri := 1
d−1

∑16
j 6=i rS(Xi, Xj). The clear positive relationship confirms our intuition that the allocation method

appropriately penalizes positive dependence to other lines of business.

Figure 7: a) Excess stand-alone risk ρθ(Xi)/E[Xi]− 1 against coefficients of variation for the gross losses; b)
normalized aggregation penalty (desi − ρθ(Xi))/σ(Xi) against average rank correlation ri.

6 Concluding remarks

Our paper is the first systematic study of multivariate stressing mechanisms. We presented a novel

framework and, as such, there are still many questions and directions to explore.

First, there may be other useful properties that are relevant in specific contexts, in addition to the ones

considered in Section 3. The desirability of these theoretical properties, as well as their technical soundness,

needs thorough future investigation, given the additional complexity of multivariate stressing mechanisms

compared to their univariate counterparts. Furthermore, the stressing mechanisms we introduced can be

directly used to construct new multivariate risk measures e.g. as mappings X 7→ Eη(X)[X], thus contributing

to the literature on vector-valued risk measures; see e.g., Jouini et al. (2004), Embrechts and Puccetti (2006),

Maume-Deschamps et al. (2017) and the references therein. The systematic study of the properties of

stressing mechanisms is then closely related to the study of the corresponding risk measures. Future work

can develop these aspects further, with results in the vein of Proposition 5.

A keystone of our paper is the property of invariance. This allows us to formulate stressing mechanisms

that are applicable across portfolios with differing characteristics. To us, this is an important and desirable

feature of a stress testing framework. Nonetheless, at the same time it is also a limitation. By not allowing
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stressing mechanisms to depend on variables such as a portfolio loss, the link of the stressing mechanism to,

for instance, the regulatory capital is severed – hence we sharply diverge from reverse stress testing procedures

(Pesenti et al., 2019). This trade-off points to a deeper conceptual issue, which is partially explored by Guan

et al. (2023), who prove that it is impossible to design capital allocation mechanisms that both reproduce

regulatory portfolio capital and prevent risk reductions in one line from increasing the capital of others. The

latter is of course precisely the situation that our invariant stressing mechanisms addressed in Section 5.3.

Second, the practical deployment of multivariate stressing mechanisms will depend on the specifics of

different contexts. We do not anticipate one particular type of multivariate stressing to become accepted

as universally best. In the examples of Section 4 we showcased the versatility of our proposed framework,

accommodating different design criteria. In Sections 2.3 and 5 we focused on two applications: stress testing of

loss variables and capital allocation. For those specific contexts, we can offer the following recommendations:

• Overall, we find stressing mechanisms involving terms of the type Ū−θi effective, since they transform

(joint) tails in a coherent way, making them heavier, while preserving their Paretian or exponential

features. Furthermore, the relationship to distortion risk measures can be exploited for the purpose of

interpretation.

• The calibration of the stress parameter θ follows from the desired impact on distributions’ tail prop-

erties. (Stressing volatilities and correlations in a Gaussian – rather than Paretian – context can be

done by the methods of Example 7.) Alternative calibrations can follow from statistical arguments, by

setting the maximum plausible divergence between FX and F ηX (Breuer and Csiszár, 2013).

• When evaluating the relative importance of risk factors, it is useful to compare univariate to the relevant

mixture stresses, as this comparison reveals those risk factors with dominant idiosyncratic effects.

• In capital allocation, the family of stressing mechanisms to use depends on preferences: mixture-

based allocation produces diversification credits (thus removing incentives for fragmentation), while

Spearman-based allocations produce aggregation penalties (thus preventing uncorrelated risks from

being diversified away). Whichever of those is a priority will depend on the specific organizational

context – for example, the use of Spearman allocations may be preferred for calculating line managers’

remuneration, as it removes perverse incentives for taking on poorly compensated uncorrelated risks.

Multivariate stressing mechanisms naturally appear in many other areas of application in addition to

the ones we discussed in this paper. One such application is importance sampling, commonly used to increase

the accuracy of simulation-based estimates. Applications of importance sampling appear naturally in various

areas including statistical and financial studies; see e.g., Glasserman and Tayur (1995) and Glasserman and

Li (2005). Most expositions of importance sampling start with specifying an alternative density for X, while

we start by explicitly specifying a Radon-Nikodym derivative. We believe that this formulation, combined

with advanced importance sampling approaches (e.g., Owen and Zhou, 2000), can produce general-purpose
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importance sampling schemes useful in situations where the multivariate densities are not given in explicit

form, as in some hierarchically built portfolio models.

A different application is the monitoring of systemic risk across a financial market. A regulator can

specify a multivariate stress test according to our methods, by focusing on a set of relevant risk factors

and their dependence structure. This can be applied separately by participating firms, allowing them to

e.g. recalculate their portfolio loss distribution under stressed conditions and report their increased capital

needs. The invariance property ensures that such an application will be meaningful, even when implemented

on models with different distributional assumptions and portfolio structures. While we alluded to this

idea in Section 2.3.1, a full development of such an approach remains a topic for future research. Hence,

multivariate stressing can become a useful complement to approaches based on CoVaR and CoES (Adrian

and Brunnermeier, 2016, Banulescu-Radu et al., 2021), which can themselves be seen as expectations under

some (slightly more general) stressing mechanisms, or other measures of systemic risk (Chen et al., 2013).
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Breuer, T., Jandačka, M., Menćıa, J., and Summer, M. (2012). A systematic approach to multi-period stress

testing of portfolio credit risk. Journal of Banking & Finance, 36(2):332–340.

Broadie, M. and Glasserman, P. (1996). Estimating security price derivatives using simulation. Management

science, 42(2):269–285.
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Technical Appendices

A The vector U in the case of discontinuous marginals

When the marginals X ∈ X d are continuous, we define Ui = FXi(Xi) ∈ U . If FXi has discontinuities,

then FXi(Xi) is no longer uniform. Furthermore, the copula of X is not uniquely defined. We address this

issue here, following Rüschendorf and de Valk (1993). Let V ∈ Ud be independent and also independent of

X. Then, we define

F̃Xi(x, v) := FXi(x) + v(FXi(x)− FXi(x−)),

Ui := F̃Xi(Xi, Vi).

It then follows by Proposition 1.3 of Rüschendorf and de Valk (1993) that Ui ∈ U and that F−1
Xi

(Ui) = Xi

a.s. In the extreme case when Xi is degenerate, we have that Ui = Vi. Define CX(u) := P(U 6 u). When in

the paper we talk about the copula of X, we avoid ambiguity by referring always to this CX, the uniquely

defined distribution of U as constructed above.

B Proofs of results stated in Sections 2–4

Proof of Proposition 1

⇐: For each X ∈ X d, the condition implies that η(X) is σ(X)-measurable. Moreover, for X,Y ∈ X d with

FX = FY, then letting f = Φ[FX] ∈ Fd, we have

(η(X),X) = (f(X),X)
d
= (f(Y),Y) = (η(Y),Y).

⇒: To get the stated condition, for X ∈ X d, let gX(x) be the point-mass η(X) takes given X = x,

which defines a function gX ∈ Fd. Clearly, η(X) = gX(X). For X,Y ∈ X d with FX = FY, note that

(gX(X),X) = (η(X),X)
d
= (η(Y),Y) = (gY(Y),Y). As a consequence, the conditional distributions satisfy

(gX(X),X)|X=x
d
= (gY(Y),Y)|Y=x for FX-a.s. x ∈ Rd.

Since η(X) is σ(X)-measurable, the above conditional distributions are all point-masses, implying gX(x) =

gY(x) for FX-a.s. x ∈ Rd, so that the function gX only depends on the distribution of X. Letting Φ[FX] = gX

concludes the argument.
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Proof of Proposition 2

i) Let g ∈ Fd be any increasing function and X ∈ X d+. By increasingness of Φ[FX](x) and association of

X, we have

Eη[g(X)] = E [g(X)Φ[FX](X)] > E [g(X)]E [Φ[FX](X)] = E[g(X)].

ii) Consider X,Y ∈ X (C). Without loss of generality, we can assume that for each i = 1, . . . , d the pair

(Xi, Yi) is comonotonic. Furthermore, by invariance, and the shared copula of X,Y we have that η(X) =

η(Y) = η(U). Let Xi �st Yi and consider any increasing function f ∈ F. By stochastic dominance

and comonotonicity it then follows that Yi > Xi, and hence f(Yi) − f(Xi) > 0 a.s. Consequently

E[
(
f(Yi)− f(Xi)

)
η(U)] > 0, implying in turn that Eη[f(Yi)] > Eη[f(Xi)].

iii) Let X ∈ X d, such that P(Xi = ci−k), i = k + 1, . . . , d. By invariance we have that η(X) = η(U). As

degenerate (constant) random variables are discontinuous, we need to refer to the definition of U in

Appendix A. From that it follows that Uk+1, . . . , Ud are standard uniforms independent of each other

and of (X1, . . . , Xk). Hence U does not depend on the particular value of ci−k, i = k + 1, . . . , d.

Proof of Theorem 1

It is straightforward to check that (3) defines a direct stressing mechanism, and hence the “if” direction of

the main statement is trivial.

To show the “only if” direction, suppose that η is direct, and let f : [0, 1]d → R+ be a measurable

function such that η(U) = f(U). Since f is bounded from below, the duality result in Theorem 2.3 of

Rüschendorf (2013) implies that

sup
U∈Ud

E[f(U)] = min

{
d∑
i=1

∫ 1

0

fi(u)du | fi : [0, 1]→ R measurable for each i and

d⊕
i=1

fi > f

}
,

where
(⊕d

i=1 fi
)
(u1, . . . , ud) =

∑d
i=1 fi(ui). Therefore, there exist fi : [0, 1] → R measurable, i = 1, . . . , d,

with
⊕d

i=1 fi > f and U ∈ Ud such that

E[f(U)] =

d∑
i=1

∫ 1

0

fi(u)du =

∫
[0,1]d

d⊕
i=1

fi(u)du, u = (u1, . . . , ud).

Recalling that E[f(U)] = 1 for all U ∈ Ud, choosing an independent U gives

1 =

∫
[0,1]d

f(u)du =

∫
[0,1]d

d⊕
i=1

fi(u)du,

which further gives
⊕d

i=1 fi = f almost everywhere as
⊕d

i=1 fi > f .
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Let ai := inf fi ∈ R be the essential infimum of fi on [0, 1] with respect to the Lebesgue measure and

a :=
∑d
i=1 ai > 0 since f is non-negative. Letting f̂i = fi− ai + a/d, it follows that f =

⊕d
i=1 f̂i and each of

f̂1, . . . , f̂d is non-negative. Finally, for each i = 1, . . . , d, let λi =
∫ 1

0
f̂i(u)du and gi = f̂i/λi, where gi is set

to 1 if λi = 0. It follows that g1, . . . , gd ∈ G, and (3) holds.

Next, we show the four equivalence statements (i)-(iv).

(i) We first show the “if” direction. Suppose that gi ∈ G∗ for each i with λi > 0 and (U1, . . . , Ud) is

independent. Let A ⊂ [0, 1]d be an increasing set, and, for each (u2, . . . , ud) ∈ [0, 1]d−1, the section of

A

A(u2, . . . , ud) = {u1 ∈ [0, 1] : (u1, . . . , ud) ∈ A},

which is an increasing subset of [0, 1]. Assume without loss of generality that λ1 > 0. As explained

before, g1 ∈ G∗ implies E[g1(U1)1{U1∈B}] > P(U1 ∈ B) for any increasing subset B of [0, 1]. We have

E[g1(U1)1{U∈A}] = E[E[g1(U1)1{U∈A}|U2, . . . , Ud]]

= E[E[g1(U1)1{U1∈A(U2,...,Ud)}|U2, . . . , Ud]]

> E[P(U1 ∈ A(U2, . . . , Ud)|U2, . . . , Ud)] = P(U ∈ A).

Hence, the post-stress probability of U ∈ A is larger or equal to P(U ∈ A) under a univariate stressing.

Since η is a mixture of univariate stressing mechanisms with gi ∈ G∗, we know that η is jointly stressing.

To show the “only if” direction, note that joint stressing implies the marginal order FUi �st F
η
Ui

for

each i = 1, . . . , d. If (U1, . . . , Ud) is independent, the post-stress distribution of Ui is given by

λiĝi ◦ FUi +

d∑
j=1,j 6=i

λjFUj = λiĝi + (1− λi)FU , (B.1)

where FU is the identity on [0, 1]. Hence, the order FUi �st ĝi implies gi ∈ G∗ if λi > 0.

(ii) The “if” direction follows from the fact that f is symmetric. To show the “only if” direction, we

use (B.1) again. Symmetry implies λiĝi = λj ĝj for i, j = 1, . . . , d, and hence λ1 = · · · = λd and

g1 = · · · = gd.

(iii) We first show the “if” direction, and without loss of generality we assume f(u1, . . . , ud) = g1(u1) by

absorbing the constants λjgj , j > 1 into g1. Take an independent (U1, . . . , Ud) ∈ Ud. Note that, in this

case, F ηUi = FUi for i = 2, . . . , d. For u = (u1, . . . , ud) ∈ [0, 1]d, we have

F ηU(u) = E[g1(U1)1{U6u}] = E[g1(U1)1{U16u1}]

d∏
i=2

P(Ui 6 ui) =

d∏
i=1

F ηUi(ui).

Hence, η is independence preserving.
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Next, we show the “only if” direction. Suppose that λ1g1 and λ2g2 are both non-constant. We will

focus on (U1, U2). For the distribution of (U1, U2), due to independence, gj for j > 2 can be treated

as constants. Similarly to the above argument, we can assume f(u1, . . . , ud) = λ1g1(u1) + λ2g2(u2) by

absorbing the constants into g1 and g2. For u1, u2 ∈ [0, 1], we have

E[f(U)1{U16u1}1{U26u2}] = λ1E[g1(U1)1{U16u1}]u2 + λ2E[g2(U2)1{U26u2}]u1

= λ1ĝ1(u1)u2 + λ2ĝ2(u2)u1.

Moreover,

E[f(U)1{U16u1}] = λ1E[g1(U1)1{U16u1}] + λ2u1 = λ1ĝ1(u1) + λ2u1,

and similarly, E[f(U)1{U26u2}] = λ1u2 + λ2ĝ2(u2). Therefore,

E[f(U)1{U16u1}1{U26u2}]− E[f(U)1{U16u1}]E[f(U)1{U26u2}]

= λ1ĝ1(u1)u2 + λ2ĝ2(u2)u1 − (λ1ĝ1(u1) + λ2u1)(λ1u2 + λ2ĝ2(u2))

= λ1(1− λ1)ĝ1(u1)u2 + λ2(1− λ2)ĝ2(u2)u1 − λ1λ2ĝ1(u1)ĝ2(u2)− λ1λ2u1u2

= λ1λ2(ĝ1(u1)− u1)(u2 − ĝ2(u2)). (B.2)

Since ĝ1 and ĝ2 are both not the identity and λ1λ2 > 0, we know that (B.2) cannot be always 0. Hence,

the post-stress distribution of (U1, U2) is not independent, a contradiction.

(iv) Using (B.1), we know that the post-stress distribution of Ui is given by F ηUi = λiĝi+ (1−λi)FUi . Using

F ηXi = F ηUi ◦ FXi , we obtain F ηXi = λiĝi ◦ FXi + (1 − λi)FXi . Thus, we have that that F ηXi = g̃i ◦ FXi
where g̃i(t) = λiĝi(t) + (1 − λi)t, t ∈ [0, 1]. The marginal increasing in �icx property is equivalent to,

for each i = 1, . . . , d,

g̃i ◦ FX �icx g̃i ◦ FY for all FX �icx FY . (B.3)

Proposition 2 of Liu et al. (2021) implies that (B.3) holds if and only if g̃i is convex, which means that

λigi is increasing. Therefore, marginal increasingness in �icx is equivalent to gi increasing whenever

λi > 0.

Proof of Proposition 3

i) It is immediate.

ii) It follows from the observation that, if X is comonotonic, U1 = · · · = Ud := U and CX(u) =

min{u1, . . . , ud}, such that K(X) = min{U, . . . , U} = U .
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iii) Without loss of generality, let X1, X2 be countermonotonic, such that U2 = 1− U1. Then,

K(X) = P(U1 6 u1, U2 6 u2, . . . , Ud 6 ud)|(u1,u2,...,ud)=(U1,U2,...,Ud)

= P(U1 6 u1, 1− U1 6 u2, . . . , Ud 6 ud)|(u1,u2,...,ud)=(U1,1−U1,...,Ud)

= P(U1 6 u1, 1− U1 6 1− u1, . . . , Ud 6 ud)|(u1,u2,...,ud)=(U1,1−U1,...,Ud).

Note now that P(U1 6 u1, 1− U1 6 1− u1, . . . , Ud 6 ud) = 0, since P(U1 = u1) = 0. The proof for K̄

is similar.

iv) We only prove this for K,S. For any u, the upper Frechet bound (Denuit et al., 2006, Sec 1.9.2) gives

CX(u) 6 min{u1, . . . , ud}. Consequently,

K(X) = CX(UX) 6 min{U1, . . . , Ud} �st V

S(X) = U1 · . . . · Ud 6 min{U1, . . . , Ud} �st V.

Proof of Proposition 4

i) Invariance and symmetry are immediate. Let X be independent and η(X) = S(X)θ
/
E
[
S(X)θ

]
. Then,

for f1, . . . , fd ∈ F

Eη[fi(Xi)] = E
[
fi(Xi)(1 + θ)Uθi

]∏
j 6=i

E
[
(1 + θ)Uθj

]
= E

[
fi(Xi)(1 + θ)Uθi

]
Eη
[
d∏
i=1

fi(Xi)

]
= E

[
d∏
i=1

fi(Xi)(1 + θ)Uθi

]
=

d∏
i=1

Eη [fi(Xi)] ,

which proves the independence preserving property. The other cases follow similarly.

ii) Follows directly from Proposition 2(i).

iii) Again, we only show this only for η(X) = S(X)θ
/
E
[
S(X)θ

]
. Let X ∈ X d be independent. It easily

follows that F ηXi(x) = E
[
1{Xi6x}(1 + θ)Uθi

]
= FXi(x)θ+1. The claim then follows from (Liu et al., 2021,

Prop. 2(ii)), given the convexity of u 7→ uθ+1.

Proof of Proposition 5

For part ii) of the proposition, we will need to use the following Lemma.

Lemma 1. Consider a uniform random variable U , an increasing function f : [0, 1]→ R, and two increasing

and non-negative functions `1, `2 : [0, 1] → R+, such that for u ∈ (0, 1], `1(u) > 0 and `2(u) > 0. If

`2(u)/`1(u) is increasing on (0, 1], then

E
[
f(U)

`1(U)

E[`1(U)]

]
6 E

[
f(U)

`2(U)

E[`2(U)]

]
.
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Proof. For i = 1, 2, `∗i (u) = `i(u)
E[`i(U)] is a density on [0, 1]. Denote the associated distributions by Li(p) =∫ p

0
`∗i (u)du, i = 1, 2. By Theorem 3.A.26 in Shaked and Shanthikumar (2007), `1(U) is smaller than `2(U)

in the Lorenz order, equivalently,
`1(U)

E[`1(U)]
�cx

`2(U)

E[`2(U)]
.

The convex ordering implies, by Theorem 3.A.5 in Shaked and Shanthikumar (2007), that for all 0 < p < 1,

1

E[`1(U)]

∫ p

0

F−1
`1(U)(u)du >

1

E[`2(U)]

∫ p

0

F−1
`2(U)(u)du

`1,`2 incr.⇐⇒ 1

E[`1(U)]

∫ p

0

`1
(
F−1
U (u)

)
du >

1

E[`2(U)]

∫ p

0

`2
(
F−1
U (u)

)
du

U∼Unif⇐⇒ 1

E[`1(U)]

∫ p

0

`1(u)du >
1

E[`2(U)]

∫ p

0

`2(u)du

⇐⇒L1(p) > L2(p).

The claim then follows from Lemma A.1 in Wang et al. (2015), after noting that E
[
f(U) `i(U)

E[`i(U)]

]
is a

distortion risk measure with distortion function Li.

We now proceed with the proof of Proposition 5.

i) For any increasing function f we have

Eη(X)[f(Xi)] =
1

d

d∑
j=1

E[f(Xi)g(Uj)]

6
1

d

d∑
j=1

E[f(Xi)g(Ui)]

= E[f(Xi)g(Ui)] = Eηi(Xi)[f(Xi)],

where the inequality is implied by the pairs (f(Xi), g(Uj)) and (f(Xi), g(Ui)) having the same marginal

distributions, with the latter pair being comonotonic.

In the special case of comonotonicity we have Ui = Uj , i 6= j, such that the inequality above becomes

equality.

ii) The case of independence is immediate. For the more general case of stochastic increasingness, let A = S

and consider an increasing function f . Without loss of generality let i = 1. Then,

Eη1(X1)[f(X1)] = E

[
f(F−1

X1
(U1))

Uθ1
E
[
Uθ1
]] = E

[
f(F−1

Xi
(U1))

`1(U1)

E
[
`1(U1)

]]

Eη(X)[f(X1)] = E

[
f(F−1

X1
(U1))

Uθ1E
[
Uθ2 · . . . · Uθd |U1

]
E
[
Uθ1 · . . . · Uθd

] ]
= E

[
f(F−1

X1
(U1))

`2(U1)

E
[
`2(U1)

]] ,
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where `1(u) = uθ and `2(u) = uθE
[
Uθ2 · . . . · Uθd |U1 = u

]
. Then the ratio

`2(u)

`1(u)
= E

[
Uθ2 · . . . · Uθd |U1 = u

]
is increasing by the assumption of stochastic increasingness. By applying Lemma 1, it follows that

Eη1(X1)[f(X1)] 6 Eη(X)[f(X1)].

Proof of Propositions 6 and 7

For Proposition 6 we note that

F
ηi(Xi)
Xi

(x) =

∫ FXi (x)

0

u−θ(1− u)−θ

B(1− θ, 1− θ)
du = G(FXi(x)),

whereG is a Beta(1−θ, 1−θ) distribution. For the given parameters, the distributionG satisfiesG(1/2) = 1/2,

G(u) < u for u ∈ (1/2, 1), and G(u) > u for u ∈ (0, 1/2). The stated result follows directly from these

observations.

For Proposition 7i), the equality F
ηS(X)
Xi

= F
ηi(Xi)
Xi

is an immediate consequence of independence. To

show F
ηM (X)
Xi

�QS F
ηi(Xi)
Xi

it is enough to notice that, by independence,

F
ηM (X)
Xi

(x) = λiG(FXi(x)) +
∑
j 6=i

λjFXi(x)

= λiF
ηi(Xi)
Xi

(x) + (1− λi)FXi(x).

For Proposition 7ii), comonotonicity implies ηM (X) = ηi(Xi), i = 1, . . . , d, which leads to F
ηi(Xi)
Xi

=

F
ηM (X)
Xi

. On the other hand, since Ui = Uj for all i, j, we have

ηS(X) =
U−dθi Ū−dθi

B(1− dθ, 1− dθ)
, 0 < dθ < 1, i = 1, . . . , d,

and it holds that F
ηS(X)
Xi

(x) = G̃(FXi(x)), where G̃ is a Beta(1− dθ, 1− dθ) distribution. As 1− dθ < 1− θ,

we have that G̃(u) < G(u) for u ∈ (1/2, 1), and G̃(u) > G(u) for u ∈ (0, 1/2). From this, the relation

F
ηi(Xi)
Xi

�QS F
ηS(X)
Xi

follows.

C Technical background for Examples 3, 5, and 6

In Example 3, we discussed the case where X is independent. Here we characterize the marginal post-

stress distributions for specific dependence structures, in the case of stressing mechanisms of the form (4).
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For the needs of this section we introduce some additional notation:

ηA,θ(X) =
A(X)θ

E [A(X)θ]
, A ∈ {S,K}, θ > 0,

η̄A,θ(X) =
A(X)−θ

E [A(X)−θ]
, A ∈ {S̄, K̄}, θ ∈ (0, 1),

Proposition 8.

i) Let X be independent. Then, for i = 1, . . . , d,

F η
A,θ

Xi
(x) = FXi(x)1+θ, A ∈ {K,S}

F̄ η̄
A,θ

Xi
(x) = F̄Xi(x)1−θ, A ∈ {K̄, S̄}.

ii) Let X be comonotonic. Then, for i = 1, . . . , d,

F η
K,θ

Xi
(x) = FXi(x)1+θ

F η
S,θ

Xi
(x) = FXi(x)1+dθ

F̄ η̄
K̄,θ

Xi
(x) = F̄Xi(x)1−θ

F̄ η̄
S̄,θ

Xi
(x) = F̄Xi(x)1−dθ,

where for the last case we assume θ < 1/d.

iii) Assume that U1 = V, . . . , Uk = V, Uk+1 = 1− V, . . . , Ud = 1− V , for some V ∈ U . Then,

F η
S,θ

Xi
(x) = B

(
FXi(x); kθ + 1, (d− k)θ + 1

)
, i = 1, . . . , k

F η
S,θ

Xi
(x) = B

(
FXi(x); (d− k)θ + 1, kθ + 1

)
, i = k + 1, . . . , d,

F η̄
S̄,θ

Xi
(x) = B

(
FXi(x); 1− (d− k)θ, 1− kθ

)
, i = 1, . . . , k

F η̄
S̄,θ

Xi
(x) = B

(
FXi(x); 1− kθ, 1− (d− k)θ

)
, i = k + 1, . . . , d,

where B(·; a, b) is the Beta(a, b) cumulative distribution function and in the last two cases we assume

that θ < min{1/k, 1/(d− k)}.

Proof. i) For A ∈ {S,K}

Fψθ,AXi
(x) = E

[
1{Xi6x}(1 + θ)Uθi

]
=

∫ x

−∞
(1 + θ)FXi(x)θdFXi(x)

= FXi(x)1+θ.

For A ∈ {K̄, S̄}, the argument is analogous.
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ii) Note that E[Ua] = 1 + a, for a > −1. Let U = Ui, i = 1, . . . , d, Ū = 1− U . Then

ηK,θ(X) = (1 + θ)Uθ

ηS,θ(X) = (1 + dθ)Udθ

η̄K̄,θ(X) = (1− θ)Ū−θ

η̄S̄,θ(X) = (1− dθ)Ū−dθ.

The marginal distributions follow from the same argument as in part i).

iii) We have ηS,θ(X) = c · V kθ(1− V )(d−k)θ, for a constant c. Then,

Qη
S,θ

(V 6 v) =

∫ v

0

cvkθ(1− v)(d−k)θdv = B
(
v; kθ + 1, (d− k)θ + 1

)
,

from which the result follows. The other cases are similar.

In Example 5 we considered the case of multivariate Pareto distribution and Clayton (survival) copulas.

Here we state this result formally, in the slightly more general setting where we only specify the copula of X

rather than the full multivariate distribution. (Note that, by invariance of η, the post-stress copula CηX only

depends on the baseline copula CX and not the marginal distributions of X.) The Clayton copula,

CClλ (u) =

(
d∑
i=1

u−λi − d+ 1

)−1/λ

, λ > 0,

is a special case of an Archimedean copula with generator φ(t) = (1 + t)−1/λ. This copula has pairwise

Kendall’s rank correlations of rK(Xi, Xj) = λ
λ+2 .

Proposition 9.

i) Let X have a Clayton copula, CX = CClλ . Then, X also has a Clayton copula under QηK,θ , Cη
K,θ

X =

CClλ/(1+θ).

ii) Let X have a Clayton survival copula, C̄X = CClλ . Then, X also has a Clayton survival copula under

Qη̄K̄,θ , C̄ η̄
K̄,θ

X = CClλ/(1−θ).

Proof. i) Consider the random vector X, with multivariate distribution and density

FX(x) = H(x;α) :=

(
d∑
i=1

x−1
i + 1

)−α
, x > 0

fX(x) = h(x;α) := α(α+ 1) . . . (α+ d− 1)

(
d∑
i=1

x−1
i + 1

)−α−d
(x1 · ... · xd)−2
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with parameter α > 0. It is easily checked that CX = CCl1/α and FXi(x) =
(
x−1
i + 1

)−α
. By direct

calculation we obtain, for x > 0,

F η
K,θ

X (x) =
E
[
FX(X)θ1{X6x}

]
E [FX(X)θ]

=

(∫ ∞
0

· · ·
∫ ∞

0

FX(t)θfX(t)dt1 . . . dtd

)−1(∫ xd

0

· · ·
∫ x1

0

FX(t)θfX(t)dt1 . . . dtd

)

=

∫ ∞
0

· · ·
∫ ∞

0

(
d∑
i=1

t−1
i + 1

)−α(θ+1)−d

(t1 · ... · td)−2dt1 . . . dtd

−1

∫ xd

0

· · ·
∫ x1

0

(
d∑
i=1

t−1
i + 1

)−α(θ+1)−d

(t1 · ... · td)−2dt1 . . . dtd


=

(∫ ∞
0

· · ·
∫ ∞

0

h(t;α(θ + 1))dt1 . . . dtd

)−1(∫ xd

0

· · ·
∫ x1

0

h(t;α(θ + 1))dt1 . . . dtd

)
= H(x;α(θ + 1)).

Since under QηK,θ the distribution of X remains within the same family, but with the different parameter

α(θ + 1), it follows that its copula is CCl1/(α(θ+1)).

ii) The proof proceeds similarly, starting at a different choice of distribution for X, with multivariate survival

function

F̄X(x) =

(
d∑
i=1

xi + 1

)−α
, x > 0, α > 0.

In Example 6 we stated that, when starting from a baseline independent X, we can generate a post-

stress Archimedean copula, when stressing by a mixture, over the exponent, of mechanisms of the form (4).

This is proved below.

Proposition 10. Let X be independent and G be a distribution on R+ with G(0) = 0. Define the stressing

mechanism

η(X) =

∫ ∞
0

tdA(X)t−1dG(t).

Then, under Qη, for A = S (resp. A = S̄) X has an Archimedean copula (resp. survival copula), with

generator given by

φ(u) =

∫ ∞
0

e−tudG(t).

Proof. For A = S, first note that

η(X) =

∫ ∞
0

tdU t−1
1 . . . U t−1

d dG(t) =

∫ ∞
0

ηS,t−1(X)dG(t).
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Hence, as η is a mixture of stressing mechanisms it is indeed itself a stressing mechanism. (Note that we

here extend the definition of ηS,θ to θ > −1.) Now

F ηX(x) = E
[
1{X6x}η(X)

]
=

∫ ∞
0

E
[
1{X6x}η

S,t−1(X)
]
dG(t)

=

∫ ∞
0

d∏
i=1

F η
S,t−1

Xi
(xi)dG(t) (by independence preserving)

=

∫ ∞
0

d∏
i=1

FXi(xi)
tdG(t) (by Proposition 8i)).

Hence the joint distribution of X under Qη can be understood as a mixture of power-transformed distributions

with respect to G(t), see Denuit et al. (2006, Def. 7.2.12). The link to Archimedean copulas follows from

the frailty construction of Marshall and Olkin (1988); see Denuit et al. (2006, Sec. 4.7.5.2) for a succinct

discussion. The case A = S̄ follows similarly.

D Applying stressing mechanisms to raw data

The formulation of the stressing mechanisms in Section 4 assumes availability of the joint distribution of

X to the end-user, see (1). Here, we briefly describe how to compute the stressing mechanisms based only on

simulated or real data, without an explicit expression for the – potentially unknown – copula and marginal

distribution functions. The idea follows from generating an empirical version of the quantities needed for

computing the stressing mechanism η and expectations under the measure Qη.

Suppose that there are n data points that represent iid realizations of (X1, . . . , Xd). For each observation

xj = (xj1, . . . , x
j
d), j = 1, . . . , n, and each i = 1, . . . , d, we can define an empirical version of Ui as uji = F̂i(x

j
i ),

the normalized rank of Xi, defined via

F̂i(x) =
1

n+ 1

n∑
j=1

1{xji6x}
, x ∈ R.

The function F̂i(x) is a version of the empirical distribution; normalization by 1/(n+1) is used to prevent uji

from taking values 0 and 1 (which could potentially lead to infinite values of η), and this adjustment ensures

E[F̂i(Xi)] = 1/2.

Let A be a function on [0, 1]d which generates a mixture stressing mechanism as in (3) or the case

of Spearman mechanisms in (4). More precisely, we consider A(u1, . . . , ud) =
∑d
i=1 λigi(ui) for (3) and

A(u1, . . . , ud) =
∏d
i=1 u

θ
i for (4), such that the corresponding stressing mechanism η is given by

η(X) =
A(U)

E[A(U)]
, X ∈ X d.
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We can analogously define A for dual Spearman stressing mechanisms and for the Kendall case, involving the

empirical Kendall’s core; these are omitted here. Then, we can define an empirical version of the stressing

mechanism η̂ via

η̂(xj) =
A(uj1, . . . , u

j
d)∑n

l=1A(ul1, . . . , u
l
d)
, for j = 1, . . . , n.

Finally, to estimate the post-stress distribution of X, we adjust the probability at each point xj from 1/n

(as in the empirical distribution) to η̂(xj). From there, we obtain a stressed empirical (joint) distribution

defined as

F η̂n (x) =

n∑
j=1

η̂(xj)1{xj6x}, x ∈ Rd,

where the subscript “n” emphasizes that the post-stress distribution depends on the number of data points n.

The next result of the Glivenko-Cantelli type justifies the above empirical version of the stressing mechanism.

It is shown that η̂ produces an empirical post-stress distribution that serves as a good approximation to the

post-stress distribution computed with η(X), that is, under the assumption that FX is fully available to the

end-user.

Proposition 11. Suppose that the data xj , j = 1, 2, . . . , are iid realizations of X and A is continuous with

E[A(U)] <∞. Then, F η̂n → F ηX at each point as n→∞ almost surely.

We finally note that the computation of other quantities of interest, such as stressed expectations of

functions of X, follow similarly, e.g., for some f ∈ Fd it is

Eη̂[f(X)] =

n∑
j=1

η̂(xj)f(xj).

This illustrates that stressing the model via a change of measure does not require re-evaluations of the

function f , which, in realistic applications may be computationally expensive. Hence our suggested stress-

testing framework is computationally efficient, consistently with the arguments of Pesenti et al. (2019).

Proof of Proposition 11

Fix t ∈ Rd and let f : t 7→ 1{x6t}. We need to verify

∫
Rd
fdF η̂n →

∫
Rd
fdF ηX almost surely. (D.4)

Note that

∫
Rd
fdF η̂n =

n∑
j=1

η̂(xj)f(xj) =

∑n
j=1A(uj1, . . . , u

j
d)f(xj)∑n

j=1A(uj1, . . . , u
j
d)

=
1
n

∑n
j=1A(uj1, . . . , u

j
d)f(xj)

1
n

∑n
j=1A(uj1, . . . , u

j
d)

,

and ∫
Rd
fdF ηX =

E[A(U)f(X)]

E[A(U)]
.
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The desired convergence (D.4) follows from the continuity of A, the continuity of the marginals of X, and

the well-known fact that the pseudo-sample {(uj1, . . . , u
j
d) : j = 1, . . . , n} behaves similarly to an iid copy of

U as n → ∞ in the sense of e.g. Ruschendorf (1976). To be more specific on the last point, we can safely

treat {(A(uj1, . . . , u
j
d),x

j) : j = 1, . . . , n} as an iid copy of (A(U),X) in asymptotic analyses; see also Genest

and Rivest (1993) and Section 7.5 of McNeil et al. (2015).
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