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Abstract

Optimization of distortion riskmetrics with distributional uncertainty has wide applications

in finance and operations research. Distortion riskmetrics include many commonly applied risk

measures and deviation measures, which are not necessarily monotone or convex. One of our cen-

tral findings is a unifying result that allows to convert an optimization of a non-convex distortion

riskmetric with distributional uncertainty to a convex one induced from the concave envelope of

the distortion function, leading to practical tractability. A sufficient condition to the unifying

equivalence result is the novel notion of closedness under concentration, a variation of which is

also shown to be necessary for the equivalence. Our results include many special cases that are

well studied in the optimization literature, including but not limited to optimizing probabili-

ties, Value-at-Risk, Expected Shortfall, Yaari’s dual utility, and differences between distortion

risk measures, under various forms of distributional uncertainty. We illustrate our theoretical

results via applications to portfolio optimization, optimization under moment constraints, and

preference robust optimization.

Keywords: risk measures; deviation measures; distributionally robust optimization; convexifi-

cation; conditional expectation

1 Introduction

Riskmetrics, such as measures of risk and variability, are common tools to represent preferences,

model decisions under risks, and quantify different types of risks. To fix terms, we refer to riskmetrics

as any mapping from a set of random variables to the real line, and risk measures as riskmetrics

that are monotone in the sense of Artzner et al. (1999).

In this paper, we focus on distortion riskmetrics which is a large class of commonly used mea-

sures of risk and variability; see Wang et al. (2020a) for the terminology “distortion riskmetrics”.

Distortion riskmetrics include L-functionals (Huber and Ronchetti, 2009) in statistics, Yaari’s dual
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utilities (Yaari, 1987) in decision theory, distorted premium principles (Wang et al., 1997) in in-

surance, and spectral risk measures (Acerbi, 2002) in finance; see Wang et al. (2020a) for further

examples. After a normalization, increasing distortion riskmetrics are distortion risk measures,

which include, in particular, the two most important risk measures used in current banking and

insurance regulation, the Value-at-Risk (VaR) and the Expected Shortfall (ES). Moreover, convex

distortion riskmetrics are the building blocks (via taking a supremum) for all convex risk functionals

(Liu et al., 2020), including classic risk measures (Artzner et al., 1999; Föllmer and Schied, 2002)

and deviation measures (Rockafellar et al., 2006).

When riskmetrics are evaluated on distributions that are subject to uncertainty, decisions

should be taken with respect to the worst (or best) possible values a riskmetric attains over a set of

alternative distributions; giving rise to the active subfield of distributionally robust optimization.

The set of alternative distributions, the uncertainty set, may be characterized by moment constraints

(e.g., Popescu (2007)), parameter uncertainty (e.g., Delage and Ye (2010)), probability constraints

(e.g., Wiesemann et al. (2014)), Wasserstein distances (e.g., Pflug and Wozabal (2007), Esfahani

and Kuhn (2018), Blanchet and Murthy (2019), and Gao and Kleywegt (2023)), and ϕ-divergence

(e.g., Jiang and Guan (2016)), amongst others. Distributionally robust optimization problems have

been studied under the framework of expected utility (e.g., Popescu (2007) and Chen et al. (2011))

and further under shortfall risk measures (e.g., Delage et al. (2022)). As an important class of

risk measures, distortion risk measures have also been considered as a natural choice of objectives

for distributionally robust optimization. Popular distortion risk measures such as VaR and ES are

studied extensively in this context; see e.g., Natarajan et al. (2008) and Zhu and Fukushima (2009).

Optimization of convex distortion risk measures, i.e., distortion riskmetrics with an increasing

and concave distortion function, is relatively well understood under distributional uncertainty; see

Cornilly et al. (2018), Li (2018), and Liu et al. (2020) for some recent work. Nevertheless, many

distortion riskmetrics are not convex or monotone. For example, in the Cumulative Prospect Theory

of Tversky and Kahneman (1992), the distortion function is typically assumed to be inverse-S-

shaped; in financial risk management, the popular risk measure VaR has a non-concave distortion

function, and the inter-quantile difference (Wang et al., 2020b) has a distortion function that is

neither concave nor monotone. Another example is the difference between two distortion risk

measures, which is clearly not increasing or convex in general. Optimizing non-convex distortion

riskmetrics under distributional uncertainty is difficult and results are available only for special

cases; see Li et al. (2018), Cai et al. (2018), Zhu and Shao (2018), Wang et al. (2019), and Bernard

et al. (2020), all with an increasing distortion function.

There is, however, a notable common feature in the above mentioned literature when a non-

convex distortion risk metric is involved. For numerous special cases, one often obtains an equiv-

alence between the optimization problem with non-convex distortion riskmetric and that with a

convex one. Inspired by this observation, the aim of this paper is to address:

What conditions provide equivalence between a non-convex riskmetric and a convex one, that is

induced by the concave envelope of the distortion function, in the setting of distributional

uncertainty?
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An answer to this question is still missing in the literature. In this sense, we offer a novel perspective

on distributionally robust optimization problems by converting optimization problems with non-

convex objectives to their convex counterpart. Transforming an optimization problem with a non-

convex objective to a convex one through approximation and via a direct equivalence has been

studied by Zymler et al. (2013) and Cai et al. (2020). Both contributions, however, consider

uncertainty sets described by some special forms of constraints. A unifying framework applicable

to numerous uncertainty sets and the entire class of distortion riskmetrics is however missing and

at the core of this paper.

The main novelty of our results is three-fold: first, we obtain a unifying result (Theorem

1) that allows, under distributional uncertainty, to convert an optimization problem of a non-

convex distortion riskmetric to an optimization problem with a convex one, where the convex one

is induced via the concave envelope of the distortion function. The result covers, to the authors’

best knowledge, all known equivalences between optimization problems of non-convex and convex

riskmetrics, where the convex one is induced by the concave envelope of the distortion function

with distributional uncertainty. The proof requires techniques beyond the ones used in the existing

literature, as we do not make assumptions such as monotonicity, positiveness, and continuity. Our

framework can also be applied to settings with atomic probability space or with uncertainty sets of

multi-dimensional distributions. Second, we introduce the concept of closedness under concentration

as a sufficient condition to establish the equivalence, and it is also a necessary condition on the set of

optimizers given that the equivalence holds (Theorem 2). We show how the properties of closedness

under concentration within a collection of intervals I and closedness under concentration for all

intervals can be verified through direct analysis and provide numerous examples. Third, the classes

of distortion riskmetrics and uncertainty formulations considered in this paper include all special

cases studied in the literature; examples are presented in Sections 3-4. In particular, our class of

riskmetrics include all practically used risk measures and variability measures (some via taking a

sup), dual utilities with inverse-S-shaped distortion functions of Tversky and Kahneman (1992),

and differences between two dual utilities or distortion risk measures. Our uncertainty formulations

include both supremum and infimum problems,1 moment constraints, convex order/risk measure

constraints, marginal constraints in risk aggregation with dependence uncertainty (e.g., Embrechts

et al. (2015)), preference robust optimization (e.g., Armbruster and Delage (2015) and Guo and Xu

(2021)), and some one-dimensional and multi-dimensional uncertainty sets induced by Wasserstein

metrics.

The generality of our work distinguishes it from the large literature on distributional robust

optimization cited above. Our work is of analytical and probabilistic nature, and we focus on

theoretical equivalence results which will be also illustrated via numerical implementations. The

target problems are formulated in Section 2. Sections 3 is devoted to our main contribution of the

equivalence of an optimization problem with a non-convex riskmetric and the convex one induced

from the concave envelope of the distortion function under distributional uncertainty. We illus-

1Thus we provide a universal treatment of worst-case and best-case risk values. Calculating best-case risk values
allows us to solve economic decision making problems where optimal distributions are chosen to minimize the risk.
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trate by many examples the concepts of closedness under conditional expectation and closedness

under concentration, and distinguish them in several practical settings. Section 4 demonstrates

the equivalence results in multi-dimensional settings. In addition to a general multi-dimensional

model with a concave loss function, we solve a robust risk aggregation problem with ambiguity on

both the marginal distributions and the dependence structure. In Section 5, our results are used to

solve optimization problems with uncertainty sets defined via moment constraints. In particular,

we generalize a few well-known results in the literature on optimization and worst-case values of risk

measures. Sections 6 and 7 contain numerical illustrations of optimizing differences between two

distortion riskmetrics, portfolio optimization, and preference robust optimization. Some concluding

remarks are put in Section 8. Complete proofs of all results are relegated to Appendix B.

2 Distortion riskmetrics with distributional uncertainty

2.1 Problem formulation

Throughout, we work with an atomless probability space (Ω,F ,P). Denote by Lp, p ∈ [1,∞),

the space of random variables with finite p-th moment. Let L∞ represent the set of bounded

random variables and let L0 represent the space of all random variables. For n ∈ N, A represents

a set of actions, ρ is an objective functional, f : A × Rn → R is a loss function, and X is an

n-dimensional random vector with distributional uncertainty. Many problems in distributionally

robust optimization have the form

min
a∈A

sup
FX∈M̃

ρ(f(a,X)), (1)

where FX denotes the distribution of X and M̃ is a set of plausible distributions for X. We will

first focus on the inner problem

sup
FX∈M̃

ρ(f(a,X)), (2)

which we may rewrite as

sup
FY ∈M

ρ(Y ), (3)

where FY denotes the distribution of Y and M is a set of distributions on R. We suppress the

reliance on a as it remains constant in the inner problem (2). The supremum in (3) is typically

referred to as the worst-case risk measure in the literature if ρ is monotone.2 The problem (3) can

also represent an optimal decision problem, where ρ is an objective to maximize, and a decision

maker chooses an optimal distribution from the set M which is interpreted as an action set instead

of an uncertainty set (i.e., no uncertainty in this problem). Since the two problems share the

same mathematical formulation (3), we will navigate through our results mainly with the first

interpretation of worst-case risk under uncertainty.

2A risk measure ρ : Lp → R is monotone if ρ(X) ⩽ ρ(Y ) for all X,Y ∈ Lp with X ⩽ Y .
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Denote by H the set of functions h : [0, 1] 7→ R with bounded variation satisfying h(0) = 0.

For p ∈ [1,∞] and h ∈ H, a distortion riskmetric ρh : Lp → R is defined as

ρh(Y ) =

∫ ∞

0
h(P(Y > x)) dx+

∫ 0

−∞
(h(P(Y > x))− h(1)) dx, Y ∈ Lp, (4)

whenever the above integrals are finite; see Proposition 6 below for a sufficient condition. The

function h ∈ H is called a distortion function. Note that we allow h to be non-monotone; if h is

increasing and h(1) = 1, then ρh is a distortion risk measure. The distortion riskmetric ρh is convex

if and only if h is concave; see Wang et al. (2020b) for this and other properties of ρh.

In this paper we consider the objective functional ρ in (1) to be a distortion riskmetric ρh for

some h ∈ H, as the class of distortion riskmetrics includes a large class of objective functionals of

interest. Note that a general analysis of (3) also covers the infimum problem infFY ∈M ρh(Y ), since

−ρh = ρ−h is again a distortion riskmetric. This illustrates an advantage of studying distortion risk-

metrics over monotone ones, as our analysis unifies best- and worst-case risk evaluations. Best-case

risk measures are also of practical importance. In particular, they may represent risk minimization

problems through the second interpretation of (3), where M represents a set of possible actions

(see Section 3.4 for some examples).

If ρh is not convex, or equivalently, h is not concave, problems such as (1) and (3) are often

highly nontrivial. However, the optimization problem of maximizing ρh∗(Y ) over FY ∈ M, where

h∗ is the smallest concave distortion function dominating h, can often be solved either analytically

or through numerical methods. Note that ρh is mixture concave (i.e., FX 7→ ρ(X) is concave) if and

only if h is concave by Theorem 3 of Wang et al. (2020b). As a consequence, if f(a,x) is convex

in a (for instance, in portfolio selection, a common choice is f(a,x) = a⊤x), then the optimization

(1) for ρh∗ ,

min
a∈A

sup
FX∈M̃

ρh∗(f(a,X)),

has an objective ρh∗(f(a,X)) which is convex in a and concave in FX. This is a standard convex-

concave minimax problem in the optimization literature and various computational methods exist

(e.g., Korpelevich (1976), Nemirovski (2004), and Ouyang and Xu (2021)). To utilize this observa-

tion for optimizing ρh, the crucial condition is

sup
FX∈M̃

ρh(f(a,X)) = sup
FX∈M̃

ρh∗(f(a,X)),

that is, with Y = f(a,X),

sup
FY ∈M

ρh(Y ) = sup
FY ∈M

ρh∗(Y ). (5)

Also note that ρh ⩽ ρh∗ always holds, and hence for (5), it suffices to study the “⩾” inequality.

The main contribution of this paper is a sufficient condition on the uncertainty set M that

guarantees the equivalence (5). We will also obtain a necessary condition for (5). The equivalence

(5) makes the optimization problem (1) for ρh much more tractable in various settings, which will
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be illustrated through the examples in the following sections.

2.2 Notation and preliminaries

For p ⩾ 1 and n ∈ N, we denote by Mn
p the set of all distributions on Rn with finite p-th

moment. Let Mn
∞ be the set of n-dimensional distributions of bounded random variables. For

p ∈ [1,∞], write M1
p = Mp for simplicity. The set inclusion ⊂ and terms like “increasing” and

“decreasing” are in the non-strict sense. For X,Y ∈ Lp, we write X
d
= Y to represent that X and

Y have the same distribution. For a distribution F ∈ M1, let its left- and right-quantile functions

be given respectively by

F−1(α) = inf {x ∈ R : F (x) ⩾ α} and F−1+(α) = inf {x ∈ R : F (x) > α}, α ∈ [0, 1],

with the convention inf(∅) = ∞. For x, y ∈ R, we write x ∨ y = max{x, y} and x ∧ y = min{x, y}.
For x ∈ R, we write x+ = x ∨ 0 and x− = −(−x)+. Since h ∈ H is of bounded variation, its

discontinuity points are at most countable and the left- and right-limits exist at each of these

points. We write

h(t+) =

{
limx↓t h(x), t ∈ [0, 1),

h(1), t = 1,
and h(t−) =

{
limx↑t h(x), t ∈ (0, 1],

h(0), t = 0,

and the upper semicontinuous modification of h is denoted by

ĥ(t) = h(t+) ∨ h(t−) ∨ h(t), t ∈ (0, 1), with ĥ(0) = 0 and ĥ(1) = h(1).

Note that ĥ(t) = h(t) at all continuous points of h, and we do not make any modification at the

points 0 and 1 even if h has a jump at these points. For h ∈ H and t ∈ [0, 1], define its concave and

convex envelopes h∗ and h∗ respectively by

h∗(t) = inf {g(t) : g ∈ H, g ⩾ h, g is concave on [0, 1]} ,

h∗(t) = sup {g(t) : g ∈ H, g ⩽ h, g is convex on [0, 1]} .

Both h∗ and h∗ are continuous functions on (0, 1) for all h ∈ H, and if h is continuous at 0 and 1,

then so are h∗ and h∗ (see Figure 4 below for an illustration of h and h∗). Denote by H∗ (resp. H∗)

the set of concave (resp. convex) functions in H. Note that for all h ∈ H, we have h∗ ∈ H∗ and

h∗ ∈ H∗. As a well-known property of the convex and concave envelopes of a continuous h (e.g.,

Brighi and Chipot (1994)), h∗ (resp. h∗) differs from h on a union of disjoint open intervals, and h∗

(resp. h∗) is linear on these intervals. The functions h, ĥ, h∗ and (ĥ)∗ are illustrated in Figure 1.

While in general ρh and ρĥ are different functionals, one has ρh(Y ) = ρĥ(Y ) for any random

variable Y with continuous quantile function; see Lemma 1 of Wang et al. (2020a). Moreover,

h∗ = (ĥ)∗ ⩾ ĥ ⩾ h and the four functions are all equal if h is concave. Below, we provide a new

result on convex envelopes of distortion functions h that are not necessarily monotone or continuous,
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Figure 1: An example of h (left) and ĥ (right) with the set of discontinuity points {t1, t2, t3, t4, t5}
excluding 0 and 1; the dashed lines represent h∗ and (ĥ)∗, which are identical by Proposition 1

which may be of independent interest.

Proposition 1. For any h ∈ H, we have h∗ = (ĥ)∗ and the set {t ∈ [0, 1] : ĥ(t) ̸= h∗(t)} is the

union of some disjoint open intervals. Moreover, h∗ is linear on each of the above intervals.

In the sequel, we mainly focus on h∗, which will be useful when optimizing ρh in (3). A similar

result to Proposition 1 holds for h∗, useful in the corresponding infimum problem, where the upper

semicontinuous modification of h is replaced by the lower semicontinuous one. This follows directly

from Proposition 1 by setting g = −h which gives ρg = −ρh and h∗ = −g∗.
For all distortion functions h ∈ H, from Proposition 1, there exist (countably many) disjoint

open intervals on which ĥ ̸= h∗. Using a similar notation to Wang et al. (2019), we define the set

Ih = {(1− b, 1− a) : ĥ ̸= h∗ on (a, b), ĥ(a) = h∗(a), ĥ(b) = h∗(b)} .

The set Ih is straightforward to identify in practice; see Section 3.2 for examples of commonly used

distortion riskmetrics and their corresponding sets Ih.

3 Equivalence between non-convex and convex riskmetrics

3.1 Concentration and the main equivalence result

In this section, we introduce the concept of concentration, and use this concept to explain

our main equivalence results, Theorems 1 and 2. For a distribution F ∈ M1 and an interval

C ⊂ [0, 1] (when speaking of an interval in [0, 1], we exclude singletons or empty sets), we define

the C-concentration of F , denote by FC , as the distribution of the random variable

F−1(U)1{U ̸∈C} + E[F−1(U)|U ∈ C]1{U∈C}, (6)
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Figure 2: Left panel: quantile function of F ; right panel: quantile function of F I where I =
{(0, 1/3), (1/2, 2/3)}

where U ∼ U[0, 1] is a standard uniform random variable. In other words, FC is obtained by

concentrating the probability mass of F−1(U) on {U ∈ C} at its conditional expectation, whereas

the rest of the distribution remains unchanged. For F ∈ M1 and 0 ⩽ a < b ⩽ 1, it is clear that the

left-quantile function of F (a,b) is given by

F−1(t)1{t̸∈(a,b]} +

∫ b
a F

−1(u) du

b− a
1{t∈(a,b]}, t ∈ [0, 1]. (7)

For a collection I of (possibly infinitely many) non-overlapping intervals in [0, 1], let F I be the

distribution corresponding to the left-quantile function given by the left-continuous version of

F−1(t)1{t̸∈
⋃

C∈I C} +
∑
C∈I

∫
C F

−1(u) du

λ(C)
1{t∈C}, t ∈ [0, 1], (8)

where λ is the Lebesgue measure; see Figure 2 for an illustration.

Definition 1. Let M be a set of distributions in M1 and I be a collection of intervals in [0, 1]. We

say that (a) M is closed under concentration within I if F I ∈ M for all F ∈ M; (b) M is closed

under concentration for all intervals if for all F ∈ M, we have FC ∈ M for all intervals C ⊂ [0, 1];

(c) M is closed under conditional expectation if for all FX ∈ M and σ-algebra G ⊆ F , we have

FE[X|G] ∈ M.

The relationship between the three properties of closedness in Definition 1 is discussed in

Propositions 2 and 3 below. Generally, (c)⇒(b)⇒(a) if I is finite. Our main equivalence result is

summarized in the following theorem.

Theorem 1. For M ⊂ M1 and h ∈ H, the following hold.

(i) If h = ĥ, i.e., h is upper semicontinuous on (0, 1), and M is closed under concentration within

Ih, then
sup

FY ∈M
ρh(Y ) = sup

FY ∈M
ρh∗(Y ). (9)
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(ii) If M is closed under concentration for all intervals, then (9) holds.

(iii) If h = ĥ, M is closed under concentration within Ih, and the second supremum in (9) is

attained by some F ∈ M, then F Ih attains both suprema.

Sketch of the proof. Here, we provide a sketch of the proof ideas of (i) and (ii), a complete proof

is delegated to Appendix B. For (i), let h = ĥ and M be closed under concentration within Ih.
Since supFX∈M ρĥ(X) ⩽ supFX∈M ρh∗(X), it suffices to show that for all FY ∈ M, there exists a

FZ ∈ M, such that ρĥ(Z) ⩾ ρh∗(Y ). Take ZIh ∼ G = F Ih
Y ∈ M and write g(t) = 1− ĥ(1− t) and

g∗(t) = 1−h∗(1− t) for t ∈ [0, 1]. Next, we show that on each interval (a, b) ∈ Ih where g∗ is linear

it holds that∫
(a,b)

F−1
Y (t) dg∗(t) = (g∗(b)− g∗(a))

∫ b
a F

−1
Y (t) dt

b− a
= (g(b)− g(a))

∫ b
a F

−1
Y (t) dt

b− a

=

∫
(a,b]

G−1(t) dg(t) +G−1+(a)(g(a+)− g(a)).

Thus, we have ρĥ(ZIh) = ρh∗(Y ) and (i) follows.

For (ii), we first prove the case where Ih is finite and h has finitely many discontinuity points.

In this case, supFX∈M ρĥ(X) = supFX∈M ρh∗(X) holds and it remains to prove that

sup
FX∈M

ρh(X) = sup
FX∈M

ρĥ(X). (10)

We define the following sets

Ĵ = {t ∈ Jh : ĥ(t) ̸= h(t)}, Ĵ+ = {t ∈ Ĵ : ĥ(t) = ĥ(t+)}, and Ĵ− = Ĵ \ Ĵ+.

For n > 0, write intervals

An
s =

{
(1− s− 1/

√
n, 1− s+ 1/n), s ∈ Ĵ−,

(1− s− 1/n, 1− s+ 1/
√
n), s ∈ Ĵ+.

Let In = {An
s : s ∈ Ĵ}. By taking into account all discontinuity points (finitely many) and by

dominated convergence theorem, we show that,

sup
FX∈M

ρh(X) ⩾ lim
n→∞

ρh(ZIn) = ρĥ(Y ) for all FY ∈ M ,

where

ZIn = F−1
Y (U)1{U /∈

⋃
s∈Ĵ An

s } +
∑
s∈Ĵ

E[F−1
Y (U)|U ∈ An

s ]1{U∈An
s }.

Thus Equation (10) holds.

The cases where Ih is countable or h has countably many discontinuity points follows by

approximating the original distortion function by its finite version and taking a limit.
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Both suprema in (9) may be infinite, and this is discussed in Remark 6 in Appendix A.2. The

proof of Theorem 1 is more technical than similar results in the literature because of the challenges

arising from non-monotonicity, non-positivity, and discontinuity of h; see Figure 1 for a sample of

possible complications. In (ii), h does not need to be upper semicontinuous on (0, 1) for (9) to hold

because closedness under concentration for all intervals in (ii) is stronger than the condition in (i).

Remark 1. For M ⊂ M1 and h ∈ H, if h = ĥ and FC ∈ M for all F ∈ M and C ∈ Ih, then
the equivalence relation (9) also holds. If Ih is finite, then this condition is generally stronger than

closedness under concentration within Ih in (i).

With Theorem 1, we can convert an optimization problem of a non-convex distortion riskmetric

to a convex optimisation, whose objective is a distortion riskmetric where the distortion function is

the concave envelope of the distortion function of the non-convex riskmetric. As a result, the new

problem has a convex objective. In many practical examples, the worst-case distortion riskmetric

depends on the parameters of the ambiguity sets, and thus changes in the parameters will affect

the quality of the decisions derived; see Sections 5 and 7 for further discussion.

Although closedness under concentration is generally weaker than closedness under conditional

expectation, verifying closedness under concentration is usually as difficult as closedness under con-

ditional expectation. Therefore, for the sufficiency of our equivalence (9), checking closedness under

conditional expectation is more convenient for most practical situations. However, the necessity of

the equivalence result relies on the property of closedness under concentration for the set of opti-

mizers; see Theorem 2 below. Moreover, compared with closedness under conditional expectation,

closedness under concentration is useful in some special but realistic problems; see Section 3.4 for

examples.

A natural question from Theorem 1 is whether our key condition of closedness under concen-

tration is necessary in some sense for the equivalence (9) to hold.3 It is immediate to notice that

adding any distributions FZ satisfying ρh∗(Z) < supFY ∈M ρh∗(Y ) to the set M does not affect

the equivalence, and therefore we turn our attention to the set of maximizers instead of the whole

set M. In the next result, we show that closedness under concentration within Ih of the set of

maximizers of (3) is necessary for the equivalence (9) to hold.

Theorem 2. For M ⊂ M1 and h ∈ H such that h ̸= h∗, suppose that the set of maximizers

Mopt = argmaxFY ∈M ρh(Y ) is non-empty. If the equivalence (9) holds, i.e., supFY ∈M ρh(Y ) =

supFY ∈M ρh∗(Y ), then Mopt is closed under concentration within Ih.

If the equivalence (9) holds, then each F ∈ Mopt also maximizes the problem supFY ∈M ρh∗(Y ).

Conversely, if h = ĥ, then this condition and closedness of Mopt under concentration within Ih
together are necessary (by Theorem 2) and sufficient (by Theorem 1) for the equivalence (9) to

hold. If the maximizer F of the original problem (3) is unique, then by Theorem 2, F must be

equal to F Ih . The equivalence (9) does not imply closedness under concentration within Ih of the

uncertainty set M itself; an example showing this is discussed in Remark 2.

3We thank an anonymous referee for raising this question.
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3.2 Some examples of distortion riskmetrics

We provide a few examples of distortion riskmetrics ρh commonly used in decision theory

and finance, and obtain their corresponding set Ih. The Value-at-Risk (VaR) and the Expected

Shortfall (ES) are the most popular risk measures in practice. We introduce them first, followed by

an inverse-S-shaped distortion function of Tversky and Kahneman (1992).

Example 1 (VaR and ES). For Y ∈ L0, using the sign convention of McNeil et al. (2015), VaR is

defined as the left-quantile, and upper VaR (VaR+) is defined as the right-quantile; that is,

VaRα(Y ) = F−1
Y (α), α ∈ (0, 1] and VaR+

α (Y ) = F−1+
Y (α), α ∈ [0, 1).

ES at level α is defined as

ESα(Y ) =
1

1− α

∫ 1

α
VaRt(Y ) dt, α ∈ (0, 1), Y ∈ L1.

Both VaRα and ESα belong to the class of distortion riskmetrics. Take α ∈ (0, 1). Let h(t) =

1(1−α,1](t), t ∈ [0, 1]. It follows that h ∈ H and ĥ(t) = 1[1−α,1](t), t ∈ [0, 1]. In this case,

ρh = VaRα. Moreover, h∗(t) = t
1−α ∧1, t ∈ [0, 1] and ρh∗ = ESα. Since h

∗ and ĥ differ on (0, 1−α),
we have Ih = {(α, 1)}.

Example 2 (TK distortion riskmetrics). The following function h is an inverse-S-shaped distortion

function (see also Figure 4):

h(t) =
tγ

(tγ + (1− t)γ)1/γ
, t ∈ [0, 1], γ ∈ (0, 1). (11)

Distortion riskmetrics with distortion function (11) are commonly used in behavioural economics

and finance; see e.g., Tversky and Kahneman (1992). For simplicity, we call such distortion risk-

metrics TK distortion riskmetrics. Typical values of γ are in [0.5, 0.9]; see Wu and Gonzalez (1996).

For h in (11), it is clear that h = ĥ on [0, 1] by continuity of h. We have h∗ ̸= h on (t0, 1), for some

t0 ∈ (0, 1), and h∗ is linear on [t0, 1]. Thus, Ih = {(0, 1 − t0)}. An example of h in (11) and its

concave envelope h∗ are plotted in Figure 3 (left).

For h1, h2 ∈ H, we write h = h1 − h2 ∈ H and consider the difference between two distortion

riskmetrics, that is

ρh = ρh1 − ρh2 . (12)

Such type of distortion riskmetrics measure the difference or disagreement between two utilities,

risk attitudes, or capital requirements. Determining the upper and lower bounds, or the largest

absolute values of such measures of disagreement, is of interest in practice but rarely studied in the

literature; see e.g., David (1998) for a history and the use of the inter-quantile range in statistics,

dating back to the work of C. F. Gauss. Note that h1 − h2 is in general not monotone or concave

even when h1 and h2 themselves have the specified properties. Below we show some examples of

distortion riskmetrics taking the form of (12).
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Figure 3: Left panel: h and h∗ for the TK distortion riskmetric with γ = 0.7 in Example 2; right
panel: h and h∗ for the inter-quantile range in Example 3

Example 3 (Inter-quantile range and inter-ES range). For α ∈ [1/2, 1), we take h1(t) = 1[1−α,1](t)

and h2(t) = 1(α,1](t), t ∈ [0, 1]. It follows that h(t) = h1(t)− h2(t) = 1{1−α⩽t⩽α}, t ∈ [0, 1], ĥ = h,

and

ρh(X) = F−1+
X (α)− F−1

X (1− α), X ∈ L0.

Correspondingly, we have h∗(t) = t/(1− α) ∧ 1 + (α− t)/(1− α) ∧ 0, t ∈ [0, 1], and

ρh∗(X) = ESα(X) + ESα(−X), X ∈ L1.

This distortion riskmetric ρh is called an inter-quantile range and ρh∗ is called an inter-ES range.

As the distortion functions h∗ and ĥ differ on the open intervals (0, 1 − α) and (α, 1), we have

Ih = {(α, 1), (0, 1− α)}. The distortion functions h and h∗ are displayed in Figure 3 (right).

Example 4 (Difference of two inverse-S-shaped distortion functions). We take h1 and h2 to be the

inverse-S-shaped distortion functions in (11), with parameters γ1 = 0.8 and γ2 = 0.7, respectively.

By calculation, the function h = h1 − h2 is convex on [0, 0.3770], concave on [0.3770, 1], and as

seen in Figure 4 not monotone. The concave envelope h∗ is linear on [0, 0.7578] and h∗ = h on

[0.7578, 1]. Thus, we have Ih = {(0.2422, 1)}. The graphs of the distortion functions h1, h2, h, and

h∗ are displayed in Figure 4.

The functions in H are a.e. differentiable, and for an absolutely continuous function h ∈ H,

let h′ be a (representative) function on [0, 1] that is a.e. equal to the derivative of h. If h ∈ H is

left-continuous or VaRt(Y ) is continuous with respect to t ∈ (0, 1), the risk measure ρh in (4) has

representation

ρh(Y ) =

∫ 1

0
VaR1−t(Y ) dh(t), Y ∈ Lp; (13)
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Figure 4: Left panel: inverse-S-shaped distortion functions h1 and h2 in Example 4; right panel:
h = h1 − h2 and h∗ of the same example

see Lemma 1 of Wang et al. (2020a). If h ∈ H is absolutely continuous it holds

ρh(Y ) =

∫ 1

0
VaR1−t(Y )h′(t) dt, Y ∈ Lp. (14)

Another example of a recently introduced distortion riskmetric with concave distortion function

may be of independent interest in risk management.

Example 5 (Second-order superquantile). As introduced by Rockafellar and Royset (2018), a

second-order superquantile is defined as

SSQα(Y ) =
1

1− α

∫ 1

α
ESt(Y ) dt, α ∈ (0, 1), Y ∈ L2.

By Theorem 2.4 of Rockafellar and Royset (2018), SSQα is a distortion riskmetric with a concave

distortion function h given by

h(t) =

{
t

1−α

(
1 + log 1−α

t

)
, 0 ⩽ t < 1− α,

1, 1− α ⩽ t ⩽ 1.

Clearly, SSQα ⩾ ESα. The difference SSQα − ESα between second-order superquantile and ES,

which has a similar interpretation as ESα−VaRα, is a distortion riskmetric with a non-concave and

non-monotone distortion function g, and the set Ig contains a single interval of the form (0, β) for

some β ∈ [α, 1).

3.3 Closedness under concentration for all intervals

In this section, we present some technical results and specific examples about closedness under

concentration for all intervals and under conditional expectation. The proposition below clari-

fies the relationship between closedness under concentration for all intervals and closedness under

conditional expectation.
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Proposition 2. Closedness under conditional expectation implies closedness under concentration

for all intervals, but the converse is not true.

Example 6. To provide insights into the difference between the two properties, we show that the

following set is closed under concentration for all intervals but that it is not closed under conditional

expectation:

M = {F ∈ M1 : F is finitely supported in [0, 1]}.

To see that M is not closed under conditional expectation, let X = 1{U>V } where U, V ∼ U[0, 1]

are independent. Then E[X|U ] = E[1{U>V }|U ] = U . As the distribution of X is in M but the

distribution of U is not in M, the set is not closed under conditional expectation.

Example 6 suggests that the difference between closedness under concentration for all intervals

and closedness under conditional expectation is subtle but explicit. Generally speaking, we can

construct a set closed under concentration for all intervals by taking a dense but discrete subset of

a set that is closed under conditional expectation. It also indicates that the concept of closedness

under concentration naturally arises in discrete setups.

Example 7. We present 6 classes of sets M that are closed under conditional expectation, and

hence also under concentration for all intervals.

1. (Moment conditions) For p > 1, m ∈ R, and v > 0, the set

M(p,m, v) = {FY ∈ Mp : E[Y ] = m, E[|Y −m|p] ⩽ vp}

is closed under conditional expectation by Jensen’s inequality. The setM(p,m, v) corresponds

to distributional uncertainty with moment information, and the setting p = 2 (mean and

variance constraints) is the most commonly studied.

2. (Mean-covariance conditions) For n ∈ N, a ∈ Rn, µ ∈ Rn, and Σ ∈ Rn×n positive semidefinite,

let

Mmv(a,µ,Σ) = {Fa⊤X ∈ M2 : FX ∈ Mn
2 , E[X] = µ, var(X) ⪯ Σ},

where X = (X1, . . . , Xn), E[X] = (E[X1], . . . ,E[Xn]), var(X) is the covariance matrix of

X, and B′ ⪯ B means that the matrix B − B′ is positive semidefinite for two positive

semidefinite symmetric matrices B and B′. With a simple verification in Appendix A.1,

Mmv(a,µ,Σ) = M(2,a⊤µ, (a⊤Σa)1/2).

3. (Convex function conditions) For n ∈ N, a ∈ Rn, K ⊂ N, a collection f = (fk)k∈K of convex

functions on Rn, and a vector x = (xk)k∈K ∈ R|K|, let

Mf (a,x) = {Fa⊤X ∈ M1 : E[fk(X)] ⩽ xk for all k ∈ K}.

The set Mf corresponds to distributional uncertainty with constraints on expected losses or

test functions. The set Mf includes M(p,m, v) as a special case. We can verify that Mf is

closed under conditional expectation by Jensen’s inequality.
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4. (Convex order conditions) For K ⊂ N and a collection of random variables Z = (Zk)k∈K ∈
(L1)|K|, let

Mcx(Z) = {FY ∈ M1 : Y ⩽cx Zk for all k ∈ K},

where ⩽cx is the inequality in convex order.4 Similar to the above examples, Mcx(Z) is closed

under conditional expectation (cf. Remark 7 in Appendix A.2).

5. (Distortion conditions) For K ⊂ N, a collection h = (hk)k∈K ∈ (H∗)|K| and a vector x =

(xk)k∈K ∈ R|K|, let

Mh(x) = {FY ∈ M1 : ρhk
(Y ) ⩽ xk for all k ∈ K}.

The setMh corresponds to distributional uncertainty with constraints on preferences modeled

by convex dual utilities. It is closed under conditional expectation by noting that ρhk
preserves

convex order (see e.g., Theorem 2 of Wang et al. (2020b)).

6. (Marginal conditions) For given univariate distributions F1, . . . , Fn ∈ M1, let

MS(F1, . . . , Fn) = {FX1+···+Xn ∈ M1 : Xi ∼ Fi, i = 1, . . . , n}.

In other words, MS is the set of all possible aggregate risks X1+ · · ·+Xn with given marginal

distributions of X1, . . . , Xn; see Embrechts et al. (2015) for some results on MS . Generally,

MS is not closed under concentration for all intervals or conditional expectation, since closed-

ness under concentration for all intervals is stronger than joint mixability (Wang and Wang,

2016). In the special case where F1 = · · · = Fn = U[0, 1], Proposition 1 and Theorem 5 of

Mao et al. (2019) imply that MS is closed under conditional expectation if and only if n ⩾ 3.

Remark 2. The uncertainty setM(p,m, v) of the moment condition in Example 7 can be restricted

to the set

M(p,m, v) = {FY ∈ Mp : E[Y ] = m, E[|Y −m|p] = vp},

which is the “boundary” of M(p,m, v). For M = M(p,m, v), the suprema on both sides of (9) are

obtained by some distributions in M(p,m, v); see Theorem 5. As a direct consequence, we get

sup
FY ∈M(p,m,v)

ρh∗(Y ) = sup
FY ∈M(p,m,v)

ρh∗(Y ) = sup
FY ∈M(p,m,v)

ρh(Y ) = sup
FY ∈M(p,m,v)

ρh(Y ).

Hence, equivalence holds even though M(p,m, v) is not closed under concentration for any interval.

By Theorem 2, the set of optimizers is closed under concentration within Ih for each h ∈ H.

For a distribution F ∈ M1 and a collection I of disjoint intervals in [0, 1], we have the following

result regarding to the distribution F I .

4Precisely, we write G ⩽cx (⩽icx)F if
∫
ϕ dG ⩽

∫
ϕ dF for all (increasing) convex functions ϕ such that the above

two integrals are well defined.
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Proposition 3. Let I be a collection of disjoint intervals in [0, 1] and M be a set of distributions.

If M is closed under concentration for all intervals and I is finite, or M is closed under conditional

expectation, then M is closed under concentration within I.

If I is infinite, closedness under concentration for all intervals may not be sufficient for closed-

ness under concentration within I; see Remark 8 in Appendix A.2 for a technical explanation. An

infinite Ih does not appear for any distortion riskmetrics in practice.

3.4 Examples of closedness under concentration within I but not for all intervals

In practice, it is more tractable to check closedness under concentration within a specific

collection of intervals I than closedness under concentration for all intervals or under conditional

expectation. In this section, we show several examples for closedness under concentration within

some I.
For distortion functions h such that Ih = {(p, 1)} (resp. Ih = {(0, p)}) for some p ∈ (0, 1),

the result in Theorem 1 (i) only requires M to be closed under concentration within {(p, 1)}
(resp. {(0, p)}). Such distortion functions include the inverse-S-shaped distortion functions in (11),

those of VaRp, and VaR+
p , and that of the difference between the second-order superquantile and

ES in Example 5. Below we present some more concrete examples.

Example 8 (M has two elements). Let p ∈ (0, 1) and M = {U[0, 1], pδp/2 + (1 − p)U[p, 1]}
where δp/2 is the point-mass at p/2. We can check that M is closed under concentration within

{(0, p)} but M is not closed under concentration for all intervals. Indeed, any set closed under

concentration for all intervals and containing U[0, 1] has infinitely many elements. In general, a finite

set which contains any non-degenerate distribution is not closed under conditional expectation in an

atomless probability space, since there are infinitely many possible distributions for the conditional

expectation of a given non-constant random variable. Another similar example that is closed under

concentration within {(0, p)} is the set of all possible distributions of the sum of several Pareto

risks; see Example 5.1 of Wang et al. (2019).

Example 9 (VaR and ES). As we see from Example 1, if ρh = VaR+
α for some α ∈ (0, 1), then ρh∗

is ESα and Ih = {(α, 1)}. Theorem 1 (i) implies that if M is closed under concentration within

{(α, 1)}, then
sup

FY ∈M
VaR+

α (Y ) = sup
FY ∈M

ESα(Y ).

This observation leads to (with some modifications) the main results in Wang et al. (2015) and Li

et al. (2018) on the equivalence between VaR and ES.

Example 10 (TK distortion riskmetric). If we take h to be an inverse-S-shaped distortion function

in (11), then Ih = {(0, 1 − t0)} for some t0 ∈ (0, 1), and ρh is the TK distortion riskmetric. As a

direct consequence of Theorem 1 (i), if M is closed under concentration within {(0, 1− t0)}, then

sup
FY ∈M

ρh(Y ) = sup
FY ∈M

ρh∗(Y ).
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This result implies Theorem 4.11 of Wang et al. (2019) on the robust risk aggregation problem

based on dual utilities with inverse-S-shaped distortion functions.

Example 11 (Wasserstein ball, 1-dimensional). Optimization problems under the uncertainty set of

a Wasserstein ball are common in literature when quantifying the discrepancy between a benchmark

distribution and alternative scenarios; see e.g., Blanchet and Murthy (2019) and Gao and Kleywegt

(2023). We discuss the application of the concept of concentration to optimization with Wasserstein

distances. For p ⩾ 1 and F,G ∈ Mp, the p-Wasserstein distance between F and G is defined as

Wp(F,G) =

(∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣p du

)1/p

.

For ε ⩾ 0, the uncertainty set of an ε-Wasserstein ball around a benchmark distribution G̃ ∈ Mp

is given by

M(G̃, ε) = {F ∈ Mp :Wp(F, G̃) ⩽ ε}.

Suppose that the benchmark distribution G̃ has a quantile function that is constant on each element

in some collection of disjoint intervals Ĩ ⊂ [0, 1]. As shown in Appendix A.1, M(G̃, ε) is closed

under concentration within I for all I ⊂ Ĩ. Using this closedness property and Theorem 1 (i), the

equivalence

sup
FY ∈M(G̃,ε)

ρh(Y ) = sup
FY ∈M(G̃,ε)

ρh∗(Y ) (15)

holds for all h ∈ H such that Ih ⊂ Ĩ.

Remark 3. In general, if the quantile function G̃ in Example 11 is not constant on some interval in

Ĩ, then M(G̃, ε) is not closed under concentration within Ĩ (see Appendix A.1 for a proof). Thus,

although it is stringent, the conditions imposed on G̃ is also necessary forM(G̃, ε) to be closed under

concentration within Ĩ. For instance, the worst-case VaRα over M(G̃, ε) is generally different from

the worst-case ESα over M(G̃, ε) as obtained in Proposition 4 of Liu et al. (2022). We also refer to

Bernard et al. (2020) who consider a Wasserstein ball together with moment constraints.

Example 12 (Wasserstein ball, n-dimensional). For n ∈ N, p ⩾ 1, a ⩾ 1 and F,G ∈ Mn
p , the

p-Wasserstein distance on Rn between F and G is defined as

Wn
a,p(F,G) = inf

X∼F, Y∼G
(E[∥X−Y∥pa])1/p,

where ∥ · ∥a is the La-norm on Rn. Similarly to the 1-dimensional case, for ε ⩾ 0, an ε-Wasserstein

ball on Rn around a benchmark distribution G̃ ∈ Mn
p is defined as

Mn(G̃, ε) = {F ∈ Mn
p :Wn

a,p(F, G̃) ⩽ ε}.

In a portfolio selection problem, we consider the worst-case riskmetric of a linear combination of

random losses. Suppose that there exists a random vector Z ∼ G̃ such that Z ⩾ 0 and P(Z = 0) = p0
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for some p0 ∈ (0, 1]. For ε ⩾ 0, w ∈ [0,∞)n, p > 1, a > 1 and Z ∈ (Lp)n, as shown in Appendix

A.1, the uncertainty set

{Fw⊤X ∈ Mp : FX ∈ Mn(FZ, ε)}

is closed under concentration within {(0, t)} for all t ⩽ p0. For a practical example, assume that an

investor holds a portfolio of bonds (for simplicity, assume that they have the same maturity). The

loss vector X ⩾ 0 from this portfolio at maturity has an estimated benchmark loss distribution G̃,

and the probability of no default from these bonds (i.e., X = 0) is estimated as p0 > 0 (usually quite

large). Suppose that the investor uses a distortion riskmetric with an inverse-S-shaped distortion

function h given in (11) of Example 2, and considers a Wasserstein ball around G̃ with radius ε.

Note that Ih = {(0, t)} for some t ∈ (0, 1) from Example 10. By Theorem 1 (i), we obtain an

equivalence result on the worst-case riskmetrics for the portfolio with weight vector w,

sup
FX∈Mn(G̃,ε)

ρh(w
⊤X) = sup

FX∈Mn(G̃,ε)

ρh∗(w⊤X),

whenever t ∈ (0, p0].

Remark 4. By definition, the operation of concentration usually changes the support of the original

distribution. For example, for a distribution FX , standard uniform random variable U , and an

interval C = (a, b) ⊆ (0, 1), suppose that FX ̸= FC
X . The density function of FC

X becomes infinite

at E[X|U ∈ C] and 0 everywhere else on [F−1
X (a), F−1

X (b)]. Thus the supports of FX and FC
X

are different. This feature makes closedness under concentration unsuitable for ambiguity sets

induced by ϕ-divergence (Ben-Tal et al. (2013)), which requires the support of the distributions in

comparison to be the same.

Example 13 (Optimal hedging strategy). Suppose that an investor is willing to hedge her random

loss X only when it exceeds some certain level l ∈ R. Mathematically, for a fixed X ∈ L1 contin-

uously distributed on (F−1
X (p0), F

−1
X (1)) such that P(X ⩽ l) = p0 for some p0 ∈ (0, 1) and l ∈ R,

define the set of measurable functions

V = {V : R → R | x 7→ x− V (x) is increasing, V (x) = 0 for all x ⩽ l}

representing possible hedging strategies. Let g : R → R be an increasing and convex function. The

final payoff obtained by a hedging strategy V ∈ V is given by X − V (X) + g(E[V (X)]), where

g(E[V (X)]) is a fixed cost of the hedging strategy that depends on the expected value of V (X)

calculated by a risk-neutral seller in the market using the same probability measure P. As shown

in Appendix A.1, the action set in this optimization problem,

M = {FX−V (X)+g(E[V (X)]) ∈ M1 : V ∈ V},

is closed under concentration within {(p, 1)} for all p ∈ [p0, 1). On the other hand, it is obvious that

M is not closed under concentration for all intervals or closed under conditional expectation since

the quantiles of the distributions in M are fixed beyond the interval (p0, 1). The above closedness
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under concentration property allows us to use Theorem 1 to convert the optimal hedging problem

for ρh with an inverse-S-shaped distortion function h as in (11) to a convex version ρh∗ .

Example 14 (Risk choice). Suppose that an investor is faced with a random loss X ∈ L1. The

distortion function h of her riskmetric is inverse-S-shaped with I−h = {(p, 1)} for some p ∈ (0, 1).

Suppose that p is known to the seller. Since the investor is averse to risk for large losses, the

seller may provide her with the option to stick to the initial investment or to convert the upper

part of the random loss into a fixed payment to avoid large loss. Specifically, we consider the set

M = {FX , F
(p,1)
X } containing two elements, where P(X ⩽ u) = p for some u ∈ R. It is clear that

M is closed under concentration within {(p, 1)} but not closed under conditional expectation. We

assume that the costs of the two investment strategies are calculated by expectation and thus are

the same. By (i) of Theorem 1, it follows that the risk minimization problem satisfies

min
FY ∈M

ρh(Y ) = min
FY ∈M

ρh∗(Y ) = ρh∗(X),

where the last equality follows from Theorem 3 of Wang et al. (2020a). By (iii) of Theorem 1, we

further have the minimum of the original problem minFY ∈M ρh(Y ) is obtained by F
(p,1)
X ; intuitively,

the investor will choose to convert the upper part of her loss into a fixed payment.

3.5 Atomic probability space

The definition of closedness under concentration in Definition 1 requires the assumption of

an atomless probability space since a uniform random variable is used in the setup. It may be of

practical interest in some economic and optimization settings to assume a finite probability space.

In this section, we let the sample space be Ωn = {ω1, . . . , ωn} for n ∈ N and the probability measure

Pn be such that Pn(ωi) = 1/n for all i = 1, . . . , n (such a space is called adequate in economics).

The possible distributions in such a probability space are supported by at most n points each with

probability a multiple of 1/n, and we denote by M[n] the set of these distributions.

Define the collection of intervals In = {(j/n, k/n] : j, k ∈ N ∪ {0}, j < k ⩽ n}. We say a set

of distributions M ⊂ M[n] is closed under grid concentration within I ⊂ In if for all F ∈ M, the

distribution of the random variable

F−1(Un)1{Un /∈
⋃

C∈I C} +
∑
C∈I

E[F−1(Un)|Un ∈ C]1{Un∈C}

is also in M, where Un is a random variable such that Un(ωi) = i/n for all i = 1, . . . , n. For a

distribution F with finite mean and (a, b] ∈ In, it is straightforward that the left-quantile function

of F (a,b] is given by (7). The following equivalence result holds with additional assumption Ih ⊂ In.
The proof can be obtained directly from that of Theorem 1.

Proposition 4. Let M ⊂ M[n] and h ∈ H. If h = ĥ, Ih ⊂ In and M is closed under grid

concentration within Ih, then
sup

FY ∈M
ρh(Y ) = sup

FY ∈M
ρh∗(Y ).
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We note that the condition Ih ⊂ In in Proposition 4 is satisfied by all distortion functions h

which are linear (or constant) on each of ((j−1)/n, j/n], j = 1, . . . , n. It is common to assume such

a distortion function h in an adequate probability space of n states, since any distribution function

can only take values in {j/n : j = 0, . . . , n}.
In a similar spirit to Theorem 2, we give a necessary condition of the equivalence result in the

context of atomic probability spaces. Its proof follows directly from that of Theorem 2.

Proposition 5. For M ⊂ M[n] and h ∈ H such that h ̸= h∗ and Ih ⊂ In, suppose that the set

of maximizers, Mopt = argmaxFY ∈M ρh(Y ), is non-empty. If supFY ∈M ρh(Y ) = supFY ∈M ρh∗(Y ),

then Mopt is closed under grid concentration within Ih.

4 Multi-dimensional setting

Our main equivalence results in Theorems 1 and 2 are stated under the context of one-

dimensional random variables. In this section, we discuss their generalization to multi-dimensional

framework with a few additional steps.

In the multi-dimensional setting, closedness under concentration is not easy to define, as quan-

tile functions are not naturally defined for multivariate distributions. Nevertheless, closedness under

conditional expectation can be analogously formulated. For n ∈ N, we say that M ⊂ Mn is closed

under conditional expectation, if for all FX ∈ M, the distribution of any conditional expectation

of X is in M. The following theorem states the multi-dimensional version of our main equivalence

result using closedness under conditional expectation.

Theorem 3. For M̃ ⊂ Mn
1 , increasing function h ∈ H and f : A×Rn → R concave in the second

argument, if M̃ is closed under conditional expectation, then for all a ∈ A,

sup
FX∈M̃

ρh(f(a,X)) = sup
FX∈M̃

ρh∗(f(a,X)). (16)

If h = ĥ and the second supremum in (16) is attained by some FX ∈ M̃, then F Ih
f(a,X) attains both

suprema. Moreover, if f is linear in the second component, then (16) holds for all h ∈ H (not

necessarily monotone).

Remark 5. If we assume that f is convex (instead of concave) in the second argument in Theorem

3 and keep the other assumptions, then for an increasing h,

inf
FX∈M̃

ρh(f(a,X)) = inf
FX∈M̃

ρh∗(f(a,X)).

This statement follows by noting ρ−h = −ρh. The case of a decreasing h is similar.

Theorem 3 is similar to Theorem 3.4 of Cai et al. (2020) which states the equivalence (16)

for increasing h and a specific set M̃ which is a special case in Example 15 below. In contrast,

our result applies to a more general set M̃ and the infimum problem. Moreover, our result applies
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to non-monotone h when f(a,x) is linear in x. The setting of a function f linear in the second

argument often appears in portfolio selection problems where f(a,X) = a⊤X; see Example 12 and

Section 6.

Example 15. Similarly to Example 7, we give examples of sets of multi-dimensional distributions

closed under conditional expectation.

1. (Convex function conditions) For n ∈ N, a convex set B ⊂ Rn, set Ψ of convex functions on

Rn, and a mapping π : Ψ → R, let

M̃(B,Ψ, f) = {FX ∈ Mn
1 : P(X ∈ B) = 1, E[ψ(X)] ⩽ π(ψ) for all ψ ∈ Ψ}.

It is clear that M̃(B,Ψ, f) is closed under conditional expectation due to Jensen’s inequality.

The uncertainty set proposed by Delage et al. (2014) and used in Theorem 3.4 of Cai et

al. (2020) can be obtained as a special case of this setting by taking Ψ = {f1, . . . , fn} ∪
{g1, . . . , gn} ∪Φ, where fi : (x1, . . . , xn) 7→ xi, gi : (x1, . . . , xn) 7→ −xi for all i = 1, . . . , n, and

Φ is a set of convex functions. The specification for π is that π(fi) = mi ∈ R, π(gi) = −mi,

π(ϕ) = 0 for all i = 1, . . . , n, ϕ ∈ Φ.

2. (Mean-covariance conditions) For n ∈ N, a convex set B ⊂ Rn, µ = (µ1, . . . , µn) ∈ Rn, and

Σ ∈ Rn×n positive semidefinite, let

M̃mv(B,µ,Σ) = {FX ∈ Mn
2 : P(X ∈ B) = 1, E[X] = µ, var(X) ⪯ Σ}.

The set M̃mv(B,µ,Σ) was proposed by Delage and Ye (2010) and is a special case of

M̃(B,Ψ, f). Similarly to the construction in point 1, one can obtain M̃mv(B,µ,Σ) from

M̃(B,Ψ, f) by setting Ψ = {f1, . . . , fn} ∪ {g1, . . . , gn} ∪ Φ, where fi : (x1, . . . , xn) 7→ xi,

gi : (x1, . . . , xn) 7→ −xi for all i = 1, . . . , n, and

Φ =

{
ϕ : Rn → R : ϕ(x) =

(
a⊤(x− µ)

)2
/2− a⊤Σa for some a ∈ Rn

}
,

with the same specification of π that π(fi) = µi ∈ R, π(gi) = −µi, π(ϕ) = 0 for all i = 1, . . . , n,

ϕ ∈ Φ.

3. (Distortion conditions) For n ∈ N, K ⊂ N, a = (ak)k∈K ∈ Rn×|K|, h = (hk)k∈K ∈ (H∗)|K|

and x = (xk)k∈K ∈ R|K|, the set

M̃h(a,x) = {FX ∈ Mn
1 : ρhk

(a⊤k X) ⩽ xk for all k ∈ K}

is closed under conditional expectation. In portfolio optimization problems, this setting in-

corporates distributional uncertainty with constraints on convex distortion risk measures of

the total loss. In particular, optimization with the riskmetrics chosen as ES is common in the

literature; see e.g., Rockafellar and Uryasev (2002), where ES is called CVaR.
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4. (Convex order conditions) For n ∈ N and random vectors Zk ∈ (L1)n, k ∈ K ⊂ N, we

naturally extend from part 5 of Example 7 and obtain that the set

M̃cx(Z) = {FX ∈ Mn
1 : X ⩽cx Zk for all k ∈ K}

is closed under conditional expectation.

Next, we discuss a multi-dimensional problem setting involving concentrations of marginal

distributions. For n ∈ N, we assume that marginal distributions of an n-dimensional distribution

in Mn
1 are uncertain and are in some sets F1, . . . ,Fn ⊂ M1. For F1, . . . , Fn ∈ M1, define the set

D(F1, . . . , Fn) = {cdf of (X1, . . . , Xn) : Xi ∼ Fi, i = 1, . . . , n},

which is the set of all possible joint distributions with specified marginals; see Embrechts et al.

(2015). For a ∈ A, h ∈ H and F1, . . . ,Fn ⊂ M1, the worst-case distortion riskmetric can be

represented as

sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh(f(a,X)). (17)

The outer problem of (17) is a robust risk aggregation problem (see Embrechts et al. (2013, 2015)

and item 6 of Example 7), which is typically nontrivial in general when h is not concave. With

additional uncertainty of the marginal distributions, (17) can be converted to a problem with a

convex objective given that F1, . . . ,Fn are closed under concentration.

Theorem 4. For F1, . . . ,Fn ⊂ M1, increasing h ∈ H with h = ĥ, and f : A×Rn → R increasing,

supermodular and positively homogeneous in the second argument, if F1, . . . ,Fn are closed under

concentration within Ih, then the following hold.5

(i) For all a ∈ A,

sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh(f(a,X)) = sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh∗(f(a,X)). (18)

(ii) If the supremum of the right-hand side of (18) is attained by some F1 ∈ F1, . . . , Fn ∈ Fn

and F ∈ D(F1, . . . , Fn), then for all a ∈ A, F Ih
1 , . . . , F Ih

n and a comonotonic random vector

(XIh
1 , . . . , XIh

n ) with XIh
i ∼ F Ih

i , i = 1, . . . , n attain the suprema on both sides of (18).6

As one of the most important potential applications of Theorem 4, we can take the ambiguity

sets M1, . . . ,Mn as M(p1,m1, v1), . . . ,M(pn,mn, vn) with moment conditions in Example 7, and

thus solve the robust risk aggregation problem with moment constraints of the marginal distribu-

tions. Some examples of functions on Rn that are supermodular and positively homogeneous are

given below. These functions are concave due to Theorem 3 of Marinacci and Montrucchio (2008).

5For a function f : Rn → R, we say f is supermodular if f(x) + f(y) ⩽ f(x ∧ y) + f(x ∨ y) for all x,y ∈ Rn; f is
positively homogeneous if f(λx) = λf(x) for all λ ⩾ 0 and x ∈ Rn.

6A random vector (X1, . . . , Xn) ∈ (L1)n is called comonotonic if there exists a random variable Z ∈ X and
increasing functions f1, . . . , fn on R such that Xi = fi(Z) almost surely for all i = 1, . . . , n.
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Example 16 (Supermodular and positively homogeneous functions). For n ∈ N, the following

functions f : Rn → R are supermodular and positively homogeneous. Write x = (x1, . . . , xn) ∈ Rn.

The last two examples are from economic literature, showing potential economic applications of

Theorem 4. For (v) and (vi), negative real numbers K and L stand for negated capital investment

and negated labor investment, respectively.

(i) (Linear function) f : x 7→ a⊤x for a ∈ Rn. The function is increasing for a ∈ Rn
+.

(ii) (Geometric mean) f : x 7→ −(
∏n

i=1 |xi|)1/n on Rn
− for odd n. The function is also increasing

on Rn
−.

(iii) (Negated p-norm) f : x 7→ −∥x∥p for p ⩾ 1. The function is increasing on Rn
−.

(iv) (Sum of functions) f : x 7→
∑n

i=1 fi(xi) for positively homogeneous functions f1, . . . , fn : R →
R. The function is increasing if f1, . . . , fn are increasing.

(v) (Cobb-Douglas production function) The Cobb-Douglas production function (Cobb and Dou-

glas (1928), negated to represent loss) is defined as f : (K,L) 7→ −A|K|1−α|L|α for A > 0 and

α ∈ [0, 1]. The function is increasing in (K,L) ∈ R2
−.

(vi) (CES production function) The negated constant elasticity of substitution (CES) production

function (Arrow et al. (1961)) is defined as f : (K,L) 7→ −A ((1− α)|K|r + α|L|r)
1
r for A > 0,

α ∈ [0, 1], and r ⩽ 1. The function is increasing in (K,L) ∈ R2
−.

In practice, we can choose a loss function as a mixture of those shown in Example 16. For

example, we consider the loss function f : x 7→ a⊤x − (
∏n

i=1 |xi|)1/n on Rn
− for odd n, which

represents the aggregate loss of a portfolio with a geometric penalty. Such a loss function satisfies

the assumption in Theorem 4. The geometric penalty term −(
∏n

i=1 |xi|)1/n can also be replaced by

the negated p-norm −||x||p for p ⩾ 1. Another possible choice of the loss function is that we take

fi : x 7→ x+ in Example 16 (iv). The resulting loss function can be used to represent aggregate

insurance losses.

5 One-dimensional uncertainty set with moment constraints

A popular example of an uncertainty set closed under concentration for all intervals is that of

distributions with specified moment constraints as in Example 7. We investigate this uncertainty

set in detail and offer in this section some general results, which generalize several existing results in

the literature; none of the results in the literature include non-monotone and non-convex distortion

functions. Non-monotone distortion functions create difficulties because of possible complications

at their discontinuity points.

For p > 1, m ∈ R and v > 0, we recall the set of interest in Example 7:

M(p,m, v) = {FY ∈ Mp : E[Y ] = m, E[|Y −m|p] ⩽ vp}.
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Let q ∈ [1,∞] be the Hölder conjugate of p, namely q = (1− 1/p)−1, or equivalently, 1/p+1/q = 1.

For all h ∈ H∗ or h ∈ H∗, we denote by

∥h′ − x∥q =
(∫ 1

0
|h′(t)− x|q dt

)1/q

, q <∞ and ∥h′ − x∥∞ = max
t∈[0,1]

|h′(t)− x|, x ∈ R. (19)

We introduce the following quantities:

ch,q = argmin
x∈R

∥h′ − x∥q and [h]q = min
x∈R

∥h′ − x∥q = ∥h′ − ch,q∥q.

We set [h]q = ∞ if h is not continuous. It is clear that ch,q is unique for q > 1. The quantity [h]q

may be interpreted as a q-central norm of the function h and ch,q as its q-center. Note that for q = 2

and h continuous, [h]2 = ∥h′ − h(1)∥2 and ch,2 = h(1). We also note that the optimization problem

is trivial if [h]q = 0, which corresponds to the case that h′ = h(1)1[0,1] and ρh is a linear functional,

thus a multiple of the expectation. In this case, the supremum and infimum are attained by all

random variables whose distributions are in M(p,m, v), and they are equal to mh(1). Furthermore,

for h ∈ H∗ or h ∈ H∗, and q > 1, we define a function on [0, 1] by

ϕqh(t) =
|h′(1− t)− ch,q|q

h′(1− t)− ch,q
[h]1−q

q if h′(1− t)− ch,q ̸= 0, and ϕqh(t) = 0 otherwise.

In case q = 2, for t ∈ [0, 1], ϕ2h(t) = (h′(1 − t) − h(1))∥h′ − h(1)∥−1
2 if ∥h′ − h(1)∥2 > 0 and 0

otherwise. We summarize our findings in the following theorem.

Theorem 5. For any h ∈ H, m ∈ R, v > 0 and p > 1, we have

sup
FY ∈M(p,m,v)

ρh(Y ) = mh(1) + v[h∗]q and inf
FY ∈M(p,m,v)

ρh(Y ) = mh(1)− v[h∗]q. (20)

Moreover, if h = ĥ, 0 < [h∗]q < ∞ and 0 < [h∗]q < ∞, then the supremum and infimum in (20)

are attained by a random variable X such that FX ∈ M(p,m, v) with its quantile function uniquely

specified as a.e. equal to m+ vϕqh∗ and m− vϕqh∗
, respectively.

The proof of Theorem 5 follows from a combination of Lemmas A.1 and A.2 in Appendix B.4

and Theorem 1. Note that for h ∈ H∗ (resp. h ∈ H∗) and q > 1, ϕqh is increasing (resp. decreasing)

on [0, 1]. Hence, ϕqh (resp. −ϕqh) in Theorem 5 indeed determines a quantile function.

The following proposition concerns the finiteness of ρh on Lp.

Proposition 6. For any h ∈ H and p ∈ [1,∞], ρh is finite on Lp if [h∗]q <∞ and [h∗]q <∞.

As a special case of Proposition 6, ρh is always finite on L1 if h is convex or concave with

bounded h′ because [h∗]∞ <∞ and [h∗]∞ <∞.

As a common example of the general result in Theorem 5, below we collect our findings for

the case of VaR.
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Corollary 1. For α ∈ (0, 1), p > 1, m ∈ R and v > 0, we have

sup
FY ∈M(p,m,v)

VaRα(Y ) = max
FY ∈M(p,m,v)

ESα(Y ) = m+ vα (αp(1− α) + (1− α)pα)−1/p ,

and

inf
FY ∈M(p,m,v)

VaRα(Y ) = min
FY ∈M(p,m,v)

ESLα(Y ) = m− v(1− α) (αp(1− α) + (1− α)pα)−1/p ,

where

ESLα(Y ) =
1

α

∫ α

0
VaRt(Y ) dt, Y ∈ L1.

We see from Theorem 5 that if h = ĥ, then the supremum and the infimum of ρh(Y ) over

FY ∈ M(p,m, v) are always attainable. However, in case h ̸= ĥ, the supremum or infimum may no

longer be attainable as a maximum or minimum. We illustrate this in Example 17 below.

Example 17 (VaR and ES, p = 2). Take α ∈ (0, 1), p = 2 and ρh = VaRα, which implies ρh∗ = ESα.

Corollary 1 gives supFY ∈M(2,m,v)VaRα(Y ) = supFY ∈M(2,m,v) ESα(Y ) = m+ v
√
α/(1− α). This is

the well-known Cantalli-type formula for ES. By Lemma A.1, the unique left-quantile function of

the random variable Z that attains the supremum of ESα is given by F−1
Z (t) = m+ v(1(α,1](t)/(1−

α) − 1)
√

(1− α)/α, t ∈ [0, 1] a.e. We thus have VaRα(Z) = m − v
√

(1− α)/(α), and hence Z

does not attain supFY ∈M(2,m,v)VaRα(Y ). It follows by the uniqueness of FZ that the supremum of

VaRα(Y ) over FY ∈ M(2,m, v) cannot be attained. However, the supremum of VaR+
α is attained

by Z since VaR+
α (Z) = m+ v

√
(1− α)/(α).

Example 18 (Difference of two TK distortion riskmetrics). Take p = 2 and h = h1 − h2 to be

the difference between two inverse-S-shaped functions in (11) with parameters the same as those

in Example 4 (γ1 = 0.8, γ2 = 0.7). By Theorem 5, the worst-case distortion riskmetrics under the

uncertainty set M(2,m, v) are given by supFY ∈M(2,m,v) ρh(Y ) = supFY ∈M(2,m,v) ρh∗(Y ) = 0.3345v,

and the unique left-quantile function of the random variable Z attaining both suprema above is

given by F−1
Z (t) = m + 2.9892 · h∗′(1 − t)v, t ∈ [0, 1] a.e. The worst-case distortion riskmetrics

obtained above are independent of the mean m as h(1) = h1(1)− h2(1) = 0, which is sensible since

ρh and ρh∗ only incorporate the disagreement between two distortion riskmetrics. Similarly, we can

calculate the infimum of ρh(Y ) over Y ∈ M(2,m, v), and thus obtain the largest absolute difference

between the two preferences numerically represented by ρh1 and ρh2 .

6 Related optimization problems

In this section, we discuss the applications of our main results to some related optimization

problems commonly investigated in the literature by including the outer problem of (1).
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6.1 Portfolio optimization

Our equivalence results can be applied to robust portfolio optimization problems. For an

uncertainty set M̃ ⊂ Mn
p with p ∈ [1,∞], let the random vector X = (X1, . . . , Xn) ∼ FX ∈ M̃,

representing the random losses from n risky assets. For A ⊂ Rn, denote by a vector a ∈ A the

amounts invested in each of the n risky assets. For a distortion function h ∈ H and distortion

riskmetric ρh : Lp → R, we aim to solve the robust portfolio optimization problem given by

min
a∈A

(
sup

FX∈M̃
ρh(a

⊤X) + β(a)

)
, (21)

where β : Rn → R is a penalty function of risk concentration. Note that β is irrelevant for the

inner problem of (21). For a general non-concave h, there is no known algorithm to solve the

inner problem of (21). The outer optimization problem is also nontrivial in general. Therefore, we

usually cannot obtain closed-form solutions of (21) using classical results of optimization problems

for non-convex risk measures. However, as a direct consequence of Theorems 1 and 3, the following

proposition converts (21) to an equivalent optimization problem with the objective functional ρh∗

being convex and mixture concave, which is usually technically tractable to solve. The proof of

Proposition 7 follows directly from Theorems 1 and 3.

Proposition 7. Let h ∈ H, n ∈ N, A ⊂ Rn, and M̃ ⊂ Mn
1 .

(i) if h = ĥ and the set {Fa⊤X ∈ M1 : FX ∈ M̃} is closed under concentration within Ih for all

a ∈ A, then

min
a∈A

(
sup

FX∈M̃
ρh(a

⊤X) + β(a)

)
= min

a∈A

(
sup

FX∈M̃
ρh∗(a⊤X) + β(a)

)
. (22)

(ii) if the set {Fa⊤X ∈ M1 : FX ∈ M̃} is closed under concentration for all intervals for all a ∈ A,

then (22) holds.

(iii) If M̃ is closed under conditional expectation, then (22) holds.

As commented for Theorem 1, closedness under concentration is generally as difficult to verify

as closedness under conditional expectation, and thus does not add practical convenience in the

context of Proposition 7. Therefore, the property of closedness under concentration for the ag-

gregation set {Fa⊤X ∈ M1 : FX ∈ M̃} is usually checked through closedness under conditional

expectation for sufficiency of the equivalence result.

6.2 Preference robust optimization

We are also able to solve the preference robust optimization problem with distributional un-

certainty. For n ∈ N, an n-dimensional action set A, a set of plausible distributions M̃ ⊂ Mn
1 , and
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a set of possible probability perceptions G ⊂ H, the problem is formulated as follows:

min
a∈A

sup
FX∈M̃

sup
h∈G

ρh(f(a,X)). (23)

Preference robust optimization refers to the situation when the objective is not completely known,

e.g., h is in the set G but not identified. Therefore, optimization is performed under the worst-case

preference in the set G. Also note that the form suph∈G ρh includes (but is not limited to) all

coherent risk measures via the representation of Kusuoka (2001). See Delage and Li (2018) for

the problem of (23) without distributional uncertainty (thus, only the minimum and the second

supremum), which was further studied by Wang and Xu (2020) for optimization problems of robust

spectral risk measures. We have the following result whose proof follows from Theorems 1 and 3.

Proposition 8. Let M̃ ⊂ Mn
1 and A ⊂ Rn with n ∈ N.

(i) If h = ĥ and the set {Ff(a,X) ∈ M1 : FX ∈ M̃} is closed under concentration within Ih for

all a ∈ A, then for all G ⊂ H,

min
a∈A

sup
FX∈M̃

sup
h∈G

ρh(f(a,X)) = min
a∈A

sup
FX∈M̃

sup
h∈G

ρh∗(f(a,X)). (24)

(ii) If the set {Ff(a,X) ∈ M1 : FX ∈ M̃} is closed under concentration for all intervals for all

a ∈ A, then (24) holds for all G ⊂ H.

(iii) If G is a set of increasing functions in H, f : A×Rn → R is concave in the second component,

and M̃ is closed under conditional expectation, then (24) holds.

The preference robust optimization problem without distributional uncertainty (i.e., problem

(23) with only the minimum and the second supremum) is generally difficult to solve when the

distortion function h is not concave. However, when the distribution of the random variable is

not completely known, we can transfer the original non-convex problem of a distortion riskmetric

to its convex counterpart induced from the concave envelope of the distortion function using (24),

provided that the set of plausible distributions is well structured.

7 Applications and numerical illustrations

Following the discussion in Section 6, we provide several applications of our theoretical results

to portfolio management for specific sets of plausible distributions. None of the considered optimiza-

tion problems in this section are convex, and we provide numerical calculations or approximation

for the solutions to these optimization problems.7

7The processors we use are Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz 2.59GHz (2 processors). The numerical
results are calculated by MATLAB.
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7.1 Difference of risk measures under moment constraints

We demonstrate a price competition problem as an application of optimizing the difference

between two risk measures shown in Example 18. Similar to the portfolio management problem

discussed in Section 6.1, we consider n risky assets with random losses X1, . . . , Xn ∈ L2 that are

only known to have a fixed mean and a constrained covariance. That is, we choose the set

M̃ = {FX ∈ Mn
2 : E[X] = µ, var(X) ⪯ Σ},

for µ ∈ Rn and Σ ∈ Rn×n positive semidefinite. For an n-dimensional a ∈ A, the set of all possible

distributions of aggregate portfolio losses

{Fa⊤X ∈ M2 : FX ∈ M̃} = Mmv(a,µ,Σ) = M
(
2,a⊤µ,

(
a⊤Σa

)1/2)
(25)

is closed under concentration for all intervals as is shown in Example 7. Let ρh1 : L2 → R be an

investor’s own price of the portfolio, while ρh2 : L2 → R is her opponent’s price of the same portfolio.

We choose h1 and h2 to be the inverse-S-shaped distortion functions in (11), with parameters the

same as those in Example 18 (γ1 = 0.8 and γ2 = 0.7). Write h = h1 − h2. For an action set

A = {(a1, . . . , an) ∈ [0, 1]n :
∑n

i=1 ai = 1}, the investor chooses the optimal a∗ ∈ A, such that the

worst-case overpricing from her opponent is minimized.

From the calculation in Example 18, we get

D(Σ) := min
a∈A

sup
FX∈M̃

(
ρh1(a

⊤X)− ρh2(a
⊤X)

)
= min

a∈A
sup

FY ∈Mmv(a,µ,Σ)
ρh∗(Y ) = 0.3345×min

a∈A

(
a⊤Σa

)1/2
.

(26)

We note that optimizing ρh1 −ρh2 is generally nontrivial since the difference between two distortion

functions h1 − h2 is not necessarily monotone, concave, or continuous, even though h1 and h2

themselves may have these properties. The generality of our equivalence result allows us to convert

the original problem to the much simpler form (26), which can be solved efficiently.8 Table 1

demonstrates the optimal values of a∗ and D for different choices of Σ.

7.2 Preference robust portfolio optimization with moment constraints

Next, we discuss an example of preference robust optimization with distributional uncertainty

using the results in Sections 5. Similarly to Section 7.1, we consider the set of plausible aggregate

portfolio loss distributions

Mmv(a,µ,Σ) = {Fa⊤X ∈ M2 : FX ∈ Mn
2 , E[X] = µ, var(X) ⪯ Σ}

8The convex problem (26) is solved numerically by the constrained nonlinear multivariable function “fmincon”
with the interior-point method.
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Table 1: Optimal results in (26) for difference between two TK distortion riskmetrics

n Σ a∗ D

3

1 0 0
0 1 0
0 0 1

 (0.333, 0.333, 0.333) 0.193

3

 2 −1 0
−1 2 −1
0 −1 2

 (0.300, 0.400, 0.300) 0.150

3

1 1 1
1 2 1
1 1 3

 (0.997, 0.002, 0.001) 0.335

5


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

 (0.438, 0.219, 0.146, 0.110, 0.088) 0.221

and the action set A = {(a1, . . . , an) ∈ [0, 1]n :
∑n

i=1 ai = 1} representing the weights the investor

assigns to each random loss. The investor considers TK distortion riskmetrics, however, she is not

certain about the parameter γ of the distortion function h. Thus, the investor consider the set of

TK distortion riskmetrics with distortion functions in

G = {h ∈ H : h = hγ , γ ∈ [0.5, 0.9]} ,

which is approximately the two-sigma confidence interval of γ in Wu and Gonzalez (1996).9 There-

fore, the investor aims to find a optimal portfolio given the uncertainty in the riskmetrics. To

penalize deviations from the benchmark parameter γ = 0.71 (Wu and Gonzalez, 1996), the investor

use the term ec(γ−0.71)2 for some c ⩾ 0. Here we choose the exponential penalty only to ensure that

it is nonnegative. We could also choose other forms of the penalty functions such as the quadratic

penalty or absolute difference penalty, which will not change the results qualitatively. Since the set

Mmv(a,µ,Σ) is closed under concentration for all intervals for all a ∈ A, Proposition 8, (25), and

Theorem 5 lead to

V (µ,Σ) := min
a∈A

sup
FY ∈Mmv(a,µ,Σ)

sup
γ∈[0.5,0.9]

(
ρhγ (Y )− ec(γ−0.71)2

)
= min

a∈A
sup

FY ∈M
(
2,a⊤µ,(a⊤Σa)

1/2
) sup
γ∈[0.5,0.9]

(
ρ(hγ)∗(Y )− ec(γ−0.71)2

)

= min
a∈A

sup
γ∈[0.5,0.9]

(
a⊤µ+

(
a⊤Σa

)1/2
[(hγ)∗]2 − ec(γ−0.71)2

)
.

(27)

We calculate the optimal values V for different choices of parameters (n, c, µ and Σ) and

9The aggregate least-square estimate of γ in Section 5 of Wu and Gonzalez (1996) is 0.71 with standard deviation
0.1.
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report them in Table 2, where a∗ and γ̂ represent the optimal weights and the parameters of the

inverse-S-shaped distortion function, respectively. Note that the last optimization problem in (27)

can be calculated numerically.10

Table 2: Optimal values in (27) for TK distortion riskmetrics

n c µ Σ a∗ γ̂ V

3 0 (1, 1, 1)

1 0 0
0 1 0
0 0 1

 (0.333, 0.333, 0.333) 0.500 2.38

3 30 (2, 1, 1)

1 0 0
0 1 0
0 0 1

 (0.000, 0.500, 0.500) 0.678 0.284

3 30 (1, 1, 1)

 2 −1 0
−1 2 −1
0 −1 2

 (0.300, 0.400, 0.300) 0.690 0.173

3 50 (1.2, 1, 1)

1 1 1
1 2 1
1 1 3

 (0.195, 0.537, 0.269) 0.678 0.520

5 50 (1, 1, 1, 1, 1)


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

 (0.438, 0.219, 0.146, 0.110, 0.088) 0.694 0.254

7.3 Portfolio optimization with marginal constraints

A special case of the portfolio optimization problem introduced in Section 6.1, which is of

interest in robust risk aggregation (see e.g., Blanchet et al. (2020)), is to take M̃ to be the Fréchet

class defined as

M̃(F1, . . . , Fn) = {FX ∈ Mn
1 : Xi ∼ Fi, i = 1, . . . , n}, (28)

for some known marginal distributions F1, . . . , Fn ∈ M1. In this case, although the left-hand side

of (22) is generally difficult to solve, for A ⊂ Rn
+, the right-hand side of (22) can be rewritten using

convexity and comonotonicity as

min
a∈A

(
a⊤(ρh∗(X1), . . . , ρh∗(Xn)) + β(a)

)
, (29)

where Xi ∼ Fi, i = 1, . . . , n. We see that (29) is a linear optimization problem with a penalty β,

which often admits closed-form solutions when β is properly chosen. For any given a ∈ A, we define

M(a, F1, . . . , Fn) = {Fa⊤X ∈ M1 : Xi ∼ Fi, i = 1, . . . , n}. (30)

10We solved the inner problem of (27) by grid screening different γ from 0.5 to 0.9 with a grid size 0.002. The outer
problem (27) is convex and is solved numerically by the constrained nonlinear multivariable function “fmincon” with
the interior-point method.

30



The set M(a, F1, . . . , Fn) is the weighted version of MS(F1, . . . , Fn) in Example 7. Note that

M(a, F1, . . . , Fn) is generally neither closed under concentration for all intervals nor closed under

conditional expectation. However, for a special case where a = (1/n, . . . , 1/n) and F1 = · · · = Fn,

the set M(a, F1, . . . , Fn) is asymptotically closed under concentration for all intervals by Theorem

3.5 of Mao and Wang (2015). Therefore, even though M(a, F1, . . . , Fn) is not closed under con-

centration for all intervals for some a ∈ A, our result of the problem (29) is a good approximation

of the original problem for large n. Such asymptotic equivalence between worst-case riskmetrics

of aggregate risks with equal weights and unequal marginals has already been well studied in the

literature; see e.g., Theorem 3.3 of Embrechts et al. (2015) for the VaR/ES pair and Theorem 3.5

of Cai et al. (2018) for distortion risk measures.

We conduct numerical calculations to illustrate the equivalence between both sides in (22). We

choose the action set Aa,b = {(x1, . . . , xn) ∈ [a, b]n :
∑n

i=1 xi = 1}, for 0 ⩽ a < 1/n < b ⩽ 1 and the

penalty function β to be the L2-norm multiplied by a scaler c ⩾ 0, namely c∥ · ∥2, where the scaler

c is a tuning parameter of the L2 penalty. We first solve the optimization problems separately for

the well-known VaR/ES pair at the level of 0.95. Specifically, the two problems are given by

VVaR(a, b, F1, . . . , Fn) = min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
VaR0.95(a

⊤X) + c∥a∥2

)
, (31)

VES(a, b, F1, . . . , Fn) = min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
ES0.95(a

⊤X) + c∥a∥2

)
= min

a∈Aa,b

(
a⊤(ES0.95(F1), . . . ,ES0.95(Fn)) + c∥a∥2

)
. (32)

The inner VaR problem is calculated using the rearrangement algorithm (RA) of Puccetti and

Rüschendorf (2012) and Embrechts et al. (2013), which is a well-adopted approach to approximate

the sharp VaR bound of aggregate losses with given marginal distributions. The optimal value

of the outer ES problem is obtained by minimizing the sum of a linear combination of ES and

the 2-norm of the vector a, which can be done efficiently.11 In particular, if the marginals of the

random losses are identical (i.e., F1 = · · · = Fn = F ), the optimal solution is a∗ = (1/n, . . . , 1/n)

and VES(a, b, F1, . . . , Fn) = ES0.95(F ) + c/
√
n. We consider the following marginal distributions

(i) Fi follows a Pareto distribution with scale parameter 1 and shape parameter 3+(i−1)/(n−1)

for i = 1, . . . , n;

(ii) Fi is normally distributed with parameters N(1, 1 + (i− 1)/(n− 1)), for i = 1, . . . , n;

(iii) Fi follows an exponential distribution with parameter 1 + (i− 1)/(n− 1), for i = 1, . . . , n.

We choose n to be 3, 10, and 20. For comparison, we calculate the value n∥∆a∗∥2, where ∆a∗

is the difference between the optimal weights of the non-convex problem and the convex problem.

11The outer problems of (31) and (32) is solved numerically by the “GlobalSearch” function with the constrained
nonlinear multivariable function “fmincon” and the sequential quadratic programming (SQP) algorithm. This guar-
antees that the optimal solution we find obtains a global minimum of the problem. The same method is also applied
when solving outer problems of (33) and (34).
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In addition, we calculate the absolute differences between the optimal values obtained by the two

problems, ∆V = VES − VVaR ⩾ 0, and the percentage differences ∆V/VVaR. Tables 3 and 4 show

the numerical results that compare both optimization problems with two choices of the action sets

Aa,b. The computation time is reported (in seconds). We observe that the optimal values obtained

in the two problems get closer and become approximately the same as n gets larger. As explained

before, this is because the set of plausible distributions M(F1, . . . , Fn) is asymptotically equal to a

set closed under concentration for all intervals.

Next, we consider a TK distortion riskmetric with parameter γ = 0.7. Due to the non-concavity

of h, there are no known ways of directly solving the non-convex optimization problem

min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
ρh(a

⊤X) + c∥a∥2

)
. (33)

We may get an approximation of (33) using a lower bound of ρh in (33) produced with the depen-

dence structure created by the rearrangement algorithm (RA);12 for simplicity, we denote by Vh

this lower bound. On the other hand, by (22), the convex counterpart of (33) can be written (using

Theorem 1) as

Vh∗(a, b, F1, . . . , Fn) = min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
ρh∗(a⊤X) + c∥a∥2

)
= min

a∈Aa,b

(
a⊤(ρh∗(X1), . . . , ρh∗(Xn)) + c∥a∥2

)
,

(34)

where Xi ∼ Fi for i = 1, . . . , n. We calculate the absolute differences between the optimal values of

the convex and non-convex problems ∆V = Vh∗ − Vh ⩾ 0, and the percentage differences ∆V/Vh.

Tables 5 and 6 compare the numerical results of the two optimization problems with different

choices of Aa,b. We observe that the percentage differences between the RA lower bound Vh for

the non-convex problem (33) and the minimum value Vh∗ of the convex problem (34) are roughly

between 10% to 20%. According to our previous discussion in this section, the theoretical worst-

case distortion riskmetric in (33) is close to that in (34) when n goes to infinity. However, the RA

lower bound for (33) is not expected to be very close to the true minimum in (33), and hence the

differences between the solution of (33) and the optimal value in (34) are smaller than the observed

numbers.

Note that, by transforming an optimization problem with a non-convex riskmetric to a con-

vex one induced from the concave envelope of the distortion function, we significantly reduce the

computational time of calculating bounds with negligible errors, as shown in Tables 3-6.

12Such a dependence structure obviously provides a lower bound for the worst-case value in (33). In theory, the
result from RA is thus not an optimal dependence structure for (33). In our numerical results, this lower bound is
very close to an upper bound only for the case of VaR and ES but not for the case of TK distortion riskmetrics.
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Table 3: Comparison of the numerical results of the two optimization problems (31) and (32) for
VaR0.95 and ES0.95 with a = 0 and b = 1

c VVaR time VES time n∥∆a∗∥2 ∆V ∆V /VVaR (%)

(i)
Pareto

n = 3 2.5 3.547 31.53 3.741 0.72 8.88× 10−5 0.194 5.48
n = 10 3.0 3.197 153.83 3.215 1.39 9.18× 10−4 0.0178 0.558
n = 20 4.0 3.156 424.17 3.159 9.37 3.53× 10−5 2.68× 10−3 0.0850

(ii)
Normal

n = 3 4.0 5.766 31.19 5.785 0.18 1.39× 10−3 0.0186 0.323
n = 10 2.0 4.082 97.30 4.083 0.77 1.18× 10−3 3.24× 10−5 7.93× 10−4

n = 20 3.0 4.132 431.79 4.132 4.66 2.69× 10−3 1.88× 10−5 4.55× 10−4

(iii)
Exp

n = 3 3.0 4.251 26.78 4.405 0.07 0.331 0.155 3.64
n = 10 4.0 3.892 118.23 3.893 0.50 9.74× 10−4 2.92× 10−4 7.52× 10−3

n = 20 7.0 4.230 543.03 4.230 3.47 3.08× 10−4 4.47× 10−5 1.06× 10−3

Table 4: Comparison of the numerical results of the two optimization problems (31) and (32) for
VaR0.95 and ES0.95 with a = 1/(2n) and b = 2/n

c VVaR time VES time n∥∆a∗∥2 ∆V ∆V /VVaR (%)

(i)
Pareto

n = 3 2.5 3.546 54.59 3.741 0.19 6.58× 10−4 0.194 5.48
n = 10 3.0 3.204 146.63 3.220 1.60 1.99× 10−4 0.0160 0.498
n = 20 4.0 3.162 847.13 3.163 10.08 1.69× 10−3 2.23× 10−3 0.0706

(ii)
Normal

n = 3 4.0 5.766 57.31 5.785 0.19 1.32× 10−3 0.0187 0.324
n = 10 2.0 4.084 166.25 4.084 0.79 0 2.94× 10−5 7.20× 10−4

n = 20 3.0 4.133 691.91 4.133 5.91 0 1.99× 10−5 4.82× 10−4

(iii)
Exp

n = 3 3.0 4.369 48.58 4.422 0.09 1.04× 10−3 0.0533 1.22
n = 10 4.0 3.916 115.18 3.916 0.50 2.54× 10−5 1.38× 10−4 3.52× 10−3

n = 20 7.0 4.236 665.05 4.236 3.48 2.73× 10−4 4.04× 10−5 9.54× 10−4

8 Concluding remarks

We introduced the new concept of closedness under concentration, which is, in the context

of distributional uncertainty, a sufficient condition to transform an optimization problem with

a non-convex distortion riskmetric to its convex counterpart induced from the concave envelope

of the distortion function. This concept is genuinely weaker than closedness under conditional

expectation, and our main result unifies and improves many existing results in the literature. Many

sets of plausible distributions commonly used in the literature of finance, optimization, and risk

management are closed under concentration within some I. Moreover, by focusing on distortion

riskmetrics whose distortion functions are not necessarily monotone, concave, or continuous, we are

able to solve optimization problems for the class of functionals larger than classical risk measures or

deviation measures. In particular, we are able to obtain bounds on differences between two distortion

riskmetrics, which represent measures of disagreement between two utilities/risk attitudes. Our

result can also be applied to solve the popular problem of optimizing risk measures under moment
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Table 5: Comparison of the numerical results of the two optimization problems (33) and (34) for
TK distortion riskmetrics with a = 0 and b = 1

c Vh time Vh∗ time n∥∆a∗∥2 ∆V ∆V /Vh (%)

(i)
Pareto

n = 3 1.0 1.076 144.75 1.185 0.23 0.488 0.109 10.2
n = 10 2.0 1.047 220.03 1.237 1.42 0 0.190 18.1
n = 20 4.0 1.301 826.64 1.501 8.24 0 0.200 15.4

(ii)
Normal

n = 3 0.5 1.240 60.76 1.493 0.16 0.0784 0.253 20.4
n = 10 0.5 1.141 246.31 1.363 0.72 1.28 0.222 19.4
n = 20 0.5 1.103 1503.35 1.316 2.80 1.78 0.213 19.3

(iii)
Exp

n = 3 1.0 1.305 49.79 1.427 0.23 0.360 0.122 9.32
n = 10 2.0 1.313 198.43 1.484 1.62 0.184 0.171 13.0
n = 20 2.0 1.120 850.12 1.286 10.91 0.158 0.166 14.8

Table 6: Comparison of the numerical results of the two optimization problems (33) and (34) for
TK distortion riskmetrics with a = 1/(2n) and b = 2/n

c Vh time Vh∗ time n∥∆a∗∥2 ∆V ∆V /Vh (%)

(i)
Pareto

n = 3 1.0 1.077 73.21 1.185 0.25 0.469 0.109 10.11
n = 10 2.0 1.047 248.38 1.237 2.29 0.378 0.191 18.2
n = 20 4.0 1.301 638.24 1.501 12.21 0 0.200 15.4

(ii)
Normal

n = 3 0.5 1.240 179.68 1.493 0.19 0.0784 0.253 20.4
n = 10 0.5 1.146 389.97 1.363 0.76 0.660 0.217 19.0
n = 20 0.5 1.103 1563.84 1.316 3.39 1.63 0.213 19.3

(iii)
Exp

n = 3 1.0 1.304 52.66 1.430 0.25 0.107 0.126 9.65
n = 10 2.0 1.312 236.15 1.485 2.27 0.214 0.172 13.1
n = 20 2.0 1.119 879.73 1.289 10.10 0.141 0.170 15.2

constraints. In particular, we obtain the worst- and best-case distortion riskmetrics when the

underlying random variable has a fixed mean and bounded p-th moment.

We demonstrate the applicability of our result by numerically calculating the solution to op-

timizing the difference between risk measures, preference robust optimization and portfolio opti-

mization under marginal constraints. In all numerical examples, the original non-convex problem

is converted or well approximated by a convex one which can be solved efficiently.

Our condition of closedness under concentration within I in Theorem 1 is sufficient but not

necessary for the equivalence of optimization problems with non-convex distortion riskmetrics and

convex ones induced from the concave envelopes of the distortion functions under distributional

uncertainty. A necessary condition of the equivalence is closedness under concentration of the set of

maximizers in Theorem 2. An open question is to find a necessary and sufficient condition on the

uncertainty set M itself such that the desired equivalence holds. Pinning down such a condition

may facilitate many more applications in decision theory, finance, game theory, and operations

research.
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Technical appendices

A Omitted technical details from the paper

In this appendix, we present technical details for some examples and as well as some technical

remarks omitted from the paper.

A.1 Proofs of claims in some Examples

Proof of the claim in Example 7. We show that Mmv(a,µ,Σ) is equivalent to

{FS ∈ M2 : E[S] = a⊤µ, var(S) ⩽ a⊤Σa} = M
(
2,a⊤µ,

(
a⊤Σa

)1/2)
.

For a proof of the equivalence between the sets with fixed mean and covariance matrix, see

Popescu (2007). Indeed, it is clear that Mmv(a,µ,Σ) ⊂ M(2,a⊤µ, (a⊤Σa)1/2). On the other

hand, for all FS ∈ M(2,a⊤µ, (a⊤Σa)1/2), we write a = (a1, . . . , an), µ = (µ1, . . . , µn), and

take X = (X1, . . . , Xn) such that Xi = (S − a⊤µ)/(nai) + µi, for i = 1, . . . , n. It follows that

FS = Fa⊤X ∈ Mmv(a,µ,Σ). Therefore, we have Mmv(a,µ,Σ) = M(2,a⊤µ, (a⊤Σa)1/2).

Proof of the claim in Example 11 and Remark 3. We will show that M(G̃, ε) is closed under con-

centration within I for all I ⊂ Ĩ. Write I = {Ci : i ∈ K} for some K ⊂ N. For all i ∈ K and

F ∈ M(G̃, ε), we have G̃−1(u) = ci for u ∈ Ci for some ci ∈ R. For all i ∈ K, by Jensen’s inequality,

1

λ(Ci)

∫
Ci

∣∣∣F−1(u)− G̃−1(u)
∣∣∣p du ⩾

∣∣∣∣∣
∫
Ci
F−1(u) du

λ(Ci)
− ci

∣∣∣∣∣
p

=
1

λ(Ci)

∫
Ci

∣∣∣(FCi)−1(u)− G̃−1(u)
∣∣∣p du.

It follows that

(Wp(F, G̃))
p − (Wp(F

Ci , G̃))p =

∫ 1

0

∣∣∣F−1(u)− G̃−1(u)
∣∣∣p du−

∫ 1

0

∣∣∣(FCi)−1(u)− G̃−1(u)
∣∣∣p du

=

∫
Ci

∣∣∣F−1(u)− G̃−1(u)
∣∣∣p du−

∫
Ci

∣∣∣(FCi)−1(u)− G̃−1(u)
∣∣∣p du ⩾ 0,

and thus Wp(F
Ci , G̃) ⩽Wp(F, G̃) ⩽ ε. Moreover, (8) and the above argument lead to

(Wp(F, G̃))
p − (Wp(F

I , G̃))p =
∑
i∈K

(Wp(F, G̃))
p − (Wp(F

Ci , G̃))p ⩾ 0.

Hence, Wp(F
I , G̃) ⩽Wp(F, G̃) ⩽ ε.

To show the converse statement in Remark 3, suppose that M(G̃, ε) is closed under concen-

tration within I and suppose for contradiction that G̃−1 is not a constant on some C ∈ I. Take
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F ∈ M(G̃, ε) such that F−1 = G̃−1 + ε. Thus (FC)−1 = (G̃C)−1 + ε. It follows that

(Wp(F, G̃))
p − (Wp(F

C , G̃))p =

∫
C

∣∣∣F−1(u)− G̃−1(u)
∣∣∣p du−

∫
C

∣∣∣(FC)−1(u)− G̃−1(u)
∣∣∣p du

= Cεp −
∫
C

∣∣∣(G̃C)−1(u)− G̃−1(u) + ε
∣∣∣p du

< Cεp −
∣∣∣∣∫

C
(G̃C)−1(u)− G̃−1(u) + ε du

∣∣∣∣p = 0,

where the inequality follows from Jensen’s inequality and the strict sign is due to the fact that

(G̃C)−1 − G̃−1 is not a constant on C. Hence, we have ε = Wp(F, G̃) < Wp(F
C , G̃) and thus

FC /∈ M(G̃, ε). This leads to a contradiction and hence G̃−1 must be a constant on each interval

in I.

Proof of the claim in Example 12. For ε ⩾ 0, w ∈ [0,∞)n, p > 1, a > 1 and Z ∈ (Lp)n, by Theorem

7 of Mao et al. (2022), the uncertainty set

{Fw⊤X ∈ Mp : FX ∈ Mn(FZ, ε)} = M(Fw⊤Z, ε∥w∥b),

where b is the conjugate of a (i.e., 1/a + 1/b = 1). Note that P(w⊤Z = 0) ⩾ p0 and the quantile

function of w⊤Z is equal to 0 on (0, p0]. It follows from Example 11 that the set M(Fw⊤Z, ε∥w∥b)
is closed under concentration within {(0, t)} for all t ⩽ p0.

Proof of the claim in Example 13. We will show that the set of distributions,

M = {FX−V (X)+g(E[V (X)]) ∈ M1 : V ∈ V},

is closed under concentration within {(p, 1)} for all p ∈ [p0, 1). For each V ∈ V and a standard

uniform random variable U , we write a = E[F−1
X−V (X)(U)|U ∈ (p, 1)]. Since F−1

X (p) ⩾ l, we can take

W (x) = V (x)1{x⩽F−1
X (p)} + (x− a)1{x>F−1

X (p)}, x ∈ R.

It follows that W ∈ V. Noting that a = E[X − V (X)|X > F−1
X (p)], we have

X −W (X) + g(E[W (X)])

= (X − V (X))1{X⩽F−1
X (p)} + a1{X>F−1

X (p)} + g
(
E[V (X)1{X⩽F−1

X (p)} + (X − a)1{X>F−1
X (p)}]

)
= (X − V (X))1{X⩽F−1

X (p)} + a1{X>F−1
X (p)} + g(E[V (X)]),

which follows the same distribution as F
(p,1)
X−V (X)+g(E[V (X)]). It follows that M is closed under

concentration within {(p, 1)} for all p ∈ [p0, 1).
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A.2 A few additional technical remarks mentioned in the paper

Remark 6 (on Theorem 1). Using Theorem 1, if for some a ∈ A, the set M := {Ff(a,X) : FX ∈
M̃} is closed under concentration for all intervals and sup{ρh∗(f(a,X)) : FX ∈ M̃} = ∞, then

sup{ρh(f(a,X)) : FX ∈ M̃} = ∞. Thus, both objectives in the inner optimization of (1) are infinite

for this a, which can be excluded from the outer optimization over A. Verifying sup{ρh∗(f(a,X)) :

FX ∈ M̃} = ∞ is easier than verifying sup{ρh(f(a,X)) : FX ∈ M̃} = ∞ since generally ρh is

smaller than ρh∗ .

Remark 7 (on Example 7). Using Strassen’s Theorem (e.g., Theorem 3.A.4 of Shaked and Shan-

thikumar (2007)), closedness under conditional expectation can equivalently be expressed using

convex order. A set M ⊂ M1 is closed under conditional expectation if and only if it holds that

for F ∈ M and G ⩽cx F , we have G ∈ M.

Remark 8 (on Proposition 3). In Proposition 3, ifM is closed under conditional expectation, I can

be taken as an infinite set. However, M may not be closed under concentration within an infinite

I if we only assume that M is closed under concentration for all intervals. Indeed, if we take M as

the set of distributions obtained by some F ∈ M with finitely many concentrations, then clearly M
is closed under concentration for all intervals. However, F I /∈ M when I is an infinite collection of

disjoint intervals. This also serves as a counter-example of the converse statement of Proposition 2

since M is closed under concentration for all intervals but not closed under conditional expectation.

B Proofs of all technical results

We present all proofs of technical results in this appendix. Throughout, we denote the set of

discontinuity points of h (excluding 0 and 1) by

Jh = {t ∈ (0, 1) : h(t) ̸= h(t+) or h(t) ̸= h(t−)}. (A.1)

Note that ĥ(t) can be written as

ĥ(t) =

{
h(t+) ∨ h(t−) ∨ h(t), t ∈ Jh,

h(t), otherwise.
(A.2)

B.1 Proof of results in Section 2

Proof of Proposition 1. Note that (ĥ)∗ = h∗ = ĥ = h on 0 and 1. For all t ∈ (0, 1), since (ĥ)∗(t) ⩾

ĥ(t) ⩾ h(t), we have (ĥ)∗(t) ⩾ h∗(t). On the other hand, we have h∗(t) ⩾ h(t+) for t ∈ (0, 1).

Indeed, if h∗(t0) < h(t+0 ) for some t0 ∈ (0, 1), then we have h∗(t0 + ε) < h(t0 + ε) for some ε > 0,

which leads to a contradiction. Similarly, we have h∗(t) ⩾ h(t−) for t ∈ (0, 1). Together with h∗ ⩾ h

on (0, 1), we have h∗ ⩾ ĥ on (0, 1), which implies that h∗ ⩾ (ĥ)∗ on (0, 1). Therefore, (ĥ)∗ = h∗ on

[0, 1].
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Next, we assert that the set {t ∈ [0, 1] : ĥ(t) ̸= h∗(t)} is a union of disjoint sets that are not

singletons. To show this assertion, assume that the converse is true. There exists x ∈ (0, 1), such

that ĥ(x) < h∗(x) and ĥ(t) = h∗(t) on t ∈ (x− ε, x) ∪ (x, x+ ε) for some 0 < ε ⩽ x ∧ (1− x). It is

clear that x ∈ Jh. Since h
∗ is continuous on (x− ε, x+ ε), we have

ĥ(x) < h∗(x) = h∗(x+) = ĥ(x+).

This contradicts (A.2). Therefore, the set {t ∈ [0, 1] : ĥ(t) ̸= h∗(t)} is the union of some disjoint

intervals, denoted by ∪l∈LAl for some L ⊂ N. For all l ∈ L, we denote the left and right endpoints

of Al by al and bl, respectively, with al < bl. Define a function via linear interpolation

hc(t) =

{
ĥ(al) +

ĥ(bl)−ĥ(al)
bl−al

(t− al), t ∈ Al, l ∈ L,

ĥ(t), otherwise.

It is clear that hc ⩽ h∗ and hc is continuous on (0, 1). We will prove that hc = h∗ on ∪l∈LAl.

Suppose for the purpose of contradiction that hc ̸= h∗ on ∪l∈LAl. Since h
c < h∗ for some point in

∪l∈LAl, there exists x0 ∈ Al for some l ∈ L such that hc(x0) < ĥ(x0). Thus we can take a point

(x1, ĥ(x1)) ∈ (0, 1) × R with ĥ(x1) > hc(x1), which has the largest perpendicular distance to the

straight line hc(t) = ĥ(al) +
ĥ(bl)−ĥ(al)

bl−al
(t− al), namely,

x1 = argmax
x∈Al

ĥ(x)>hc(x)

(bl − al)ĥ(x)− (ĥ(bl)− ĥ(al))x− (bl − al)ĥ(al) + (ĥ(bl)− ĥ(al))al(
(ĥ(bl)− ĥ(al))2 + (bl − al)2

)1/2 .

The existence of the maximizer x1 is due to the upper semicontinuity of ĥ. There exists a function

g with g = h∗ on [0, 1] \ Al and g(x1) = ĥ(x1), such that g is concave and ĥ ⩽ g ⩽ h∗ on [0, 1].

Since h∗ > ĥ on Al, we have h∗(x1) > ĥ(x1) = g(x1). Thus h∗ cannot be the concave envelope of

ĥ, which leads to a contradiction. Thus, h∗ = hc on ∪l∈LAl. Since h
∗ = ĥ = hc on (0, 1) \ (∪l∈LAl),

we have h∗ = hc. Therefore, {t ∈ [0, 1] : ĥ(t) ̸= h∗(t)} is a union of disjoint open intervals, and h∗

is linear on each of the intervals.

B.2 Proofs of results in Section 3

Proof of Theorem 1. We will first show that, assuming that M is closed under concentration within

Ih, we have

sup
FX∈M

ρĥ(X) = sup
FX∈M

ρh∗(X). (A.3)

After proving (A.3), we show the three statements in Theorem 1 in the order (i), (ii), and (iii).

For h ∈ H, suppose that M is closed under concentration within Ih. Take an arbitrary

random variable Y with FY ∈ M. Let G = F Ih
Y . For h ∈ H, write functions g(t) = 1− ĥ(1− t) and

g∗(t) = 1− h∗(1− t) for t ∈ [0, 1]. By definition of Ih, g ̸= g∗ on each set in Ih and g = g∗ on other

sets. For any (a, b) ∈ Ih, we have G−1(t) =
∫ b
a F−1

Y (u) du

b−a for all t ∈ (a, b] and G−1+(t) =
∫ b
a F−1

Y (u) du

b−a
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for all t ∈ [a, b). Using the fact that g∗ is linear on (a, b) and g(t) = g∗(t) for t = a, b, we have

∫
(a,b)

F−1
Y (t) dg∗(t) = (g∗(b)− g∗(a))

∫ b
a F

−1
Y (t) dt

b− a

= (g(b)− g(a))

∫ b
a F

−1
Y (t) dt

b− a

=

∫
(a,b]

G−1(t) dg(t) +G−1+(a)(g(a+)− g(a)).

(A.4)

Define the sets

J+ = {t ∈ Jh : ĥ(t+) = ĥ(t) ̸= ĥ(t−)}, J− = {t ∈ Jh : ĥ(t+) ̸= ĥ(t) = ĥ(t−)},

and J0 = {t ∈ Jh : ĥ(t+) ̸= ĥ(t) ̸= ĥ(t−)}.

To better understand these sets, we recall Figure 1 (without concave envelopes) as Figure A.1 to

demonstrate an example of a distortion function h, the corrresponding ĥ, the sets Jh, J+, J−, and

J0, and the sets Ĵ , Ĵ+, Ĵ−, Ĵ
0
+, and Ĵ

0
− (defined in the proof of (i) below).

Figure A.1: An example of h (left) and ĥ (right); in this figure, Jh = {t1, t2, t3, t4, t5}, J+ = {t1},
J− = {t2, t3}, and J0 = {t5}. Moreover, the sets we use in the proof of (i) are Ĵ = {t1, t2, t3, t4},
Ĵ+ = {t1, t4}, Ĵ− = {t2, t3}, Ĵ0

+ = {t4}, and Ĵ0
− = {t3}

Note that for a random variable ZIh ∼ F Ih
Y , we have

ρĥ(ZIh) =

∫
(0,1]\(J+∪J0)

G−1(t) dg(t) +
∑

t∈J+∪J0∪{0}

G−1+(t)(g(t+)− g(t)).
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Hence using (A.4) and (8), we get

ρh∗(Y )− ρĥ(ZIh)

=

∫ 1

0
F−1
Y (t) dg∗(t) + F−1+

Y (0)(g∗(0
+)− g∗(0))

−
∫
(0,1]\(J+∪J0)

G−1(t) dg(t)−
∑

t∈J+∪J0∪{0}

G−1+(t)(g(t+)− g(t))

=
∑

(a,b)∈Ih

(∫
(a,b)

F−1
Y (t) dg∗(t)−

∫
(a,b]

G−1(t) dg(t)−G−1+(a)(g(a+)− g(a))

)
= 0.

(A.5)

Since M is closed under concentration within Ih, we have F Ih
Y ∈ M by definition. Thus we have

ρh∗(Y ) = ρĥ(ZIh) ⩽ sup
FX∈M

ρĥ(X),

which gives our desired equality (A.3) since ρh∗ = ρ(ĥ)∗ ⩾ ρĥ.

Proof of (i): Using h = ĥ and (A.3), we have supFX∈M ρh(X) = supFX∈M ρh∗(X).

Proof of (ii): We will prove (ii) in two main steps. First, we show that (ii) holds if Ih is finite

and h has finitely many discontinuity points. Next, we discuss general h.

Finite case: Here we prove (9) under the case where Ih is finite and h has finitely many discon-

tinuity points (i.e. Jh in (A.1) is a finite set). Suppose that M is closed under concentration for all

intervals, it directly implies thatM is closed under concentration within Ih by Proposition 3. There-

fore, (A.3) holds for all h ∈ H. Next, we need to show that supFX∈M ρh(X) = supFX∈M ρĥ(X).

Define

Ĵ = {t ∈ Jh : ĥ(t) ̸= h(t)}, Ĵ+ = {t ∈ Ĵ : ĥ(t) = ĥ(t+)}, and Ĵ− = Ĵ \ Ĵ+.

For n > 0, write intervals

An
s =

{
(1− s− 1/

√
n, 1− s+ 1/n), s ∈ Ĵ−,

(1− s− 1/n, 1− s+ 1/
√
n), s ∈ Ĵ+.

Let In = {An
s : s ∈ Ĵ}. Note that h ∈ H has finitely many discontinuity points. Thus the intervals

in In are disjoint when n is large enough. For all FY ∈ M and Y ∼ FY , we define

ZIn = F−1
Y (U)1{U /∈

⋃
s∈Ĵ An

s } +
∑
s∈Ĵ

E[F−1
Y (U)|U ∈ An

s ]1{U∈An
s }.

It follows that ZIn ∼ F In

Y and the right-quantile function of ZIn , denoted by G−1+
n , is given by the

right-continuous adjusted version of

F−1+
Y (t)1{t/∈

⋃
s∈Ĵ An

s } +
∑
s∈Ĵ

∫
An

s
F−1
Y (u) du

λ(An
s )

1{t∈An
s }, t ∈ (0, 1).
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Thus we get

lim
n→∞

G−1+
n (1− t) =

{
F−1
Y (1− t), t ∈ Ĵ−,

F−1+
Y (1− t), otherwise.

Similarly, if we denote the left-quantile function of ZIn by G−1
n , then G−1

n is given by the left-

continuous version of

F−1
Y (t)1{t/∈

⋃
s∈Ĵ An

s } +
∑
s∈Ĵ

∫
An

s
F−1
Y (u) du

λ(An
s )

1{t∈An
s }.

It follows that

lim
n→∞

G−1
n (1− t) =

{
F−1+
Y (1− t), t ∈ Ĵ+,

F−1
Y (1− t), otherwise.

Define, further, the sets

Ĵ0
+ = {t ∈ Ĵ+ : h(t) ̸= h(t−)} and Ĵ0

− = {t ∈ Ĵ− : h(t) ̸= h(t+)}.

For u ∈ [0, 1], write

h−(u) =
∑
t∈Ĵ−

(h(t)− h(t−))1{u⩾t}, h0−(u) =
∑
t∈Ĵ0

−

(h(t+)− h(t))1{u>t},

h+(u) =
∑
t∈Ĵ+

(h(t+)− h(t))1{u>t}, h0+(u) =
∑
t∈Ĵ0

+

(h(t)− h(t−))1{u⩾t},

ĥ−(u) =
∑
t∈Ĵ−

(h(t+)− h(t−))1{u>t}, ĥ+(u) =
∑
t∈Ĵ+

(h(t+)− h(t−))1{u⩾t},

and h0(u) = h(u)− h+(u)− h−(u)− h0+(u)− h0−(u) = ĥ(u)− ĥ+(u)− ĥ−(u).

Note that |ZIn − F−1
Y (U)| = 0 when U /∈

⋃
s∈Ĵ A

n
s and 0, 1 ∈ [0, 1] \

⋃
s∈Ĵ A

n
s . We have |ZIn −

F−1
Y (U)| <∞. Therefore, by the dominated convergence theorem,

lim
n→∞

(ρh−(ZIn) + ρh0
−
(ZIn))

= lim
n→∞

∫ 1

0
G−1+

n (1− u) dh−(u) + lim
n→∞

∫ 1

0
G−1

n (1− u) dh0−(u)

=
∑
t∈Ĵ−

F−1
Y (1− t)(h(t)− h(t−)) +

∑
t∈Ĵ0

−

F−1
Y (1− t)(h(t+)− h(t))

=
∑

t∈Ĵ−\Ĵ0
−

F−1
Y (1− t)(h(t)− h(t−)) +

∑
t∈Ĵ0

−

F−1
Y (1− t)(h(t)− h(t−) + h(t+)− h(t))

=
∑

t∈Ĵ−\Ĵ0
−

F−1
Y (1− t)(h(t+)− h(t−)) +

∑
t∈Ĵ0

−

F−1
Y (1− t)(h(t+)− h(t−)) = ρĥ−

(Y ).

Similarly, we get limn→∞(ρh+(ZIn) + ρh0
+
(ZIn)) = ρĥ+

(Y ). On the other hand, it is clear that
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limn→∞ ρh0(ZIn) = ρh0(Y ). Therefore, we have

lim
n→∞

ρh(ZIn) = lim
n→∞

(ρh−(ZIn) + ρh0
−
(ZIn) + ρh+(ZIn) + ρh0

+
(ZIn) + ρh0(ZIn))

= ρĥ−
(Y ) + ρĥ+

(Y ) + ρh0(Y ) = ρĥ(Y ).

Thus we have

ρĥ(Y ) = lim
n→∞

ρh(ZIn) ⩽ sup
FX∈M

ρh(X). (A.6)

Using (A.3) and (A.6), we get

sup
FX∈M

ρh∗(X) = sup
FX∈M

ρĥ(X) ⩽ sup
FX∈M

ρh(X).

General case: We prove Theorem 1 for all general h ∈ H where Ih or the number of

discontinuity points of h is countable.

1. If Ih is countable, it suffices to prove (A.3). We write Ih as the collection of (ai, bi) for

i ∈ N and define In
1 = {(ai, bi) : i = 1, . . . , n} for all n ∈ N. Define the function

hn(t) =

{
h∗(t), t ∈ (1− bi, 1− ai), i = 1, . . . , n,

ĥ(t), otherwise.

It is clear that for all n ∈ N, the set {t ∈ [0, 1] : hn(t) ̸= ĥ(t)} is a finite union of disjoint open

intervals and hn is linear on each of the intervals. For all random variables Y with FY ∈ M, let

random variable ZIn
1
∼ F

In
1

Y . Similar to (A.3), we have

ρhn(Y ) = ρĥ(ZIn
1
) ⩽ sup

FX∈M
ρĥ(X), for all n ∈ N.

Note that hn(t) ↑ h∗(t) as n→ ∞ for all t ∈ (0, 1). By the monotone convergence theorem, we get

ρhn(Y ) → ρh∗(Y ) as n→ ∞. It follows that

sup
FX∈M

ρĥ(X) ⩾ ρhn(Y )
n→∞−−−→ ρh∗(Y ).

2. If h ∈ H has countably many discontinuity points, it suffices to prove (A.6). There exist

series of finite sets {Ĵm}m∈N ⊂ Ĵ , such that Ĵm → Ĵ as m→ ∞. For all m ∈ N, write

ĥm(t) =

{
ĥ(t), t ∈ Ĵm,

h(t), otherwise,

and define

Ĵm
+ = {t ∈ Ĵm : ĥm(t) = ĥm(t+)}, and Ĵm

− = Ĵm \ Ĵm
+ .
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For n > 0, let In,m
2 = {Bn,m

s : i ∈ Ĵm} with

Bn,m
s =

{
(1− s− 1/

√
n, 1− s+ 1/n), s ∈ Ĵm

− ,

(1− s− 1/n, 1− s+ 1/
√
n), s ∈ Ĵm

+ .

Following the same argument as (A.6), for all random variable Y with FY ∈ M, we have

sup
FX∈M

ρh(X) ⩾ ρh(ZIn,m
2

)
n→∞−−−→ ρĥm

(Y ), for all m ∈ N,

where ZIn,m
2

∼ F
In,m
2

Y . Moreover, we have ĥm(t) ↑ ĥ(t) for all t ∈ [0, 1] as m→ ∞. By the monotone

convergence theorem, we have ρĥm
(Y ) → ρĥ(Y ) as m→ ∞. Therefore, we have

sup
FX∈M

ρĥ(X) ⩽ sup
FX∈M

ρh(X).

Proof of (iii): For all h ∈ H, if M is closed under concentration within Ih and h = ĥ, we have

F Ih
Y ∈ M by definition. Since ZIh ∼ F Ih

Y , (A.5) gives

ρh∗(Y ) = ρĥ(ZIh) = ρh(ZIh).

Note that ρh ⩽ ρh∗ generally. Therefore, if maxFY ∈M ρh∗(Y ) is attained by FY , then so is

maxFY ∈M ρh(Y ) by F Ih
Y . Obviously, these two quantities share a common maximizer F Ih

Y because

ρh∗(ZIh) ⩽ max
FY ∈M

ρh∗(Y ) = max
FY ∈M

ρh(Y ) = ρh(ZIh) ⩽ ρh∗(ZIh).

The proof is complete.

Proof of Theorem 2. Suppose for contradiction that Mopt is not closed under concentration within

Ih. There exists FY ∈ Mopt, such that F Ih
Y /∈ Mopt. Define the set Yh = {(F−1

Y (a), F−1
Y (b)) :

(a, b) ∈ Ih}. Since F Ih
Y /∈ Mopt, there exists an interval (a, b) ∈ Ih, such that F−1

Y is not constant

on (a, b). Thus the Lebesgue measure λ((F−1
Y (a), F−1

Y (b))) > 0. Since h∗ > h on (a, b),

ρh∗(Y )− ρh(Y ) =

∫
R
(h∗(P(Y > x))− h(P(Y > x))) dx

=
∑
A∈Yh

∫
A
(h∗(P(Y > x))− h(P(Y > x))) dx > 0.

(A.7)

On the other hand, we have

ρh∗(Y ) ⩽ sup
FX∈M

ρh∗(X) = sup
FX∈M

ρh(X) = ρh(Y ) ⩽ ρh∗(Y ),

which leads to a contradiction to (A.7). Therefore, Mopt is closed under concentration within

Ih.
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Proof of Proposition 2. We first prove that closedness under conditional expectation implies closed-

ness under concentration for all intervals. For all random variables Y ∈ L1 and intervals C ⊂ [0, 1],

define

X = F−1
Y (U)1{U ̸∈C} + E[F−1

Y (U)|U ∈ C]1{U∈C},

where U ∼ U[0, 1]. The distribution of X is the concentration FC
Y . For all σ(X)-measurable random

variables Z, we have that Z|{U ∈ C} is constant. Hence,

E[XZ] = E[ZF−1
Y (U)1{U ̸∈C} + ZE[F−1

Y (U)|U ∈ C]1{U∈C}]

= E[ZF−1
Y (U)1{U ̸∈C}] + E[E[ZF−1

Y (U)|U ∈ C]1{U∈C}]

= E[ZF−1
Y (U)1{U ̸∈C}] + E[ZF−1

Y (U)|U ∈ C]P(U ∈ C)

= E[ZF−1
Y (U)1{U ̸∈C}] + E[ZF−1

Y (U)1{U∈C}] = E[ZF−1
Y (U)].

It follows that E[Y |X] = E[F−1
Y (U)|X] = X, P-almost surely. If a set of distributions, M, is closed

under conditional expectation and FY ∈ M, then FE[Y |X] ∈ M, which implies that FC
Y = FX ∈ M.

Thus M is also closed under concentration for all intervals.

For counter-examples showing that the converse statement does not hold in general, see Ex-

ample 6 and Remark 8.

Proof of Proposition 3. (i) Suppose that M is closed under concentration for all intervals and I is a

finite. Using (7), we can see that F I is the resulting distribution obtained by sequentially applying

finitely many C-concentrations to F over all C ∈ I. We thus have F I ∈ M for all F ∈ M.

(ii) Suppose that M is closed under conditional expectation and F ∈ M. We define

X = F−1(U)1{U ̸∈
⋃

C∈I C} +
∑
C∈I

E[F−1(U)|U ∈ C]1{U∈C},

whose left-quantile function is given by (8) according to (7). Following similar argument to the

proof of Proposition 2, for all σ(X)-measurable random variables Z, we have

E[XZ] = E[ZF−1(U)1{U ̸∈
⋃

C∈I C} +
∑
C∈I

ZE[F−1(U)|U ∈ C]1{U∈C}]

= E[ZF−1(U)1{U ̸∈
⋃

C∈I C}] +
∑
C∈I

E[E[ZF−1(U)|U ∈ C]1{U∈C}]

= E[ZF−1(U)1{U ̸∈
⋃

C∈I C}] +
∑
C∈I

E[ZF−1(U)1{U∈C}] = E[ZF−1(U)].

Thus E[F−1(U)|X] = X, P-almost surely, which implies that F I = FX ∈ M.

B.3 Proofs of results in Section 4

Proof of Theorem 3. To prove the first statement, according to the proof of Theorem 1, it suffices

to show that for all increasing h ∈ H, X ∈ (L1)n and G ⊂ F , ρh(E[f(a,X)|G ]) ⩽ ρh(f(a,E[X|G ])),

which holds directly by Jensen’s inequality and monotonicity of ρh. The second statement holds
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by Theorem 1. The last statement follows from ρh(E[f(a,X)|G ]) = ρh(f(a,E[X|G ])) and using

Theorem 1.

Proof of Theorem 4. (i) For all X = (X1, . . . , Xn) ∈ (L1)n, take a comonotonic X̃ = (X̃1, . . . , X̃n) ∈
(L1)n such that X̃i

d
= Xi for all i = 1, . . . , n. It follows that E[g(X)] ⩽ E[g(X̃)] for all supermodular

functions g : Rn → R due to Theorem 5 of Tchen (1980). By Proposition 2.2.5 of Simchi-Levi et al.

(2005), we have f(a,X) ⩽icx f(a, X̃). Moreover, there exists a standard uniform random variable

U such that X̃i = F−1

X̃i
(U) for all i = 1, . . . , n and f(a, X̃) = F−1

f(a,X̃)
(U) almost surely (Denneberg,

1994). Take

f(a, X̃)Ih = F−1

f(a,X̃)
(U)1{U /∈

⋃
C∈Ih

C} +
∑
C∈Ih

E[F−1

f(a,X̃)
(U)|U ∈ C]1{U∈C} ∼ F Ih

f(a,X̃)
.

It follows that f(a, X̃)Ih = E[f(a, X̃)|G ], where G = σ(U1{U /∈
⋃

C∈Ih
C}). Similarly, X̃Ih

i = E[X̃i|G ]

for all i = 1, . . . , n, where

X̃Ih
i = F−1

X̃i
(U)1{U /∈

⋃
C∈Ih

C} +
∑
C∈Ih

E[F−1

X̃i
(U)|U ∈ C]1{U∈C} ∼ F Ih

X̃i
.

Since f is supermodular and positively homogeneous, we have by Theorem 3 of Marinacci and

Montrucchio (2008) that f(a,X) is concave in X. By Jensen’s inequality, we have

f(a, X̃)Ih = E[f(a, X̃)|G ] ⩽ f(a,E[X̃|G ]) = f(a, X̃Ih
1 , . . . , X̃Ih

n ).

Thus we have

ρh∗(f(a,X)) ⩽ ρh∗(f(a, X̃)) = ρh(f(a, X̃)Ih) ⩽ ρh(f(a, X̃
Ih
1 , . . . , X̃Ih

n ))

⩽ sup
F1∈F1,...,Fn∈Fn

sup
FY∈D(F1,...,Fn)

ρh(f(a,Y)),

where the first inequality follows from Theorem 4.A.3 of Shaked and Shanthikumar (2007) and

Theorem 5 of Wang et al. (2020a) and the second equality is by the proof of Theorem 1. Combined

with the fact that

sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh(f(a,X)) ⩽ sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh∗(f(a,X)),

we have (18) holds.

(ii) Suppose that the supremum of the right-hand side of (18) is attained by some F1 ∈
F1, . . . , Fn ∈ Fn and FX ∈ D(F1, . . . , Fn). For comonotonic (X̃1, . . . , X̃n) such that X̃i ∼ Fi for all

i = 1, . . . , n, using the argument in (i),

ρh∗(f(a,X)) ⩽ ρh(f(a, X̃
Ih
1 , . . . , X̃Ih

n )),

where (X̃Ih
1 , . . . , X̃Ih

n ) is comonotonic and X̃Ih
i ∼ F Ih

i for all i = 1, . . . , n. Similarly to the proof of
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Theorem 1 (iii), since ρh ⩽ ρh∗ , we have the supremum of the left-hand side of (18) is attained by

F Ih
1 , . . . , F Ih

n and (X̃Ih
1 , . . . , X̃Ih

n ), which also obtain the supremum of the right-hand side of (18)

since

ρh∗(f(a, X̃Ih
1 , . . . , X̃Ih

n )) ⩽ max
F1∈F1,...,Fn∈Fn

max
FX∈D(F1,...,Fn)

ρh∗(f(a,X))

= max
F1∈F1,...,Fn∈Fn

max
FX∈D(F1,...,Fn)

ρh(f(a,X))

= ρh(f(a, X̃
Ih
1 , . . . , X̃Ih

n )) ⩽ ρh∗(f(a, X̃Ih
1 , . . . , X̃Ih

n )).

B.4 Proofs of results in Section 5 and related lemmas

In the following, we write q as the Hölder conjugate of p. The following lemma closely resembles

Theorem 3.4 of Liu et al. (2020) with only an additional statement on the uniqueness of the quantile

function of the maximizer.

Lemma A.1. For h ∈ H∗, m ∈ R, v > 0 and p > 1, we have

sup
FY ∈M(p,m,v)

ρh(Y ) = mh(1) + v[h]q,

If 0 < [h]q <∞, the above supremum is attained by a random variable X such that FX ∈ M(p,m, v)

with its quantile function uniquely determined by

VaRt(X) = m+ vϕqh(t), t ∈ (0, 1) a.e. (A.8)

If [h]q = 0, the above maximum value is attained by any random variable X such that FX ∈
M(p,m, v).

Proof. The only statement that is more than Theorem 3.4 of Liu et al. (2020) is the uniqueness of

the quantile function (A.8). Without loss of generality, assume m = 0 and v = 1. Using the Hölder

inequality

sup
FY ∈M(p,0,1)

∫ 1

0
h′(t)VaR1−t(Y ) dt = sup

FY ∈M(p,0,1)

∫ 1

0
(h′(t)− ch,q)VaR1−t(Y ) dt

⩽ sup
FY ∈M(p,0,1)

∥h′ − ch,q∥q
(∫ 1

0
|VaR1−t(Y )|p dt

)1/p

= [h]q.

The maximum is attained by FX only if the above inequality is an equality, which is equivalent to

that the function t 7→ |VaR1−t(X)|p is a multiple of |h′ − ch,q|q. Therefore,

VaRt(X) =
|h′(1− t)− ch,q|q

h′(1− t)− ch,q
[h]1−q

q = ϕqh(t), t ∈ (0, 1) a.e.

Hence, the quantile function of X is uniquely determined by (A.8).
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Lemma A.2. For all h ∈ H with h = ĥ, m ∈ R, v > 0 and p > 1, if [h∗]q <∞, we have

sup
FY ∈M(p,m,v)

ρh(Y ) = sup
FY ∈M(p,m,v)

ρh∗(Y ) = mh(1) + v[h∗]q,

and the above suprema are simultaneously attained by a random variable X such that FX ∈
M(p,m, v) with

VaRt(X) = m+ vϕqh∗(t), t ∈ (0, 1) a.e. (A.9)

Proof. The statement directly follows from Theorem 1 and Lemma A.1.

Proof of Theorem 5. Together with Theorem 1, Lemmas A.1 and A.2 give the statement in Theorem

5 on the supremum. Arguments for the infimum are symmetric. For instance, noting that (−h)∗ =
−h∗, Theorem 1 yields

inf
FY ∈M(p,m,v)

ρh(Y ) = − sup
FY ∈M(p,m,v)

ρ−h(Y )

= − sup
FY ∈M(p,m,v)

ρ(−h)∗(Y )

= − sup
FY ∈M(p,m,v)

ρ−h∗(Y ) = inf
FY ∈M(p,m,v)

ρh∗(Y ).

We omit the detailed arguments for the infimum in Theorem 5.

Proof of Proposition 6. Note that ρh ⩽ ρh∗ , which is implied by h ⩽ h∗ and (4). By Hölder’s

inequality, for any Y ∈ Lp, using (14), we have∫ 1

0
h∗′(t)VaR1−t(Y ) dt =

∫ 1

0
(h∗′(t)− ch∗,q)VaR1−t(Y ) dt+ ch,qE[Y ]

⩽ [h∗]q∥Y ∥p + ch∗,qE[Y ] <∞.

The other half of the statement is analogous.

Proof of Corollary 1. We prove the first half (the suprema). The second half is symmetric to the

first half. Theorem 5 and Lemma A.2 give

sup
FY ∈M(p,m,v)

VaRα(Y ) = sup
FY ∈M(p,m,v)

ESα(Y ) = m+ v[h∗]q.

By Lemma A.1, the corresponding random variable Z which attains ESα(Z) = m + v[h∗]q has

left-quantile function

F−1
Z (t) = m+ vϕqh∗(t) = m+ v

∣∣∣ 1
1−α1(α,1](t)− 1

∣∣∣q
1

1−α1(α,1](t)− 1
[h∗]1−q

q , t ∈ [0, 1] a.e.

Note that ϕqh∗(t) only takes two values for t ⩾ α and t < α, respectively. Thus Z is a bi-atomic
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random variable, and using E[Z] = m, we have, for some kp > 0,

P (Z = m+ αkp) = 1− α and P (Z = m− (1− α)kp) = α.

We note that the number kp can be determined from E[|Z −m|p] = vp, that is,

kp = v (αp(1− α) + (1− α)pα)−1/p ,

leading to

sup
FY ∈M(p,m,v)

VaRα(Y ) = sup
FY ∈M(p,m,v)

ESα(Y ) = m+ vα (αp(1− α) + (1− α)pα)−1/p ,

and thus the desired equalities in the statement on suprema hold.
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