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Abstract

Probabilistic risk aversion, defined through quasi-convexity in probabilistic mixtures, is a

common useful property in decision analysis. We study a general class of non-monotone map-

pings, called the generalized rank-dependent functions, which includes the preference models of

expected utilities, dual utilities, and rank-dependent utilities as special cases, as well as signed

Choquet functions used in risk management. Our results fully characterize probabilistic risk

aversion for generalized rank-dependent functions: This property is determined by the distor-

tion function, which is precisely one of the two cases: those that are convex and those that

correspond to scaled quantile-spread mixtures. Our result also leads to seven equivalent condi-

tions for quasi-convexity in probabilistic mixtures of dual utilities and signed Choquet functions.

As a consequence, although probabilistic risk aversion is quite different from the classic notion

of strong risk aversion for generalized rank-dependent functions, these two notions coincide for

dual utilities under an additional continuity assumption.

Keywords: quasi-convexity; risk aversion, signed Choquet functions; rank-dependent utili-

ties; probabilistic mixtures

1 Introduction

Expected utility theory (von Neumann and Morgenstern (1947)), dual utility theory (Yaari

(1987)), and rank-dependent utility theory (Quiggin (1982)) are among the most popular prob-

abilistic preference models, and they are closely related to several large classes of law-based risk

measures (McNeil et al. (2015); Föllmer and Schied (2016)).
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These decision models and risk measures can be equivalently formulated on either a set of

distributions or a set of random variables. A popular operation on a set of distributions is a

probabilistic mixture; for instance, the independence axiom of von Neumann and Morgenstern

(1947) is formulated using probabilistic mixtures. Quasi-convexity in probabilistic mixtures is a

useful property in decision models and risk measures, and it means that if the first distribution is

preferred over the second one, then the first distribution is also preferred to a mixture of the two. The

property is called probabilistic risk aversion by Wakker (1994) to distinguish it from other notions of

risk aversion such as weak risk aversion or strong risk aversion in the sense of Rothschild and Stiglitz

(1970).1 In the context of optimal decision under ambiguity, e.g., Gilboa and Schmeidler (1989),

this property is convenient for applying minimax theorems, allowing us to exchange the order of a

maximum (representing an optimal action) and an infimum (representing a worst-case probability

measure) under mild conditions. The property of having both quasi-convexity and quasi-concavity

is called betweenness (Dekel (1986)), which was introduced to weaken the independence axiom; see

Wakker (1994) for the importance of these properties in decision theory. In mathematical finance,

betweenness for risk measures corresponds to the property of convex level sets, as studied by Weber

(2006), Ziegel (2016) and Wang and Wei (2020).

It is well known that the expected utility model is linear with respect to probabilistic mixtures,

thus both convex and concave (we omit “in probabilistic mixtures” below unless it is contrasted

to another sense of convexity). Whereas convexity is well understood for dual utilities and rank-

dependent utility models (e.g., Wakker (1994)), quasi-convexity is not completely characterized

for these models, and the result remains unknown even if under an increasing monotonicity (in

the weak sense) or continuity condition. Although being weaker, quasi-convexity is similar to

convexity, and as far as we know, the equivalence results between quasi-convexity and convexity in

the literature are all under a strict monotonicity condition (see Wakker (1994); Wakker and Yang

(2021)). Nevertheless, if we remove this strict monotonicity, there are commonly used functionals

in decision theory, statistics and risk management, such as left and right quantiles which are quasi-

convex but not convex.

The main aim of this paper is to understand quasi-convexity for a large class of mappings,

called the generalized rank-dependent functions, which include dual utilities and rank-dependent

utilities as special cases. Our main result is a full characterization of quasi-convexity for this

class with a very weak assumption on the domain of the functions, that is, the domain contains all

distributions supported on at least three nonindifferent outcomes. This characterization is built on a

1Throughout the paper, we will mostly say “quasi-convexity” instead of “probabilistic risk aversion” to emphasize
the mathematical essence of this property and to contrast it with other properties.
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corresponding result on signed Choquet functions, a class of non-monotone and law-based mappings

studied recently by Wang et al. (2020a,b), and the corresponding mappings without law-basedness

were investigated earlier in Schmeidler (1986).

Although most preference models in decision theory are monotone (either with respect to some

notions of stochastic dominance or other orders), there are three main advantages of working with

non-monotone mappings, justifying the relevance of the study in this paper. First, signed Choquet

functions include many popular non-monotone objects in risk management, such as the mean-

median deviation, the Gini deviation, the inter-quantile range, and the inter-Expected Shortfall

range; see the examples in Wang et al. (2020b). Note that variability measures in the sense of

Furman et al. (2017) are never monotone with respect to first-order stochastic dominance. Second,

removing monotonicity from the analysis allows us to have a deeper understanding of the essence of

important properties, such as quasi-convexity, by disentangling monotonicity from them. The third

advantage concerns technical convenience and unification. With monotonicity relaxed, results on

convexity and concavity, or those on maxima and minima, are symmetric; we only need to analyze

one of them, and the other is clear automatically. This is particularly helpful when we switch

between the world of risk measures (a smaller value is preferred) and that of utilities (a larger value

is preferred). That being said, it is not our intention to argue against monotonicity in decision

making; opening up the discussions on non-monotone mappings indeed helps to better understand

monotone ones.

We begin by collecting definitions and some preliminaries in Section 2. In Section 3, we focus on

two important models in decision theory, dual utilities and rank-dependent utilities, by presenting a

full characterization of their quasi-convexity (Theorem 1). This result implies, in particular, that for

a dual utility with a continuous distortion function, strong risk aversion in the sense of Rothschild

and Stiglitz (1970) is equivalent to probabilistic risk aversion. We discover a new risk functional,

called min-quantile mixture, as the only possible form of dual utilities which are quasi-convex, other

than the ones with convex distortion functions. To highlight the class of min-quantile mixtures,

we use some properties to pin down it (Proposition 2). Our main technical result (Theorem 2) in

Section 4 establishes a characterization of all quasi-convex generalized rank-dependent functions,

more general than those treated in Theorem 1. The characterization only depends on the distortion

functions. The class turns out to contain slightly more than those with convex distortion functions:

A signed Choquet function is quasi-convex in probabilistic mixtures if and only if it is either convex

in probabilistic mixtures or it is a scaled quantile-spread mixture (more general than min-quantile

mixtures). Based on our main result, a unifying equivalence result on signed Choquet functions
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(Theorem 3) is presented: If a distortion function is continuous, then quasi-convexity is equivalent

to six other equivalent conditions. In Section 5, we give proofs of our main result which relies on

delicate technical analysis and use some results of Debreu and Koopmans (1982), Wakker (1994),

Wang et al. (2020b) and Wang and Wei (2020). The technical challenges may explain why the

result was not available before, given the prominence of both concepts of quasi-convexity and rank-

dependent utilities. Some implications of Theorem 2 for quasi-concavity and quasi-linearity are

also reported in this section. In Section 6, we present a conflict between convexity in probabilistic

mixtures and convexity in risk pooling among the class of constant-additive mappings. Section 7

concludes the paper.

2 Preliminaries

In this section, we present some background on convexity, quasi-convexity, rank-dependent

utilities, and generalized rank-dependent functions.

2.1 Convexity and quasi-convexity

In this paper, the term “distribution” represents a probability measure over a set of outcomes

which is the real line R. Let M be a set of distributions, and we always assume that it is convex

throughout the paper. A mapping ρ : M → R is p-convex if

ρ(λF + (1− λ)G) ≤ λρ(F ) + (1− λ)ρ(G) for all F,G ∈ M and λ ∈ [0, 1],

and it is p-quasi-convex if

ρ(λF + (1− λ)G) ≤ max{ρ(F ), ρ(G)} for all F,G ∈ M and λ ∈ [0, 1].

As usual, p-concavity and p-quasi-concavity are defined by using ρ(λF + (1− λ)G) ≥ λρ(F ) + (1−

λ)ρ(G) and ρ(λF + (1− λ)G) ≥ min{ρ(F ), ρ(G)}, respectively, in the formulation above. P-quasi-

linearity of a functional ρ means that it is both p-quasi-convex and p-quasi-concave. The reason

that we emphasize “p” (which stands for “probabilistic”) for these properties will be explained soon,

as another form of convexity and concavity will appear and be contrasted.

Quasi-convexity is an ordinal property, whereas convexity is not. Indeed, for a preference ⪰ on

M numerically represented by ρ, i.e., F ⪰ G ⇐⇒ ρ(F ) ≥ ρ(G), quasi-convexity of ρ corresponds
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to the following property of ⪰ (see e.g., Wakker and Yang (2019, 2021)),

(
F ⪰ G =⇒ F ⪰ λF + (1− λ)G

)
for all F,G ∈ M and λ ∈ [0, 1].

This property is known as probabilistic risk aversion by Wakker (1994). Intuitively, it means that

the decision maker with preference ⪰ dislikes combining two equally favourable distributions via a

random draw, which generally induces additional randomness.

Convexity or concavity of a mapping ρ is commonly used in risk management, where the value

of ρ, typically representing a monetary value, is primitive; see e.g., Föllmer and Schied (2016).

Quasi-convexity or quasi-concavity of ρ is commonly used in decision theory, where the preference

relation ⪰ is the primitive; see e.g., Wakker (2010) and Cerreia-Vioglio et al. (2011). To unify both

literature, we will formulate all properties on the numerical representation ρ.

Let X be a set of random variables in a fixed probability space (Ω,F ,P) such that, first, X

is law-based, that is, if X ∈ X and Y has the same distribution of X, then Y ∈ X , and second,

M = {P◦X−1 : X ∈ X}, where X−1 is the set-valued inverse of X. That is, the set of distributions

of all random variables in X is exactly M. To guarantee the existence of X for all M, we assume

that the probability space is nonatomic.2 A mapping ρ from M to R can be equivalently formulated

as a mapping ρ from X to R via ρ(X) := ρ(F ) where F is the distribution of X; here we slightly

abuse the notation to use ρ to represent both, and this should be clear from the context. Such a

mapping ρ on X is law-based ; that is, if X,Y have the same distribution, then ρ(X) = ρ(Y ). We

need both versions of the same mapping to make some interesting contrasts. When X is a convex

set, a mapping ρ is o-convex (where “o” stands for “outcome”) on X if

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all X,Y ∈ X and λ ∈ [0, 1],

and it is o-quasi-convex if

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )} for all X,Y ∈ X and λ ∈ [0, 1].

O-concavity and o-quasi-concavity are defined similarly. These properties are common for risk

measures (Artzner et al. (1999); Föllmer and Schied (2016)). Moreover, Dong-Xuan et al. (2024)

extended the study of o-quasi-convexity to the space of sequences of bounded random variables,

further illustrating the relevance of these concepts in various frameworks.

2A probability space (Ω,F ,P) is nonatomic if for each A ∈ F with P (A) > 0 there exists B ∈ F contained in A
such that 0 < P (B) < P (A).
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For the same mapping ρ, o-convexity and p-convexity have different interpretations, and some-

times they conflict with each other. For instance, the variance is o-convex and p-concave. This

conflict is indeed intuitive, because a mixture of two random losses, representing diversification, re-

duces variability, whereas a mixture of two distributions, representing throwing a die to determine

between two models, increases variability.3 A mapping may be both o-convex and p-convex, and an

example is the expected utility, F 7→
∫
udF for a convex function u; this mapping is indeed o-convex

and p-linear (i.e., both p-convex and p-concave). Nevertheless, Proposition 6 in Section 6 shows

a conflict between o-convexity and p-convexity; that is, among continuous and constant-additive

mappings (e.g., monetary risk measures of Föllmer and Schied (2016)), only a scaled expected value

satisfies both properties.

We collect some notation used later in the paper. Denote by Mc the set of all compactly

supported distributions on R, and Xc, which is defined on a nonatomic probability space, is the set

of all random variables having distributions in Mc. Note that both Mc and Xc are convex. We use

ess-supX and ess-infX to represent the essential supremum and the essential infimum of a random

variable X on a probability space, respectively. Denote by δx the point-mass at x ∈ R. The function

1A is the indicator function of an event A. Throughout, terms like “increasing” and “decreasing”

are in the non-strict sense. All real-valued functions are tacitly assumed to be measurable. We say

that a real-valued function is (strictly) monotone if it is (strictly) increasing or (strictly) decreasing.

A functional ρ : M → R is monotone if ρ(F ) ≤ ρ(G) for all F,G ∈ M such that F ≤FSD G where

≤FSD represents the first-order stochastic dominance, i.e., F ≤FSD G means that
∫
f dF ≤

∫
f dG

for all increasing f : R → R.

2.2 Generalized rank-dependent functions

We first formulate signed Choquet functions and dual utilities, and then introduce rank-dependent

utilities and generalized rank-dependent functions. Signed Choquet functions are law-based map-

pings which are additive for comonotonic random variables (Theorem 1 of Wang et al. (2020b),

based on Proposition 2 of Schmeidler (1986)), but not necessarily monotone. Denote the set of all

distortion functions by HBV,

HBV = {h : [0, 1] → R | h is of bounded variation and h(0) = 0},
3In the risk measure literature, o-quasi-convexity on X is argued by Cerreia-Vioglio et al. (2011) to better represent

the consideration of diversification.
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and its subset of increasing normalized distortion functions by HDT,4

HDT = {h : [0, 1] → R | h is increasing, h(0) = 0 and h(1) = 1}.

A signed Choquet function Ih : M → R is defined as

Ih(F ) =

∫ ∞

0
h ◦ F ((x,∞)) dx+

∫ 0

−∞
(h ◦ F ((x,∞))− h(1)) dx, (1)

where h ∈ HBV is its distortion function. If h ∈ HDT, then Ih is called a dual utility of Yaari

(1987). As explained earlier, Ih is also formulated on X , the set of random variables which have

distributions in M, via

Ih(X) =

∫ ∞

0
h(P(X > x)) dx+

∫ 0

−∞
(h(P(X > x))− h(1)) dx. (2)

As a main subject of the paper, a generalized rank-dependent function is a mapping Rh,v : M →

R defined by, for h ∈ HBV and v : R → R,

Rh,v(F ) =

∫ ∞

0
h ◦ F ◦ v−1((x,∞)) dx+

∫ 0

−∞
(h ◦ F ◦ v−1((x,∞))− h(1)) dx, (3)

where v−1 is the set-valued inverse of v. The function v is typically increasing in economic applica-

tions (e.g., a utility function). The signed Choquet function is a special case of Rh,v with v being

the identity, and if h ∈ HDT and v is increasing, then Rh,v corresponds to a rank-dependent utility

of Quiggin (1993). Although rank-dependent utilities are well studied in decision theory (see e.g.,

Werner and Zank (2019); Eeckhoudt and Laeven (2022)), the class of generalized rank-dependent

functions is newly introduced in this paper.

A v-transform maps the distribution of a random variable X to the distribution of v(X).5 In

other words, the distribution F is transformed to F ◦ v−1. The mapping Rh,v can be formulated as

a signed Choquet function under a v-transform, i.e.,

Rh,v(F ) = Ih(F ◦ v−1)

or equivalently formulated on X via Rh,v(X) = Ih(v(X)). In addition to the expected utility or

the rank-dependent utility models, a pricing functional for options can be seen as the (risk-neutral)

4DT stands for the dual theory of choice under risk of Yaari (1987).
5As shown by Liu et al. (2021), commutation with v-transforms essentially characterizes probability distortions

among all distributional transforms.
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expectation of a transformed asset price distribution.

We will encounter discrete distributions throughout the paper. An explicit representation of

Rh,v with discrete distributions is given below. For a discrete distribution F with the form F =∑n
i=1 piδxi where v(x1) ≥ · · · ≥ v(xn), p1, . . . , pn ≥ 0 and

∑n
i=1 pi = 1, it holds that

Rh,v(F ) =
n∑

i=1

(h(p1 + · · ·+ pi)− h(p1 + · · ·+ pi−1))v(xi).

The following assumption on the set of distributions M will be useful for our characterization

results.

Assumption M. The set M is a convex subset of Mc and there exist three distinct points x, y, z ∈

R such that δx, δy, δz ∈ M.

Assumption M is very weak and harmless for any practical purpose. For a set M satisfying

Assumption M, denote by

VM = {v : R → R | v(x), v(y) and v(z) are distinct for some δx, δy, δz ∈ M}. (4)

In the set VM, we do not impose the continuity or the monotonicity on v, and we only require that

v can take at least three distinct values on the points x, y, z. For instance, this requirement holds

true if v is strictly increasing.

In what follows, we will take the convexity of h as the primary property as opposite to concavity

to consider, as the preference represented by Ih is strongly risk averse in the sense of Rothschild

and Stiglitz (1970) if h is increasing and convex (Theorem 2 of Yaari (1987)). Changing convexity

to concavity makes no real mathematical difference since all results can be written for concavity

via a sign change; recall that this is an advantage of working with non-monotone mappings such as

generalized rank-dependent functions.

3 P-quasi-convexity of rank-dependent utilities

Given the importance of rank-dependent utilities in economics and finance, we first present

results for this class, although these results find their more general versions in Section 4.

3.1 P-quasi-convexity, concavity and linearity

Recall that rank-dependent utility is defined by (3) where h ∈ HDT and v : R → R is increasing.

The dual utility is a special case of Rh,v when h ∈ HDT and v is the identity.
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Figure 1: The distortion function of a min-quantile mixture.

We first introduce a few special cases of dual utilities and distortion functions in HDT that are

important for understanding p-quasi-convexity. There is a one-to-one correspondence between dual

utilities and distortion functions in HDT, and hence, it suffices to study the distortion functions.

For a distribution F , the left- and right-quantile at level α ∈ (0, 1) are respectively defined by

Q−
α (F ) = inf{x ∈ R : F (x) ≥ α} and Q+

α (F ) = inf{x ∈ R : F (x) > α}.

For using quantiles as preferences in decision theory, see Rostek (2010). At the level α = 0 or 1,

left- and right-quantiles coincide, and they are defined by

Q+
0 (F ) = Q−

0 (F ) = Q0(F ) = inf{x ∈ R : F (x) > 0};

Q+
1 (F ) = Q−

1 (F ) = Q1(F ) = inf{x ∈ R : F (x) ≥ 1}.

For some c ∈ [0, 1] and α ∈ [0, 1], the mixed quantile is defined by Qc
α = cQ+

α + (1 − c)Q−
α . All

mixed quantiles have convex level sets (CxLS), i.e., ρ(F ) = ρ(G) =⇒ ρ(λF + (1 − λ)G) = ρ(F )

for all λ ∈ [0, 1] and F,G ∈ M. This property and monotonicity together imply p-quasi-convexity

and p-quasi-concavity.6 Finally, we introduce a new class of functionals, called the min-quantile

mixtures, defined by

kQc
α + (1− k)Q0, for some α, c, k ∈ [0, 1]. (5)

A min-quantile mixture is a convex combination of the essential infimum and a mixed quantile.

The distortion function of a min-quantile mixture has the form (see Figure 1):

6All signed Choquet functions with convex level sets are characterized by Wang and Wei (2020), which are slightly
more than linear transformations of the quantiles and the mean.
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h(p) = kc1{p=α} + k1{α<p<1} + 1{p=1}, p ∈ [0, 1].

For strictly increasing distortion functions h, Wakker (1994) and Wakker and Yang (2021)

showed that only the convex ones are possible for Ih to be p-quasi-convex. In the larger class of

Ih with h ∈ HDT, the following result illustrates that the min-quantile mixtures are the only other

choice satisfying p-quasi-convexity besides those with convex distortion functions.

Theorem 1. Suppose that Assumption M holds, h ∈ HDT, and v : R → R is increasing. The

following statements are equivalent.

(i) h is convex or Ih is a min-quantile mixture.

(ii) Ih is p-quasi-convex on M.

(iii) Rh,v is p-quasi-convex on M for some v ∈ VM.

(iv) Rh,v is p-quasi-convex on M for all functions v.

The proof of the above theorem is follows from the more general result in Theorem 2 in the

next section, which studies all generalized rank-dependent functions. In (iii), the condition that

v can take three different values is essential. Note that if v is a constant function, then Rh,v is

p-quasi-convex regardless of h. Section 4 has more discussions on the role of this condition.

Next, we connect two notions of risk aversion. A functional ρ : M → R is concave-order

monotone if ρ(F ) ≤ ρ(G) for all F,G ∈ Mc such that F ≤cv G where ≤cv represents concave

order between distributions, i.e., F ≤cv G means that
∫
f dF ≤

∫
f dG for all concave f : R → R.

Concave-order monotonicity of ρ is equivalent to strong risk aversion of the preference represented

by ρ in the sense of Rothschild and Stiglitz (1970).

Since a min-quantile mixture does not have a continuous distortion function, Theorem 1 implies

that the only class of continuous distortion functions yielding p-quasi-convexity is that of the convex

ones. Yaari (1987) showed that a dual utility is strongly risk averse if and only if the distortion

function is convex. The next corollary directly follows from this and Theorem 1.

Corollary 1. For a dual utility on Mc with a continuous distortion function, probabilistic risk

aversion is equivalent to strong risk aversion.

Wakker (1994) showed that the conclusion of Corollary 1 holds for strictly increasing h. Con-

tinuity of h is quite natural, which is implied by the axioms of Yaari (1987). From a decision

theoretical standpoint, a continuous distortion function h is empirically plausible as in, e.g., Equa-

tion (6) of Tversky and Kahneman (1992) in the framework of cumulative prospect theory. For
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rank-dependent utilities, strong risk aversion further requires v to be concave (Chew et al. (1987)),

and hence the conclusion of Corollary 1 does not hold.

The following characterizations of p-quasi-concavity and p-quasi-linearity can be obtained in a

similar way to Theorem 1. Their more general versions are Corollaries 4 and 5 in Section 5.

Proposition 1. Suppose that Assumption M holds, and let v ∈ VM be increasing and h ∈ HDT.

(i) The following are equivalent: Rh,v is p-quasi-concave; Ih is p-quasi-concave; h is concave or

Ih = kQc
α + (1− k)Q1 for some k, α, c ∈ [0, 1].

(ii) The following are equivalent: Rh,v is p-quasi-linear; Ih is p-quasi-linear; Ih is one of the

forms: Ih = E; Ih = cQ1 + (1 − c)Q0 for some c ∈ [0, 1]; Ih = Qc
α for some c ∈ [0, 1] and

α ∈ (0, 1).

Remark 1. For h ∈ HDT, Ih is monotone and translation invariant.7 By Lemma 2.2 of Bellini

and Bignozzi (2015), Ih is p-quasi-linearity if and only if it has CxLS. The class of dual utilities Ih

satisfying CxLS is characterized by Kou and Peng (2016, Theorem 2), which are those in Proposition

1 (ii).

3.2 The min-quantile mixtures

As the min-quantile mixtures are the only dual utilities satisfying p-quasi-convexity among

besides convex ones, we can find several properties that identity the min-quantile mixtures. For

this, some terminology and properties are needed. We say that random variables X and Y are

comonotonic if there exists Ω0 ∈ F with P(Ω0) = 1 such that for all ω, ω′ ∈ Ω0,

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0.

For a mapping ρ : Xc → R (also treated as a mapping from Mc to R), we say that ρ is comonotonic-

additive if for any comonotonic random variables X,Y ∈ Xc, ρ(X+Y ) = ρ(X)+ρ(Y ); ρ is p-locally

indifferent if there exist A,B ∈ F such that P(A) ̸= P(B) and ρ(1A) = ρ(1B) > ρ(0).

Comonotonic additivity is popular in both the literature of decision theory (e.g., Yaari (1987);

Schmeidler (1989)) and that of risk measures (e.g., Kusuoka (2001)), whereas p-local indifference

is less known. Intuitively, p-local indifference means that ρ may be indifferent between two events

A and B even if their probabilities are different. This property is called “local” because it only

states the existence of such a pair of events, but says nothing about general pairs. Although it

7A functional is translation invariant if ρ(X + c) = ρ(X) + c for all X ∈ X and c ∈ R.
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may be explained by the inability to assess the small difference between different probabilities,

such a behaviour is empirically observed in behaviour experiments where only a few categories of

probability are considered. For instance, Piaget and Bärbel (1975) showed that children of age

4–5 have only three levels of plausibility conception: certainly true, certainly untrue, uncertain.

This is compatible with the min-quantile mixture whose distortion function has two jumps and is

constant elsewhere. When the probability categories were related to verbal expressions, people often

prefer to use only a few verbal categories of probability rather than a continuous scale; see Wallsten

et al. (1986), Wallsten and Budescu (1995) and Windschitl and Wells (1996). Cohen et al. (1987)

investigated the individual decision making under risk and under nonprobabilized uncertainty where

they found that on the loss side, people appear to have coarser categories of plausibility than the

continuum [0, 1].

The next result characterizes the min-quantile mixtures.

Proposition 2. A law-based functional ρ : Xc → R is monotone, comonotonic-additive, p-quasi-

convex and p-locally indifferent with ρ(1) = 1 if and only if ρ = kQc
α +(1− k)Q0 for some c ∈ [0, 1]

and α, k ∈ (0, 1], that is, ρ is a min-quantile mixture excluding the case Q0.

Proof. Let us first verify sufficiency. Monotonicity, comonotonic-additivity and ρ(1) = 1 are trivial.

The p-quasi-convexity follows from Theorem 1. It remains to show that ρ is p-locally indifferent. Let

A and B be such that P(A) = 1−α/2 and P(A) = 1−α/3. Then, we have ρ(1A) = ρ(1B) = k > 0.

This completes the proof of sufficiency. To see necessity, it follows from Wang et al. (2020b,

Theorem 1) that ρ is a signed Choquet function, i.e., ρ(X) =
∫∞
0 h(P(X > x)) dx+

∫ 0
−∞(h(P(X >

x)) − h(1)) dx with some h ∈ HBV. By Wang et al. (2020b, Lemma 2), monotonicity implies that

h is increasing. Furthermore, ρ(1) = 1 means h(1) = 1. Hence, we have concluded h ∈ HDT.

Applying Theorem 1, we have ρ = Ih for some convex h ∈ HDT or ρ = kQc
α + (1 − k)Q0 for

some k, α, c ∈ [0, 1]. Since Q0 also has a convex distortion function h(t) = 1{t=1}, we only need to

verify that Ih with convex h is not p-locally indifferent. P-local indifference implies ρ(1A) = ρ(1B)

for some A, B with 0 < P(A) < P(B) ≤ 1. Denote by p = P(A) and q = P(B). It holds that

h(p) = h(q) > 0 with 0 < p < q ≤ 1, and this implies that h cannot be convex. Hence, we complete

the proof.

We do not aim to promote the min-quantile mixtures as a plausible decision criterion or a

new risk measures, as its interpretation and applications are similar to quantiles. Nevertheless, we

find the class of min-quantile mixtures intriguing, both mathematically and decision-theoretically,

as the only class within dual utilities that can accommodate both p-local indifference (inability
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to distinguish probabilistic assessments) and probabilistic risk aversion (dislike of randomness),

highlighting a conflict between the two properties.

4 Generalized rank-dependent functions

This section is the main part of the paper where we obtain a full characterization of p-quasi-

convexity for generalized rank-dependent functions, as well as a unifying equivalence result for signed

Choquet functions with strictly monotone or continuous distortion functions. We will mention

Assumption M if it is needed in a result.

4.1 Invariance under transforms and three special distortion functions

Recall that the generalized rank-dependent function is a v-transform of a signed Choquet func-

tion. Similarly to Proposition 3.5 of Wang and Wei (2020), we first show that p-quasi-convexity is

an invariance property under v-transforms.

Proposition 3. For v : R → R and a convex set of distributions M, define Mv = {F ◦ v−1 : F ∈

M}. Then, Rh,v is p-quasi-convex on M if and only if Ih is p-quasi-convex on Mv.

Proof. For any λ ∈ (0, 1) and F,G ∈ M, denote by F ′ = F ◦ v−1 ∈ Mv, G′ = G ◦ v−1 ∈ Mv, and

we have

(λF + (1− λ)G) ◦ v−1 = λ(F ◦ v−1) + (1− λ)(G ◦ v−1) = λF ′ + (1− λ)G′,

which follows directly from the definition of probability measures. Since

Rh,v(λF + (1− λ)G) = Ih(λF
′ + (1− λ)G′) and max{Rh,v(F ), Rh,v(G)} = max{Ih(F ′), Ih(G

′)},

we obtain

Rh,v(λF + (1− λ)G) ≤ max{Rh,v(F ), Rh,v(G)} ⇐⇒ Ih(λF
′ + (1− λ)G′) ≤ max{Ih(F ′), Ih(G

′)}.

It follows that p-quasi-convexity of Ih on Mv is equivalent to that of Rh,v on M, noting that F,G

can be arbitrarily chosen from M and F ′, G′ can be arbitrarily chosen from Mv. This completes

the proof.

The signed Choquet function Ih in the above proposition can be replaced by any functionals ρ,

and ρv(F ) := ρ(F ◦v−1) should take place of Rh,v simultaneously. To characterize p-quasi-convexity

13
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Figure 2: Distortion functions of an asymmetric spread (left), a scaled mixed quantile (middle) and
scaled quantile-spread mixture (right) with α, c ∈ (0, 1) and k > 0.

of generalized rank-dependent functions, Proposition 3 implies that we can alternatively consider

the characterization of the same property in the class of signed Choquet functions. As a result,

p-quasi-convexity of Rh,v only depends on the distortion function h. More precisely, we will show

below that the property of h determines p-quasi-convexity of Rh,v under Assumption M if v ∈ VM

(Theorem 2), but the situation is different if v can only take two values (Proposition 5). It is trivial

that p-quasi-convexity holds for all h ∈ HBV if v is a constant function.

We define a few special cases of signed Choquet functions that will appear later in our charac-

terization result. An asymmetric (negative) spread is the mapping

Sa,b = aQ0 − bQ1,

where a, b ≥ 0. Note that −S1,1 = Q1−Q0 is the usual spread of the support of the distribution. We

omit “negative” below for simplicity and call Sa,b an asymmetric spread. The scaled quantile-spread

mixture is given by

Sa,b + kQc
α, for some a, b ≥ 0, α, c ∈ [0, 1], k ∈ R. (6)

A scaled quantile-spread mixture is the sum of an asymmetric spread Sa,b and a scaled mixed quan-

tile kQc
α, and this class includes mixed quantiles, asymmetric spreads. and min-quantile mixtures

as special cases. Note that we allow α = 0 or α = 1 in (6), which leads to aQ0 − bQ1 where a ≥ 0

or b ≥ 0, but it does not include the case a, b < 0. Figure 2 reports an example of the distortion

functions of an asymmetric spread, a scaled mixed quantile and a scaled quantile-spread mixture.

We denote by HCX the set of all convex distortion functions h ∈ HBV and by HQSM the set of

distortion functions of scaled quantile-spread mixtures. The functions in HQSM have the form

h(p) = −b1{0<p<α} + (−b+ kc)1{p=α} + (−b+ k)1{α<p<1} + (a− b+ k)1{p=1}, p ∈ [0, 1], (7)
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for some parameters in (6). The asymmetric spread corresponds to a, b > 0, α = 1 and k = 0, the

mixed quantile corresponds to a = b = 0, α, c ∈ (0, 1) and k = 1, and a min-quantile mixture in (5)

corresponds to b = 0, k ∈ [0, 1] and a = 1− k.

The next lemma says that the asymmetric spread Sa,b can be safely added to any Ih without

changing its p-quasi-convexity, thus highlighting the special role of Sa,b.

Lemma 1. Let M be a convex set of distributions. Suppose that h, h̃ ∈ HBV satisfies Ih = Sa,b+I
h̃

for some a, b ≥ 0. If I
h̃
is p-quasi-convex on M, then Ih is also p-quasi-convex on M.

Proof. Suppose that I
h̃
is p-quasi-convex. For F,G ∈ M and λ ∈ (0, 1), we have Q1(λF + (1 −

λ)G)) = max{Q1(F ), Q1(G)} and Q0(λF + (1 − λ)G)) = min{Q0(F ), Q0(G)}. Hence, by the

p-quasi-convexity of I
h̃
, we have

Ih(λF + (1− λ)G)) = aQ0(λF + (1− λ)G))− bQ1(λF + (1− λ)G)) + I
h̃
(λF + (1− λ)G))

≤ min{aQ0(F ), aQ0(G)} −max{bQ1(F ), bQ1(G)}+max{I
h̃
(F ), I

h̃
(G)}

≤ max
{
aQ0(F )− bQ1(F ) + I

h̃
(F ), aQ0(G)− bQ1(G) + I

h̃
(G)

}
= max{Ih(F ), Ih(G)},

which implies the p-quasi-convexity of Ih.

Using Lemma 1, we can verify that scaled quantile-spread mixtures are p-quasi-convex. Hence,

both convex distortion functions and distortion functions in (7) lead to p-quasi-convexity of Ih.

Combining with Proposition 3, the same conclusion also holds for Rh,v. We summarize these

results in the following proposition. Later we will show that they are the only possibilities.

Proposition 4. If h ∈ HCX ∪HQSM and v : R → R, then Ih and Rh,v are both p-quasi-convex on

Mc.

Proof. Note that {F ◦ v−1 : F ∈ Mc} ⊆ Mc. It follows from Proposition 3 that p-quasi-convexity

of Ih on Mc implies p-quasi-convexity of Rh,v on Mc. Therefore, we only need to consider the case

of Ih. By the definition of Ih in (1), it is obvious that Ih is p-quasi-convex if h is convex. Suppose

that h ∈ HQSM which admits a representation as Ih = Sa,b + kQc
α with a, b ≥ 0, α, c ∈ [0, 1] and

k ∈ R. Since the mapping kQc
α is monotone and has convex level sets (e.g., Wang and Wei (2020)),

we know that kQc
α is both p-quasi-convex and p-quasi-concave, which in turn implies that Ih is

p-quasi-convex by applying Lemma 1. Hence, we complete the proof.
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4.2 The main result and a corollary on unbounded space

The following theorem, which is the main technical result of the paper, establishes that the only

possible generalized rank-dependent functions or signed Choquet functions with p-quasi-convexity

are the ones with distortion functions in Proposition 4, i.e., those with a convex distortion function

or a distortion function in (7).

Theorem 2. Suppose that Assumption M holds and h ∈ HBV. The following statements are

equivalent.

(i) h ∈ HCX ∪HQSM.

(ii) Ih is p-quasi-convex on M.

(iii) Rh,v is p-quasi-convex on M for some v ∈ VM.

(iv) Rh,v is p-quasi-convex on M for all functions v.

Because of Theorem 2, we will denote by HQCX = HCX∪HQSM, which is the set of all h ∈ HBV

for Rh,v and Ih to be p-quasi-convex. Besides the class of convex distortion functions, the only

other choices are h ∈ HQSM. One can immediately observe that all distortion functions in HQSM

are neither continuous nor strictly monotone.

The following proposition illustrates that if the domain of Rh,v is chosen to be the set of all

two-point distributions on two specific points such that the values of v are distinct on these two

points, then p-quasi-convexity of Rh,v is equivalent to quasi-convexity of h. Hence, there are more

cases of p-quasi-convex Rh,v than in Theorem 2.

Proposition 5. Let x, y ∈ R satisfying x ̸= y, and define M = {pδx + (1 − p)δy : p ∈ [0, 1]}.

Suppose that h ∈ HBV and v : R → R satisfies v(x) ̸= v(y). Then Rh,v is p-quasi-convex on M if

and only if h is quasi-convex.

Proof. The p-quasi-convexity of Rh,v on M is equivalent to

Rh,v((λp+(1−λ)q)δx+(λ(1−p)+(1−λ)(1−q))δy) ≤ max{Rh,v(pδx+(1−p)δy), Rh,v(qδx+(1−q)δy)}

for any p, q, λ ∈ [0, 1]. Under some algebra calculations, this is equivalent to

h(λp+ (1− λ)q) ≤ max{h(p), h(q)}

for any p, q, λ ∈ [0, 1]. Hence, we obtain the desired equivalence.
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Proposition 5 illustrates that Assumption M on M and the constraint v ∈ VM are needed for

a nontrivial characterization of p-quasi-convexity. Analogously to Proposition 5, one can check

that for h quasi-convex and v only taking two values, Rh,v is p-quasi-convex on any convex set of

distributions.

Below we present a corresponding result to Theorem 2 that the generalized rank-dependent

functions are defined on a general space that contains a distribution of unbounded random variables.

Corollary 2. Suppose that Assumption M holds. Define a convex set M′ such that M ⊆ M′ and

M′ contains the distribution of a random variable, denoted by X, that is unbounded both from below

and from above. Let h ∈ HBV and v ∈ VM satisfying ess-inf v(X) = −∞ and ess-sup v(X) = +∞.

Then Rh,v : M′ → R is p-quasi-convex if and only if h is convex and continuous or h is the

distortion function of mixed quantiles Ih = kQc
1−α for some α ∈ (0, 1), c ∈ [0, 1] and k ∈ R.

In the case of signed Choquet function (v is the identity), Corollary 2 formalizes the observation

that, since asymmetric spreads are not finite-valued on a general space with the distribution of

unbounded random variables, we are left with only the class of convex distortion functions and

those that correspond to scaled mixed quantiles.

4.3 A unifying equivalence

In this section, we present a unifying equivalence result on signed Choquet functions to illustrate

the power of our main result. In what follows, the space is assumed to be Mc or Xc, and Ih is

o-superadditive if Ih(X + Y ) ≥ Ih(X) + Ih(Y ) for all X,Y ∈ Xc.

Theorem 3. If h ∈ HBV is continuous or strictly monotone, then the following are equivalent: (i)

h is convex; (ii) Ih is concave-order monotone; (iii) Ih is o-superadditive; (iv) Ih is o-concave; (v)

Ih is o-quasi-concave; (vi) Ih is p-convex; (vii) Ih is p-quasi-convex.

Theorem 3 can be broken down to a few pieces. The first six properties, (i)-(vi) in Theorem

3, are shown to be equivalent by Wang et al. (2020b, Theorem 3) without any assumption on

h ∈ HBV.8 This result does not include p-quasi-convexity. Indeed, p-quasi-convexity is not always

equivalent to the above six conditions. In particular, any left or right quantile is both p-quasi-

convex and p-quasi-concave, but it is not o-concave or o-convex. Nevertheless, p-quasi-convexity

and p-convexity are not too far away from each other. Wakker (1994, Theorem 24) showed that

(i) and (vii) in Theorem 3 are equivalent if h ∈ HDT is strictly increasing.9 It is obvious that the

8Wang et al. (2020b) used the narrative of risk measures, where results are stated for concave h; we seamlessly
translate these results by a sign change.

9Under the same assumption, Wakker and Yang (2021, Corollary 8) showed the equivalence of (v) quasi-concavity
and (vii) p-quasi-convexity.
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normalization h(1) = 1 does not matter, and thus HDT can be safely replaced by HBV in the above

result. Note that Ih = −I−h for all h ∈ HBV. Hence, for any strictly decreasing h ∈ HBV, (i)

and (vii) are also equivalent. Combining these arguments, we obtain the equivalence in Theorem 3

under the assumption that h is strictly monotone. From a technical standpoint, strict monotonicity

rules out any non-trivial considerations for signed Choquet functions over dual utilities (up to a

sign change). The remaining part of Theorem 3, concerning continuous h, relies on Theorem 2.

Another result about the equivalence of (i)-(vii) is based on Lq, q ∈ [1,∞), i.e., the normed

space of random variables with finite q-th moment.

Corollary 3. Let h ∈ HBV, q ∈ [1,∞). For a norm-continuous mapping Ih : Lq → R, (i)-(vii) in

Theorem 3 are equivalent.

Corollary 3 follows from Corollary 2 and the fact that mixed quantiles are not norm-continuous.

Note that the same cannot be said on L∞ since all signed Choquet functions are norm-continuous

on L∞ (e.g., Wang et al. (2020b, Theorem 1)). Different from the other results, Corollary 3 imposes

a continuity condition on Ih, instead of h, to guarantee the equivalence of (i)-(vii).

5 Proofs of Section 4 and further consequences

This section is dedicated to a proof of Theorem 2, which includes Theorem 1 as a special case,

and it further leads to the results in Corollaries 2 and 3. Moreover, characterizations of p-quasi-

concavity and p-quasi-linearity, which are presented later, also follow from Theorem 2.

5.1 Proofs of Theorem 2 and its corollaries in Section 4

Note that (i) ⇒ (ii), (iii), (iv) are proved in Proposition 4, and it is obvious that (iv) ⇒ (iii).

Next, we will show the assertion that (ii) ⇒ (i) implies (iii) ⇒ (i), and this means that it suffices to

verify (ii) ⇒ (i) for the completeness of the proof of Theorem 2. To see this assertion, suppose that

(ii) ⇒ (i) holds. Recall the set M that satisfies Assumption M. We define the set of all v-transforms

in M as

Mv = {F ◦ v−1 : F ∈ M} ⊇
{
pδv(x) + (q − p)δv(y) + (1− q)δv(z) : 0 ≤ p ≤ q ≤ 1

}
.

It holds that Mv satisfies Assumption M. By Proposition 3, if (iii) holds, then Ih is p-quasi-convex

on Mv. Using the result that (ii) ⇒ (i) holds (note that the three distinct points in Assumption

M can be chosen arbitrarily, and now let them be v(x), v(y), v(z)), we arrive at (i). Hence, (iii) ⇒

(i) is verified.

18



In the following, we aim to prove (ii) ⇒ (i) where several technical lemmas are needed. When

we mention Assumption M, x, y, z ∈ R represent the distinct points defined in Assumption M, and

we assume without loss of generality that x > y > z. Suppose that M satisfies Assumption M and

h ∈ HBV. We define a bivariate function as follows

π(p, q) = (x− y)h(p) + (y − z)h(q), (p, q) ∈ T2 := {(a, b) ∈ [0, 1] : a ≤ b}. (8)

The first lemma shows that the p-quasi-convexity of Ih on M implies that π(p, q) is quasi-convex

on T2.

Lemma 2. Suppose that M satisfies Assumption M. For h ∈ HBV, if Ih is p-quasi-convex on M,

then the function π defined in (8) is quasi-convex on T2. In particular, h is quasi-convex on [0, 1].

Proof. For any 0 ≤ p ≤ q ≤ 1, we have

Ih(pδx + (q − p)δy + (1− q)δz) = xh(p) + y(h(q)− h(p)) + z(h(1)− h(q))

= zh(1) + (x− y)h(p) + (y − z)h(q)

= zh(1) + π(p, q).

One can verify that the p-quasi-convexity of Ih implies

π(λp1 + (1− λ)p2, λq1 + (1− λ)q2) ≤ max{π(p1, q1), π(p2, q2)} (9)

for any λ, p1, p2, q1, q2 ∈ [0, 1] with p1 ≤ q1 and p2 ≤ q2. This is equivalent to the quasi-convexity of

π on T2. Let p = 0 in (8), the quasi-convexity of π implies the quasi-convexity of h on [0, 1]. This

completes the proof.

The second lemma is a generalization of Lemma 26 of Wakker (1994), who considered the strictly

increasing distortion functions, to the set HBV and the domain M that satisfies Assumption M.

For h ∈ HBV and 0 ≤ p < q ≤ 1 such that h(p) ̸= h(q), we define λh(p, q) as

λh(p, q) =
h(p)/2 + h(q)/2− h(p/2 + q/2)

|h(q)− h(p)|
. (10)

The value of this function can be interpreted as a measure of the local convexity of h.

Lemma 3. Let h ∈ HBV and 0 ≤ p < q ≤ s < t ≤ 1. Suppose that M satisfies Assumption M and

Ih is p-quasi-convex on M. If h(p) ̸= h(q), h(s) ̸= h(t) and |h(q)−h(p)|(x−y) = |h(t)−h(s)|(y−z),

then we have λh(p, q) + λh(s, t) ≥ 0.
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Proof. Let 0 ≤ p < q ≤ s < t ≤ 1 and h(p) ̸= h(q) and h(s) ̸= h(t). By Lemma 2, it holds that h is

quasi-convex on [0, 1]. Thus, one can check that only one of the following three cases will happen.

Case 1: h(p) < h(q) ≤ h(s) < h(t); Case 2: h(p) > h(q) ≥ h(s) > h(t); Case 3: h(p) > h(q) and

h(s) < h(t).

Let us first verify Cases 1 and 2. Suppose that 0 ≤ p < q ≤ s < t ≤ 1, and h(p) < h(q) ≤

h(s) < h(t) or h(p) > h(q) ≥ h(s) > h(t). All distributions in this proof are of the form

pδx1 +
q − p

2
δx2 +

q − p

2
δx3 + (s− q)δx4 +

t− s

2
δx5 +

t− s

2
δx6 + (1− t)δx7 (11)

with fixed probabilities and x1, . . . , x7 ∈ {x, y, z} with x1 ≥ · · · ≥ x7. Hence, we will simply use F =

(x1, · · · , x7) to represent a distribution F , i.e., F has the form in (11). Define F = (x, y, y, y, y, y, z)

and G = (x, x, x, y, z, z, z). One can verify that

Ih(F )− Ih(G) = (y − z)(h(t)− h(s))− (x− y)(h(q)− h(p)).

Since h(q)−h(p) and h(t)−h(s) have the same sign, and x > y > z, the condition |h(q)−h(p)|(x−

y) = |h(t) − h(s)|(y − z) in the lemma implies Ih(F ) = Ih(G). By the p-quasi-convexity of Ih, we

have Ih((F +G)/2) ≤ (Ih(F ) + Ih(G))/2 where (F +G)/2 = (x, x, y, y, y, z, z). This leads to(
h(p) + h(q)

2
− h

(
p+ q

2

))
(x− y) +

(
h(s) + h(t)

2
− h

(
s+ t

2

))
(y − z) ≥ 0.

Dividing by the positive factors in |h(q)− h(p)|(x− y) = |h(t)− h(s)|(y − z), we have

1

|h(q)− h(p)|

(
h(p) + h(q)

2
− h

(
p+ q

2

))
+

1

|h(t)− h(s)|

(
h(s) + h(t)

2
− h

(
s+ t

2

))
≥ 0.

This gives λh(p, q) + λh(s, t) ≥ 0. To see Case 3, we only need to take F = (x, y, y, y, z, z, z) and

G = (x, x, x, y, y, y, z), and then, it follows from a similar proof of Cases 1 and 2 in the previous

arguments.

The third Lemma is divided into three cases to consider nonconvex distortion functions. We

will apply Lemmas 2, 3 and some results in Debreu and Koopmans (1982) to prove this lemma.

Lemma 4. Let h ∈ HBV. Suppose that M satisfies Assumption M and Ih is p-quasi-convex on M.

The following three statements hold.

(i) If h is nonconvex on (0, 1), then there is a point α ∈ (0, 1) such that h is a constant on both

intervals (0, α) and (α, 1), and the constant values are different.
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•
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α, h(pn)+h(qn)

2

)

Step 1. There exists only one nonconvexity kink α; h is convex on [0, α) and on (α, 1].
Step 2. Contradiction from being nonconstant on (0, α). Here, pn = α− 1/n, qn = α+ 1/n,

|h(t0)− h(sn)|(x− y) = |h(pn)− h(qn)|(y − z), KL = h′
−(α) and KR = h′

+(α).

Figure 3: Graphic illustration of the proof of Lemma 4 (i).

(ii) If h is nonconvex on [0, 1) and convex on (0, 1), then h(0+) > h(0) = 0, h(p) = h(0+) for all

p ∈ (0, 1) and h(1−) ≤ h(1).

(iii) If h is nonconvex on (0, 1] and convex on (0, 1), then h(1−) > h(1), h(p) = h(1−) for all

p ∈ (0, 1) and h(0+) ≤ h(0) = 0.

Proof. By Lemma 2, the p-quasi-convexity of Ih implies the quasi-convexity of π defined in (8).

Hence, it is sufficient to prove this lemma based on the quasi-convexity of π.

(i) We prove this statement in two steps (see Figure 3 for an illustration). First, we will show

that there is at most one nonconvexity kink of h on (0, 1). Second, we will show that h should be

a constant both on the left and the right of the nonconvexity kink.

Step 1: Suppose that h is nonconvex on (a, b) ⊆ (0, 1), and we will show that there is at most

one nonconvexity kink on (a, b). To see this, note that the function π defined in (8) is quasi-convex

both on (0, a)× (a, b) and (a, b)× (b, 1). Since h is nonconvex on (a, b), it follows from Debreu and

Koopmans (1982, Theorem 2) that h is convex both on (0, a) and (b, 1). Applying this result to

smaller and smaller subintervals of (a, b), there is one point α ∈ (a, b) (the nonconvexity kink) such

that h is convex both on (0, α) and (α, 1).

Step 2: We aim to verify that h is a constant on both intervals (0, α) and (α, 1), and this will

complete the proof of (i). We only show that h is a constant on (0, α) as the proof of the other

case is similar. Assume now by contradiction that h is nonconstant on (c, d) ⊆ (0, α). Let us

consider the bivariate function π (see (8)) on (c, d)× (d, 1). Since α is a nonconvexity kink, we have

that h is nonconstant on (d, 1). Hence, h is nonconstant both on (c, d) and (d, 1). Note that π is

quasi-convex. It follows from Debreu and Koopmans (1982, Theorem 1) that h is continuous on
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(d, 1). Since α ∈ (d, 1) and h is convex on both (0, α) and (α, 1), it holds that h is continuous on

(0, 1). Now, recall λh(p, q) defined in (10), and we rewrite it as

λh(p, q) =
h(p)/2 + h(q)/2− h(p/2 + q/2)

|h(q)− h(p)|
=

f(p, q)− g(p, q)

2|f(p, q) + g(p, q)|
, (12)

where

f(p, q) =
h(q)− h(p/2 + q/2)

(q − p)/2
and g(p, q) =

h(p/2 + q/2)− h(p)

(q − p)/2
.

By the convexity of h on (0, α) and also noting that h is nonconstant on (0, α), there exists t0 in

(0, α) such that h has a nonzero left derivative at t0. Therefore, it follows from (12) that

λh(s, t0) → 0 as s ↑ t0. (13)

Denote KL = h′−(α) and KR = h′+(α) by the left and right derivative of h at α. Since α is a point

of nonconvex kink, we have ∞ ≥ KL > KR ≥ −∞. We assert that KLKR ≥ 0, and this implies

|KL +KR| > 0. Otherwise, we have KL > 0 and KR < 0 which implies h is not quasi-convex on

[0, 1], and this contradicts to Lemma 2. Take pn = α− 1/n and qn = α+ 1/n for n ∈ N. Below we

aim to verify the assertion that

lim
n→∞

λh(pn, qn) < 0. (14)

To see this, by (12), we have

λh(pn, qn) =
an − bn

2|an + bn|
,

where

an = n (h (α+ 1/n)− h(α)) and bn = n (h(α)− h (α− 1/n)) .

Note that an → KR and bn → KL as n tends to infinity. If ∞ > KL > KR > −∞, then

λh(pn, qn) =
an − bn

2|an + bn|
→ KR −KL

2|KR +KL|
< 0.
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•

p1+p2
2

= β − kϵ

Figure 4: Contradiction from h being nonconstant on (0, 1) in the proof of (ii) and (iii) of Lemma
4: the Left panel illustrates (ii) and the right panel illustrates (iii).

If KL = +∞ and KR ∈ R, then

λh(pn, qn) =
an − bn

2|an + bn|
=

an/bn − 1

2|an/bn + 1|
→ −1

2
.

If KL ∈ R and KR = −∞, then

λh(pn, qn) =
an − bn

2|an + bn|
=

1− bn/an
2|1 + bn/an|

→ −1

2
.

The case of KL = ∞ and KR = −∞ cannot happen as h should be quasi-convex on [0, 1] by Lemma

2. Therefore, we have verified (14). Recall the definition of t0 in (13). Define a sequence {sn}n∈N
such that sn < t0 for all n ∈ N, sn → t0 and |h(t0) − h(sn)|(x − y) = |h(pn) − h(qn)|(y − z) for

large enough n. Because h is continuous on (0, 1), such a sequence exists. Noting that t0 < α, we

have sn < t0 < pn < qn for large enough n. By Lemma 3, we obtain λh(sn, t0) + λh(pn, qn) ≥ 0 for

large enough n. However, by combining (13) and (14), we have λh(sn, t0) + λh(pn, qn) < 0 for large

enough n, and this yields a contradiction. Therefore, we conclude that h should be a constant on

both intervals (0, α) and (α, 1), and this completes the proof of (i).

(ii): Suppose that h is nonconvex on [0, 1) and convex on (0, 1). This implies that h(0+) >

h(0) = 0. It follows from Lemma 2 that h is quasi-convex on [0, 1]. Combining this with h(0+) >

h(0), it holds that h is increasing on [0, 1], which implies h(1−) ≤ h(1). It remains to verify that

h(p) = h(0+) for all p ∈ (0, 1). Assume now by contradiction that h is nonconstant on (0, 1). Since

h is convex on (0, 1), there exists β ∈ (0, 1) such that h is strictly increasing on [β, 1). Let ϵ > 0

and k = 2(x− y)/(y− z), and denote by p1 = 0, p2 = 2ϵ, q1 = β+2kϵ and q2 = β such that p2 ≤ q2

and q1 < 1 (see the left panel of Figure 4). We calculate the following items:

A1 := π(p1, q1) = (y − z)h(β + 2kϵ),
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A2 := π(p2, q2) = (x− y)h(2ϵ) + (y − z)h(β),

and

A := π

(
p1 + p2

2
,
q1 + q2

2

)
= (x− y)h (ϵ) + (y − z)h (β + kϵ) .

On the one hand, since h(ϵ) > h(0+) > 0 for any ϵ ≥ 0 and h is continuous on (0, 1), we have

A > A1 for small enough ϵ > 0. On the other hand,

A2 −A = (x− y) (h(2ϵ)− h (ϵ))− (y − z)(h(β + kϵ)− h(β))

= ϵ(x− y)

(
h(2ϵ)− h(ϵ)

ϵ
− 2(h(β + kϵ)− h(β))

kϵ

)
< 0,

where the inequality holds because h is convex on (0, 1) and strictly decreasing on [β, 1). Therefore,

we conclude that A > max{A1, A2} which contradicts the quasi-convexity of π. This completes the

proof of (ii).

(iii): The proof of this statement is similar to (ii). Suppose that h is nonconvex on (0, 1] and

convex on (0, 1). This implies h(1−) > h(1). By Lemma 2, we know that h is quasi-convex on

[0, 1]. Combining with h(1−) > h(1), we conclude that h is decreasing on [0, 1]. Hence, we have

h(0+) ≤ h(0). It remains to verify that h is a constant on (0, 1). Assume now by contradiction that

h is nonconstant on (0, 1). Then, there exists β ∈ (0, 1) such that h is strictly decreasing on (0, β].

Let ϵ > 0 and k = 2(y − z)/(x − y), and denote by p1 = β − 2kϵ, p2 = β, q1 = 1 and q2 = 1 − 2ϵ

such that p2 ≤ q2 and p1 > 0 (see the right panel Figure 4). We calculate the following items:

A1 := π(p1, q1) = (x− y)h(β − 2kϵ) + (y − z)h(1),

A2 := π(p2, q2) = (x− y)h(β) + (y − z)h(1− 2ϵ),

and

A := π

(
p1 + p2

2
,
q1 + q2

2

)
= (x− y)h (β − kϵ) + (y − z)h (1− ϵ) .

On the one hand, since h(1 − ϵ) ≥ h(1−) > h(1) for any ϵ > 0 and h is continuous on (0, 1), we

have A > A1 for small enough ϵ > 0. On the other hand,

A2 −A = (x− y)(h(β)− h(β − kϵ))− (y − z)(h(1− ϵ)− h(1− 2ϵ))

= ϵ(y − z)

(
2(h(β)− h(β − kϵ))

kϵ
− h(1− ϵ)− h(1− 2ϵ)

ϵ

)
< 0,

where the inequality holds because h is convex on (0, 1) and strictly increasing on (0, β]. Therefore,
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Figure 5: Contradiction from h(0+) > 0.

we conclude that A > max{A1, A2} which implies π is not quasi-convex, a contradiction. Hence,

we complete the proof of (iii).

In the following, we give the proof of (ii) ⇒ (i) in Theorem 2, and this will complete the proof

of Theorem 2.

Proof of (ii) ⇒ (i) in Theorem 2. It suffices to verify that for nonconvex h ∈ HBV, the p-quasi-

convexity of Ih implies h ∈ HQSM. To see this, we divide h into three cases as shown in Lemma 4:

Case 1. h is nonconvex on (0, 1); Case 2. h is nonconvex on [0, 1) and convex on (0, 1); Case 3. h

is nonconvex on (0, 1] and convex on (0, 1).

By Lemma 4, if h is the form of Case 2 or Case 3, then one can check that h ∈ HQSM. Thus, it

remains to consider Case 1.

Suppose that h is nonconcave on (0, 1). By Lemma 4 (i), there exists α ∈ (0, 1) such that h is

a constant both on (0, α) and (α, 1) and h(α−) ̸= h(α+). Hence, h can be represented as

h(p) = h(0+)1{0<p<α} + h(α)1{p=α} + h(1−)1{α<p<1} + h(1)1{p=1}, p ∈ [0, 1].

In order to show that h ∈ HQSM, we need to verify two assertions: (a) h(0+) ≤ 0 and h(1−) ≤ h(1);

(b) (h(α) − h(0+))(h(1−) − h(α)) ≥ 0. Both assertions will be proved by counter-evidence. For

(a), we assume by contradiction that h(0+) > 0 or h(1−) > h(1). We only consider the case of

h(0+) > 0 as the case of h(1−) > h(1) is similar. By Lemma 2, we know that h is quasi-convex, and

combining with h(0+) > 0, it holds that h is increasing on [0, 1] which implies h(0+) = h(α−) <

h(α+) = h(1−). Let p1 = 0, p2 = α/2, q1 = α+2ϵ and q2 = α− ϵ such that ϵ > 0, p2 ≤ q2 < q1 < 1

(see Figure 5). Recall the function π defined in (8), we have
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Figure 6: Contradiction from h(α) < min{h(0+), h(1−)}.

π(p1, q1) = (x− y)h(0) + (y − z)h(1−), π(p2, q2) = (x− z)h(0+),

and

π

(
p1 + p2

2
,
q1 + q2

2

)
= (x− y)h(0+) + (y − z)h(1−).

One can check that π ((p1 + p2)/2, (q1 + q2)/2) > max{π(p1, q1), π(p2, q2)} which implies π is not

quasi-convex, and this contradicts Lemma 2. Hence, we have h(0+) ≥ 0. For (b), we as-

sume by contradiction that h(α) < min {h(0+), h(1−)} or h(α) > max {h(0+), h(1−)}. The case

of h(α) > max {h(0+), h(1−)} contradicts Lemma 2 as h should be quasi-convex. If h(α) <

min {h(0+), h(1−)}, let p1 = α/2, p2 = q1 = α and q2 = (1 + α)/2 (see Figure 6). We have

π(p1, q1) = (x− y)h(0+) + (y − z)h(α), π(p2, q2) = (x− y)h(α) + (y − z)h(1−)

and

π

(
p1 + p2

2
,
q1 + q2

2

)
= (x− y)h(0+) + (y − z)h(1−).

One can check that π ((p1 + p2)/2, (q1 + q2)/2) > max{π(p1, q1), π(p2, q2)}, which yields a contra-

diction to Lemma 2. Hence, we conclude that if h is the form of Case 1, then h ∈ HQSM. This

completes the proof.

Proof of Corollary 2. The “if” statement is straightforward to verify. To show the “only if” state-

ment, we first note that, since M′ contains M which satisfies Assumption M, it follows from

Theorem 2 that h ∈ HQCX. Since the distribution of X is in M′, and X is unbounded from below

and above, we know that h ∈ HBV must be continuous at 0 and 1; otherwise Q1(v(X)) = ∞ and

Q0(v(X)) = −∞ would lead to Rh,v(X) ̸∈ R. This continuity condition for h ∈ HQCX leads to the

cases stated in the corollary.

26



Proof of Corollary 3. Based on Corollary 2, it suffices to show that mixed quantiles are not norm-

continuous. To verify this fact, take α ∈ (0, 1) and c ∈ [0, 1], and a uniform random variable U on

[0, 1]. Let Xn = a1{U∈[α−ϵ,α+ϵ]} + b1{U>α+ϵ} and X = b1{U>α+ϵ} for some 0 < a < b with a ̸= cb.

It is clear that Qc
α(X) = cb, Qc

α(Xn) = a for each n ∈ N, and Xn → X in Lq. This example justifies

the non-continuity of Qc
α.

5.2 P-quasi-concavity and p-quasi-linearity

A considerable convenience to working with non-monotone h ∈ HBV is that we can put a

negative sign in front of h without leaving the class, which is not the case for h ∈ HDT. In

particular, we have Rh,v = −R−h,v for h ∈ HBV. Therefore, Rh,v is p-quasi-concave if and only if

R−h,v is p-quasi-convex, and all results on p-quasi-convexity immediately translate into results on

p-quasi-concavity.

Corollary 4. Suppose that Assumption M holds. For h ∈ HBV and v ∈ VM, Rh,v is p-quasi-concave

on M if and only if h ∈ (−HQCX), that is, h is concave or −h ∈ HQSM.

Note that p-quasi-linearity of a functional ρ means that it is both p-quasi-convex and p-quasi-

concave. Combining Theorem 2 and Corollary 4, a characterization of generalized rank-dependent

functions with p-quasi-linearity is obtained.

Corollary 5. Suppose that Assumption M holds. For h ∈ HBV and v ∈ VM, Rh,v is p-quasi-linear

on M if and only if the signed Choquet function Ih has one of the following forms.

(i) Ih = kE for some k ∈ R where E represents the expectation.

(ii) Ih = k(cQ1 + (1− c)Q0) for some k ∈ R and c ∈ [0, 1].

(iii) Ih = kQc
1−α for some k ∈ R, c ∈ [0, 1] and α ∈ (0, 1).

Proof. By Theorem 2 and Corollary 4, we know that Rh,v is p-quasi-linear if and only if h ∈

HQCX ∩ ( − HQCX). It is straightforward to check that Rh,v is one of the three forms in the

corollary.

Although p-quasi-linearity by definition is not related to the monotonicity of the distortion

function, all three forms of the distortion functions in Corollary 5 are monotone. This is not

surprising. Because p-quasi-linearity of Ih implies quasi-linearity of h (see Lemma 2 and use a

parallel result for the case of p-quasi-concavity), and a quasi-linear univariate function must be

monotone.
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Remark 2. As a direct result of Corollary 5, only the three forms of Ih in the corollary are possible

to make Ih p-quasi-linearity under Assumption M. This is not new as Wang and Wei (2020) showed

a same result for Ih with CxLS (slightly weaker than p-quasi-linearity). Nevertheless, Wang and

Wei (2020) worked on a set containing all three-point distributions, a stronger condition than ours

as the points are fixed in Assumption M.

6 A conflict between o-convexity and p-convexity

In this section, we illustrate a conflict between o-convexity and p-convexity for constant-additive

mappings; that is, a continuous and constant-additive mapping cannot be both o-convex and p-

convex on Xc or Mc unless it is a multiple of the expectation. Recall that o-convexity of a mapping

on Mc or Xc is defined as convexity on Xc. A mapping ρ : Xc → R is constant additive if

ρ(X + c) = ρ(X) + ρ(c) for X ∈ Xc and c ∈ R. On Xc, continuity is with respect to the supremum-

norm. Continuous and constant-additive mappings on Xc include, but are not limited to, all signed

Choquet functions and normalized monetary risk measures (Föllmer and Schied (2016)).

Proposition 6. For a continuous and constant-additive mapping ρ : Xc → R, the following are

equivalent:

(i) ρ is o-convex and p-convex;

(ii) ρ is o-concave and p-concave;

(iii) ρ = kE for some k ∈ R.

Proof. Note that (i) and (ii) are symmetric, and (iii)⇒(i) is trivial. It suffices to show the direction

(i)⇒(iii). Since a p-convex mapping is necessarily law-based, we equivalently formula ρ on Mc.

Denote by δx the point-mass at x ∈ R. Denote by k = ρ(1). Note that ρ(x) = kx for x ∈ R since ρ is

constant additive and continuous. Let F =
∑n

i=1 piδxi for some numbers p1, . . . , pn ≥ 0 which add

up to 1 and {x1, . . . , xn} ⊆ R. Let X ∼ F . By p-convexity of ρ, we have ρ(F ) ≤
∑n

i=1 piρ(δxi) =∑n
i=1 pikxi = kE[X]. Since ρ is law-based, continuous and o-convex, it is convex-order monotone

by e.g., the representation in Liu et al. (2020, Theorem 2.2). Thus, ρ(X) ≥ ρ(E[X]) = kE[X] for

all X ∈ Xc. Putting the above two inequalities together, we have ρ(X) = kE[X] for all finitely

supported random variables X ∈ Xc.

For a general X ∈ Xc, let Xn = ⌊nX⌋/n for n ∈ N, which is an approximation of X. It is clear

that Xn → X as n → ∞, and |Xn−X| ≤ 1/n. Using continuity of ρ again, we have ρ(Xn) → ρ(X)

as n → ∞. Since ρ(Xn) = kE[Xn] → kE[X] as n → ∞, we obtain ρ(X) = kE[X].
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The same conclusion in Proposition 6 holds for ρ : Lp → R for p ∈ [1,∞) following the same

proof.

Remark 3. Constant additivity of ρ is essential for Proposition 6. A mapping ρ : Xc → R that is

monotone, p-convex and o-convex does not need to be p-linear. For an example, take ρ1 : X 7→

E[f(X)] and ρ2 : X 7→ E[g(X)] where f and g are two increasing convex functions. Clearly, ρ1 and

ρ2 are both o-convex and p-linear. Since convexity is preserved under a maximum operation, the

mapping ρ := max{ρ1, ρ2} is o-convex and p-convex, but it is not p-linear unless f ≥ g or g ≥ f .

The reason that the proof does not work in this case is that, by letting ℓ(x) = ρ(x) for x ∈ R, we

can show using the argument above that ℓ(E[X]) ≤ ρ(X) ≤ E[ℓ(X)], but this does not pin down ρ

unless ℓ is linear.

7 Conclusion

Probabilistic risk aversion (i.e., p-quasi-convexity) is characterized for rank-dependent utilities

(Theorem 1) and generalized rank-dependent functions (Theorem 2). A new class of functionals,

the mean-quantile mixtures, is shown to be the only class of dual utilities that are p-quasi-convex

and p-locally indifferent (Proposition 2). We have chosen to use p-convexity and o-concavity to

present our main results, to be consistent with the literature on decision theory (e.g., Quiggin

(1993); Wakker (2010)); by a simple sign change, we obtain corresponding results for p-concavity

and o-convexity, a convention that is more common in the literature of risk management (e.g.,

McNeil et al. (2015); Föllmer and Schied (2016)). Based on the characterization for generalized

rank-dependent functions, we obtain a unified result of signed Choquet functions (Theorem 3)

containing seven equivalent conditions for p-quasi-convexity. Our results are formulated for the

more general objects, namely, signed Choquet functions and generalized rank-dependent functions.

The corresponding results for dual utilities and rank-dependent utilities are also new, and our results

help to understand classic decision models by disentangling monotonicity from other important

properties.
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