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Abstract

Suppose that one can construct a valid (1− 𝛿)-confidence interval (CI) for each of
𝐾 parameters of potential interest. If a data analyst uses an arbitrary data-dependent
criterion to select some subset 𝑆 of parameters, then the aforementioned CIs for the
selected parameters are no longer valid due to selection bias. We design a new method
to adjust the intervals in order to control the false coverage rate (FCR). The main
established method is the “BY procedure” by Benjamini and Yekutieli (JASA, 2005).
The BY guarantees require certain restrictions on the selection criterion and on the
dependence between the CIs. We propose a new simple method which, in contrast, is valid
under any dependence structure between the original CIs, and any (unknown) selection
criterion, but which only applies to a special, yet broad, class of CIs that we call e-CIs.
To elaborate, our procedure simply reports (1− 𝛿|𝑆|/𝐾)-CIs for the selected parameters,
and we prove that it controls the FCR at 𝛿 for confidence intervals that implicitly invert
e-values; examples include those constructed via supermartingale methods, via universal
inference, or via Chernoff-style bounds, among others. The e-BY procedure is admissible,
and recovers the BY procedure as a special case via a particular calibrator. Our work
also has implications for post-selection inference in sequential settings, since it applies
at stopping times, to continuously-monitored confidence sequences, and under bandit
sampling. We demonstrate the efficacy of our procedure using numerical simulations
and real A/B testing data from Twitter.
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1 Introduction

One of the most classical problems in statistics is the problem of parameter estimation e.g.
estimating the mean of a distribution. The time-tested solution is to produce a confidence
interval (CI) in the parameter space that covers the true parameter with high probability.
However, many scientists are not simply interested in estimating a single parameter — they
may have many potentially interesting parameters to estimate concurrently.
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For example, a scientist might be experimenting with 𝐾 vaccines for a strain of virus. She
may only be interested in reporting CIs for the vaccines that the data suggest to be effective.
However, she does not know which vaccines may be effective until after she looks at the data.
A reasonable thing she might do is to report the usual 95% CIs for the vaccines where the CI
is positive (i.e., the entire interval for the treatment effect is above zero). Consequently, she
is using the same data to both select the parameters she wishes to estimate, and construct
estimates of these parameters. As a result, the reported (uncorrected) CIs do not provide
valid statistical coverage. To see this, consider a scenario where none of the vaccines reduce
mortality. Any reported CI will have a coverage probability of 0%, since the CI for a vaccine
is reported only if it is positive, meaning that it excludes the true effect of zero.

The above example illustrates the issue of selection bias for post-selection inference, as
prominently noted by Benjamini and Yekutieli [3]. Motivated by this example, let us quickly
introduce the formal problem setup.

Let 𝒫 denote the universe of all possible distributions for the data. Let 𝜗 : 𝒫 → Θ denote
a functional (or parameter) that maps distributions to parameter values lying in some set Θ. A
scientist observes some data, X = (𝑋1, . . . , 𝑋𝐾) that is drawn from an unknown distribution,
P*, and we are potentially interested in the values of 𝐾 of its functionals1 𝜗1, . . . , 𝜗𝐾 , but
our interest in them depends on the unknown parameter values 𝜃* := (𝜃*1, . . . , 𝜃

*
𝐾), where

𝜃*𝑖 := 𝜗𝑖(P*).
Let EP and PP denote the expectation and probability under a distribution P, respectively,

although we sometimes suppress the subscript in the case of P* for simplicity. For each 𝑖 ∈ [𝐾],
we assume that from 𝑋𝑖, the scientist can construct a marginal (1− 𝛼)-confidence interval
for 𝜃*𝑖 , for any desired level 𝛼 ∈ [0, 1], which is a set 𝐶𝑖(𝛼) ⊆ Θ such that P(𝜃*𝑖 /∈ 𝐶𝑖(𝛼)) ≤ 𝛼,
or more explicitly, for any P ∈ 𝒫, we would have PP(𝜗𝑖(P) /∈ 𝐶𝑖(𝛼)) ≤ 𝛼.

The scientist uses the data X to select a subset of “interesting” parameters, 𝒮 ⊆ [𝐾],
using some potentially complex data-dependent selection rule S : X ↦→ 𝒮. The scientist must
then devise confidence levels for the CI of each selected parameter, {𝛼𝑖}𝑖∈𝒮 , that can depend
on the data X. The false coverage proportion (FCP) and false coverage rate (FCR) of such a
procedure are:

FCP :=

∑︀
𝑖∈𝒮 I {𝜃*𝑖 ̸∈ 𝐶𝑖(𝛼𝑖)}

|𝒮| ∨ 1
, FCR := E [FCP] ,

where 𝑎∨𝑏 = max(𝑎, 𝑏). Our goal is to design a method for choosing {𝛼𝑖}𝑖∈𝒮 which guarantees
FCR ≤ 𝛿 for a predefined level 𝛿 ∈ [0, 1] provided by the scientists in advance, regardless of
what the selection rule S is, and in particular even if the rule is unknown and we only observe
the selected set 𝒮 = S(X). Figure 1 illustrates the setup of this post-selection inference
problem.

We consider FCR over other error metrics for two main reasons. First, constructing a
“conditional CI” which provides a coverage probability guarantee conditional on the selected
set, 𝒮, requires knowing the selection rule S beforehand — while the scientist may sometimes
be willing to provide this before seeing the data (and stick to it after seeing the data),
this requirement still limits the usage of any such method because a scientist may wish to

1Technically these functionals could each lie in different sets Θ but this complicates notation, and we
will anyway not explicitly need these sets later in the paper. Note that each 𝜃𝑖 need not be bijective. For
example, 𝜗𝑖 could capture the median of a distribution.
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Data 
X = (X1, …, XK) ∼ P*

True parameter values 
θ*1 , …, θ*KTrue distribution P*

Select set of parameters  
 to estimate S ⊆ [K]

Construct CIs at corrected levels 
 for each  (e.g. e-BY, BY) 
to ensure FCR control

1 − αi i ∈ S Selected parameter values 
 for θ*i i ∈ S

Draw sample

Figure 1: The post-selection inference with confidence intervals (CI) problem. We must
choose corrected confidence levels (1− 𝛼𝑖) for the marginal CI constructed for each 𝜃*𝑖 that
is selected. The goal is to correct for the bias introduced by the selection rule and still provide
a coverage guarantee for the resulting CIs. The coverage metric that we are interested in is
the expected proportion of selected parameters that are not covered by their respective CIs,
that is, the false coverage rate (FCR). Our corrected confidence level must guarantee that
the FCR is below some fixed level of error 𝛿 ∈ [0, 1].

explore the data informally before deciding on a set 𝒮. Our e-BY method will overcome this
limitation. Another option is to obtain a simultaneous coverage guarantee over all parameters,
but this usually requires an overly conservative Bonferroni correction. We discuss these other
metrics in more detail in Appendix F. With that said, we will focus our attention on FCR
control in this work.

Our primary point of comparison is the BY procedure that was proposed in the same
aforementioned paper by Benjamini and Yekutieli [3]. The BY procedure’s choice of {𝛼𝑖}𝑖∈𝒮
and resulting guarantees depend upon assumptions (or knowledge) of the dependence structure
in X and the selection algorithm S. Under certain restrictions (omitted here for brevity)
on S, the BY procedure sets 𝛼𝑖 = 𝛿|𝒮|/𝐾 to ensure that the FCR is controlled at level 𝛿
for mutually independent 𝑋1, . . . 𝑋𝐾 . However, when no such assumptions can be made
(i.e., under arbitrary dependence and an unknown selection rule) the BY procedure sets
𝛼𝑖 = 𝛿|𝒮|/(𝐾ℓ𝐾), where ℓ𝐾 :=

∑︀𝐾
𝑖=1 𝑖

−1 ≈ log𝐾 is the 𝐾th harmonic number. Clearly, the
BY procedure produces much more conservative CIs when no assumptions can be made
about dependence or selection.

In this paper, we introduce the e-BY procedure, which achieves the best of both worlds:
it requires no restrictions on the dependence structure or selection rule and produces CIs
with larger error levels 𝛼𝑖 = 𝛿|𝒮|/𝐾 (yielding tighter CIs) and ensures FCR ≤ 𝛿 without
any requirements on the dependence structure or selection rule. However, its applicability is
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restricted to a smaller, but still quite broad, class of CIs. We refer to this class of intervals
as “e-confidence intervals” (e-CIs) and we introduce them below.

E-confidence interval (e-CI). A crucial concept to defining an e-CI is the e-value
[29, 24, 12, 21], a concept recently formulated in the hypothesis testing literature as an
alternative to the classical p-value.

Definition 1. A nonnegative random variable 𝐸 is called an e-value w.r.t. a set of distri-
butions 𝒬, if supP∈𝒬 EP[𝐸] ≤ 1.

Above, 𝒬 represents the null hypothesis being tested and 𝐸 quantifies evidence against
the null (large e-values are more evidence). As a simple example, we note that if 𝒬 = {𝑄} is
a singleton, then the only admissible e-values are likelihood ratios of the form 𝑑𝑅/𝑑𝑄 for
some alternative distribution 𝑅 [21].

Given a particular functional 𝜗 of interest, let 𝒫𝜃 := {P ∈ 𝒫 : 𝜗(P) = 𝜃} denote the set of
all distributions with functional value 𝜃.

Definition 2. Let {𝐸(𝜃)}𝜃∈Θ be a family of e-values such that for each 𝜃 ∈ Θ, 𝐸(𝜃) is an
e-value w.r.t. 𝒫𝜃. For any 𝛼 ∈ [0, 1], we define the (1 − 𝛼)-e-confidence interval (e-CI) as
follows:

𝐶(𝛼) =

{︂
𝜃 ∈ Θ : 𝐸(𝜃) <

1

𝛼

}︂
. (1)

Proposition 1. Every e-CI is a valid CI.

Proof. For any P ∈ 𝒫𝜃, we have PP(𝜃 ̸∈ 𝐶(𝛼)) = PP(𝐸(𝜃) ≥ 1/𝛼) ≤ 𝛼, where the last
inequality follows by Markov’s inequality, since EP[𝐸(𝜃)] ≤ 1 because 𝐸(𝜃) is an e-value
with respect to any 𝑃 ∈ 𝒫𝜃.

Our contributions. Our key contributions are twofold. First, we study the aforementioned
novel “e-CI” subclass of CIs. We show that a reasonably large array of existing CIs are
already e-CIs. This new categorization sets the stage for our second main contribution: the
e-BY procedure for FCR control (Definition 6). The e-BY procedure shows that one can
attain tighter CIs than the BY procedure when no assumptions are made on the dependence
structure or selection rule. The e-BY procedure is quite straightforward — it simply sets the
confidence level of the CI for each selected parameter to be 1− 𝛿|𝒮|/𝐾, and this is sufficient
to guarantee FCR ≤ 𝛿.

On the other hand, the BY procedure requires knowledge of all counterfactual selections
one would make on different data. The BY procedure relies on quantities concerning
these counterfactual selections (that cannot be derived without knowing the selection rule
beforehand), and has to pay a costly correction factor (approximately logarithmic in the
number of initial parameters, 𝐾) on the confidence levels when the selection rule is unknown.
The BY procedure has such limits even when the data 𝑋1, . . . , 𝑋𝐾 are mutually independent.
Thus, BY has no guarantees when parameters are selected by the scientist in an ad hoc fashion,
which is often the case (e.g., exploratory data analysis, selection based on domain knowledge).
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Do you know the selection rule 
and how to compute all ?Rmin

i

What is the dependence between CIs?

What CIs are being used for all parameters?

Some (or all) CIs are not e-CIs all e-CIs

Known Unknown

independent 
or PRDS arbitrarily dependent

Apply BY Apply e-BYcalibrate non-e-CIs 
to e-CIs

Figure 2: A flowchart for deciding when to use e-BY vs. BY. The only case where the
BY procedure should be employed is when strong assumptions are made upon both the
selection rule and the type of data dependence, while the e-BY procedure is a uniform
improvement over the BY procedure in all other cases. If e-CIs can only be constructed for
some parameters, and standard CIs for others, we can calibrate standard CIs to e-CIs. In
fact, calibration reduces the BY procedure to a special case of e-BY (Section 2.3).

In addition, the BY procedure — even in optimal conditions of having independent data
and a known selection rule — cannot produce confidence levels that are tighter than those
produced by e-BY. As a result, the e-BY procedure dominates the BY procedure when
e-CIs are available or when one cannot make assumptions about either the selection rule or
dependence structure. We elaborate on these points below:

D1. Selection rule must be known for the BY procedure to yield the tightest possible confidence
intervals. Under independence (and a more general condition of PRDS — see Benjamini
and Yekutieli [2, Section 1.3]), the BY procedure guarantees FCR control when the 𝑖th
CI has a confidence level of 1− 𝛿|𝒮|/𝐾 only when the selection rule satisfies certain
properties. When the selection rule is not guaranteed to satisfy such properties, the BY
procedure can only provide FCR control level 𝛿 by yielding CIs at a confidence level
of 1− 𝛿|𝒮|/(𝐾ℓ𝐾). On the contrary, the e-BY procedure can provide the same level
of FCR control by producing CIs at a confidence level of 1− 𝛿|𝒮|/𝐾 i.e. the smallest
level that can be achieved by the BY procedure even when the data is independent
and the selection rule satisfies certain conditions.

D2. CIs produced by the BY procedure are larger when the CIs are arbitrarily dependent.
Even if the selection rule S is known, the BY procedure produces more conservative
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intervals than the e-BY procedure when the CIs for each parameter, (𝐶1, . . . , 𝐶𝐾), can
be arbitrarily dependent. The BY procedure must correct the confidence levels to
be 1− 𝛿|𝒮|/(𝐾ℓ𝐾) while the e-BY procedure maintains the same confidence levels of
1−𝛿|𝒮|/𝐾. Arbitrarily dependent data can arise when we make multiple measurements
of a single unit of experimentation, for example, measuring different gene expression
levels in a single cell. Dependence is also prevalent in settings where data are collected
sequentially — we explore this usage further in Section 7, where we analyze both
procedures using real data collected by an information technology company (Twitter)
for the purposes of product testing.

D3. The e-BY procedure applies to e-CIs. Of course, the e-BY procedure is beneficial solely
when e-CIs can be constructed for the parameters of interest. Although “e-CI” is a
new term, many existing CIs are e-CIs. These include non-asymptotic CIs based on
Chernoff-type inequalities such as Hoeffding (Appendix E), Bernstein, and empirical
Bernstein CIs [14, 5, 19], universal inference CIs [34] (Section 2.1), and CIs formed by
stopping confidence sequences [22, 15, 16, 35, 32] (Section 2.2). Thus, finding powerful
e-CIs is not a major limitation in many applications. Further, we will demonstrate in
Section 2.3 that we can always construct an e-CI from a CI, and one can use specific
calibrators to recover the BY procedure (Section 3.2). Hence, if one has both CIs and
e-CIs, calibrating the CIs to e-CIs and applying e-BY dominates the BY procedure.

We summarize the tradeoffs between the e-BY and BY procedures in Table 1.

Procedure Type of CI Selection rule Dependence
BY general penalized for unknown S (D1) penalized (D2)

e-BY e-CIs (D3) no penalty no penalty

Table 1: Tradeoffs between the e-BY procedure in this paper and the BY procedure [3].
The confidence levels of the e-BY procedure are not penalized for certain selection rules or
for different types of dependencies between CIs. However, the e-BY procedure only being
applicable to e-CIs, a special class of CIs derived from e-values [29, 24, 12, 21].

Outline Since the e-BY procedure applies only to e-CIs, we describe several useful examples
of e-CIs in Section 2. In Section 3, we prove that e-BY controls FCR under any selection
rule and dependence structure, and contrast it with the BY procedure. To complement
our validity results, we also show that the e-BY procedure is unimprovable in some notions
— Section 4 shows that the e-BY procedure has sharp control of the FCR and Section 5
shows that e-BY is admissible among a general class of e-CI reporting procedures. Lastly, we
compare the empirical behavior of the e-BY and BY procedures on simulations in Section 6
and real user metric data from A/B testing experiments at Twitter in Section 7.

2 Confidence intervals obtained via e-values (e-CIs)

E-CIs are are referred to “warranty sets” by Shafer [24] in the context of game-theoretic
statistics, and Vovk and Wang [30] defined a similar notion under the name of an e-confidence
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region, although their version allows for thresholds smaller than 1. Recent work has shown that
e-CIs are pertinent to or arise naturally in many settings. For example, universal inference [34]
allows us to construct e-CIs for estimation of certain parameters in nonparametric and high-
dimensional settings where the only requirement is having access to the likelihood functions
for each null distribution. For sequential testing and estimation problems, e-processes, the
sequential counterpart of e-values, play a central role in constructing time-uniform versions
of CIs, known as confidence sequences [22, 16, 35, 32]. Further, many classical statistical
tools already construct e-CIs, since they are implicitly using e-values or e-processes under the
hood e.g. likelihood ratio tests and Chernoff methods [15]. Hence, limiting ourselves to e-CIs
does not restrict the regime we may perform efficient inference in. In some cases, e-CIs might
be the best tool we have for the job. For example, when estimating the mean of bounded
random variables, the e-CIs in Waudby-Smith and Ramdas [35] are empirically among the
tightest known CIs for sequential estimation of the mean; see also [20]. On the other hand,
when we are in a setting where e-CIs are not the default choice of CI, one can calibrate any
CI into an e-CI. In fact, we can demonstrate that the BY procedure is a special case of
the e-BY procedure through calibration. We elaborate on a couple of the aforementioned
examples below.

2.1 E-CIs from universal inference

A particularly useful method for constructing e-CIs is through universal inference [34].
Universal inference is a generalization of the standard likelihood ratio test that allows for
testing against composite null hypotheses. Hence, e-CIs formed through universal inference
only require access to likelihood functions (or a function that upper bounds the likelihood
functions) for each possible distribution.

The simplest form of the universal inference e-CI can be derived from the split likelihood
ratio test of Wasserman et al. [34]. Assume that we are given 𝐴1, . . . , 𝐴2𝑛 i.i.d. samples.
We first split this sample into two datasets 𝐷0 and 𝐷1 — for simplicity we can assume
that the two datasets are of equal sizes of 𝑛 samples, although they do not have to be. Let
P1 ∈ 𝒫 be some distribution that we choose based solely on 𝐷1. In essence, P1 is a guess of
the “most likely alternative” and chosen to make the resulting e-value as large as possible.
Consequently, the more accurately P1 models the true distribution, the tighter the resulting
e-CI will be. Let ℒ0(P) denote the likelihood of 𝐷0 under a distribution, P. We define the
universal inference e-value as follows:

𝐸UI(𝜃) :=
ℒ0(P1)

argmaxP0∈𝒫𝜃
ℒ0(P0)

. (2)

Proposition 2 (Split universal inference e-CI [34]). For any parameter 𝜃 ∈ Θ, 𝐸UI(𝜃) is an
e-value w.r.t. to 𝜃 for any choice of procedure that derives P1 from 𝐷1. Consequently, the
following set is a valid e-CI associated with 𝐸UI:

𝐶UI(𝛼) :=

{︂
𝜃 :

ℒ0(P1)
argmaxP0∈𝒫𝜃

ℒ0(P0)
<

1

𝛼

}︂
.

As a result, universal inference ensures that a nontrivial e-CI exists in any situation where
the likelihood (or an upper bound on it) is known. In many settings, universal inference
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remains the only method for deriving nontrivial tests and CIs e.g. estimating the number of
mixtures in a Gaussian mixture model when the dimension is greater than 1.

2.2 E-CIs from stopped confidence sequences

In the sequential setting, we assume that we receive samples of data, 𝐴1, 𝐴2, . . ., in a stream.
The goal is to produce a CI that is valid when the number of samples is data dependent,
i.e., the user has the option to continuously monitor the data and continue or stop sampling
based on the values observed so far. A typical sampling strategy is for a scientist to stop
sampling as soon as she has evidence to reject the null hypothesis. Ramdas et al. [21] showed
that any admissible sequence of CIs that is valid under adaptive sampling must be an e-CI.

Denote the sigma-algebra formed at each time step that contains all the random samples
seen so far as ℱ𝑡 := 𝜎({𝐴𝑖}𝑖≤𝑡), with (ℱ𝑡)𝑡∈N being the corresponding filtration. A random
variable 𝜏 ∈ N is a stopping time if I {𝜏 = 𝑡} is measurable w.r.t. ℱ𝑡. This means that
whether 𝜏 “stops” at time 𝑡 ∈ N can only depend on (𝐴1, . . . 𝐴𝑡). Since samples arrive one at
a time, we can consider a sequence of intervals (𝐶𝑡(𝛼)), where 𝐶𝑡(𝛼) is the CI we construct
after collecting 𝑡 samples. However, a sequence of (1− 𝛼)-CIs cannot guarantee that the CI
at a stopping time, 𝐶𝜏 (𝛼), is also a (1−𝛼)-CI. In fact, Howard et al. [16] provide simulations
showing that the coverage probability can be drastically less than (1− 𝛼). Thus, we want to
strengthen the definition of a standard CI by providing a coverage guarantee at stopping
times, as opposed to only fixed sample sizes.

Definition 3. A (1 − 𝛼)-confidence sequence for a functional 𝜗 is a sequence of intervals
(𝐶𝑡(𝛼))𝑡∈N such that 𝐶𝜏 (𝛼) is an (1−𝛼)-CI for any stopping time 𝜏 . It also has the following
equivalent definition [21, Lemma 2]: for any P ∈ 𝒫 and 𝛼 ∈ [0, 1], we have

PP(𝜗(P) ∈ 𝐶𝑡(𝛼) for all 𝑡 ∈ N) ≥ 1− 𝛼.

The formulation of a CS in the above definitions emphasizes the time-uniform coverage a
CS provides — a CS ensures the probability 𝜃* is in the CS at every time step is high. One
way to construct such an object is using a family of e-processes, which are the sequential
versions of the e-values.

Definition 4. Let the index set I be N or (0,∞). An e-process w.r.t. to some filtration
(ℱ𝑡)𝑡∈I and set of distributions 𝒬 is defined as a sequence of random variables (𝐸𝑡)𝑡∈I which
are all nonnegative under any P ∈ 𝒬 and satisfy supP∈𝒬 EP[𝐸

𝜏 ] ≤ 1, i.e., 𝐸𝜏 is an e-value
w.r.t. 𝒬, for all stopping times 𝜏 w.r.t. (ℱ𝑡).

For recent literature relevant to e-processes, see [12, 21, 15, 16]. E-processes are a superset
of nonnegative supermartingales (one can see nonnegative supermartingales are e-processes as
a result of the optional stopping theorem). Thus, a sequence of intervals constructed through
applying the formula in (1) to a family of e-processes (𝐸𝑡(𝜃))𝑡∈N is a CS. For example, the
following is a Hoeffding-esque e-process for testing the mean of a bounded random variable
[14, 35]:

𝐸𝑡
Hoef(𝜃) := exp

(︃
𝑡∑︁

𝑖=1

𝜆𝑖(𝐴𝑖 − 𝜃)− 𝜆2
𝑖

8

)︃
,
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where (𝜆𝑡) is predictable w.r.t. (ℱ𝑡) , i.e., 𝜆𝑡 is measurable w.r.t. ℱ𝑡−1 for all 𝑡 ∈ N. We can
define a two-sided e-CI based on (𝐸𝑡

Hoef(𝜃)) as follows:

𝐶𝑡
Hoef(𝛼) :=

⎛⎜⎜⎜⎝
𝑡∑︀

𝑖=1
𝜆𝑖𝐴𝑖

𝑡∑︀
𝑖=1

𝜆𝑖

±
log(2/𝛼) + 1

8

𝑡∑︀
𝑖=1

𝜆2
𝑖

𝑡∑︀
𝑖=1

𝜆𝑖

⎞⎟⎟⎟⎠ .

Notice that setting 𝜆𝑡 =
√︀
log(2/𝛼)/𝑛 recovers the classic Hoeffding CI [14] for the specific

sample size of 𝑛 ∈ N and fixed 𝛼 ∈ [0, 1]. We discuss how to optimize these parameters in the
post-selection inference setting where there are multiple potential values of 𝛼 in Appendix E.

Another implication of the above formulation is that the e-process view allows one
to extend the coverage guarantee of existing CIs to be valid sequentially. This coverage
improvement is not only applicable to Hoeffding’s, but also a wide range of Chernoff type
inequalities [15, 16, 32]. Similarly, the universal inference e-CI formulated in (2) can also be
extended to a sequential form, where P1 may be recomputed at each time step based on the
previously observed samples. For bounded random variables, one can construct e-processes
that directly correspond to the wealth process of a sequence of fair gambles [35]. Since
e-CIs are necessary for sequential inference, the e-BY procedure is a strict improvement
over the BY procedure in settings that allow for adaptive sampling and stopping such as in
multi-armed bandits and the A/B testing setting we discuss in Section 7.

2.3 E-CIs constructed from CIs through calibration

Although the definition of an e-CI is much more specific than a general CI, we will present a
method for calibrating arbitrary marginal CIs to e-CIs using a method for p-value to e-value
calibration [31, 23, 26, 25, 29].

Definition 5. A calibrator is a nonincreasing, upper semicontinuous function 𝑓 : [0, 1] →
[0,∞] where

∫︀ 1
0 𝑓(𝑥) 𝑑𝑥 ≤ 1.

Define 𝑓−1 to be the dual of the calibrator 𝑓 , i.e., 𝑓−1(𝑥) := sup{𝑝 : 𝑓(𝑝) ≥ 𝑥}. When
𝑓 is invertible, 𝑓−1 is the inverse of 𝑓 . Using 𝑓−1, we can convert any CI to an e-CI.
Also we define two properties about any set-valued CI function 𝐶 : [0, 1] ↦→ 2Θ. Let 𝐶 be
nonincreasing if, for any 𝛼, 𝛽 ∈ [0, 1], 𝛼 ≤ 𝛽 implies that 𝐶(𝛼) ⊇ 𝐶(𝛽). Further, define
continuous from below to be the property that for any 𝛼 ∈ [0, 1], 𝐶(𝛼) =

⋃︀
𝛽>𝛼

𝐶(𝛽).

Theorem 1. Let 𝐶 : [0, 1] ↦→ 2Θ be a nonincreasing function that is continuous from below
such that 𝐶(𝛼) produces a (1−𝛼)-CI, and 𝑓 be a calibrator (with dual calibrator 𝑓−1). Then,
the following set is a (1− 𝛼)-e-CI:

𝐶cal(𝛼) = 𝐶

(︂
𝑓−1

(︂
1

𝛼

)︂)︂
.
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We provide a proof of Theorem 1 in Appendix A.1. As a consequence of this theorem,
we can construct a nontrivial e-CI from any nontrivial CI and a dual calibrator. Of course,
this prompts the question: when should one use e-CIs with the e-BY procedure instead of
CIs with the BY procedure? Generally speaking, the calibrated e-CI will be looser than the
original CI, since 𝑓(𝑥) = 1/𝑥 is not a calibrator. However, we show in Section 3 that applying
e-BY to calibrated e-CIs is actually equivalent to applying the BY procedure to the original
CIs when the selection rule is unknown or the original CIs are dependent. Thus, calibrating
CIs to e-CIs creates e-CIs across all parameters, in the case where some parameters initially
do not have e-CIs.

3 The e-BY procedure

Now, we formally define the e-BY procedure as follows.

Definition 6. The e-BY procedure at level 𝛿 ∈ [0, 1] sets 𝛼𝑖 = 𝛿|𝒮|/𝐾 for each 𝑖 ∈ 𝒮.

We show that a FCR bound can be proven quite simply given the fact that e-CIs are
constructed for each selected parameter.

Theorem 2. Let 𝐶𝑖(𝛼) be a (1− 𝛼)-e-CI for each 𝑖 ∈ [𝐾] and 𝛼 ∈ [0, 1]. Then, the e-BY
procedure in Definition 6 ensures FCR ≤ 𝛿 for any 𝛿 ∈ (0, 1) under any dependence structure
between 𝑋1, . . . , 𝑋𝐾 , and any selection rule S.

Proof. We directly show an upper bound for the FCR as follows:

FCR = E
[︂∑︀

𝑖∈𝒮 I {𝜃*𝑖 /∈ 𝐶𝑖(𝛿|𝒮|/𝐾)}
|𝒮| ∨ 1

]︂
= E

[︃∑︀
𝑖∈[𝐾] I {𝐸𝑖(𝜃

*
𝑖 )|𝒮|𝛿/𝐾 > 1} · I {𝑖 ∈ 𝑆}
|𝒮| ∨ 1

]︃

≤
∑︁
𝑖∈[𝐾]

E
[︂
𝐸𝑖(𝜃

*
𝑖 )|𝒮|𝛿

𝐾(|𝒮| ∨ 1)

]︂
=
∑︁
𝑖∈[𝐾]

𝛿

𝐾
E
[︂
𝐸𝑖(𝜃

*
𝑖 ) ·

|𝒮|
|𝒮| ∨ 1

]︂
≤ 𝛿,

where I {·} is the indicator function. The first inequality is because I {𝑥 > 1} ≤ 𝑥 for all
𝑥 ≥ 0. The second inequality is a result of the definition of the e-value for 𝜃*𝑖 having its
expectation under P* be upper bounded by 1. This achieves our desired bound.

Remark 1. FCR control of the e-BY procedure implies FDR control of the e-BH procedure
[33], while the converse is not true. The arbitrary nature of 𝒮 is unique to the post-selection
inference problem (as e-BH can only reject “self-consistent” [6] sets of hypotheses), and
defining the concept of e-CIs is key to achieving FCR control. We expand on the relationship
between these procedures in Appendix B and visualize their relationships in Figure 6. We
also introduce a directional variant of e-BH that uses the FCR control of the e-BY procedure
to achieve directional FDR control in Appendix B.3.
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False coverage control for data-dependent 𝛿. An interesting result of this proof is
that we retain a form of control on the FCP even if 𝛿 is chosen data dependently. Define
FCP(𝛿′) to be the FCP of a post-selection inference procedure at level 𝛿′.

Corollary 1. The following is always true for the e-BY procedure (regardless of selection
rule or dependence in X):

E

[︃
sup

𝛿′∈(0,1]

FCP(𝛿′)

𝛿′

]︃
≤ 1. (3)

Here, FCP(𝛿′) is FCP of the e-BY procedure at level 𝛿′ , i.e., 𝛼𝑖 = 𝛿′|𝒮|/𝐾 for all 𝑖 ∈ 𝒮.

Satisfying (3) is a stronger condition than FCR control, since (3) implies FCR control for
any fixed 𝛿 ∈ [0, 1]. This error guarantee follows from an argument similar to the proof of
Theorem 2. When testing 𝐾 hypothesis to control the false discovery rate, we note that a
similar result for the false discovery proportion (FDP) of the e-BH procedure is implied by
this corollary:

E

[︃
sup

𝛿′∈(0,1]

FDP(𝛿′)

𝛿′

]︃
≤ 1.

This can also be observed directly from the proof of e-BH and we include the details in
Appendix B.2 for completeness. When specialized to a single hypothesis test, the latter
observation amounts to saying that for any e-value 𝐸, we have

E

[︃
sup

𝛿′∈(0,1]

I {𝐸 ≥ 1/𝛿′}
𝛿′

]︃
≤ 1,

which is captured in [33, Lemma 1]. One can view the post-hoc type-I safety discussed by
Grünwald [11] and post-hoc validity of Koning [18] as a rephrasing of this latter result.

3.1 Comparison with the BY procedure

The FCR guarantee for e-BY in Theorem 2 solely relies on the definition of an e-CI. Since
the expectation property of e-values holds regardless of the type of dependence, proving FCR
control of e-BY does not require fine grained analysis of how the distribution of an e-value
changes when conditioned on other e-values. On the other hand, the BY procedure does
require more detailed analysis because its proof only uses the marginal coverage property
of each CI. Hence, the BY algorithm requires different levels of corrections based on the
dependence structure and selection rule.

Definition 7. The BY procedure at level 𝛿 ∈ [0, 1] sets 𝛼𝑖 = 𝛿𝑅min
𝑖 /𝐾 if 𝑋1, . . . 𝑋𝐾 are

independent (or PRDS [3]), 𝑅min
𝑖 , as formulated in (4), is known, and 𝑅min

𝑖 > |𝒮|/ℓ𝐾 .
Otherwise, it sets 𝛼𝑖 = 𝛿|𝒮|/(𝐾ℓ𝐾).

Fact 1 (Theorems 1 and 4 from BY [3]). The BY procedure ensures that FCR ≤ 𝛿.

12



A key difference in the tightness of CIs between the e-BY and BY procedures is how the
selection rule affects the confidence levels chosen for the CIs. In the e-BY procedure, the
confidence levels are proportional to |𝒮|, the number of selected parameters. On the other
hand, the BY procedure requires knowledge of 𝑅min

𝑖 , which is formulated as follows for each
𝑖 ∈ 𝒮:

𝑅min
𝑖 := min {|S(X𝑖→𝑥𝑖)| : 𝑥𝑖 ∈ 𝒳𝑖, 𝑖 ∈ S(X𝑖→𝑥𝑖)}, (4)

where X𝑖→𝑥𝑖 ∈ 𝒳 is the data X with the 𝑖th component set to 𝑥𝑖.

Computing 𝑅min
𝑖 requires knowledge and analysis of the selection rule Clearly,

𝑅min
𝑖 is a quantity that has to be calculated from the selection rule, S. In practice, however,

𝑅min
𝑖 may be impossible to calculate. The selection rule may not be fully specified or the

counterfactual behavior of the selection rule may be difficult to analyze. Post-selection
inference is often used for exploratory data analysis in the sense described by Goeman and
Solari [10]. Hence, the selection rule is often not known by the scientist ahead of time — she
is developing her selection plan on the fly as she explores the data! Another common scenario
is that scientist carrying out the experiment, performing analysis, and ultimately producing
the CIs may not be the one deciding upon the selection to report e.g. the scientist’s manager
makes the decision. In either case, the selection rule is not known. As an aside, the e-BY
procedure can also be used by the manager in the prior example to produce CIs herself, since
she does not need to know the experimental design and dependencies in the data to construct
CIs using the e-BY procedure. Further, even if the selection rule was known beforehand,
it still might be difficult to analyze 𝑅min

𝑖 . For example, the selection procedure could be
iterative: at each iteration, the scientist considers a selection set, observes some property of
the CIs produced by the e-BY procedure for the candidate selection set and then selects a
new candidate selection set based on her observations. Eventually, the scientist may finalize
the selection set based on some sort of convergence criteria. In this selection scheme, the full
procedure is not specified, and quite difficult to specify since it requires knowing what the
scientist would do at every iteration if experimental data were different. Thus, it is often
impractical to assume 𝑅min

𝑖 is known.
The other main advantage of the e-BY procedure can be seen when the dependence

between CIs is arbitrary — there is a clear gap between the confidence levels for the BY
procedure and the e-BY procedure. The BY procedure requires an extra correction of
ℓ𝐾 ≈ log𝐾 on the error probability under arbitrary dependence, while the e-BY procedure
behaves the same way under any form of dependence. Thus, if the CIs are e-CIs, the e-BY
procedure yields tighter CIs than the BY procedure when the data is arbitrarily dependent
or the selection rule is unknown or has 𝑅min

𝑖 ≤ |𝒮|/ℓ𝐾 .

3.2 BY is special case of e-BY through e-CI calibration

By using a specific calibrator with the method for calibrating CIs into e-CIs discussed in
Section 2.3, we can show that the BY procedure (with no assumptions on dependence or
selection rule) is a special case of the e-BY procedure. Define the following calibrator when
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there are 𝐾 hypotheses and the desired FCR control is 𝛿:

𝑓BY(𝛼,𝐾)(𝑥) :=
𝐾

𝛼

(︂⌈︂
𝑥

𝛼/(𝐾ℓ𝐾)

⌉︂
∨ 1

)︂−1

I {𝑥 ≤ 𝛼/ℓ𝐾} .

Proposition 3. 𝑓BY(𝛿,𝐾) is an upper semicontinuous calibrator for all 𝛿 ∈ (0, 1) and 𝐾 ∈ N.

Proof. Clearly, 𝑓BY(𝛿,𝐾) is nonincreasing, and we note that:∫︁ 1

0
𝑓BY(𝛿,𝐾)(𝑥) 𝑑𝑥 =

𝐾∑︁
𝑗=1

𝛿

𝐾ℓ𝐾
· 𝐾
𝑗𝛿

=
1

ℓ𝐾

𝐾∑︁
𝑗=1

1

𝑗
= 1.

Hence, we proved that 𝑓BY(𝛿,𝐾) satisfies the properties to be a calibrator.

By our result in Theorem 1, we can now show that the e-BY procedure with 𝑓BY(𝛿,𝐾)

calibrated e-CIs is identical to the BY procedure under arbitrary dependence.

Corollary 2. For any arbitrary CI constructors, denoted as 𝐶𝑖 : [0, 1] ↦→ 2Θ𝑖 for each
𝑖 ∈ [𝐾], that are continuous from below. The BY procedure produces the same CIs as the
e-BY procedure with e-CI constructors 𝐶cal

𝑖 that were calibrated through 𝑓BY(𝛿,𝐾) for each
𝑖 ∈ [𝐾].

Note that one take the limit from below at every 𝛼 ∈ [0, 1] of a nonincreasing CI
constructor 𝐶 to create a CI constructor 𝐶 ′ that is continuous from below. 𝐶 ′ has valid
coverage and is no wider than the original 𝐶 for every 𝛼, so the continuity from below is
only a technical requirement.

The above corollary follows from the fact that Theorem 1 and the choice of 𝑓BY(𝛿,𝐾) as
calibrator implies the following:

𝐶𝑖

(︂
𝛿𝑗

𝐾ℓ𝐾

)︂
= 𝐶cal

𝑖

(︂
𝑓BY(𝛿,𝐾)−1

(︂
𝐾ℓ𝐾
𝛿𝑗

)︂)︂
= 𝐶cal

𝑖

(︂
𝛿𝑗

𝐾

)︂
for all 𝑗 ∈ [𝐾].

Thus, the output of the BY procedure is equivalent to the output of the e-BY procedure
with calibrated e-CIs for all possible sizes of the selection set 𝒮. As a result, in a situation
where there may be a mix of e-CIs and regular CIs that are arbitrarily dependent and the
regular CIs, one can always calibrate the regular CIs to e-CIs using 𝑓BY(𝛿,𝐾) and then apply
the e-BY procedure to produce CIs that are as tight as directly applying the BY procedure.

Remark 2. We have not compared other calibrators, mostly because there is no uniformly
best choice of calibrator to use: different ones will perform better in different settings. We
recommend using the BY calibrator by default. The BY calibrator is a natural choice since
it allows the resulting output of the e-BY procedure on calibrated CI to be no worse than
the BY procedure (under dependence or unknown selection rule). It is also exact, in the
sense for the resulting e-CI, the e-value corresponding to the true value of the parameter,
𝐸(𝜃*), will have an expectation exactly equal to 1 if the original CI has exact coverage.

We have not defined admissibility for CI calibrators, but we conjecture that for some
suitable definition, the BY calibrator we introduce is an admissible CI calibrator of CIs into
e-CIs (since the corresponding p-to-e value calibrator is admissible). Furthermore, it is well
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suited to use with the e-BY procedure, since e-BY only produces CIs with error levels at
multiples of 𝛿/𝐾 — we also conjecture that it is admissible among CI calibrators w.r.t. to
the tightness of CIs produced by e-BY. We think it is likely that the BY calibrator is the
only calibrator that allows one to produce CIs that were never worse than BY, making it a
good default choice.

4 FCR control of e-BY is sharp

To complement our upper bound on the FCR, we demonstrate the FCR bound is indeed
sharp for the e-BY procedure by formulating a setting where the FCR is arbitrarily close to
𝛿. First, let R− and R+

0 denote the negative and nonnegative reals, respectively. Now, let

𝑍𝑡
𝑖 (𝜃) = 1 +𝑊 𝑡

𝑖 − 𝜃𝑡 for each 𝜃 ∈ R−, 𝑡 ∈ R+
0 , and 𝑖 ∈ [𝐾],

where (𝑊 𝑡
𝑖 )𝑡∈R+

0
is a Brownian motion with drift 𝜃*𝑖 (unknown to the scientist) and volatility

1. Define (𝐸𝑡
𝑖 (𝜃))𝑡∈R+

0
as the process obtained by stopping (𝑍𝑡

𝑖 )𝑡 when it hits 0:

𝐸𝑡
𝑖 (𝜃) = 𝑍𝑡

𝑖 (𝜃) I

{︂
inf

𝑠∈[0,𝑡]
𝑍𝑠
𝑖 (𝜃) > 0

}︂
.

Assume that (𝑊 𝑡
𝑖 ) are independent across 𝑖 ∈ [𝐾]. Clearly, (𝐸𝑡

𝑖 (𝜃
*
𝑖 )) is a nonnegative

martingale (and an e-process) for 𝜃*𝑖 , since a Brownian motion is a martingale, and stopped
martingales are martingales as well. We imagine the scientist to be interested in estimating
parameters whose true value 𝜃*𝑖 is positive, and she uses the following experimentation setup
and selection rule to do so. Fix 𝛾 ∈ [1, 1/𝛿) as the threshold for the processes (𝐸𝑡

𝑖 (0)) to be
seen as “interesting” (and chosen for further experimentation) but not yet conclusive.

We consider a two-step procedure. In the first step, we stop the 𝑖-th experiment at time

𝜏𝑖 := inf{𝑡 ≥ 0 : 𝑊 𝑡
𝑖 ≥ 𝛾 − 1 or 𝑊 𝑡

𝑖 ≤ −1},

and we select 𝑆 such that 𝑖 ∈ 𝑆 if and only if 𝑊 𝜏𝑖
𝑖 (0) ≥ 𝛾 − 1 (i.e., 𝐸𝜏𝑖

𝑖 (0) ≥ 𝛾). That is, we
select 𝑖 such that 𝑊 𝑡

𝑖 + 1 = 𝐸𝑡
𝑖 (0) reaches 𝛾 (interesting) before it reaches 0 (discarded). In

other words, the set 𝒮 contains all interesting experiments in the first screening. If 𝛾 = 1
then we simply select all experiments. Let 𝛽 = 𝐾/(𝛿|𝒮|) > 𝛾. Note that 𝛽 is a function
of 𝒮. (Here the index 𝑡 of 𝑊 𝑡

𝑖 does not necessarily represent time, and it does not have to
synchronize across 𝑖 ∈ [𝐾]. The scientist can finish all step 1 experiments before moving on
with the selected ones for step 2.)

In the second step, define another stopping time for the 𝑖-th experiment:

𝜂𝑖 = inf{𝑡 ≥ 0 : 𝑊 𝑡
𝑖 ≥ 𝛽 − 1 or 𝑊 𝑡

𝑖 ≤ −1}.

That is, we will stop the experiment if either 𝐸𝑡
𝑖 (0) reaches a very high level 𝛽 or it is

discarded. Note that 𝜂𝑖 > 𝜏𝑖 for 𝑖 ∈ 𝒮 and 𝜂𝑖 = 𝜏𝑖 for 𝑖 ̸∈ 𝒮, meaning that we only continue
those experiments that were deemed as interesting in the first step. As a result, {𝐸𝜂𝑖

𝑖 (𝜃)}𝜃∈Θ
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forms a family of e-values for each 𝑖 ∈ 𝒮, and we can define the following one-sided e-CIs:

𝐶𝑖(𝛼) :=

{︂
𝜃 ∈ R : 𝐸𝜂𝑖

𝑖 (𝜃) <
1

𝛼

}︂
=

{︂
𝜃 ∈ R : 1 +𝑊 𝜂𝑖

𝑖 − 𝜃𝜂𝑖 <
1

𝛼
or inf

𝑠∈[0,𝜂𝑖]
1 +𝑊 𝑠

𝑖 − 𝜃𝑠 ≤ 0

}︂
=

(︃
min

(︃
1 +𝑊 𝜂𝑖

𝑖 − 1
𝛼

𝜂𝑖
, inf
𝑠∈[0,𝜂𝑖]

1 +𝑊 𝑠
𝑖

𝑠

)︃
,∞

)︃
. (5)

Theorem 3. Let e-CIs be specified by (5). Then, lim
𝜃*↑0

FCR = 𝛿 , i.e., limit of FCR for the

e-BY procedure approaches 𝛿 as 𝜃* approaches 0 (all zero vector) from below.

A full proof of this theorem can be found in Appendix A.2.

Remark 3. The other source of looseness of the FCR bound in Theorem 2 is in the relationship
between selection event of each parameter and the e-value of the true parameter, i.e., 𝐸𝑖(𝜃

*
𝑖 ).

In this example, we can see that the selection rule and the true value of 𝜃* are conflicting
in some sense. The scientist wants to select parameters with positive values, so when the
parameters are actually all negative values, the CI for a selected parameter will probably not
cover the corresponding true value 𝜃*𝑖 . We discuss this further in Appendix D and observe
some small improvements we may make on the e-BY procedure under stronger assumptions
about the e-CIs.

Remark 4. While the Brownian motion data generating process in our setup is stylized, it
does reflect some realistic aspects of sequential data collection. The early stopping rule that
halts as soon as an e-CI shows significance, and the selection of promising experiments for
further testing, are both natural strategies for sequential experimentation (e.g., two stage
designs, follow up studies). Hence, depending on the relationship between selection rule and
the true value of the parameters (as illustrated in our example), it is plausible that the true
FCR could be close to the FCR bound.

On the other hand, the design of the parameters in this example is highly adversarial:
𝜃* needs to be very close to 0 from below to approach this upper FCR bound. Therefore,
in practice, we do not always expect the FCR of e-BY to be close to its upper bound, but
the bound is still unimprovable in general.

5 Admissibility of the e-BY procedure

Not only does the e-BY procedure provide sharp error guarantees, it is also admissible w.r.t.
a general class of e-CI post-selection inference methods. We will formally define the universe
of CI reporting procedures that e-BY belongs to, i.e., procedures which report a CI for the
true value of each selected parameter. We will show that, among CI reporting procedures
that control the FCR when given e-CIs, there exists no other procedure that produces strictly
tighter CIs on selected parameters than e-BY. To prove this, we define a notion of dominance
for FCR controlling CI reporting procedures, and prove that e-BY is indeed admissible among
this set of procedures.
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Our notion of admissibility essentially requires that there is no FCR controlling procedure
that produces narrower CIs on all the selected parameters uniformly over all possible inputs
of e-CIs (by narrower, we mean at least as narrow on all instances, but strictly narrower on
at least one instance). To develop our formalisms, we will first describe a notion of an e-CI
constructor, i.e., a function that maps an error level 𝛼 to its corresponding (1− 𝛼)-e-CI.

5.1 Key properties of all e-CIs

Recall that the (1− 𝛼)-e-CI associated with a family of e-values {𝐸(𝜃)}𝜃∈Θ is given by

𝐶(𝛼) =

{︂
𝜃 ∈ Θ : 𝐸(𝜃) <

1

𝛼

}︂
, for each 𝛼 ∈ [0, 1], (6)

where the convention 1/0 = ∞ is used. Note that it is important to formulate the e-CI by using
the strict inequality 𝐸(𝜃) < 1/𝛼 instead of 𝐸(𝜃) ≤ 1/𝛼. Otherwise all admissibility arguments
fail, since one could always improve from {𝜃 ∈ Θ : 𝐸(𝜃) ≤ 1/𝛼} to {𝜃 ∈ Θ : 𝐸(𝜃) < 1/𝛼},
as smaller CIs are statistically stronger. We define an e-CI constructor as the collection of
e-CIs for each error level 𝛼 ∈ [0, 1].

Definition 8. Let E := {𝐸(𝜃)}𝜃∈Θ be a family of e-values for a parameter that takes values
in Θ. The corresponding e-CI constructor is the function 𝐶E : [0, 1] → 2Θ which is defined
as:

𝐶E(𝛼) =

{︂
𝜃 ∈ Θ : 𝐸(𝜃) <

1

𝛼

}︂
, for each 𝛼 ∈ [0, 1].

It is important to note that 𝐶E we define above is a random function. We have not
separated designations for random variables or functions and their realizations in this paper
before, but we emphasize their distinction in this section. This distinction allows us to define
the domain of realizations of e-CI, which in turn, is used to the notion of a CI reporting
procedure.

Denote by the set ECI(Θ) the set of possible realizations of e-CI constructors for the
parameter space Θ, that is, 𝐶 ∈ ECI(Θ) iff 𝐶 is a possible realization of an e-CI constructor
𝐶E for some family of e-values E = {𝐸(𝜃)}𝜃 via (6) under some probability P ∈ 𝒫 . We abuse
vocabulary in this section and refer to the e-CI constructor, 𝐶, as an “e-CI” as well. ECI(Θ)
captures the domain of allowed input of realized e-CIs, similar to [0, 1]𝐾 for input p-values
and [0,∞]𝐾 for input e-values in multiple testing. It is important to formally describe
ECI(Θ) as it will be used as part of the domain of CI reporting procedures that we discuss
later.

Lemma 1. For a set function 𝐶 : [0, 1] ↦→ 2Θ, 𝐶 ∈ ECI(Θ) if and only if 𝐶 is nonincreasing
and continuous from below.

We provide the proof in Appendix A.3. We see from Lemma 1 that ECI(Θ) is precisely
the set functions from [0, 1] to 2Θ which are decreasing and continuous from below; note
that these properties are common for any CI. In other words, for a given CI which may be
computed with other methods than e-values, we cannot exclude the possibility that it is an
e-CI just by looking at the CI.
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Lemma 2. For a given 𝐶 ∈ ECI(Θ), it is realized by the family of e-values {𝐸(𝜃)}𝜃 if and
only if 𝐸(𝜃) takes the value 𝐸(𝜃) = 𝑡(𝜃) whenever 𝐸(𝜃) ≥ 1 for all 𝜃 ∈ Θ, where 𝑡 is given
in (10).

This is a direct consequence of (6) and (11). Due to Lemma 2, for any family of e-values
for Θ and 𝜃 ∈ Θ, the probability of realizing 𝐶 ∈ ECI(Θ) is at most 1/𝑡(𝜃) for 𝑡 given in
(10).

5.2 CI reporting procedures

Next, fix 𝐾 parameter spaces Θ := (Θ1, . . . ,Θ𝐾) of interest. ECI𝐾 denotes the set of all
𝐾-tuples of realizations of e-CIs, C = (𝐶𝑖)𝑖∈[𝐾], for the true values of these parameters (we
omit the parameter spaces in ECI𝐾 since they are fixed from now on). Define 2Θ :=

∏︀𝐾
𝑖=1 2

Θ𝑖

as the product space of the power set of each parameter’s range. Using Lemma 1, ECI𝐾 is
the collection of C : [0, 1] → 2Θ whose components are nonincreasing and continuous from
below. Now, we define a notion of a CI reporting procedure.

Definition 9. A CI reporting procedure Φ : [𝐾] × ([0, 1] → 2Θ) → 2Θ takes a selected set
of indices 𝑆 ⊆ [𝐾] and the collection of e-CIs, C = (𝐶1, . . . , 𝐶𝐾) ∈ ECI𝐾 , as input and it
outputs a vector of intervals, Φ(𝑆,C) ∈ 2Θ, satisfying

(a) Φ(𝑆,C)𝑖 = ∅ for all 𝑖 ̸∈ 𝑆.

(b) Φ(𝑆,C) = Φ(𝑆,C′) if C𝑆 = C′
𝑆 where C𝑆 = (𝐶𝑖)𝑖∈𝑆 ; that is, for a selected set of

indices 𝑆, if two input vectors of CIs are identical for indices in 𝑆, then Φ does not
distinguish them.

Restriction (a) is a simplifying assumption since the purpose of CI reporting procedures
is to provide CIs for parameters in the selected set 𝑆. Hence, we just report the empty set
for unselected parameters. The above restriction (b) does not seem to be dispensable from
the proof of admissibility which we provide later (see Remark 6 in Appendix A.4). It is a
reasonable assumption: all the CIs that are discarded or uninteresting should not affect how
we report the selected CIs. Both the e-BY and the weighted version of the e-BY procedure
(which we introduce and describe in Appendix C) satisfy this requirement.

In a statistical experiment, let E𝑖 := {𝐸𝑖(𝜃)}𝜃∈Θ𝑖
denote the family of e-values used to

construct e-CIs for 𝜃*𝑖 . C are realizations of the e-CIs corresponding to the families of e-values
E := (E𝑖)𝑖∈[𝐾] via

𝐶E
𝑖 (𝛼) := 𝐶E𝑖(𝛼) =

{︂
𝜃 ∈ Θ𝑖 : 𝐸𝑖(𝜃) <

1

𝛼

}︂
for each 𝛼 ∈ [0, 1], 𝑖 ∈ [𝐾].

Let CE := (𝐶E
1 , . . . , 𝐶

E
𝐾) denote the random vector of e-CIs that arise from E. Recall

that a CI reporting procedure only has access to the realized selected set and the e-CIs,
i.e., 𝑆 and C, respectively but not the random e-CIs CE themselves. The FCR of the CI
reporting procedure Φ for the selection 𝒮, vector of e-value families E, and true parameters
𝜃*1 ∈ Θ1, . . . , 𝜃

*
𝐾 ∈ Θ𝐾 is given by

FCR(Φ) = E

[︃∑︀
𝑖∈𝒮 I

{︀
𝜃*𝑖 ̸∈ Φ(𝒮,CE)𝑖

}︀
|𝒮| ∨ 1

]︃
,
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where the expectation is taken under the true distribution P*.
A CI reporting procedure Φ has FCR level 𝛿 ∈ [0, 1] if FCR(Φ) ≤ 𝛿 for any selection 𝒮,

e-value families E, and true values of parameters 𝜃*.

Definition 10 (Dominance). We say that the CI reporting procedure Φ dominates another
one Φ′ if Φ(𝑆,C)𝑖 ⊆ Φ′(𝑆,C)𝑖 for each 𝑖 ∈ 𝑆, i.e., Φ produces narrower CIs for all parameters
in 𝑆 than the CIs produced by Φ′, for all 𝑆 ⊆ [𝐾] and C ∈ ECI𝐾 , and strictly dominates if
further there exists 𝑖 ∈ 𝑆 s.t. Φ(𝑆,C)𝑖 ( Φ′(𝑆,C)𝑖 for some 𝑆 ⊆ [𝐾] and C ∈ ECI*𝐾 where
ECI*𝐾 is the set of all C ∈ ECI𝐾 with strictly decreasing components.

Now, that we have a notion of dominance between e-CI reporting procedures, we can
define admissibility.

Definition 11 (Admissible CI reporting procedure). A CI reporting procedure with FCR
level 𝛿 ∈ (0, 1) is admissible if it is not strictly dominated by any CI reporting procedure
with FCR level 𝛿.

Theorem 4. The e-BY procedure at level 𝛿 ∈ (0, 1) is an admissible CI reporting procedure
with FCR level 𝛿.

We defer the proof of this theorem to Appendix A.4. Further, using the same arguments
as in the proof of Theorem 4, we can also show that a weighted version of the e-BY procedure,
defined in Appendix C, is also admissible.

6 Numerical simulations

To understand the practical difference in the precision of the BY procedure and the e-
BY procedure, we conducted simulations in two different data settings. The first is a
nonparametric setting, where we only make the assumption that the data is bounded. In the
second setting, we simulate the sharp FCR scenario for e-BY described in Section 4, where
the data are stopped Brownian motions.

6.1 Bounded setting

We wish to estimate 𝐾 different means in this setting. For each 𝑖 ∈ [𝐾], let 𝑋𝑖 ∈ [−1, 1] be a
bounded random variable of interest, and let X𝑖 = (𝑋1

𝑖 , . . . , 𝑋
𝑛
𝑖 ) represent 𝑛 i.i.d. draws from

the distribution of 𝑋𝑖. Thus, the 𝑖th parameter of interest is 𝜃*𝑖 = E[𝑋𝑖]. The distribution of
𝑋𝑖 is standard normal distribution truncated to [−𝜎, 𝜎] that is normalized to be supported
on [−1, 1]. We set 𝜎 = 100.

Let our desired level of FCR control be 𝛿 = 0.1. The selection rule selects all parameters
with p-values less than 𝛿. Let ̂︀𝜃𝑖 denote the sample mean of 𝑋1

𝑖 , . . . , 𝑋
𝑛
𝑖 for each 𝑖 ∈ [𝐾].

Our p-value of choice for the 𝑖th parameter is 𝑃𝑖 = (2 exp(−̂︀𝜃2𝑖 /(2𝑛))) ∧ 1. Such 𝑃𝑖 is a
two-sided p-value for bounded random variables derived from Hoeffding’s inequality that
tests the null hypothesis 𝐻𝑖 : 𝜃

*
𝑖 = 0 for each 𝑖 ∈ [𝐾].
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Figure 3: Comparison of the FCR and average CI width for the BY vs. the e-BY procedure
in the bounded setting. We also plot the average number of parameters selected (i.e., |𝒮|)
for each 𝐾. “BY-wA” refers to the BY procedure under the assumptions that the CIs are
independent (or PRDS) and 𝑅min

𝑖 = |𝒮|, while “BY-woA” is with no assumptions. The
average CI width of the e-BY procedure is nearly the same as the BY procedure with
assumptions, and both are vastly tighter than BY with no assumptions.

The CI for the BY procedure, and the e-CI for the e-BY procedure as defined as follows:

𝐶𝑖(𝛼) :=

(︃̂︀𝜃𝑖 ±√︂2 log(2/𝛼)

𝑛

)︃
,

𝐶𝑖(𝛼) :=

(︃̂︀𝜃𝑖 ±√︂2 log(2/𝛼)

𝑛
· log(2/𝛼) + log(4/𝛿)

2
√︀
log(2/𝛼) log(4/𝛿)

)︃
.

These two CIs are equivalent when 𝛼 = 𝛿/2 — both are derived from Hoeffding’s inequality.
We compare three different post-selection inference methods: the e-BY procedure, the BY
procedure with both an independence and 𝑅min

𝑖 = |𝒮| assumption (which is satisfied in this
setting), and the BY procedure without any assumptions. We refer to the BY procedure
with the assumptions as “BY-wA”, and the BY procedure without assumptions as “BY-woA”.

Results In Figure 3, we see that e-BY and BY-wA have nearly the same expected width.
On the other hand, BY-woA has a much larger expected width since it is uniformly dominated
by BY-wA. This is a setting where one should use the BY-wA procedure for post-selection
inference, since there is no dependence. However, if the selection rule or dependence is
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unknown beforehand, one can safely use the e-BY procedure, and attain CIs that are nearly
as tight as the ones obtained through BY-wA.

6.2 Stopped Brownian motion setting

We also simulate the sharp FCR setting from Section 4 for different true drift parameters,
𝜃*𝑖 = 𝜃* for all 𝑖 ∈ [𝐾], and number of parameters, 𝐾 to compare the e-BY and BY procedures
under a setting where the dependence structure and selection rule is more complex. In
this setting, the assumptions of the BY procedure are not satisfied — the 𝑋𝑖 are neither
independent nor PRDS across 𝑖 ∈ [𝐾]. Hence, BY-wA does not have guaranteed FCR control
in this setting. We compare the procedures on choices of 𝐾 ∈ {10, 30, 100, 300, 1000} and
𝜃* ∈ {10−1, 10−2, 10−3}. We set 𝛿 = 0.05 and 𝛾 = 2. The Brownian motion processes, (𝑊 𝑡

𝑖 )
for each 𝑖 ∈ [𝐾], are discretized into time steps of size 10−5. We use the e-CI formulated in
(5) for the e-BY procedure and its running intersection and for the BY procedure.
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-0.1 -0.01 -0.001Figure 4: Comparison of the e-BY procedure vs. the BY procedure for the stopped Brownian
motion setting. In this setting, all CIs produced are one-sided, and 𝜃* < 0, so we desire
the average lower boundary to be as large as possible. The e-BY procedure and the BY-wA
procedure have tight FCR as 𝜃* ↑ 0 and vastly higher average lower boundaries than the
the BY-woA procedure. BY-woA has extremely conservative (nearly 0) FCR control.

Results In Figure 4, we plot the empirical FCR and average CI lower bound (since the CIs
are all one-sided) of each method for different values of the true parameter 𝜃*. Although it
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has no theoretical guarantees, BY-wA has an empirical FCR that is under 𝛿 for all experiment
parameters. The e-BY procedure, which does have an FCR guarantee, also has FCR control,
and has an average lower CI endpoint that is nearly as large as BY-wA. On the other
hand, BY-woA has an extremely conservative empirical FCR and produces much smaller
average lower CI endpoint than the other two methods. This reflects the best-of-both worlds
behavior of the e-BY procedure in practice — e-BY has provable FCR control and CI widths
comparable to the tightest possible widths produced by BY.

Thus, the e-BY procedure provides FCR control and CIs competitive with the BY
procedure while requiring minimal assumptions. We will next show that this is also the case
when using the e-BY procedure on real world data from A/B testing.

7 Application: decision making in A/B testing

One natural application of post-selection inference is in A/B testing — A/B testing is the use
of randomized control trials to decide which features (among many) have a positive impact on
users and should be shipped with the product. This method is typically used by information
technology companies to determine whether a new version of a software product improves
over the current version on certain user metrics. Each A/B test is run in a sequential fashion,
where users are continually being added to the experiment over time. The goal of an A/B
test is to stop as quickly as possible and allow the data scientist to make a confident decision
about which version of software to ship based on estimates of the population mean of the
user metrics. The e-BY procedure fits the A/B testing setup well for two key reasons: (1)
the measurements of different metrics have a complex dependence structure since multiple
measurements are made of a single user, and (2) the setup of the A/B testing is already
sequential, so e-CIs, specifically stopped CSes, should already be the default for inference on
each metric.

To simulate the behavior of data scientists choosing metrics to justify shipping decisions,
we derive a selection method from the criteria for justifying shipping decisions of a single
team within Twitter, a large information technology company. The shipping criteria provides
guidelines for which combinations of metrics for which the difference between the treatment
and control versions need to be statistically significant in a favorable direction, and which
metrics that should not be significant in an unfavorable direction. We implemented a
simplified version of this shipping criteria to be our selection method. Hence, our selection
rule is the same across both procedures, and we are simply testing how the choice of
post-selection inference procedure affects when the shipping criteria is considered satisfied.

A/B testing dataset from Twitter. We compare the e-BY procedure vs. the BY
procedure on a a dataset of actual A/B testing experiments from Twitter in a 1.5 year period
and ran for at least two weeks. There are a total of 263 experiments in this dataset. Each
of these experiments kept track of all 15 metrics (𝐾 = 30 since we treating the control
and treatment versions of each metric as separate parameters) that were necessary for the
shipping criteria at the daily level.

Since the user data is collected sequentially in these experiments, we use the following
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CS from Waudby-Smith et al. [36] for the e-BY procedure:

𝐶𝑖
𝑡(𝛼) =

(︃̂︀𝜇𝑡
𝑖 ± 1.7

√︂̂︀𝜎2
𝑖,𝑡 ·

log log(2𝑡) + 0.72 log(5.2/𝛼)

𝑡

)︃
,

where ̂︀𝜇𝑡
𝑖 and ̂︀𝜎2

𝑖,𝑡 are the empirical mean and variance, respectively, of 𝑖th metric for the first
𝑡 users. This is an asymptotic CS , i.e., the boundaries approach that of a true CS as the
sample size increases under similar conditions as the central limit theorem for a traditional
fixed-time asymptotic CI [36]. Since the sample size in these experiments are on the order of
106 users even on the first day, this asymptotic CS is very close to the true CS boundary.
We use 𝐶𝑖

𝑡 = ∩𝑡
𝑖=1𝐶

𝑖
𝑡 , i.e., the intersection of all intervals so far for the BY procedure.

Figure 5: Results of the e-BY procedure vs. the BY procedure on the real Twitter A/B
testing data across different levels of 𝛿 ∈ [0, 1] for each procedure. The left figure depicts the
total number of experiments where each procedure satisfied shipping criterion. The right
figure depicts the average number of days an experiment ran before the procedure satisfied
the shipping criteria. The set of experiments where the e-BY procedure satisfies shipping
criteria is a strict superset of the set where the BY procedure satisfies shipping criteria (since
e-BY dominates BY under dependence). Hence, the average number of days to satisfying
the criteria is calculated over only the experiments for which the BY (and e-BY) procedure
satisfied the shipping criteria. .

Results. The results of our analysis in Figure 5 show that the e-BY procedure is better
than the BY procedure in both number of experiments where a shipping decision can be
justified, and the average time within each experiment to have sufficient evidence to satisfy
the shipping criteria. For example, for a reasonable level of FCR control of 𝛿 = 0.1, the
e-BY procedure justified shipping decisions for 127 experiments — 5 more than 122 for the
BY procedure. Note that the set of experiments where shipping was justified by the e-BY
procedure is a superset of the experiments that the BY procedure justified shipping for.
Consequently, we can also compare the average number of days before a shipping decision is
justified for the e-BY and BY procedures, by taking the average over the experiments that the
BY procedure justified shipping decisions on. We see that the the e-BY procedure took 1.2
days on average to satisfy the shipping criteria — 0.3 days less than the BY procedure which
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took on average 1.5 days. Clearly, the tightness of the e-BY procedure makes a practical
impact on the efficiency of A/B testing.

8 Conclusion

We have shown that the e-BY procedure is a versatile method for controlling FCR in
post-selection inference and improves inference in a broad class of settings. While e-BY is
restricted use only on e-CIs, universal inference and stopped confidence sequences [34, 15, 16]
are already e-CIs. Further, the e-BY procedure maintains FCR control with no assumptions
on the dependence structure or selection rule, and produces CIs with widths that are never
larger (and usually smaller) than those of the BY procedure. In addition, we demonstrated
that the e-BY procedure is optimal for e-CIs in some sense, as the FCR bound it guarantees
is sharp, and that it is admissible in the domain of e-CI reporting procedures.

With respect to the utility of e-CIs, we observe that most of the tightest CIs we can
construct in nonparametric and sequential settings are already e-CIs. In the sequential setting,
we showed that the e-BY procedure produces practically useful CIs for justifying shipping
decisions on data from real A/B tests. In addition, we discuss how to construct nontrivial
e-CIs in any settings where CIs exist in Section 2.3: we extend the p-to-e calibration methods
introduced by Vovk [31] to calibrating arbitrary CIs into e-CIs.

In this vein, an important direction for future study is to understand in what settings are
the effectively tightest CIs also e-CIs. In many settings (e.g. Gaussian) where the exact (often
asymptotic) distribution of a statistic under each parameter is known and identical across
parameters, the tightest CIs (e.g. CI based on Gaussian CDF) are not e-CIs. On the other
hand, e-CIs are often the only kind of CI we can construct when we are testing complicated
composite nulls. Particularly in sequential settings where we desire an anytime-valid e-CI,
Ramdas et al. [21] have shown that e-CIs are nearly admissible. Hence, further study of
e-CIs would improve the utility of the e-BY procedure.

Acknowledgements We would like to thank Umashanthi Pavalanathan and Luke Sonnet
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their help in gathering and releasing the data from Twitter used in our experiments.
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Appendix

The appendix is organized as follows. We provide all the proofs we had omitted in the body
of the main paper in Appendix A, in order of their mention in the paper. Appendix B
describes explicit connections between the post-selection inference procedures described
in this paper for FCR control with FDR controlling procedures for multiple testing. We
then present a weighted version of the e-BY procedure in Appendix C. To complement
our previous discussion of admissibility, we also describe an improvement we can make
to the e-BY procedure in Appendix D if we discard some of the restrictions made on CI-
reporting procedures. We highlight the difference between conventional Chernoff based CIs
and Chernoff e-CIs in Appendix E by introducing a notion of generalized e-CIs — this notion
was applied in our simulations in the bounded setting in Section 6.1. Lastly, we discuss the
advantages of FCR and how FCR relates to other error metrics that could be considered for
the post-selection inference problem in Appendix F.

A Proofs

We produce the proofs that we had omitted in the main body of the paper in this section.

A.1 Proof of Theorem 1

We first note that Definition 5 implies that 𝑓(𝑃 ) is an e-value for any calibrator 𝑓 and
p-value 𝑃 — even if 𝑃 is uniformly distributed.

To connect this idea with CIs, observe that the “dual” form of a CI is a p-value — a
CI represents a collection of hypothesis tests for a fixed type I error (i.e., confidence level)
across a set of hypotheses. In essence, it is the set of hypotheses that would not be rejected
at some fixed level 𝛼 with the current realization of the sampled data. In contrast, a p-value
represents a collection of hypothesis tests for a fixed hypothesis, but across different rejection
levels 𝛼. Here, the p-value itself is the type I error of the test with the smallest rejection
level that rejects the fixed null hypothesis.

Definition 12. A p-value 𝑃 for a set of distributions 𝒬 is a random variable supported on
[0, 1] that satisfies the following:

sup
P∈𝒬

PP(𝑃 ≤ 𝛼) ≤ 𝛼 for all 𝛼 ∈ [0, 1].
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Thus, we can calibrate the implicit p-value associated with every CI constructing procedure
to an e-value, and then produce the e-CI associated with the e-value to calibrate from a CI
to an e-CI.

Let 𝐶(𝛼) produce a (1− 𝛼) CI for any 𝛼 ∈ [0, 1]. Consequently, for a fixed parameter
𝜃 ∈ Θ, the following is a p-value for the set 𝒬𝜃 := {P ∈ 𝒫 : 𝑇 (P) = 𝜃}:

𝑃 dual(𝜃) := inf {𝛼 ∈ [0, 1] : 𝜃 ̸∈ 𝐶(𝛼)} .

Consequently,
𝐸cal(𝜃) := 𝑓(𝑃 dual(𝜃))

forms a family of e-values. Hence,

𝐶cal(𝛼) :=

{︂
𝜃 ∈ Θ : 𝐸cal(𝜃) <

1

𝛼

}︂
is a (1−𝛼)-e-CI. To show the equality between 𝐶cal and 𝐶, we make the following observations.

𝐶cal(𝛼) =

{︂
𝜃 ∈ Θ : 𝐸cal(𝜃) <

1

𝛼

}︂
=

{︂
𝜃 ∈ Θ : 𝑓(𝑃 dual(𝜃)) <

1

𝛼

}︂
(i)
=

{︂
𝜃 : 𝑃 dual(𝜃) > max

{︂
𝑝 : 𝑓(𝑝) ≥ 1

𝛼

}︂}︂
=

{︂
𝜃 : 𝑃 dual(𝜃) > 𝑓−1

(︂
1

𝛼

)︂}︂
(ii)
= 𝐶

(︂
𝑓−1

(︂
1

𝛼

)︂)︂
.

The equality at (i) is a result of 𝑓 being nonincreasing and upper semicontinuous at 1/𝛼.
Hence the supremum is achieved and the equality holds. Similarly, the equality at (ii) is
because 𝐶 is nonincreasing and continuous from below at 𝑓−1 (1/𝛼). If 𝑃 dual(𝜃) = 𝑓−1 (1/𝛼),
then 𝜃 ̸∈ 𝐶𝑖(𝑃

dual(𝜃)) by 𝐶 being continuous from below.

A.2 Proof of Theorem 3

To prove the sharpness of the above situation, we require the following fact about Brownian
motions.

Fact 2 (Borodin and Salminen 9, p.223, equation 2.1.2). Let (𝑊𝑡)𝑡∈R+
0

be a Brownian motion
with drift 𝜇 and initial value 𝑥. Define stopping times 𝜏𝑎 := inf{𝑡 ≥ 0 : 𝑊𝑡 ≥ 𝑥 + 𝑎}, and
𝜏 𝑏 := inf{𝑡 ≥ 0 : 𝑊𝑡 ≤ 𝑥− 𝑏}, where 𝑎, 𝑏 > 0. Then,

P
(︁
𝜏𝑎 < 𝜏 𝑏

)︁
= 𝑓(𝜇, 𝑎, 𝑏) := 1− 𝑒−𝜇𝑏 sinh(|𝜇|𝑎)

sinh(|𝜇|(𝑎+ 𝑏))
.
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We note that 𝑓(𝜇, 𝑎, 𝑏) is increasing in 𝜇 since the larger the drift term, the more likely
that the Brownian motion hits the upper boundary 𝑥+ 𝑎. Moreover,

lim
𝜇↑0

𝑓(𝜇, 𝑎, 𝑏) = 1− lim
𝜇↑0

𝑒−𝜇𝑏 𝑒|𝜇|𝑎 − 𝑒−|𝜇|𝑎

𝑒|𝜇|(𝑎+𝑏) − 𝑒−|𝜇|(𝑎+𝑏)
= 1− 𝑎

𝑎+ 𝑏
=

𝑏

𝑎+ 𝑏
, (7)

which recovers the simple case in which 𝜇 = 0 (i.e., the case that the Brownian motion is
a martingale). Only the above properties of 𝑓 (not its precise formula) will be used in the
result below.

Using Fact 2, for 𝑖 ∈ [𝐾], the probability that 𝑊𝑖 hits 𝛾 − 1 before hitting −1 is given by

P (𝑊 𝜏𝑖
𝑖 = 𝛾 − 1) = 𝑓(𝜃*𝑖 , 𝛾 − 1, 1).

We can compute the mean of |𝒮| as

E[|𝒮|] = E

⎡⎣∑︁
𝑖∈[𝐾]

I {𝑊 𝜏𝑖
𝑖 = 𝛾 − 1}

⎤⎦
=
∑︁
𝑖∈[𝐾]

P(𝑊 𝜏𝑖
𝑖 = 𝛾 − 1) =

∑︁
𝑖∈[𝐾]

𝑓(𝜃*𝑖 , 𝛾 − 1, 1). (8)

For 𝑖 ∈ 𝒮, using Fact 2 again and noting that 𝑊 𝜏𝑖
𝑖 = 𝛾 − 1, we have

P (𝑊 𝜏𝑖
𝑖 = 𝛽 − 1 | 𝒮) = 𝑓(𝜃*𝑖 , 𝛽 − 𝛾, 𝛾). (9)

Let us suppose that 𝜃*𝑖 < 0 for each 𝑖 ∈ [𝐾] (but this is not known to the scientist); that
is, 𝑋𝑖(0) is a strict supermartingale. In this case, 𝐸𝑖(0) = 𝛽 only if 𝐸𝑖(𝜃

*
𝑖 ) > 𝛽.

Recall that 𝐶𝑖(𝛼) = {𝜃 ∈ Θ : 𝐸𝑖(𝜃) < 1/𝛼}. We can now compute FCR, using (9), as

FCR = E
[︂∑︀

𝑖∈𝒮 I {𝜃*𝑖 ̸∈ 𝐶𝑖(1/𝛽)}
|𝒮| ∨ 1

]︂
= E

[︂
E
[︂∑︀

𝑖∈𝒮 I {𝐸𝑖(𝜃
*
𝑖 ) ≥ 𝛽}

|𝒮| ∨ 1
| 𝒮
]︂]︂

= E

[︃∑︁
𝑖∈𝒮

P (𝐸𝑖(𝜃
*
𝑖 ) ≥ 𝛽 | 𝒮)

|𝒮| ∨ 1

]︃

≥ E

[︃∑︁
𝑖∈𝒮

P (𝐸𝑖(0) = 𝛽 | 𝒮)
|𝒮| ∨ 1

]︃
= E

[︂∑︀
𝑖∈𝒮 𝑓(𝜃*𝑖 , 𝛽 − 𝛾, 𝛾)

|𝒮| ∨ 1

]︂
.

Obviously, FCR is a function of 𝜃* := (𝜃1, . . . , 𝜃𝐾). We consider the situation where 𝜃*𝑖 ↑ 0
(i.e., 𝜃*𝑖 approaches 0) for each 𝑖 ∈ [𝐾], denoted by 𝜃* ↑ 0. By applying (7), we get

𝑓(𝜃*𝑖 , 𝛽 − 𝛾, 𝛾) ↑ 𝛾

𝛽
=

𝛿|𝒮|𝛾
𝐾

,

as 𝜃*𝑖 ↑ 0. Moreover, when 𝜃* ↑ 0, (7) and (8) together yield

E𝜃* [|𝒮|] ↑ 𝐾

𝛾
,
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where we emphasize that the expectation is taken with respect to 𝜃* (which varies). Using
the above results and the monotone convergence theorem, we get

lim
𝜃*↑0

E𝜃*

[︂∑︀
𝑖∈𝒮 𝑓(𝜃*𝑖 , 𝛽 − 𝛾, 𝛾)

|𝒮| ∨ 1

]︂
= lim

𝜃*↑0
E𝜃*

[︂
𝛿|𝒮|𝛾
𝐾

I {|𝒮| > 0}
]︂

= lim
𝜃*↑0

E𝜃*

[︂
𝛿|𝒮|𝛾
𝐾

]︂
= 𝛿.

Since the FCR is upper bounded by 𝛿 as a result of using the e-BY procedure (Theorem 2),
we have shown our desired statement.

Remark 5. From the analysis above, we can see that the value 𝛿 of FCR of e-BY is sharp
when 𝜃* approaches 0 from below. Since both convergences in the above computation are
monotone in 𝜃*, we have, in general, that FCR ≤ 𝛿 for 𝜃* ≤ 0. On the other hand, if some
𝜃*𝑖 > 0, then 𝐸𝑖(𝜃

*
𝑖 ) < 𝐸𝑖(0) ≤ 𝛽, and hence P (𝐸𝑖(𝜃

*
𝑖 ) > 𝛽) = 0, leading also to a smaller

FCR for the above procedure. (If one chooses a sightly larger threshold 𝛽 > 𝐾/(𝛿|𝒮|), then
the scenario 𝜃* ≈ 0 with 𝜃* ≥ 0 also has an FCR close to 𝛿.)

The independence of the e-processes is only used in (9) in the second step. This condition
can be weakened to the independence between the e-processes in step 1 and their increment
processes in step 2. The independence assumption does not reduce the FCR, at least not in
an obvious way.

A.3 Proof of Lemma 1

We first show the “only if" statement. Suppose that 𝐶 ∈ ECI(Θ) with associated e-value 𝐸.
It is clear that 𝐶 is nonincreasing. To show its continuity from above, note that 𝐸(𝜃) < 1/𝛼
if and only if 𝐸(𝜃) < 1/𝛽 for some 𝛽 > 𝛼. Therefore, we have

⋃︀
𝛽>𝛼𝐶(𝛽) = 𝐶(𝛼), and thus

𝐶 is continuous from below.
We next show the “if" statement. Let the function 𝑡 : Θ → [0,∞] be given by

𝑡(𝜃) = sup

{︂
1

𝛼
: 𝛼 ∈ [0, 1), 𝜃 ̸∈ 𝐶(𝛼)

}︂
, (10)

where the convention is sup ∅ = 1 (because we can always set 𝐶(1) = ∅ so that 𝜃 ̸∈ 𝐶(1) In
the two extreme cases, if 𝐶(𝛼) is Θ on [0, 1), then 𝑡(𝜃) = 1 for each 𝜃, and if 𝐶(𝛼) is ∅ on
[0, 1), then 𝑡(𝜃) = ∞ for each 𝜃.

Since 𝐶 is nonincreasing and continuous from below, (10) implies 𝜃 ̸∈ 𝐶(𝑡(𝜃)). Thus, we
get the following equivalence:

𝑡(𝜃) <
1

𝛼
⇐⇒ 𝜃 ∈ 𝐶(𝛼). (11)

Let 𝑈 be a standard uniform random variable under each of the parameter 𝜃 ∈ Θ, and define

𝐸(𝜃) = 𝑡(𝜃)I

{︂
𝑈 <

1

𝑡(𝜃)

}︂
, 𝜃 ∈ Θ.

It is clear that 𝐸(𝜃) ≥ 0 and E𝜃[𝐸(𝜃)] = 1, and (6) holds if 𝐸(𝜃) = 𝑡(𝜃) for each 𝜃 ∈ Θ,
which is a possible realization of 𝐸.
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A.4 Proof of Theorem 4

We fix a universal probability space P and parameter ranges Θ1, . . . ,Θ𝐾 .
We will proceed to prove Theorem 4 by contradiction. Suppose that there exists a CI

reporting procedure Φ which strictly dominates the e-BY procedure. That means for all
𝑆 ⊆ [𝐾] and C ∈ ECI𝐾 , Φ(𝑆,C)𝑖 ⊆ 𝐶𝑖(𝛿|𝑆|/𝐾), and

there exists some 𝑆 ⊆ [𝐾],C ∈ ECI𝐾 and 𝑖* ∈ 𝑆

s.t. Φ(𝑆,C)𝑖* ( 𝐶𝑖*(𝛿|𝑆|/𝐾).

From now on, fix the above (𝑆,C, 𝑖*) — these values will be key components for our
construction, which will result in a contradiction. Clearly, 𝑆 is not empty.

We assume that there exists random variables 𝐵𝒮 and 𝑈 in each P ∈ 𝒫 (the existence is
guaranteed by enlarging the probability space if needed) that are distributed as follows:

𝐵𝒮 ∼ Bern(|𝑆|/𝐾) and 𝑈 ∼ Uniform[0, 1],

and we let 𝐵𝒮 and 𝑈 be independent of each other.
We will show that FCR(Φ) > 𝛿 for some random selection 𝒮, vector of families of e-values

E = ({𝐸1(𝜃)}𝜃∈Θ1 , . . . , {𝐸𝐾(𝜃)}𝜃∈Θ𝐾
) and true values of parameters 𝜃* = (𝜃*1, . . . , 𝜃

*
𝐾). The

main work is to construct such a setting.
First, we define the distribution of our selection rule 𝒮. Let 𝑇 := [𝐾] ∖ 𝑆 be the

complement of 𝑆. We specify 𝒮 = 𝑆 if 𝐵𝒮 = 1 and 𝒮 = 𝑇 otherwise. Hence, under all
vectors of possible parameter values in Θ1 × · · · ×Θ𝐾 , 𝒮 has the following distribution:

P(𝒮 = 𝑆) = P(𝐵𝒮 = 1) = |𝑆|/𝐾, and P(𝒮 = 𝑇 ) = P(𝐵𝒮 = 0) = |𝑇 |/𝐾,

In the following, statements for 𝑖 ∈ 𝑇 can be ignored if 𝑇 is empty.
We briefly explain the main idea behind our construction. We first note that any

construction of E and 𝜃*, if the 𝑖-th component of Φ is equal to that of e-BY for all 𝑖 ̸= 𝑖*.
Then, for 𝑖 ∈ 𝒮 ∖ {𝑖*},

P
(︀
𝜃𝑖 ̸∈ Φ(𝒮,CE)𝑖, 𝒮 = 𝑆

)︀
= P

(︂
𝜃𝑖 ̸∈ 𝐶E

𝑖

(︂
𝛿|𝒮|
𝐾

)︂
, 𝒮 = 𝑆

)︂
≤ P

(︂
𝐸𝑖(𝜃𝑖) ≥

𝐾

𝛿|𝒮|

)︂
≤ 𝛿|𝒮|

𝐾
,

and for 𝑖 ∈ 𝑇 ,

P
(︀
𝜃𝑖 ̸∈ Φ(𝑇,CE)𝑖, 𝒮 = 𝑇

)︀
= P

(︂
𝜃𝑖 ̸∈ 𝐶E

𝑖

(︂
𝛿|𝑇 |
𝐾

)︂
, 𝒮 = 𝑇

)︂
≤ P

(︂
𝐸𝑖(𝜃𝑖) ≥

𝐾

𝛿|𝑇 |

)︂
≤ 𝛿|𝑇 |

𝐾
.

We will need to construct suitable E and 𝜃* such that all above inequalities hold as equalities
approximately by taking a limit, and for the index 𝑖* we have

P
(︀
𝜃𝑖* ̸∈ Φ(𝒮,CE)𝑖* , 𝒮 = 𝑆

)︀
>

𝛿|𝒮|
𝐾

+ 𝑐.
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where 𝑐 > 0 is a constant that does not shrink to 0 when we take a limit. If we are able to
achieve the above, then the FCR of Φ will be close to 𝛿 + 𝑐/|𝒮|.

Let us specify our choice of 𝜃*. First, take a small number 𝜖 ∈ (0, 1) which will later
shrink to 0.

(a) We take 𝜃*𝑖* ∈ 𝐶𝑖* (𝛿|𝒮|/𝐾)∖Φ(𝒮,C)𝑖* which is possible since Φ(𝒮,C)𝑖* ( 𝐶𝑖* (𝛿|𝒮|/𝐾).

(b) For 𝑖 ∈ 𝒮 ∖ {𝑖*}, we take 𝜃*𝑖 ∈ 𝐶𝑖 ((1− 𝜖)𝛿|𝒮|/𝐾) ∖𝐶𝑖 (𝛿|𝒮|/𝐾) , which is possible since
C is strictly decreasing.

(c) For 𝑖 ∈ 𝑇 , we take 𝜃*𝑖 ∈ 𝐶𝑖 ((1− 𝜖)𝛿|𝑇 |/𝐾) ∖ 𝐶𝑖 (𝛿|𝑇 |/𝐾) .

Note that by this construction, we have 𝜃*𝑖 ̸∈ Φ(𝒮,𝐶)𝑖 for each 𝑖 ∈ [𝐾]. Further, we can
arbitrarily select the true values for each parameter, 𝜃*, with the following construction
of our universe of probabilities 𝒫. We can let our universe of distributions contain joint
distributions over ((𝑈,𝐵𝒮 , 𝑌1), . . . (𝑈,𝐵𝒮 , 𝑌𝐾)) where 𝑌𝑖 is some random variable whose
distribution determines 𝜃*𝑖 for each 𝑖 ∈ [𝐾]. Let P𝑌𝑖 denote the marginal distribution of
𝑌𝑖 in P. We define 𝜗𝑖(P) = 𝜗𝑌𝑖(P𝑌𝑖), where 𝜗𝑌𝑖 : 𝒫𝑌𝑖 → Θ𝑖 is a functional that maps from
the universe marginal distributions of 𝑌𝑖, 𝒫𝑌𝑖 , to the parameter value space Θ𝑖. Since the
distribution of 𝐵𝒮 and 𝑈 are identical across any P ∈ 𝒫 , we can simply select some 𝜃 and let
P* = P𝜃, where P𝜃 is some distribution in 𝒫 with true values 𝜃 for its parameters.

For 𝑖 ∈ [𝐾], similarly to (10)-(11), define

𝑡𝑖(𝜃) = sup

{︂
1

𝛼
: 𝛼 ∈ [0, 1), 𝜃 ̸∈ 𝐶𝑖(𝛼)

}︂
;

this gives 𝑡𝑖(𝜃) <
1

𝛼
⇐⇒ 𝜃 ∈ 𝐶𝑖(𝛼). (12)

Next, we define some quantities concerning the true parameter 𝜃* = (𝜃*1, . . . , 𝜃
*
𝐾).

𝑟*𝑆 =
𝐾

𝛿|𝒮|
, 𝑡𝑆 := max

𝑖∈𝒮
𝑡𝑖(𝜃

*
𝑖 ) ∈

[︂
𝑟*𝑆 ,

𝑟*𝑆
1− 𝜖

)︂
,

𝑡*𝑆 := 𝑡𝑖*(𝜃
*
𝑖*) < 𝑟*𝑆 , ℓ𝑆 :=

𝑡𝑆 − 𝑡*𝑆
𝑟*𝑆

.

The variables marked with an asterisk (*) are not dependent on 𝜖 — only 𝑡𝑆 and ℓ𝑆
depend on 𝜖.

Let 𝑈 be a random variable that is standard uniform and independent of 𝒮 under all P𝜃′ ,
and the existence of such may be achieved by enlarging the probability space. Define the
random variables 𝑈𝑆 and 𝑈𝑇 indexed by 𝜃′ as follows.

𝑈𝑆(𝜃
′) :=

|𝒮|
𝐾

𝑈I {𝒮 = 𝑆}
(︂
I

{︂
𝑈 ≥ 𝐾

|𝒮|𝑡𝑆

}︂
∨ I
{︀
𝜃′ ̸= 𝜃*}︀)︂

+

(︂
|𝑇 |
𝐾

𝑈 +
|𝒮|
𝐾

)︂
I {𝒮 = 𝑇}

𝑈𝑇 :=
|𝑇 |
𝐾

𝑈I {𝒮 = 𝑇}+
(︂
|𝒮|
𝐾

𝑈 +
|𝑇 |
𝐾

)︂
I {𝒮 = 𝑆} .
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Note that 𝑈𝑆(𝜃
′) is 0 with probability 1/𝑡𝑆 and uniformly distributed between [1/𝑡𝑆 , 1]

under P𝜃′ otherwise if and only if 𝜃′ = 𝜃*. If 𝜃′ ̸= 𝜃*, then under P𝜃′ , 𝑈𝑆(𝜃
′) and 𝑈𝑇 are

both uniform random variables over [0, 1].
We are ready to define our e-values. We first define 𝐸𝑖* , which is the most sophisticated

object:

𝐸𝑖*(𝜃) = 𝑡𝑖*(𝜃)I

{︂
𝑈𝑆 <

1

𝑡𝑖*(𝜃) ∨ 𝑡𝑆

}︂
+ 𝑟*𝑆I

{︂
1

𝑡𝑆
≤ 𝑈𝑆 <

1 + ℓ(𝜃)

𝑡𝑆

}︂
I {𝑡𝑖*(𝜃) < 𝑡𝑆} ,

for all each 𝜃 ∈ Θ𝑖* , where

ℓ(𝜃) :=
𝑡𝑆 − 𝑡𝑖*(𝜃)

𝑟*𝑆
.

Clearly 𝐸𝑖* ≥ 0. It remains to show that, for each 𝜃 ∈ Θ𝑖* , the expectation is bounded
as E𝜃[𝐸𝑖*(𝜃)] ≤ 1. We proceed casewise on 𝑡𝑖*(𝜃). If 𝑡𝑖*(𝜃) ≥ 𝑡𝑆 , then

E𝜃[𝐸𝑖*(𝜃)] ≤ E𝜃

[︂
𝑡𝑖*(𝜃)I

{︂
𝑈𝑆 <

1

𝑡𝑖*(𝜃)

}︂]︂
= 1.

The inequality is simply by construction of 𝑈𝑆 — 𝑈𝑆 is uniform if 𝜃 is the true parameter
and 𝑡𝑖*(𝜃) > 𝑡𝑆 . When 𝑡𝑖*(𝜃) = 𝑡𝑆 , the following is still true: P (𝑈𝑆 < 1/𝑡𝑆) = 1/𝑡𝑆 . If
𝑡𝑖*(𝜃) < 𝑡𝑆 , then

E𝜃 [𝐸𝑖*(𝜃)] =
𝑡𝑖*(𝜃)

𝑡𝑆
+

𝑟*𝑆ℓ(𝜃)

𝑡𝑆
=

𝑡𝑖*(𝜃)

𝑡𝑆
+

𝑡𝑆 − 𝑡𝑖*(𝜃)

𝑡𝑆
= 1.

Note that the first equality is true again because 𝑈𝑆 always satisfies

P (𝑈𝑆 < 1/𝑡𝑆) = 1/𝑡𝑆

and is otherwise uniformly distributed among values greater than 1/𝑡𝑆 . Therefore, 𝐸𝑖* is
an e-value for Θ𝑖* . Note that in our choice of true parameters 𝜃*, we are always in the
𝑡𝑖*(𝜃

*
𝑖*) = 𝑡*𝑆 < 𝑡𝑆 case.

The other e-values are defined as

𝐸𝑖(𝜃) = 𝑡𝑖(𝜃)I

{︂
𝑈𝑆 <

1

𝑡𝑖(𝜃)

}︂
, 𝜃 ∈ Θ𝑖, 𝑖 ∈ 𝒮 ∖ {𝑖*},

and
𝐸𝑖(𝜃) = 𝑡𝑖(𝜃)I

{︂
𝑈𝑇 <

1

𝑡𝑖(𝜃)

}︂
, 𝜃 ∈ Θ𝑖, 𝑖 ∈ 𝑇.

It is straightforward to check that each 𝐸𝑖(𝜃) above is an e-value for 𝜃 ∈ Θ𝑖.
Now that we have defined our e-values, we will show there exists a distribution where the

FCR under CI-reporting procedure Φ will be strictly larger than 𝛿.
Note that by construction of 𝑈𝑆 and 𝑈𝑇 , we know the following:{︂

𝑈𝑆 ≤ |𝒮|
𝐾

}︂
= {𝒮 = 𝑆} and

{︂
𝑈𝑇 ≤ |𝑇 |

𝐾

}︂
= {𝒮 = 𝑇}. (13)
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By (12) and the construction of (𝜃*𝑖 )𝑖∈[𝐾], we have 𝑡𝑖*(𝜃
*
𝑖*) < 𝐾/(𝛿|𝒮|) as well as

𝐾

𝛿|𝒮|
≤ 𝑡𝑖(𝜃

*
𝑖 ) <

𝐾

(1− 𝜖)𝛿|𝒮|
for 𝑖 ∈ 𝒮 ∖ {𝑖*}

and
𝐾

𝛿|𝑇 |
≤ 𝑡𝑖(𝜃

*
𝑖 ) <

𝐾

(1− 𝜖)𝛿|𝑇 |
for 𝑖 ∈ 𝑇 . (14)

Putting the above ranges of 𝑡𝑖(𝜃*𝑖 ) together, using (13), we get{︂
𝑈𝑆 <

1

𝑡𝑖(𝜃*𝑖 )

}︂
⊆ {𝒮 = 𝑆} for all 𝑖 ∈ 𝒮 ∖ {𝑖*}

and
{︂
𝑈𝑇 <

1

𝑡𝑖(𝜃*𝑖 )

}︂
⊆ {𝒮 = 𝑇} for all 𝑖 ∈ 𝑇 . (15)

Moreover, As 𝜖 ↓ 0, we have 𝑡𝑆 ↓ 𝑟*𝑆 , and

ℓ𝑆 → ℓ*𝑆 := 1−
𝑡*𝑆
𝑟*𝑆

> 0.

The above construction of e-values leads to the important condition under true parameters
𝜃*, via (12),

𝑈𝑆 <
1

𝑡𝑆
=⇒ 𝐸𝑖(𝜃

*
𝑖 ) = 𝑡𝑖(𝜃

*
𝑖 ) for all 𝑖 ∈ 𝒮 =⇒ CE

𝑆 = C𝑆 . (16)

Recall that by construction, we have 𝜃*𝑖 ̸∈ Φ(𝒮,C)𝑖 for each 𝑖 ∈ 𝒮. Therefore, by using
(15) and (16), for 𝑖 ∈ 𝑆 ∖ {𝑖*},

P
(︀
𝜃*𝑖 ̸∈ Φ(𝒮,CE)𝑖, 𝒮 = 𝑆

)︀
≥ P

(︀
CE

𝑆 = C𝑆 , 𝒮 = 𝑆
)︀

≥ P
(︂
𝑈𝑆 <

1

𝑡𝑆
, 𝒮 = 𝑆

)︂
=

1

𝑡𝑆
. (17)

Further, by construction, we know that 𝑡*𝑆 < 𝑡𝑆 , so we have

P
(︀
𝜃*𝑖* ̸∈ Φ(𝒮,CE)𝑖* , 𝒮 = 𝑆

)︀
≥ P

(︀
CE

𝑆 = C𝑆 , 𝒮 = 𝑆
)︀
+ P

(︀
𝐸𝑖*(𝜃) ≥ 𝑟*𝑆 , CE

𝑆 ̸= C𝑆 , 𝒮 = 𝑆
)︀

≥ 1

𝑡𝑆
+ P

(︂
1

𝑡𝑆
≤ 𝑈𝑆 <

1 + ℓ𝑆
𝑡𝑆

)︂
=

1 + ℓ𝑆
𝑡𝑆

. (18)

Write
𝑟*𝑇 :=

𝐾

|𝑇 |𝛿
, and 𝑡𝑇 := max

𝑖∈𝑇
𝑡𝑖(𝜃

*
𝑖 ) ∈

[︂
𝑟*𝑇 ,

1

1− 𝜖
𝑟*𝑇

)︂
.

In case |𝑇 | = 0 the above quantities are set to ∞.
For 𝑖 ∈ 𝑇 , using Φ(𝒮,CE)𝑖 ⊆ 𝐶E

𝑖 (
𝛿|𝒮|
𝐾 ) and (14)-(15), we have

P
(︀
𝜃*𝑖 ̸∈ Φ(𝑇,CE)𝑖, 𝒮 = 𝑇

)︀
≥ P

(︂
𝜃*𝑖 ̸∈ 𝐶E

𝑖

(︂
𝛿|𝑇 |
𝐾

)︂
, 𝒮 = 𝑇

)︂
= P (𝐸𝑖(𝜃

*
𝑖 ) ≥ 𝑟*𝑇 , 𝒮 = 𝑇 )

≥ P
(︂
𝐸𝑖(𝜃

*
𝑖 ) ≥ 𝑟*𝑇 , 𝑈𝑇 <

1

𝑡𝑇
, 𝒮 = 𝑇

)︂
= P

(︂
𝑈𝑇 <

1

𝑡𝑇

)︂
=

1

𝑡𝑇
. (19)
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Putting (17), (18) and (19), together, we obtain

E

[︃∑︀
𝑖∈𝒮 I

{︀
𝜃*𝑖 ̸∈ Φ(𝒮,CE)𝑖

}︀
|𝒮| ∨ 1

]︃

= E

[︃∑︀
𝑖∈𝑆 I

{︀
𝜃*𝑖 ̸∈ Φ(𝒮,CE)𝑖

}︀
|𝑆| ∨ 1

I {𝒮 = 𝑆}

]︃

+ E

[︃∑︀
𝑖∈𝑇 I

{︀
𝜃*𝑖 ̸∈ Φ(𝑇,CE)𝑖

}︀
|𝑇 | ∨ 1

I {𝒮 = 𝑇}

]︃

≥ 1

|𝒮|

(︂
1 + ℓ𝑆
𝑡𝑆

)︂
+

1

|𝒮|
∑︁

𝑖∈𝑆∖{𝑖*}

1

𝑡𝑆
+

1

|𝑇 | ∨ 1

∑︁
𝑖∈𝑇

1

𝑡𝑇

=
ℓ𝑆

|𝒮|𝑡𝑆
+

1

𝑡𝑆
+

1

𝑡𝑇
.

Note that as 𝜖 ↓ 0, 𝑡𝑆 → 𝑟*𝑆 , 𝑡𝑇 → 𝑟*𝑇 , and ℓ𝑆 → ℓ*𝑆 > 0 by 𝑡*𝑆 < 𝑟*𝑆 . Therefore,

lim
𝜖↓0

ℓ𝑆
|𝒮|𝑡𝑆

+
1

𝑡𝑆
+

1

𝑡𝑇
=

ℓ*𝑆
|𝒮|𝑟*𝑆

+
1

𝑟*𝑆
+

1

𝑟*𝑇
>

𝛿|𝒮|
𝐾

+
|𝑇 |𝛿
𝐾

= 𝛿.

Thus, the FCR of the procedure Φ for our constructed setting is large than 𝛿. This shows
that the e-BY procedure is admissible.

Remark 6. From the proof of Theorem 4, we can see that the restriction (b) that Φ(𝒮,C) =
Φ(𝒮,C′) if C𝑆 = C′

𝑆 is important, because on the event 𝒮 = 𝑆, we only require CE
𝑆 =

C𝑆 , but not CE = C. In our construction, we actually have 𝐸𝑖(𝜃
*
𝑖 ) = 0 for 𝑖 ∈ 𝑇 on

the event {𝒮 = 𝑆}. Recall that we need many inequalities in the FCR formula to be
approximately equalities. The only way to produce precisely the event {CE = C, 𝒮 = 𝑆} is
through the event {𝐸𝑖 = 𝑡𝑖 for all 𝑖 ∈ [𝐾] and 𝒮 = 𝑆}, but for the approximation we need
E[𝐸𝑖I {𝒮 = 𝑇}] for 𝑡 ∈ 𝑇 to be arbitrarily close to 1, so it does not seem to be possible if we
“waste” 𝐸𝑖, 𝑖 ∈ 𝑇 to take positive values on the event 𝒮 = 𝑆.

Remark 7. The proof of Theorem 4 also justifies that e-BY has sharp FCR. To see this, for
Φ being e-BY and the setting constructed in the proof of Theorem 4 (omitting the special
treatment for 𝑖*), using (17) and (19), we get

P
(︀
𝜃*𝑖 ̸∈ Φ(𝒮,CE)𝑖, 𝒮 = 𝑆

)︀
≥ 1/𝑡𝑆 for 𝑖 ∈ 𝒮,

P
(︀
𝜃*𝑗 ̸∈ Φ(𝒮,CE)𝑗 , 𝒮 = 𝑇

)︀
≥ 1/𝑡𝑇 for 𝑗 ∈ 𝑇.

The rest is taking a limit, and we see that the e-BY procedure has an FCR arbitrarily close
to 𝛿 for this setting.

B Multiple testing procedures based on e-BY

We can derive procedures for the multiple testing problem directly from post-selection
inference procedures. We will discuss how that can be accomplished, and provide explicit
examples of such derivations. In the multiple testing problem, we wish to identify as many
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parameters that lie outside of a fixed null hypothesis as possible. Formally, the goal is to
determine whether 𝜃*𝑖 ∈ Θ0

𝑖 where Θ0
𝑖 ⊆ Θ𝑖 is the null hypothesis (as opposed to directly

estimating 𝜃*𝑖 ). Thus, for each 𝑖 ∈ [𝐾], we must output a decision of whether we reject the
null hypothesis 𝐻0

𝑖 : 𝜃*𝑖 ∈ Θ0
𝑖 or not. We denote set of indices where the null hypothesis is

rejected as ℛ. The null hypotheses in the rejection set (𝑖 ∈ ℛ and 𝐻0
𝑖 is true) are called

false discoveries. Analogous to the FCR, we wish to control the false discovery rate (FDR),
which is the expectation of the false discovery proportion (FDP) :

FDP :=

∑︀
𝑖∈ℛ

I
{︀
𝜃*𝑖 ∈ Θ0

𝑖

}︀
|ℛ|

, FDR := E[FDP].

In Figure 6, we depict how the e-BY and BY procedures subsume results about FDR
controlling multiple testing procedures as a special case. The multiple testing analog of the
BY procedure is the Benjamini-Hochberg (BH) procedure [1, 2], and BY showed that FCR
control of the BY procedure implies FDR control of the BH procedure. The same implication
between the e-BY procedure and the e-BH procedure [33]. Further, the e-BY procedure is
not a naive application of the e-BH procedure to the post-selection inference problem. In
fact, the e-BY procedure is a more powerful result than the e-BH procedure in the sense
that Theorem 2 implies FDR control for the e-BH procedure while the converse is not true.

e-BY (Theorem 2) e-BH (Fact 5) directional e-BH 
(Corollary 4)

BY (Fact 1) BH (Fact 3) directional BH  
(Corollary 3 of BY [3])

Corollary 3

Fact 4 

Prop. 4 

(Wang and 


Ramdas [34])
Corollary 2

False coverage rate (FCR) 
control

False discovery rate (FDR) 
control Directional FDR control

Figure 6: A diagram depicting the relationships between different procedures and their
guarantees for FCR control in post-selection inference, and FDR control in multiple testing.
The solid arrows signify that the target result is a special case of the source result. The
dashed line signifies that the part of the target result that assumes arbitrary dependence
between data is implied by the source result. This diagram illustrates how multiple testing
procedures with FDR guarantees are downstream consequence of procedures for the post-
selection inference problem with FCR guarantees.
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B.1 Benjamini-Hochberg (BH) is a special case of BY

BY showed that their procedure can be used to demonstrate FDR validity (i.e. provably
controls FDR under some fixed level 𝛿) of the BH procedure. However, the BH procedure
does not directly operate on CIs — instead it takes as input p-values i.e. 𝑃𝑖 denotes the
p-value for the 𝑖th null hypothesis for each 𝑖 ∈ [𝐾]. 𝑃𝑖 the superuniformity property under
the null: P (𝑃𝑖 ≤ 𝛼) ≤ 𝛼 for all 𝛼 ∈ (0, 1) if 𝜃*𝑖* ∈ Θ0

𝑖 .
The BH algorithm proceeds as follows. Let 𝑃1, . . . , 𝑃𝐾 be the set of p-values computed

from 𝑋1, . . . , 𝑋𝐾 for each hypothesis, and let 𝑃(1), 𝑃(2), . . . , 𝑃(𝐾) denote these p-values
ordered from smallest to largest. Define a quantity 𝐷(𝐾) := 𝐾 if the p-values corresponding
to true null hypotheses are independent, or satisfy a positive dependence condition (see [2])
and 𝐷(𝐾) := 𝐾ℓ𝐾 otherwise.

𝑘BH := max
{︀
𝑘 ∈ [𝐾] : 𝑃(𝑘) ≤ 𝛿𝑘/𝐷(𝐾)

}︀
∪ {0},

ℛBH := {𝑖 ∈ [𝐾] : 𝑃𝑖 ≤ 𝛿𝑘BH/𝐷(𝐾)} .

Fact 3 (BH procedure controls FDR [1, 2]). The BH procedure, which rejects the hypotheses
indexed by ℛBH, ensures FDR ≤ 𝛿.

BY observed that the BH procedure can actually be formulated completely in terms of
CIs and the BY procedure in the following fashion.

Fact 4 (Corollary 2 of BY). Let 𝒮 = ℛBH, and define the CIs as follows:

𝐶𝑖(𝛼) =

{︃
Θ𝑖 ∖Θ0

𝑖 if 𝑃𝑖 ≤ 𝛼

Θ𝑖 if 𝑃𝑖 > 𝛼
.

Recall that, by definition of ℛBH, 𝑃𝑖 ≤ 𝛿𝑘BH/𝐷(𝐾) for all 𝑖 ∈ ℛBH. When we apply
the BY procedure, we construct exactly 𝐶𝑖(𝛿𝑘BH/𝐷(𝐾)) = Θ𝑖 ∖ Θ0

𝑖 for each 𝑖 ∈ ℛBH. As
a result, a false discovery is made for the 𝑖th null hypothesis (𝜃*𝑖* ∈ Θ0) if and only if
𝜃*𝑖* ̸∈ 𝐶𝑖(𝛿𝑘BH/𝐾). Hence FDP = FCP and FDR = FCR. Consequently, the FCR guarantee
of the BY procedure in Fact 1 implies the BH guarantee of FDR ≤ 𝛿 in Fact 3.

Clearly, the BY procedure is a more powerful and general technique than the BH
procedure, which is essentially the BY procedure for a specific choice of CI and selection rule.
Hence, a guarantee on FDR by the BH procedure does not imply any guarantee on the FCR
the BY procedure, while the reverse implication does hold. We will see this paradigm also
play out between the e-BY procedure and its multiple testing analog, the e-BH procedure.

B.2 e-BH is a special case of e-BY

We will show this implication by reducing the multiple testing problem to an instance of
the post-selection inference problem. The e-BH procedure takes e-values E := (𝐸1, . . . , 𝐸𝐾)
as input, where 𝐸𝑖 is an e-value w.r.t. Θ0

𝑖 for each 𝑖 ∈ [𝐾]. Note that both e-BH and e-BY
impose no requirements about the dependence between the e-values and e-CIs, respectively.
Hence, 𝐸1, . . . , 𝐸𝐾 may be arbitrarily dependent.

Wang and Ramdas [33] show that FDR is controlled not only for e-BH, but for an entire
class of “self-consistent” procedures. For a multiple testing procedure 𝒟 : [0,∞)𝐾 ↦→ 2[𝐾]
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that takes e-values and outputs a rejection set ℛ, 𝒟 is self-consistent [6] if and only if it
satisfies the following property:

For any realization of e-values E ∈ [0,∞)𝐾 , 𝐸𝑖 ≥
𝐾

𝛿|𝒟(E)|
for every 𝑖 ∈ 𝒟(E). (20)

The e-BH procedure outputs the largest self-consistent set — consequently, any other self-
consistent set will be a subset of the rejection set output by the e-BH procedure.

Fact 5 (FDR control of self-consistent procedures [33]). Any self-consistent procedure 𝒟
that operates on e-values, i.e., that satisfies (20), ensures FDR ≤ 𝛿.

Corollary 3 (FCR control for e-BY implies FDR control for any self-consistent procedure).
Let 𝒟 be a self-consistent multiple testing procedure, and define the selected parameters to
correspond to the rejection set: 𝒮 = ℛ = 𝒟(E). Define a family of e-values 𝐸ind

𝑖 (𝜃) :=
𝐸𝑖 · I

{︀
𝜃 ∈ Θ0

𝑖

}︀
and let the e-CIs corresponding to this family be:

𝐶 ind
𝑖 (𝛼) :=

{︂
𝜃 ∈ Θ𝑖 : 𝐸

ind
𝑖 (𝜃) ≤ 1

𝛼

}︂
=

{︃
Θ𝑖 ∖Θ0

𝑖 if 𝐸𝑖 > 1/𝛼

Θ𝑖 if 𝐸𝑖 ≤ 1/𝛼
.

The e-BY procedure outputs 𝐶 ind
𝑖 (𝛿|𝒟(E)|/𝐾) = Θ𝑖 ∖Θ0

𝑖 for each 𝑖 ∈ 𝒟(E). Thus, the e-BH
procedure makes a false discovery if and only if the e-BY procedure does not cover a CI in 𝒮.
Hence, we have FDR control of the e-BH procedure through Theorem 2.

Evidently, the e-BY procedure is more general than the e-BH procedure. We show in
Appendix B.3 that we can use the e-BY procedure to also get control on a directional form
of FDR that requires the procedure to output a sign or direction along with each rejection.

B.3 Controlling the directional false discovery rate dFDR

We can also use the the e-BY procedure to provide guarantees beyond FDR for e-BH.
Consider a specialized case of the multiple testing problem, where a scientist is performing
only two-sided hypothesis tests e.g. discovering how the presence of certain genotypes have a
significant effect on the baseline level of a certain hormone. The scientist may not have an
a priori idea of which direction (positive or negative) the effect on a hormone a genotype
could have. Thus, when rejecting the null hypothesis and making a discovery for some
genotype-hormone interaction, it would also be invaluable to produce an estimate of the
direction of the effect. This problem of determining the direction along with significance was
initiated by Bohrer [7], Bohrer and Schervish [8], and Hochberg [13]. Building on this, BY
showed that the BH procedure could ensure control of a directional version of the FDR when
the operating on p-values for two-sided hypothesis tests through their FCR result for the BY
procedure.

In this section, we describe how we can use e-BY to develop a direction determining
version of e-BH, and also ensure control of a directional version of the FDR. For a notion
of direction to be well-defined, we consider only parameter spaces where Θ𝑖 ⊆ R, and for
each parameter 𝜃*𝑖 , we are testing the null hypothesis 𝐻0

𝑖 : 𝜃*𝑖 = 0. In addition to outputting
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a rejection set, we also require the multiple testing procedure to also assign a direction
𝐷𝑖 ∈ {±1} for each 𝑖 ∈ ℛ. Thus, we can define the directional FDR (dFDR):

dFDR := E

⎡⎣
∑︀
𝑖∈ℛ

I {𝐷𝑖 = 1, 𝜃*𝑖 ≤ 0}+ I {𝐷𝑖 = −1, 𝜃*𝑖 ≥ 0}

|ℛ|

⎤⎦ .

This definition of dFDR coincides with the definition of mixed directional FDR defined in BY.
The dFDR is also nearly the same as the false sign rate (FSR) that is analyzed in Stephens
[27], Weinstein and Ramdas [37] and the “pure directional FDR” discussed in BY. However,
we will only consider the dFDR since it is always larger than the other two directional error
metrics. Consequently, these all of these metrics are equivalent when no 𝜃*𝑖 is exactly 0 —
Tukey [28] argues happens this occurs in most realistic scenarios as many parameters can
be off from 0 by an imperceptible amount so the distinction between these metrics may not
be practically critical. We will also require that the input e-values are “two-sided” e-values.
Specifically, let 𝐸𝑖 := (𝐸+

𝑖 ∨𝐸−
𝑖 )/2, where 𝐸+

𝑖 is an e-value w.r.t. [0,∞) and 𝐸−
𝑖 is an e-value

w.r.t. (−∞, 0], and two constituent e-values are inverses of each other 𝐸+
𝑖 = (𝐸−

𝑖 )
−1.

Corollary 4 (e-BH with two-sided e-values controls dFDR). Let the selection set still be
the output of the e-BH procedure , i.e., 𝒮 = ℛeBH. In addition, define the following direction
decisions for each 𝑖 ∈ 𝒮:

𝐷𝑖 :=

{︃
−1 if 𝐸+

𝑖 ≥ 2𝐾/(𝛿𝑘eBH)

1 else.

Define a family of e-values as so: 𝐸dir(𝜃) := 𝐸+
𝑖 I {𝜃 ≥ 0}+ 𝐸−

𝑖 I {𝜃 ≤ 0}. We derive the
following e-CI procedure from this family:

𝐶dir
𝑖 (𝛼) :=

⎧⎪⎨⎪⎩
(−∞, 0) if 𝐸+

𝑖 ≥ 2/𝛼

(0,∞) if 𝐸−
𝑖 ≥ 2/𝛼

R else.

Consequently, miscoverage occurs if and only if the direction of 𝜃*𝑖 for each 𝑖 ∈ 𝒮. Thus, the
FCR guarantee from Theorem 2 ensures that dFDR ≤ 𝛿.

As a result, we have shown that e-BY procedure can be used to provide results for more
general problems than just e-BH in the multiple testing scenario — e-BY also provides dFDR
control in this directional variant of the multiple testing problem. Thus, the FCR control
provided by e-BY allows it to be useful, general tool for providing error control guarantees
in a variety of problems.

C Weighted e-BY: weights for individual control of the size of
each e-CI

The e-BY procedure in Definition 6 assigns a equal confidence level to the CI constructed for
each 𝜃*𝑖 , but there may be cases where the user would desire tighter CIs for some parameters,

39



Algorithm 1: The weighted e-BY procedure for constructing post-selection CIs with
FCR control. Let 𝑤1, . . . , 𝑤𝐾 be nonnegative weights that sum to 𝐾. The resulting
constructed CIs have FCR ≤ 𝛿, where 𝛿 ∈ (0, 1) is a predetermined level of error.
1 Sample data X := (𝑋1, . . . , 𝑋𝐾) for each parameter being estimated — these may be

dependent.
2 Let 𝐶𝑖 produce marginal e-CIs at confidence level (1− 𝛼) for any 𝛼 ∈ (0, 1) for each
𝑖 ∈ [𝐾].

3 Select a subset of parameters based on the data for CI construction: 𝒮 := S(X).
4 Set 𝛼𝑖 := 𝑤𝑖𝛿|𝒮|/𝐾 for each 𝑖 ∈ 𝒮.
5 Construct the CI 𝐶𝑖(𝛼𝑖) for 𝜃*𝑖 for each 𝑖 ∈ 𝒮.

and looser CIs for others. For example, the parameters we are estimating may be the severity
of different side effects caused by a drug candidate. In that situation, we want to estimate
more precisely the side effects that are life threatening or severely injurious to the recipient of
the drug, and be willing to have larger CIs for estimating side effects that only cause minor
ailments. We present a simple version of the weighted e-BY procedure where the weights are
fixed beforehand. However, Ignatiadis et al. [17] study the weighted e-BY procedure much
more deeply and show that, surprisingly, the weights do not need to be normalized to sum
to 𝐾 — one may require the weights to be e-values themselves and still achieve valid FCR
control. Further, they show that this approach of using e-values as weights is applicable to a
weighted form of the BY procedure as well.

Let 𝑤1, . . . , 𝑤𝐾 be nonnnegative weights assigned to each of the 𝐾 parameters and
let their sum be bounded by 𝐾. We can now prove a FCR guarantee about a weighted
version of e-BY where the confidence level corresponding to the CI constructed for each 𝜃*𝑖 is
1− 𝑤𝑖𝛿|𝒮|/𝐾.

Theorem 5 (Weighted e-BY controls FCR). Let 𝑤1, . . . , 𝑤𝐾 be a set of nonnegative weights
that sum to at most 𝐾. The weighted e-BY procedure formulated in Algorithm 1 ensures
FCR ≤ 𝛿.

Proof. The proof follows similarly to that of Theorem 2.

FCR = E
[︂∑︀

𝑖∈𝒮 I {𝜃*𝑖 /∈ 𝐶𝑖 (𝑤𝑖𝛿|𝒮|/𝐾)}
|𝒮| ∨ 1

]︂
= E

[︃∑︀
𝑖∈[𝐾] I {𝐸𝑖(𝜃

*
𝑖 )𝑤𝑖𝛿|𝒮|/𝐾 > 1} · I {𝑖 ∈ 𝑆}

|𝒮| ∨ 1

]︃

≤
∑︁
𝑖∈[𝐾]

E
[︂
𝐸𝑖(𝜃

*
𝑖 )𝑤𝑖𝛿|𝒮|

𝐾(|𝒮| ∨ 1)

]︂
=
∑︁
𝑖∈[𝐾]

𝑤𝑖𝛿

𝐾
E
[︂
𝐸𝑖(𝜃

*
𝑖 ) ·

|𝒮|
|𝒮| ∨ 1

]︂
≤ 𝛿.

Here, the last inequality is a consequence of
𝐾∑︀
𝑖=1

𝑤𝑖 ≤ 𝐾.
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D Improving e-BY when a CI-reporting condition is relaxed

We briefly explain the reason requiring strictly decreasing components of C ∈ ECI*𝐾 for
strict domination in Section 5.2. Suppose that 𝐾 = 2, 𝑆 = {1, 2} and 𝐶1(0) = 𝐶1(1) (i.e.,
we are certain about 𝜃1 in a subset of Θ1, but no further information), and 𝐶2 is strictly
decreasing. The e-BY procedure reports (𝐶1(𝛿), 𝐶2(𝛿)). Consider another procedure Φ which
reports (𝐶1(0), 𝐶2(𝛿 + 𝜖)) ( (𝐶1(𝛿), 𝐶2(𝛿)) for this specific (𝐶1, 𝐶2) and behaves as e-BY
for all other CIs. Clearly, this procedure strictly dominates e-BY. Intuitively, it should be
possible to choose 𝜖 > 0 small enough so that the FCR of Φ is less than or equal to 𝛿 (but
we did not find a proof). Generally, having a constant 𝐶𝑖(𝛼) for 𝛼 in an interval leads to
the above situation. This situation is not interesting for practice as often an e-CI is strictly
decreasing. but it becomes relevant in case the parameter 𝜃*𝑖 takes finitely many values. We
discuss how we could improve on the e-BY procedure if the CIs are not strictly decreasing
(and restriction (b) is lifted) in Appendix D.

In this section we explore a minor improvement of e-BY by relaxing the restriction (b) in
Section 5.2 in the formulation of a CI reporting procedure, as well as the strict decreasing
condition of the e-CIs.

For (𝒮,C) ∈ 2[𝐾] × ECI𝐾 where 𝑆 ̸= ∅, [𝐾], we define

𝛾(𝒮,C) :=
∑︁
𝑖∈𝒮

sup
𝜃∈Θ𝑖

𝑡𝑖(𝜃),

𝜆(𝒮,C) :=
∑︁

𝑖∈[𝐾]∖𝑆

inf
𝜃∈Θ𝑖

(𝑡𝑖(𝜃)I {𝑡𝑖(𝜃) > 1}) ,

𝑣(𝒮,C) := 1 +
𝜆(𝒮,C)

𝛾(𝒮,C)
,

where 𝑡𝑖 is given in (12), and we set ∞/∞ = 0. Note that 𝛾(𝒮,C) < ∞ if and only if for
each 𝑖 ∈ 𝑆 there exists 𝛼𝑖 > 0 such that 𝐶(𝛼𝑖) = Θ𝑖; similarly, 𝜆(𝒮,C) > 0 if and only if
there exists 𝑖 ∈ [𝐾] ∖ 𝑆 such that 𝐶𝑖(𝛼𝑖) = ∅ for some 𝛼𝑖 ∈ (0, 1). The condition 𝑣(𝒮,C) > 1
is equivalent to 𝛾(𝒮,C) < ∞ and 𝜆(𝒮,C) > 0. (Admittedly, this is an uncommon situation.)

For a level 𝑤 ∈ (1,∞), we denote by

Σ(𝑤) := {(𝒮,C) ∈ 2[𝐾] × ECI𝐾 : 𝑣(𝒮,C) ≥ 𝑤}.

One can check that the set Σ(𝑤) is not empty. In particular, if 𝑆 = {1} and C is the
constant CI of Θ1 × ∅𝐾−1 (i.e., no information for the first one, and sure false coverage for
all others), then 𝑡1(𝜃) = 1 for all 𝜃 ∈ Θ, and 𝑡𝑖(𝜃) = ∞ for all 𝜃 ∈ Θ𝑖 and 𝑖 ̸= 1. In this case,
𝛾(𝒮,C) = 1, 𝜆(𝒮,C) = ∞, and 𝑣(𝒮,C) = ∞.

For a given level 𝑤 ∈ (1,∞), define a CI reporting procedure Φ by

1. if the input (𝒮,C) is in Σ(𝑤), then report e-BY at level 𝑤𝛿;

2. otherwise, report e-BY at level 𝛿.

Clearly, the above procedure dominates e-BY at level 𝛿, and the domination is strict noting
that Σ(𝑤) is not empty. If we allow 𝑤 = 1, then it is precisely the e-BY procedure.

Proposition 4. The above procedure Φ has FCR at most 𝛿.
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Proof. Let 𝒮 be a random selection, E be the vector of e-values, and 𝜃* be the true param-
eter. Denote by 𝐴 = {(𝒮,CE) ∈ Σ(𝑤)}, that is, the event that 𝑣(𝒮,CE) ≥ 𝑤. Note that
by Lemma 2, if CE = C occurs, then 𝐸𝑖(𝜃) = 𝑡𝑖(𝜃) for all 𝜃 ∈ Θ𝑖 and 𝑖 ∈ [𝐾] whenever
𝐸𝑖(𝜃) > 1, where 𝑡𝑖 is given by (12), that is,

𝑡𝑖(𝜃) = sup

{︂
1

𝛼
: 𝛼 ∈ [0, 1), 𝜃 ̸∈ 𝐶𝑖(𝛼)

}︂
.

In case (𝒮,CE) = (𝒮,C) ∈ Σ(𝑤), we have∑︁
𝑖∈𝑆

(𝑤 − 1)𝐸𝑖(𝜃𝑖)−
∑︁

𝑖∈[𝐾]∖𝑆

𝐸𝑖(𝜃𝑖)

≤
∑︁
𝑖∈𝑆

(𝑤 − 1) sup
𝜃𝑖∈Θ𝑖

𝑡𝑖(𝜃𝑖)−
∑︁

𝑖∈[𝐾]∖𝑆

inf
𝜃𝑖∈Θ𝑖

𝑡𝑖(𝜃𝑖)I {𝑡𝑖(𝜃𝑖) > 1} ≤ 0.

Therefore, we have ⎛⎝∑︁
𝑖∈𝒮

(𝑤 − 1)𝐸𝑖(𝜃𝑖)−
∑︁

𝑖∈[𝐾]∖𝒮

𝐸𝑖(𝜃𝑖)

⎞⎠ I {𝐴} ≤ 0. (21)

Using the above facts, we can compute the following upper bound on the FCR:

FCR(Φ)

= E

[︃∑︀
𝑖∈𝒮 I

{︀
𝜃𝑖 ̸∈ Φ(𝒮,CE)

}︀
|𝒮| ∨ 1

]︃

= E
[︂∑︀

𝑖∈𝒮 I {𝐸𝑖(𝜃𝑖) ≥ 𝐾/(𝑤𝛿|𝒮|)}
|𝒮| ∨ 1

I {𝐴}
]︂

+ E
[︂∑︀

𝑖∈𝒮 I {𝐸𝑖(𝜃𝑖) ≥ 𝐾/(𝛿|𝒮|)}
|𝒮| ∨ 1

(1− I {𝐴})
]︂

≤ E

[︃
1

|𝒮| ∨ 1

∑︁
𝑖∈𝒮

𝑤𝛿|𝒮|𝐸𝑖(𝜃𝑖)

𝐾
I {𝐴}

]︃
+ E

[︃
1

|𝒮| ∨ 1

∑︁
𝑖∈𝒮

𝛿|𝒮|𝐸𝑖(𝜃𝑖)

𝐾
(1− I {𝐴})

]︃

≤ E

[︃
1

𝐾

∑︁
𝑖∈𝒮

𝑤𝛿𝐸𝑖(𝜃𝑖)I {𝐴}

]︃
+

𝛿

𝐾
E

⎡⎣∑︁
𝑖∈[𝐾]

𝐸𝑖(𝜃𝑖)(1− I {𝐴})

⎤⎦ .

Now, we can group the terms that involve I {𝐴} together to simplify our bound on the
FCR, and piece together the term we see in (21).

FCR(Φ) ≤ 𝛿

𝐾

∑︁
𝑖∈[𝐾]

E [𝐸𝑖(𝜃𝑖)] +
𝛿

𝐾
E

⎡⎣⎛⎝∑︁
𝑖∈𝒮

𝑤𝐸𝑖(𝜃𝑖)−
∑︁
𝑖∈[𝐾]

𝐸𝑖(𝜃𝑖)

⎞⎠ I {𝐴}

⎤⎦
≤ 𝛿 +

𝛿

𝐾
E

⎡⎣⎛⎝∑︁
𝑖∈𝒮

(𝑤 − 1)𝐸𝑖(𝜃𝑖)−
∑︁

𝑖∈[𝐾]∖𝒮

𝐸𝑖(𝜃𝑖)

⎞⎠ I {𝐴}

⎤⎦ ≤ 𝛿,

where in the last inequality we used (21). Therefore, FCR(Φ) ≤ 𝛿.
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We note that this improvement is not very useful as 𝑣(𝒮,C) > 𝑤 is a strong requirement
and it is only satisfied by limited choices of the input.

Moreover, we clearly see how this procedure uses the information of C𝑖 for 𝑖 ̸∈ 𝒮, which
is used to compute 𝜆(𝒮,C), thus violating the requirement (b) in Section 5.2. Moreover, all
input CIs in Σ(𝑤) are not strictly decreasing since we need 𝐶𝑖(𝛼𝑖) = Θ𝑖 for some 𝛼𝑖 > 0.

E Generalized e-CIs and deriving Chernoff CIs

Extending the notion of e-CI, we can also define a generalized e-CI from a family of e-values
that are not only parameterized by a parameter, 𝜃, but also 𝛼′ ∈ (0, 1) indicating the desired
level at which the e-CI is most tight at. Thus, for a family of e-values 𝐸(𝜃, 𝛼′) for 𝜃 ∈ Θ and
𝛼′ ∈ (0, 1), we can define the following generalized e-CI:

𝐶𝛼′
(𝛼) :=

{︂
𝜃 ∈ Θ : 𝐸(𝜃, 𝛼′) <

1

𝛼

}︂
.

Note that 𝛼′ is fixed for the e-CI across all choices of 𝛼 ∈ (0, 1). Generalized e-CIs are
particularly useful in situations where we have a collection of e-CIs for the same parameter
space Θ, but may be tighter or looser at different values of 𝛼. Hence, it is a way of grouping
such e-CIs together in one object, and also clarifying that 𝛼′ is a fixed parameter for each
e-CI in the generalized e-CI and does not change with the confidence level 1− 𝛼.

Such a situation arises in the case where our e-values are derived from Chernoff bounds.
Consider the case where we draw 𝑛 i.i.d. samples 𝑋1, . . . , 𝑋𝑛 from a distribution that is
bounded in [0, 1]. Let 𝜇 := E[𝑋𝑖] — we can derive the following inequality using Hoeffding’s
lemma:

E[exp(𝜆(𝑋𝑖 − 𝜇)] ≤ exp

(︂
𝜆2

8

)︂
.

Let ̂︀𝜇𝑛 denote the sample mean. Consequently, we can construct the following generalized
e-CI from this bound:

𝐶𝛼′-Hoef(𝛼) :=

(︃̂︀𝜇𝑛 ±
√︂

log(2/𝛼)

2𝑛
· log(2/𝛼) + log(2/𝛼′)

2
√︀

log(2/𝛼′) log(2/𝛼)

)︃
.

In contrast, the typical CI constructed from inverting Hoeffding’s inequality is as follows:

𝐶Hoef(𝛼) :=

(︃̂︀𝜇𝑛 ±
√︂

log(2/𝛼)

2𝑛

)︃
= 𝐶𝛼-Hoef(𝛼).

Consider the use of 𝐶𝛼′-Hoef and 𝐶Hoef in the e-BY and BY procedures, respectively. As
a heuristic, we set 𝛼′ = 𝛿. For the selection set 𝒮, and the same desired level of FCR control
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𝛿, we get the following intervals:

𝐶𝛿-Hoef

(︂
𝛿|𝒮|
𝐾

)︂
=

⎛⎜⎜⎝̂︀𝜇𝑛 ±

⎯⎸⎸⎷ log
(︁

2𝐾
𝛿|𝒮|

)︁
2𝑛

·
log
(︀
2
𝛿

)︀
+ log

(︁
2𝐾
𝛿|𝒮|

)︁
2

√︂
log
(︀
2
𝛿

)︀
log
(︁

2𝐾
𝛿|𝒮|

)︁
⎞⎟⎟⎠ ,

𝐶Hoef

(︂
𝛿|𝒮|
𝐾ℓ𝐾

)︂
=

⎛⎜⎜⎝̂︀𝜇𝑛 ±

⎯⎸⎸⎷ log
(︁
2𝐾ℓ𝐾
𝛿|𝒮|

)︁
2𝑛

⎞⎟⎟⎠ .

This results in the following result about 𝒮.

Proposition 5. 𝐶𝛿-Hoef (𝛿|𝒮|/𝐾) is as tight as 𝐶Hoef (𝛿|𝒮|/(𝐾ℓ𝐾)) when

|𝒮| ≥ 𝐾

exp
(︁
2
√︁
log
(︀
2
𝛿

)︀
log ℓ𝐾

)︁ .

Proof. We note that 𝐶𝛿-Hoef
(︁
𝛿|𝒮|
𝐾

)︁
is tighter than 𝐶Hoef

(︁
𝛿|𝒮|
𝐾ℓ𝐾

)︁
when:

log

(︂
2

𝛿

)︂
+ log

(︂
2𝐾

𝛿|𝒮|

)︂
≤ 2

√︃
log

(︂
2

𝛿

)︂
log

(︂
2𝐾ℓ𝐾
𝛿|𝒮|

)︂
.

This is an inequality on a quadratic expression w.r.t. log |𝒮|. Hence, we can rearrange
and solve by quadratic formula. This gets us the following interval for log |𝒮| where the
above inequality holds:

log |𝒮| ∈

[︃
log𝐾 ± 2

√︃
log

(︂
2

𝛿

)︂
log ℓ𝐾

]︃
.

Since we know |𝒮| ≤ 𝐾, we are only interested in the lower bound on this interval, and we
get our desired result from the lower bound.

In Proposition 5, we see that the lower bound for |𝒮|, as a proportion of 𝐾, decreases
as 𝐾 increases. Thus, 𝐶𝛿-Hoef (𝛿|𝒮|/𝐾) is tighter than 𝐶Hoef (𝛿|𝒮|/(𝐾ℓ𝐾)) for an increasing
proportion of possible values of |𝒮| as 𝐾 grows. We see this advantage of the e-BY procedure
over the BY procedure reflected in our simulation results in Section 6 — the CIs output by
the e-BY procedure are tighter than the CIs of the BY procedure (under no assumptions on
selection rule or dependence) as 𝐾 grows.

F FCR and other measures of statistical validity

We will elaborate on the points made in Section 1 about the other error metrics one may
consider applicable to the post-selection inference problem.
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Conditional coverage requires knowing about selection rule a priori. Before dis-
cussing FCR control, we can first consider if a coverage guarantee is possible when we
condition on a parameter being selected. In the majority of this paper, we have assumed that
each 𝐶𝑖 is a marginal CI, i.e., for each 𝑖 ∈ [𝐾], P (𝜃*𝑖 ∈ 𝐶𝑖(𝛼)) ≥ 1− 𝛼 for every 𝛼 ∈ (0, 1).
For conditional coverage, we want a confidence level (1− 𝛼𝑖), for each 𝑖 ∈ [𝐾], such that the
resulting CI, 𝐶𝑖(𝛼𝑖), ensures P (𝜃*𝑖 ∈ 𝐶𝑖(𝛼𝑖) | 𝑖 ∈ 𝒮) ≥ 1−𝛿. However, BY noted that no such
correction can be made without knowing the selection rule. To illustrate this, consider the
following toy example. Assume that the parameters being estimated are means, and the data
distribution for each parameter is Gaussian with variance 1, i.e., 𝑋𝑖 ∼ 𝒩 (𝜃*𝑖 , 1). Then, the
CI for the 𝑖th parameter is 𝐶𝑖(𝛼) = [𝑋𝑖−𝑧𝛼𝑖/2, 𝑋𝑖+𝑧𝛼𝑖/2] where 𝑧𝛼 is the (1−𝛼)-quantile of
the standard normal distribution. Now, select the 𝑖th parameter only if 𝐶𝑖(𝛼𝑖), the corrected
CI, covers solely positive values. If 𝜃*𝑖 ≤ 0, the conditional coverage is 0. Thus, no guarantees
can be made about conditional coverage without knowing or constraining the selection rule.

Note that if we consider a constraint on the joint probability of a parameter being selected
and miscovered instead, i.e., P (𝜃*𝑖 /∈ 𝐶𝑖(𝛼𝑖), 𝑖 ∈ 𝒮) ≤ 𝛼, then the CI guarantee itself ensures
that this constraint is satisfied, i.e., P (𝜃*𝑖 /∈ 𝐶𝑖(𝛼𝑖)) ≤ 𝛼. The fact that we may bound this
joint probability is what motivates the possibility of the use of FCR as a error metric we can
control.

In addition, the refutation of conditional coverage guarantees is intended for the general
setting, where there is no limitation of the choice of the selection rule. Thus, methods
that do provide conditional coverage guarantees must depend on the specific selection rule
being used. Zhong and Prentice [39] and Weinstein et al. [38] follow this line of inquiry and
derive explicit CIs that have the conditional coverage guarantee under specific selection
rules and assumptions on the families of parameters. The difficulty in this approach is
that the results provided are narrowly applicable to the predetermined selection rule and
data distribution families — it requires the user to derive new conditional CIs for different
combinations of selection rules and family of distributions. Weinstein and Ramdas [37] come
to a similar conclusion about the difficulty of using conditional CIs in an online version
of the post-selection inference problem, and also recommend the marginal CI approach
used in both BY and e-BY. Further, they note that an additional deficit of the conditional
coverage approach is that the conditionally valid CIs are not necessarily “consistent” with the
selection procedure. To refer to the toy example, the conditional CIs for a selection rule that
aims to only select parameters that have CIs that are completely positive must also include
negatives (otherwise the toy example still holds). In this sense, the produced conditional CIs
are inconsistent with the goal of the selection rule. Hence, FCR control circumvents these
challenges, at the cost of providing a less powerful error guarantee.

FCR control results in smaller CIs than simultaneous coverage. Another type of
error control to consider is a simultaneous guarantee over the CIs of all selected parameters,
i.e., P (∀𝑖 ∈ 𝒮 : 𝜃*𝑖 ∈ 𝐶𝑖(𝛼𝑖)) ≥ 1 − 𝛿, for some choices of 𝛼𝑖 ∈ [0, 1] for each 𝑖 ∈ 𝒮. This
error is called the simultaneous over selected (SoS) criterion in Benjamini et al. [4] — they
provide methods for controlling the SoS for a few, specific selection rules. Note that control
of the SoS criterion implies control of the FCR, but not necessarily the other way around.
Hence, SoS control is strictly stronger than FCR control. The only known way to achieve
this simultaneous coverage for arbitrary selection rules, however, is to make a Bonferroni
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correction and ensure simultaneous coverage of all the CIs, i.e., for both selected and non-
selected parameters. If all confidence levels are equivalent, this implies 𝛼𝑖 = 𝛿/𝐾. This is a
much more conservative level of correction than the BY and e-BY procedures.
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