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Abstract

We propose and study the class of monotonic mean-deviation risk measures, represented by a
combination of a risk-weighted deviation functional and the expectation. These risk measures be-
long to the class of consistent risk measures and admit an axiomatic characterization via preference
relations. By further assuming the convexity and linearity of the risk-weighting function, we obtain
convex and coherent risk measures among this class, giving rise to many new explicit examples of
convex and nonconvex consistent risk measures. In particular, we specialize in the convex case of
the monotonic mean-deviation measure and obtain its dual representation. Further, we establish
asymptotic consistency and normality of the natural estimators of the monotonic mean-deviation
measures. Finally, monotonic mean-deviation measures are applied to the problem of portfolio
selection using financial data.

Keywords: Risk management, axiomatization, deviation measures, monotonicity, convexity

1 Introduction

In the last few decades, risk measures and deviation measures have been popular in banking
and finance for various purposes, such as calculating solvency capital reserves, pricing of insurance
risks, performance analysis, and internal risk management. Roughly speaking, deviation measures
evaluate the degree of nonconstancy in a random variable (i.e., the extent to which outcomes may
deviate from a center, such as the expectation of the random variable), whereas risk measures evaluate
overall prospective loss (from the benchmark of zero loss). Different classes of axioms are proposed
for risk measures and deviation measures in the literature; see Artzner et al. (1999) for coherent risk
measures, Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002) for convex risk measures,
and Rockafellar et al. (2006) for generalized deviation measures.

Since the seminal work of Markowitz (1952), mean-deviation or mean-risk problems have been
central to financial studies. In this context, a decision maker’s objective functional U on a loss/profit
random variable X can be characterized by

U(X) = V (E[X], D(X)), (1)

where E is the expectation, V is a monotonic bivariate function, and D measures the risk part of X,
which is chosen as the variance in the context of Markowitz (1952), and as a risk measure or deviation
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measure in subsequent studies. For instance, the classic problem of expected return maximization
with variance constraint can be written as to minimize Vσ(E[X],Var(X)) where

Vσ(m, d) := m+∞× 1{d>σ2} (2)

for some σ > 0,1 and it is typically solved by minimizing V λ(E[X],Var(X)), where

V λ(m, d) := m+ λd (3)

for some λ > 0 via a Lagrangian method. Because any law-invariant coherent risk measure R induces
a deviation measure D via D = R − E, we can write the mean-risk problem with a coherent risk
measure R as

V (E[X], R(X)) = V ′(E[X], D(X)),

where V ′(m, d) = V (m, d + m). Therefore, in this paper we focus on (1) with D being a deviation
measure.

The mean-deviation model is widely used in the finance and optimization literature; for example,
the early work of Markowitz (1952), Sharpe (1964), and Simaan (1997), and the more recent progress in
Grechuk et al. (2012), Grechuk and Zabarankin (2012), Rockafellar and Uryasev (2013), and Herdegen
and Khan (2022a, 2024). Nevertheless, only few studies, including Grechuk et al. (2012), have focused
on the preference functional U in (1), which is an interesting mathematical object by itself, as the
decision criterion used for optimization.

In general, U in (1) is not monotonic, as mean-variance analysis is inconsistent with monotonic
preferences; see, e.g., Maccheroni et al. (2009). Monotonicity is self-explanatory and is common in
the literature on decision theory and risk measures. As of today, the most popular risk measures
are monetary risk measures that satisfy the two properties of monotonicity and cash additivity, with
Value-at-Risk (VaR) and Expected Shortfall (ES) being the most famous examples. The monetary
property allows for the interpretation of a risk measure as a regulatory capital requirement defined
via acceptance sets. Therefore, it is natural to consider the intersection of mean-deviation models
and monetary risk measures, enjoying the advantages of both streams of literature. The functionals
belonging to both classes will be called monotonic mean-deviation (risk) measures. We omit the term
“risk” for simplicity, while keeping in mind that these functionals are risk measures in the sense of
Artzner et al. (1999) and Föllmer and Schied (2016).

Throughout, we consider deviation measures D satisfying the properties of Rockafellar et al.
(2006) (defined in Section 2). A natural candidate for monotonic mean-deviation measures is to use
the sum U = E+ λD for some λ ⩾ 0, which appears in the Markowitz model through (3) and also in
insurance pricing (see Denneberg (1990) and Furman and Landsman (2006)). However, this is not the
only possible choice. In Section 3, we characterize monotonic mean-deviation measures among general
mean-deviation models (Theorem 1). It turns out that they admit the form of a combination of the
expectation and a deviation part distorted by a risk-weighting function g, and D needs to satisfy a
condition of range normalization (defined in Section 2). Such monotonic mean-deviation measures are
denoted by MDD

g , that is,

MDD
g = g ◦D + E. (4)

To the best of our knowledge, the form of risk measures in (4) has not been proposed in the literat-
ure, except for some special cases. Although measuring both the mean and the diversification (via
the deviation measure), MDD

g is not necessarily a convex risk measure in the sense of Föllmer and

Schied (2016). Nevertheless, MDD
g satisfies a weaker requirement reflecting on diversification, that

1Here we interpret X as a loss, so the expected return is −E[X].
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is, consistency with respect to second-order stochastic dominance. Compared with U = E + λD,
the risk-weighting function g allows us to relax restrictions of the mean-deviation model, in a way
similar to Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002), which relaxed coherent
risk measures to convex ones, and to Castagnoli et al. (2022), who relaxed convex risk measures to
star-shaped ones. Thus, the new class of risk measures offers additional flexibility while maintaining
the essential ingredients needed to assess risk via deviation in particular contexts.

Figure 1: An illustration of the properties of the mean-deviation model

In addition to proposing the mean-deviation measures in (4), our main contributions include a
comprehensive study on this class of risk measures. In Section 4, an axiomatic foundation for MDD

g

(Theorem 2) is proposed on the basis of the results of Grechuk et al. (2012), and characterizations for
coherent, convex or star-shaped risk measures are obtained in Theorem 3. We show that there is a
one-to-one correspondence between the MDD

g and the risk-weighting function g, and hence the above
classes can be identified based on properties of g. Figure 1 contains an illustration of the properties
of MDD

g . In particular, the convexity of g is equivalent to the convexity of MDD
g . As a consequence,

our results offer new convex risk measures with explicit formulas, in addition to the existing convex
distortion risk measures and entropy risk measures; see e.g., Dhaene et al. (2006), Laeven and Stadje
(2013) and Föllmer and Schied (2016). Specifically, these formulas help us construct risk measures
that are consistent yet not convex, or convex but not coherent (Theorem 3 and Proposition 2).

In Section 5, we specialize in convex monotonic mean-deviation measure and further study the
dual representation of MDD

g (Theorem 4), which is obtained directly through the conjugate function
of g. In Section 6, when the deviation measures are the convex signed Choquet integral defined in
Wang et al. (2020b), we discuss the non-parametric estimation of MDD

g (Theorem 5). The asymptotic
normality and the asymptotic variance for the empirical estimators are obtained explicitly. These
results yield an intuitive trade-off between statistical efficiency, in terms of estimation error, and
sensitivity to risk, in terms of the risk-weighting function. In Section 7, we present an application of
MDD

g in portfolio selection based on financial data, and discuss some empirical observations.
We conclude the paper in Section 8. Supplementary materials containing the characterization of

monotonicity in mean-deviation models are put in Appendix A, and the details in the axiomatization
results are relegated to Appendix B. Appendix C provides a proof that is omitted from Section
6. Appendix D further analyzes worst-case values of MDD

g under two popular settings to show its
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feasibility in model uncertainty problems.

2 Preliminaries

Throughout this paper, we work with a nonatomic probability space (Ω,F ,P). Let X be a convex
cone of random variables containing all constants. All the equalities and inequalities of functionals
on (Ω,F ,P) are under P almost surely (P-a.s.) sense. Let X ∈ X represent the random loss faced by
financial institutions in a fixed period of time. That is, a positive value of X ∈ X represents a loss and
a negative value represents a surplus in our sign convention, which is used by, e.g., McNeil et al. (2015).
Further, denote by X ◦ the set of all nonconstant random variables in X . Let FX be the distribution

function ofX, and we writeX
d
= Y if two random variablesX and Y have the same distribution. Terms

such as increasing or decreasing functions are in the non-strict sense. For p ∈ [1,∞), we denote by
Lp = Lp(Ω,F ,P) the set of all random variables X such that ∥X∥p = (E[|X|p])1/p < ∞. Furthermore,
L∞ = L∞(Ω,F ,P) is the space of all essentially bounded random variables, and L0 = L0(Ω,F ,P)
denotes the space of all random variables. When considering a mapping defined on Lp for some
p ∈ [1,∞], we refer to its continuity with respect to the Lp-norm. For a real function g, we use g′ to
denote the left derivative of g, whenever it exists. For a convex or concave function, the left derivative
always exists on the inner of its domain (see e.g., Proposition A.4 of Föllmer and Schied (2016)).
Denote by x+ = max{0, x} for x ∈ R, and let 1A be the indicator function of A.

We define two important risk measures in banking and insurance practice. The Value-at-Risk
(VaR) at level α ∈ (0, 1) is the functional VaRα : L0 → R defined by

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ α},

which is precisely the left α-quantile of X. In some contexts, we also use F−1
X (α) instead of VaRα(X)

for convenience. The Expected Shortfall (ES) at level α ∈ [0, 1) is the functional ESα : L1 → R defined
by

ESα(X) =
1

1− α

∫ 1

α
VaRs(X)ds.

Artzner et al. (1999) introduced coherent risk measures as functionals ρ : X → (−∞,∞] that
satisfy the following four properties.

[M] Monotonicity: ρ(X) ⩽ ρ(Y ) for all X,Y ∈ X with X ⩽ Y .

[CA] Cash additivity: ρ(X + c) = ρ(X) + c for all c ∈ R and X ∈ X .

[PH] Positive homogeneity: ρ(λX) = λρ(X) for all λ ∈ (0,∞) and X ∈ X .

[SA] Subadditivity: ρ(X + Y ) ⩽ ρ(X) + ρ(Y ) for all X,Y ∈ X .

ES satisfies all four properties above, whereas VaR does not satisfy [SA]. We say that a functional ρ
is monetary if it satisfies [M] and [CA]. Moreover, ρ is a convex risk measure if it is monetary and
further satisfies

[Cx] Convexity: ρ(λX + (1− λ)Y ) ⩽ λρ(X) + (1− λ)ρ(Y ) for all X,Y ∈ X and λ ∈ [0, 1].

Clearly, [PH] together with [SA] implies [Cx]. Risk measures that satisfy [CA] and [Cx] but not [M]
have been studied by e.g., Filipović and Svindland (2008). For more discussions and interpretations
of these properties, we refer to Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002).
Another class of risk measures is defined based on consistency with respect to second-order stochastic
dominance (SSD):
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[SC] SSD-consistency: ρ(X) ⩽ ρ(Y ) if X ⩽SSD Y (i.e., E[u(X)] ⩽ E[u(Y )] for all increasing convex
functions u).2

The monetary risk measures that satisfy [SC] are called consistent risk measures, and were introduced
by Dana (2005). Consistent risk measures are characterized by Mao and Wang (2020). The property
[SC] is often called strong risk aversion for a preference functional in decision theory; see Rothschild
and Stiglitz (1970). A related notion to SSD is convex order, denoted by ⩽cx, which is also called
mean-preserving spread, and for X,Y ∈ X , X ⩽cx Y means X ⩽SSD Y and E[X] = E[Y ].

In decision making, deviation measures are also introduced to measure variability associated with
a random variable, and are systematically studied for their applications to risk management in areas
such as portfolio optimization and engineering. Such measures include standard deviation as a special
case but need not be symmetric with respect to gains and losses. Deviation measures of Rockafellar
et al. (2006) are formally defined below.

Definition 1 (Deviation measures). Fix p ∈ [1,∞]. A deviation measure is a functional D : Lp →
[0,∞) satisfying

(D1) D(X + c) = D(X) for all X ∈ Lp and c ∈ R.

(D2) D(X) > 0 for all X ∈ (Lp)◦.

(D3) D(λX) = λD(X) for all X ∈ Lp and λ ⩾ 0.

(D4) D(X + Y ) ⩽ D(X) +D(Y ) for all X,Y ∈ Lp.

From the definition, it is straightforward to see that a deviation measure D is convex and satisfies
D(c) = 0 for all c ∈ R. Rockafellar et al. (2006) defined deviation measures on L2 because it gives
access to tools associated with duality. However, as mentioned in Rockafellar et al. (2006), this does
not prevent us from working with the general Lp norms for p ∈ [1,∞]. Moreover, we will focus on
law-invariant deviation measures, which further satisfy

(D5) D(X) = D(Y ) for all X,Y ∈ Lp if X
d
= Y .

Law-invariant deviation measures include, for instance, standard deviation, semideviation, ES devi-
ation and range-based deviation; see Examples 1 and 2 of Rockafellar et al. (2006) and Section 4.1 of
Grechuk et al. (2012). We use Dp to denote the set of all law-invariant deviation measures.

A deviation measure D is upper range-dominated if it has the following property

D(X) ⩽ ess-supX − E[X] for all X ∈ Lp, (5)

where ess-supX is the essential supremum of X. For more discussions and interpretations of the
properties of deviation measures mentioned above, we refer to Rockafellar et al. (2006).

Next, we introduce a new property that will be used throughout the rest of the paper. We say a
deviation measure D ∈ Dp is ranged-normalized if

sup
X∈(Lp)◦

D(X)

ess-supX − E[X]
= 1.

2Note that a random variable represents the random loss instead of the random wealth. In our context, SSD is also
known as increasing convex order in probability theory and stop-loss order in actuarial science. Up to a sign change
that converts losses to gains, SSD corresponds to increasing concave order, which is the classic second-order stochastic
dominance in decision theory.
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The set of all range-normalized deviation measures on Lp is denoted by Dp
, which has the form:

Dp
=

{
D ∈ Dp : sup

X∈(Lp)◦

D(X)

ess-supX − E[X]
= 1

}
. (6)

For D ∈ Dp, the condition λD ∈ Dp
for some λ > 0 is called weak upper range dominance by Grechuk

et al. (2012). It is clear from (5) that every upper range-dominated deviation measure is weakly upper
range-dominated. In particular, if D takes the form of ESα − E with α ∈ (0, 1), ess-supX − E[X] or
E[|X −E[X]|]/2, we have D ∈ Dp

(see Example 5 of Grechuk et al. (2012) for the last one). The class
of weakly upper range-dominated deviation measures also includes the mean-absolute deviation, the
Gini deviation, the inter-ES range, and the inter-expectile range (for the last two, see Bellini et al.
(2022)).

The deviation measures are closely connected to coherent risk measures. It is shown in Theorem
2 of Rockafellar et al. (2006) that upper range bounded deviation measures D correspond one-to-one
with coherent, strictly expectation bounded3 risk measures R with the relation that R = D + E.
Additionally, note that R = D + E is a finite coherent risk measure on Lp for any D ∈ Dp

. It follows
that R is continuous (see e.g., Corollary 2.3 of Kaina and Rüschendorf (2009)) and so is D. Below we
provide a characterization of range-normalized deviation measures based on coherent risk measures.

Proposition 1. Fix p ∈ [1,∞]. The deviation measure D ∈ Dp is range-normalized if and only if
D + E is a coherent risk measure and λD + E is not a coherent risk measure for λ > 1.

Proof. The necessity follows immediately from Theorem 2 of Rockafellar et al. (2006) since D ∈ Dp
is

upper range-dominated and λD is not upper range-dominated for any λ > 1. Conversely, we assume
by contradiction that D is not range-normalized. Then, either kD ∈ Dp

for some k > 1 or kD ∈ Dp

for some k < 1 holds.
In the first case, there exists λ > 1 such that λD is upper range-dominated. Applying Theorem

2 of Rockafellar et al. (2006), we have that λD + E is a coherent risk measure, thereby leading to a
contradiction. In the second case, it holds that D + E is not a coherent risk measure since D is not
upper range-dominated, which also yields a contradiction.

The additive structure λD + E can be seen as a special form of the combination of mean and
deviation. Below, we define a class of general mean-deviation models that is not necessarily an additive
form.

Definition 2 (Mean-deviation model). Fix p ∈ [1,∞]. For a deviation measure D ∈ Dp, a mean-
deviation model is a functional U : Lp → (−∞,∞] defined as

U(X) = V (E[X], D(X)), (7)

where V : R× [0,∞) → (−∞,∞] satisfies (i) V is increasing component-wise; (ii) V (m, 0) = m for all
m ∈ R; (iii) V (m, d) is not determined only by m.4

The three conditions on V in Definition 2 are simple and intuitive. More specifically, (i) is the
basic requirement that U increases when the mean or deviation increases, with the other argument
fixed; (ii) means that a constant random variable has risk value equal to itself; and (iii) means that the
model is not trivial in the sense that it does not ignore the deviation D(X). Our definition is different
from that of Grechuk et al. (2012), who required further strict monotonicity of V with a real-valued

3A risk measure ρ : X → (−∞,∞] is strictly expectation bounded if it satisfies ρ(X) > E[X] for all X ∈ X ◦.
4That is, there exist m ∈ R and d1, d2 ⩾ 0 such that V (m, d1) ̸= V (m, d2).
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range. Therefore, our requirement is weaker than that of Grechuk et al. (2012), and this relaxation
allows us to include the most popular models of Markowitz (1952) in (2), that is,

V (E[X],SD(X)) = Vσ(E[X],Var(X)) = E[X] +∞× 1{SD(X)>σ},

which is neither strictly increasing nor real-valued. Here we use SD (the standard deviation) instead
of Var because SD ∈ D2.

As mentioned in the Introduction, the mean-deviation model has many good properties; however,
it is not necessarily monotonic or cash additive in general, and thus is not a monetary risk measure.
Grechuk et al. (2012) provided an axiomatic framework for the mean-deviation model via the preference
relation by further assuming some other properties; but this framework does not belong to the class
of monetary risk measures. Han et al. (2023) characterized mean-deviation models with D = ESα−E
for α ∈ (0, 1) by extending axioms for ES in Wang and Zitikis (2021), which can be further required
to be monetary. Since [M] and [CA] are common in the literature concerning decision theory and risk
measures and correspond to the interpretation of a risk measure as a regulatory capital requirement, it
is natural to further consider general conditions for a mean-deviation model to be monetary. This leads
to the main object of this paper, monotonic mean-deviation measures, which are formally introduced
in the next section.

3 Monotonic mean-deviation measures

In this section, we derive an explicit representation of mean-deviation models that are monetary.
To this end, we revisit the set of range-normalized deviation measures defined in (6) and introduce a
continuity condition for a real function g, i.e., g is λ-Lipschitz continuous for some λ > 0 if

|g(x)− g(y)| ⩽ λ|x− y| for x, y in the domain of g. (8)

The following lemma shows that a necessary condition for property [M] of a mean-deviation
model is that the deviation measure satisfies weak upper range dominance. It is useful in the proof of
Theorem 1, which is the main result in this section.

Lemma 1. Fix p ∈ [1,∞], and let D ∈ Dp. If U = V (E, D) in (7) satisfies [M], then we have
U(X) < ∞ for all X ∈ Lp, and there exists λ > 0 such that λD ∈ Dp

.

Proof. To show that U(X) is finite for X ∈ Lp, take Y ∈ L∞ such that E[Y ] = E[X] and D(Y ) =
D(X). Such Y exists becauseD is positively homogeneous. Therefore, U(X) = U(Y ) ⩽ U(ess-supY ) =
V (ess-supY, 0) = ess-supY < ∞.

We next prove that

K := sup
X∈(Lp)◦

D(X)

ess-supX − E[X]
< ∞. (9)

by contradiction, which is equivalent to λD ∈ Dp
with λ = 1/K. Assume that K = ∞ in (9). For

X1, X2 ∈ Lp such that E[X1] < E[X2], let m1 = E[X1], d1 = D(X1), m2 = E[X2], d2 = D(X2), and
e = m2 − m1. If K = ∞, there exists Y1 such that D (Y1)/(ess-supY1 − E[Y1]) ⩾ d1/e. Denote by
Y2 = e(Y1 − ess-supY1)/(ess-supY1 − E[Y1])+m2. It holds that E [Y2] = −e+m2 = m1 andD (Y2) ⩾ d1,
and thus U(X1) = V (m1, d1) ⩽ V (E[Y2], D(Y2)) = U(Y2). On the other hand, observe that Y2 ⩽ m2.
Consequently, by monotonicity, we have U(Y2) ⩽ U(m2). Thus, we have U(X1) ⩽ U(Y2) ⩽ U(m2) ⩽
U(X2), which implies that U(X) ⩽ U(Y ) for every X and Y with E[X] < E[Y ]. Hence,

E[X]− ε = U(E[X]− ε) ⩽ U(X) ⩽ U(E[X] + ε) = E[X] + ε
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for any X ∈ Lp and ε > 0. Letting ε ↓ 0 yields U(X) = E[X], contradicting (iii) in Definition 2.
Therefore, we conclude that K < ∞. This completes the proof.

Next, we establish a representation result for mean-deviation models that are monetary below.

Theorem 1. Fix p ∈ [1,∞]. Suppose that U : Lp → (−∞,∞] is a mean-deviation model in (7) with
D ∈ Dp. The following statements are equivalent.

(i) U is a monetary risk measure.

(ii) U is a consistent risk measure.

(iii) For some λ > 0, λD ∈ Dp
and U = g ◦D+E where g : [0,∞) → R is a non-constant increasing

and λ-Lipschitz continuous function satisfying g(0) = 0.

Proof. (ii) ⇒ (i) is trivial.
(iii) ⇒ (ii): Without loss of generality we can take λ = 1. The property of [CA] is clear. Next, we

verify the property of [M]. For any X,Y ∈ Lp with X ⩽ Y , we have U(X) ⩽ U(Y ) if D(Y ) ⩾ D(X).
Suppose now that D(X) > D(Y ). It holds that

U(Y )− U(X) = g(D(Y )) + E[Y ]− g(D(X))− E[X] ⩾ D(Y )−D(X) + E[Y ]− E[X],

where use the 1-Lipschitz continuity of g in the inequality. Since D ∈ Dp
, it follows from Theorem 2

of Rockafellar et al. (2006) that there exists one-to-one correspondence with coherent risk measures
denoted by R in the relation that R(X) = D(X) + E[X] for X ∈ Lp. The monotonicity of R implies
that

U(Y )− U(X) ⩾ D(Y )−D(X) + E[Y ]− E[X] = R(Y )−R(X) ⩾ 0.

Hence, we have verified [M] of U .
It remains to be shown that U satisfies [SC]. We recall that D ∈ Dp is continuous because

R = D + E is a finite coherent risk measure on Lp, which is continuous (see e.g., Corollary 2.3 of
Kaina and Rüschendorf (2009)). Since D also satisfies convexity and law-invariance, and the space
is nonatomic, we obtain that D is consistent with respect to the convex order (see, e.g., Theorem
4.1 of Dana (2005)), and the same property holds for U because of the increasing monotonicity of g.
Combining with [M] of U , it follows from Theorem 4.A.6 of Shaked and Shanthikumar (2007) that U
satisfies [SC]. This completes the proof of (iii) ⇒ (ii).

(i) ⇒ (iii): Define g(d) = V (0, d) for d ⩾ 0. It is clear that g is an increasing function with
g(0) = V (0, 0) = 0. By [CA], we have

U(X) = U(X − E[X]) + E[X]

= V (0, D(X)) + E[X] = g(D(X)) + E[X].

By Lemma 1 below, we have λD ∈ Dp
for some λ > 0. It remains to be shown that g is λ-Lipschitz

continuous. Denote by k = 1/λ. Since λD ∈ Dp
, for any ε ∈ (0, k), there exists X1 such that

k − ε <
D(X1)

ess-supX1 − E[X1]
⩽ k.

For any a > 0 and d ⩾ 0, define

X2 = a
X1 − ess-supX1

ess-supX1 − E[X1]
and X3 =

d

a
X2 + d.
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It is obvious that E[X2] = −a,X2 ⩽ 0 and E[X3] = 0. Moreover, a(k − ε) < D(X2) ⩽ ak and
d(k− ε) < D(X3) ⩽ dk. Additionally, E[X2 +X3] = −a and (d+ a)(k− ε) < D(X2 +X3) ⩽ (d+ a)k.
Since X2 + X3 ⩽ X3, by [M], we have g(D(X2 + X3)) + E[X2 + X3] ⩽ g(D(X3)) + E[X3]. Letting
ε → 0, we conclude that g−((d + a)k) ⩽ g(dk) + a, where g−(x) = limy↑x g(y) for all x ⩾ 0. This is
equivalent to g−(d+ a)− g(d) ⩽ λa for any a > 0 and d ⩾ 0. Note that g is increasing. We have that
g : [0,∞) → R is λ-Lipschitz continuous. This completes the proof.

Theorem 1 leads to the following definition of monotonic mean-deviation measures.

Definition 3. Fix p ∈ [1,∞] and let D ∈ Dp
. A monotonic mean-deviation measure MDD

g : Lp → R
is defined by

MDD
g (X) = g(D(X)) + E[X], (10)

where g : [0,∞) → R is a non-constant increasing and 1-Lipschitz continuous function satisfying
g(0) = 0, called a risk-weighting function. We use G to denote the set of such functions g.

The functionals defined in Definition 3 precisely encompass all mean-deviation models that are
monetary. Specifically, if D and g satisfy the conditions in Theorem 1 (iii), then there exists D̃ ∈ Dp

and g̃ ∈ G such that g̃ ◦ D̃ = g ◦ D. This means that for any pair (D, g) satisfying the conditions
in Theorem 1 (iii), there is a corresponding pair (D̃, g̃) that satisfies the conditions in Definition
3. Therefore, monotonic mean-deviation measures and precisely mean-deviation models that are
monetary.

The interpretation of g should be self-evident: it dictates how D(X) is reflected in the calculation
of MDD

g , and it is a generalization of the risk-weighting parameter λ in E+λD, hence the name. The

reason for requiring the conditions D ∈ Dp
and g ∈ G in Definition 3 has been justified in Theorem

1. Intuitively, since D ∈ D
p
is not monotonic, while E is monotonic, a function g that satisfies

the 1-Lipschitz continuity can regularize the influence of D on monotonicity, ensuring the overall
mean-deviation model is monotonic. Note that MDD

g is not subadditive in general. For instance, let
g(x) = (x − 1)+ and D = ESα − E with α = 0.5. Take X,Y be such that P(X = Y = 0) = P(X =
Y = 2) = 1/2. One can check D(X) = D(Y ) = 1 and D(X + Y ) = 2. Thus, MDD

g (X + Y ) = 3

and MDD
g (X) = MDD

g (Y ) = 1, which violates subadditivity. In practice, a simple class of functions
g can be chosen as g(x) = λ(x − θ)+ for some θ ⩾ 0 and λ ∈ (0, 1]. The interpretation is clear:
Risks X with deviation D(X) smaller than θ are seen as not very dangerous and are assessed by their
expected value. Risks X with deviation D(X) larger than θ are dangerous and penalized in their risk
assessment. In portfolio management, the parameters θ and λ can be calibrated on the basis of the
performance of the risk measure on test data.

The expected return maximization with variance constraint of Markowitz (1952) has the form
MDD

g where D = SD and g(d) = ∞× 1{d>σ} for some σ > 0 as in (2). In this example, g is not real-

valued. Therefore, although sharing the form (10), MDD
g is not a monotonic mean-deviation measure.

Similarly, for λ > 0, the functional MDD
g (X) = λ(SD(X))2+E[X] in (3) or MDD

g (X) = λSD(X)+E[X]
is not a monotonic mean-deviation measure, because SD does not satisfies (9) for any p ∈ [1,∞].
Nevertheless, in all three examples, g is convex. Indeed, convexity of g has important implications,
and this will be studied in Section 4.2 below.

4 Characterization

4.1 Axiomatization of monotonic mean-deviation measures

In this section, we present an axiomatization of the monotonic mean-deviation measure MDD
g

through preference relations. This axiomatization is very similar to that of Grechuk et al. (2012), who
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axiomatized preferences represented by a mean-deviation model X 7→ V (E[X], D(X)) satisfying [M]
with some strictly increasing function V . We relegate all the details, including all the proofs and a
comparison with Grechuk et al. (2012), to Appendix B. Our main purpose here is to show that MDD

g

has an axiomatic foundation.
A preference relation ⪰ is defined as a total preorder.5 As usual, ≻ and ≃ correspond to the

antisymmetric and equivalence relations, respectively. For two random lossesX,Y , the relationX ⪰ Y
indicates that X is preferred over Y , or equivalently, that Y is considered more dangerous than X. A
numerical representation of a preference ⪰ is a mapping ρ : X → R, such that X ⪰ Y ⇐⇒ ρ(X) ⩽
ρ(Y ). Note that ⪰ can be represented by a mapping ρ if ⪰ is separable; see e.g., Drapeau and Kupper
(2013).6 We use the following axioms, where all random variables are tacitly assumed to be in Lp for
some fixed p ∈ [1,∞].

A1 (Monotonicity). If X1 ⩽ X2, then X1 ⪰ X2.

A2 (Translation-invariance). For any c ∈ R, X ⪰ Y if and ony if X + c ⪰ Y + c.

A3 (Weak positive homogeneity). If E[X] = E[Y ] and X ⪰ Y , then λX ⪰ λY for any λ > 0.

A4 (Risk aversion). If X ⩽cx Y , then X ⪰ Y . In addition, E[X] ≻ X for any non-constant X.

A5 (Solvability). There exists c ∈ R such that X ≃ c.

A6 (Weak convexity). If E[X] = E[Y ] and X ≃ Y , then λX + (1− λ)Y ⪰ X for all λ ∈ [0, 1].

A7 (Continuity). For every X, the sets {Y ∈ Lp : Y ⪰ X} and {Y ∈ Lp : X ⪰ Y } are Lp-closed.

These axioms are standard, and we refer to Yaari (1987), Drapeau and Kupper (2013), Föllmer
and Schied (2016, Chapeter 2) and Grechuk et al. (2012) for interpretations and discussions of these
axioms. The following result gives an axiomatization of MDD

g in Definition 3.

Theorem 2. Fix p ∈ [1,∞]. A preference ⪰ on Lp satisfies Axioms A1–A7 if and only if ⪰ can be
represented by MDD

g = g ◦D + E for some D ∈ Dp
and g ∈ G that is strictly increasing.

Compared to the representation result of mean-deviation models in Grechuk et al. (2012), our
stronger version of translation-invariance pins down the more explicit form of monotonic mean-
deviation measures. We will also establish an explicit one-to-one correspondence between properties
of the risk measure MDD

g and properties of the risk-weighting function g in Section 4.2.
For the detailed differences between our axiomatization and that of Grechuk et al. (2012), see

Appendix B. A subtle difference between Theorem 2 and Definition 3 is that g is strictly increasing in
Theorem 2 but not necessarily so in Definition 3. An axiomatization of MDD

g with g not necessarily
strictly increasing is an open question, as we were unable to identify proper relaxations of the proposed
axioms.

4.2 Characterizations of convex and coherent risk measures

We continue to study the properties of MDD
g . Specifically, we characterize g such that MDD

g

belongs to the class of coherent risk measures or convex risk measures. Moreover, we consider star-
shaped risk measures, which are monetary risk measures ρ further satisfying

5A preorder is a binary relation on X , which is reflexive and transitive. A binary relation ⪰ is reflexive if X ⪰ X
for all X ∈ X , and transitive if X ⪰ Y and Y ⪰ Z imply X ⪰ Z. A total preorder is a preorder which in addition is
complete, that is, X ⪰ Y or Y ⪰ X for all X,Y ∈ X .

6A total preorder ⪰ is separable if there exists a countable set X ⊆ Lp for p ∈ [1,∞] such that for any x, y ∈ X with
x ≻ y there is z ∈ X for which x ⪰ z ⪰ y.

10



[SS] Star-shapedness: ρ(0) = 0 and ρ(λX) ⩽ λρ(X) for all X ∈ X and λ ∈ [0, 1].

Similarly, a function g : [0,∞) → R is star-shaped if g(0) = 0 and g(λx) ⩽ λg(x) for all x ∈ [0,∞)
and λ ∈ [0, 1]. Star-shaped risk measures are characterized by Castagnoli et al. (2022) as the infimum
of normalized (i.e., ρ(0) = 0) convex risk measures. Under normalization, star-shapedness is weaker
than both convexity and positive homogeneity. We refer to Herdegen and Khan (2024), Laeven et al.
(2024) and Nie et al. (2024) for more recent developments on star-shaped risk measures.

Theorem 3. Suppose that D ∈ Dp
for p ∈ [1,∞] and g ∈ G. The following statements hold.

(i) MDD
g is a coherent risk measure if and only if g is linear.

(ii) MDD
g is a convex risk measure if and only if g is convex.

(iii) MDD
g is a star-shaped risk measure if and only if g is star-shaped.

Proof. The sufficiency is straightforward. To show necessity, let X be such that E[X] = 0 and
D(X) = 1; such X exists due to Property (D3). The coherence of MDD

g implies that for all x > 0,

g(x) = MDD
g (xX) = xMDD

g (X) = xg(1).

This implies that g is linear.
(ii) To determine sufficiency, if g is convex, then MDD

g is a convex risk measure because the
expectation is linear and D is convex. To show necessity, take x, y ⩾ 0 and λ ∈ [0, 1]. Let X be such
that E[X] = 0 and D(X) = 1. Since MDD

g is convex and D satisfies (D3), we have

g(λx+ (1− λ)y) = g ◦D((λx+ (1− λ)y)X)

= MDD
g ((λx+ (1− λ)y)X)

⩽ λMDD
g (xX) + (1− λ)MDD

g (yX) = λg(x) + (1− λ)g(y).

Thus, g is convex.
(iii) To see sufficiency, if g is star-shaped, then MDD

g is star-shaped because the expectation is
linear and D satisfies (D3). Conversely, let X be such that E[X] = 0 and D(X) = 1. For any
x ∈ [0,∞) and λ ∈ [0, 1], it follows from the star-shapedness of MDD

g that g(0) = MDD
g (0) = 0 and

g(λx) = MDD
g (λxX) ⩽ λMDD

g (xX) = λg(x).

This implies that g is star-shaped.

By Theorem 3 (i), MDD
g is coherent if and only if

MDD
g (X) = λD(X) + E[X] = λR(X) + (1− λ)E[X], X ∈ Lp

for some λ ∈ [0, 1], where R = D + E is a coherent risk measure. In fact, positive homogeneity of
MDD

g is sufficient for g to be linear, as seen from the proof of (i). Therefore, positive homogeneity
and coherence are equivalent for a monotonic mean-deviation measure. Moreover, following the same
proof, the result in (ii) can be strengthened to a more general form without monotonicity: For any
function g : [0,∞) → R and D ∈ Dp with p ∈ [1,∞], we have that MDD

g is convex if and only if g is

convex. As shown in Proposition 3 of Castagnoli et al. (2022), if MDD
g is subadditive, then the three

(coherent, convex, star-shaped) classes of risk measures in Theorem 3 (i)–(iii) coincide.
For the special choice ofD = ESα−E where α ∈ (0, 1), Han et al. (2023) obtained characterizations

for MDD
g to be coherent, convex, or consistent risk measures. Theorem 3 extends this result to
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deviation measures. In the following proposition, we obtain an alternative representation result for
MDD

g when g is convex.

Proposition 2. Fix p ∈ [1,∞]. For g ∈ G and D ∈ Dp
, MDD

g is a convex risk measure if and only if

MDD
g (X) = λE[(D(X)− Y )+] + E[X]

for some non-negative random variable Y ∈ L1 and some constant λ ∈ [0, 1]. In particular, MDD
g is

a coherent risk measure if and only if Y = 0.

Proof. We need to show that g is an increasing, convex function which satisfies 1-Lipschitz continuity
if and only if g(x) = λE[(x− Y )+] for some Y ⩾ 0 and 0 ⩽ λ ⩽ 1. This is known in the literature; see
Theorems 1 and 6 of Williamson (1956).

By Theorem 1, we know that MDD
g is a consistent risk measure, yet it fails to satisfy convexity

when g ∈ G is not convex, as shown in Theorem 3. Thus, our results allow for explicit formulas
for many consistent risk measures that are not convex, while existing examples of consistent but non-
convex risk measures are often obtained by taking an infimum over convex risk measures. For instance,
take g(x) = λE[x ∧ Y ] for some non-negative Y and λ ∈ [0, 1]. It is obvious that g is concave and
satisfies 1-Lipschitz continuity. In this case, MDD

g (X) can be expressed as

MDD
g (X) = λE[D(X) ∧ Y ] + E[X],

which is a consistent but not convex risk measure. Furthermore, Theorem 3 implies that MDD
g is

a convex but not coherent risk measure if g ∈ G is convex yet non-linear. This insight opens up
a new perspective for constructing risk measures within the class of monotone mean-deviation risk
measures. Specifically, it guides us in developing risk measures that are consistent yet not convex, or
alternatively, convex but not coherent, all while possessing an explicit formulation. By assuming that
g(x) = E[(x − Y )+] or g(x) = E[x ∧ Y ] for some non-negative random variable Y , we can construct
many convex or consistent risk measures with explicit forms which appear to be new in the literature.

Example 1. Let g(x) = E[(x− Y )+] for some Y ⩾ 0 and D ∈ Dp
with some p ∈ [1,∞].

(i) If Y follows an exponential distribution with parameter β > 0, that is, P(Y > y) = e−βy, then
g(x) = x+

(
e−βx − 1

)
/β. According to Proposition 2, we have

ρ(X) = E[X] +D(X) +
1

β

(
e−βD(X) − 1

)
,

which is a convex risk measure.

(ii) If Y follows a Pareto distribution with tail parameter θ > 0, that is, P(Y > y) = (1 + y)−θ for
y ⩾ 0, then

g(x) =

x+
(
(1 + x)1−θ − 1

)
/(θ − 1), θ ̸= 1,

x− log(1 + x), θ = 1.

This yields

ρ(X) =

E[X] +D(X) +
(
(1 +D(X))1−θ − 1

)
/(θ − 1), θ ̸= 1,

E[X] +D(X)− log(1 +D(X)), θ = 1,

and ρ is a convex risk measure.
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Example 2. Let g(x) = E[x ∧ Y ] for some Y ⩾ 0 and D ∈ Dp
for some p ∈ [1,∞].

(i) If Y follows an exponential distribution with parameter β > 0, then g(x) =
(
1− e−βx

)
/β. It

follows that

ρ(X) = E[X] +
1

β

(
1− e−βD(X)

)
,

which is a consistent risk measure but not a convex risk measure.

(ii) If Y follows a Pareto distribution with a tail parameter θ > 0, then

g(x) =


(
1− (1 + x)1−θ

)
/(θ − 1), θ ̸= 1,

log(1 + x), θ = 1.

This yields

ρ(X) =

E[X] +
1− (1 +D(X))1−θ

θ − 1
, θ ̸= 1,

E[X] + log(1 +D(X)), θ = 1,

which is a consistent risk measure but not a convex risk measure.

5 Dual representation

In this section, we investigate the dual representation of monotonic mean-deviation measures that
are convex. Before presenting the main result, we introduce some notation. For p ∈ [1,∞), denote by
q the conjugate dual of p, i.e., q = (1− 1/p)−1. Let Ap = {Z ∈ Lq : Z ⩾ 0, E[Z] = 1}. For a convex
g ∈ G, we use g∗ to represent its conjugate function, i.e., g∗(y) = supx⩾0{xy − g(x)}. One can easily
check that g∗ is increasing, convex and lower semicontinuous. Note that g : [0,∞) → R is increasing
and 1-Lipschitz continuous with g(0) = 0. Denote by a = limx→∞ g′(x) ∈ [0, 1], and we have g∗(y) = 0
for y ⩽ 0 and g∗(y) = ∞ for y > a. Hence, g(x) = g∗∗(x) = supy∈[0,a]{xy− g∗(y)} holds for x ⩾ 0 (see
e.g., Proposition A.6 of Föllmer and Schied (2016)).

From Definition 3 and Theorem 3, convex monotonic mean-deviation measure MDD
g on Lp with

p ∈ [1,∞) can be defined by the form MDD
g with D ∈ Dp

and convex g ∈ G. For D ∈ Dp
, denote by

R = D+E, which is a finite coherent risk measure on Lp. Moreover, the following dual representation
holds:

R(X) = D(X) + E[X] = max
Z∈A

E[XZ], X ∈ Lp (11)

for some convex and weakly compact set A ⊆ Ap.

Theorem 4. Fix p ∈ [1,∞). Suppose that g ∈ G is convex and D ∈ Dp
with the relation in (11). We

have

MDD
g (X) = max

Z∈A

{
aE[XZ]− g∗

(
a

sup{λ ∈ [1,∞) : λ(Z − 1) + 1 ∈ A}

)}
+ (1− a)E[X], X ∈ Lp,

where a = limx→∞ g′(x) is in (0, 1].

Proof. Under the given conditions, MDD
g is a convex risk measure. It follows from Theorem 2.11 of

Kaina and Rüschendorf (2009) that it admits a dual representation:

MDD
g (X) = max

Z∈Ap

{E[XZ]− β(Z)}, X ∈ Lp,
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for some β : Lq → (−∞,∞] that is convex and lower semicontinuous, given by

β(Z) = sup
X∈Lp

{E[XZ]−MDD
g (X)}, Z ∈ Lq.

Note that g ∈ G is 1-Lipshitz continuous and non-constant. Combining with its convexity yields
a ∈ (0, 1].

Next, we aim to prove that β has an explicit representation:

β(Z) =

{
g∗
(

1
sup{λ∈[1/a,∞):λ(Z−1)+1∈A}

)
, Z ∈ Z,

∞, otherwise,
(12)

where Z = {aY + 1− a : Y ∈ A}. For Z ∈ Lq, we have

β(Z) = sup
X∈Lp

{E[XZ]−MDD
g (X)}

= sup
X∈Lp

{E[XZ]− E[X]− g(D(X))}

= sup
X∈Lp

inf
y∈[0,a]

{E[XZ]− E[X]−D(X)y + g∗(y)}, (13)

where we have used g(x) = supy∈[0,a]{xy − g∗(y)} in the last step. The objective function of (13) is
convex and lower semicontinuous in y for any fixed X since g∗ is convex and lower semicontinuous,
and it is concave in X for any fixed y. By a minimax theorem (see e.g., Theorem 2 of Fan (1953)),
we have

β(Z) = inf
y∈[0,a]

sup
X∈Lp

{E[XZ]− E[X]−D(X)y + g∗(y)}

= inf
y∈[0,a]

sup
X∈Lp

{E[XZ]− E[X]− (R(X)− E[X])y + g∗(y)}

= inf
y∈[0,a]

sup
X∈Lp

inf
Y ∈A

{E[(Z − 1 + y − yY )X] + g∗(y)}, (14)

where we have used (11) in the second and third steps. Obviously, the objective function of (14) is
convex and continuous with respect to the weak topology in Y for any fixed X and concave in X.
Additionally, A is convex and weakly compact. By the minimax theorem, we have

β(Z) = inf
y∈[0,a],Y ∈A

sup
X∈Lp

{E[(Z − 1 + y − yY )X] + g∗(y)}. (15)

Denote by Z̃ = {yY + 1 − y : y ∈ [0, a], Y ∈ A}. Note that the inner supremum problem above is
infinite if P(Z − 1 + y − yY ̸= 0) > 0 and is equal to g∗(y) if Z − 1 + y − yY = 0. We have that
β(Z) = ∞ if Z ∈ Lq \ Z̃, and for Z ∈ Z̃, (15) reduces to

β(Z) = inf {g∗(y) : y ∈ [0, a], Y ∈ A, y(Y − 1) + 1 = Z}

= inf

{
g∗(y) : y ∈ [0, a],

Z − 1

y
+ 1 ∈ A

}
= inf

{
g∗
(
1

λ

)
: λ ∈

[
1

a
,∞
)
, λ(Z − 1) + 1 ∈ A

}
= g∗

(
1

sup{λ ∈ [1/a,∞) : λ(Z − 1) + 1 ∈ A}

)
,
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where the last equality holds because g∗ is increasing. To verify (12), it remains to show Z = Z̃, that
is, {aY + 1− a : Y ∈ A} = {yY + 1− y : y ∈ [0, a], Y ∈ A}. It is clear that Z ⊆ Z̃. Conversely, for
any Z ∈ Z̃ with the representation Z = yY + 1− y for some y ∈ [0, a] and Y ∈ A, since A is convex
and 1 ∈ A, we have that Z is convex and 1 ∈ Z. Note that Z = (y/a)(aY + 1 − a) + (1 − y/a) · 1,
where y/a ∈ [0, 1] and aY +1−a ∈ Z. It holds that Z ∈ Z. This yields the converse direction. Hence,
we have verified (12). Therefore, we have

MDD
g (X) = max

Z∈Z

{
E[XZ]− g∗

(
1

sup{λ ∈ [1/a,∞) : λ(Z − 1) + 1 ∈ A}

)}
, X ∈ Lp,

where Z = {aY + 1− a : Y ∈ A}. Moreover, for Z ∈ Z with the form Z = aY + 1− a, where Y ∈ A,
it holds that

E[XZ]− g∗
(

1

sup{λ ∈ [1/a,∞) : λ(Z − 1) + 1 ∈ A}

)
= E[X(aY + 1− a)]− g∗

(
1

sup{λ ∈ [1/a,∞) : λa(Y − 1) + 1 ∈ A}

)
= aE[XY ]− g∗

(
a

sup{λ ∈ [1,∞) : λ(Y − 1) + 1 ∈ A}

)
+ (1− a)E[X].

This completes the proof.

Below we give two specific examples of Theorem 4 by choosing the coherent risk measure R as
ES or expectile (see e.g., Newey and Powell (1987) and Bellini et al. (2014)), which are popular in
practice. This choice results in two classes of MDD

g .

Example 3. Let R = ESα with α ∈ (0, 1), D = R − E, g ∈ G be convex with limx→∞ g′(x) = a, and
MDD

g = g ◦D + E. The well-known dual representation of ES in Föllmer and Schied (2016, Example
4.40) gives R(X) = maxZ∈A E[XZ] for X ∈ L1 where A = {Z ∈ A∞ : Z ⩽ 1/(1− α)}. Then

sup{λ ∈ [1,∞) : λ(Z − 1) + 1 ∈ A} = sup

{
λ ∈ [1,∞) : λ(ess-supZ − 1) + 1 ⩽

1

1− α

}
=

α

1− α
(ess-supZ − 1)−1.

By Theorem 4, we obtain

MDD
g (X) = max

Z∈A

{
aE[XZ]− g∗

(
(1− α)a

α
(ess-supZ − 1)

)}
+ (1− a)E[X]

= sup
γ∈[1, 1

1−α ]
sup

{
aE[XZ]− g∗

(
(1− α)(γ − 1)a

α

)
: Z ∈ A∞, ess-supZ = γ

}
+ (1− a)E[X]

= sup
γ∈[1, 1

1−α ]

{
aES1− 1

γ
(X)− g∗

(
(1− α)(γ − 1)a

α

)}
+ (1− a)E[X]

= sup
γ∈[0,α]

{
aESγ(X)− g∗

(
1− α

α

γa

1− γ

)}
+ (1− a)E[X].
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Suppose now a = 1, and we define f : [0, 1] → (−∞,∞] as

f(γ) =

{
g∗
(
1−α
α

γ
1−γ

)
, γ ∈ [0, α],

∞, γ ∈ (α, 1].

Obviously, f is an increaing and convex function on [0, 1] as g∗ and γ 7→ γ/(1− γ) are both increasing
and convex. It holds that

MDD
g (X) = sup

γ∈[0,1]
{ESγ(X)− f(γ)}.

A functional of the form supγ∈[0,1]{ESγ(X) − h(γ)} for a general function h is called an adjusted
Expected Shortfall (AES) by Burzoni et al. (2022). Different from the general class of AES considered
by Burzoni et al. (2022), the subclass MDD

g has an explicit formula, i.e., MDD
g (X) = g(ESα(X))+E[X].

Example 4. An expectile at level α ∈ (0, 1), denoted by exα, is defined as the solution of the following
equation:

αE[(X − x)+] = (1− α)E[(X − x)−], X ∈ L1.

When α ⩾ 1/2, exα is a convex risk measure admitted a dual representation (see e.g., Proposition 8
of Bellini et al. (2014)):

exα(X) = max
Z∈A

E[XZ] with A =

{
Z ∈ A∞ :

ess-supZ

ess-infZ
⩽

α

1− α

}
.

Let R = exα with α ∈ [1/2, 1), D = R − E and g ∈ G be convex with limx→∞ g′(x) = a, and let
MDD

g = g ◦D + E. It holds that

sup{λ ∈ [1,∞) : λ(Z − 1) + 1 ∈ A} = sup

{
λ ∈ [1,∞) :

λ(ess-supZ − 1) + 1

λ(ess-infZ − 1) + 1
⩽

α

1− α

}
=

2α− 1

2α− 1 + (1− α)ess-supZ − αess-infZ
.

By Theorem 4, we obtain

MDD
g (X) = sup

Z∈A

{
aE[XZ]− g∗

(
a((1− α)ess-supZ − αess-infZ)

2α− 1
+ a

)}
+ (1− a)E[X].

Recalling the representation of a convex monotonic mean-deviation measure MDD
g in Theorem 4,

the smallest coherent risk measure (denoted by ρS) that dominates MDD
g can be directly derived:

ρS(X) = max
Z∈A

aE[XZ] + (1− a)E[X] = aR(X) + (1− a)E[X] = aD(X) + E[X], X ∈ Lp.

Below we provide an analogous result for a broader class of functionals with the form of MDD
g where

g ∈ G is not necessarily convex, implying that MDD
g may not be a convex risk measure.

Proposition 3. Let g ∈ G and D ∈ Dp
. The smallest coherent risk measure that dominates MDD

g is
(supx>0 g(x)/x)D(X) + E[X].
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Proof. The smallest positive homogeneous functional that dominates MDD
g is given by

ρ(X) = sup
λ>0

MDD
g (λX)

λ
= sup

λ>0

g(λD(X))

λ
+ E[X]

= D(X) sup
λ>0

g(λ)

λ
+ E[X].

Hence, we obtain the desired result.

Proposition 3 addresses the case where g is convex, which aligns with the observation in Theorem
4. This is because supx>0 g(x)/x = limx→∞ g′(x) for convex g ∈ G. Despite the simplicity of the
proof of above proposition, the smallest dominating coherent risk measure of a given risk measure has
several interesting applications; see Wang et al. (2015) in the context of subadditivity, and Herdegen
and Khan (2024) in the context of arbitrage induced by risk measure.

6 Non-parametric estimation

In this section, we first introduce the definition of signed Choquet integrals and then examine the
properties of non-parametric estimators for MDD

g , where D is chosen as a signed Choquet integral.
Define

H = {h : h maps from [0, 1] to R is of bounded variation with h(0) = h(1) = 0}.

The elements in H are called distortion functions. A signed Choquet integral with the distortion
function h ∈ H is a functional, denoted by Dh, that has the representation:

Dh(X) =

∫
R
h (P(X > x)) dx. (16)

The class of signed Choquet integrals has been characterized by Wang et al. (2020a,b) via comonotonic
additivity.7 A signed Choquet integral with the form (16) always satisfies (D3) in Definition 1. It also
follows that Dh with h ∈ H satisfies (D2) since

∫
R h(P(X + c > x))dx =

∫
R h(P(X > x))dx for all

c ∈ R. To derive a class of deviation measures on Lp from all signed Choquet integrals, we need to
shrink the set H so that Dh additionally satisfies (D1) and (D4), as well as ensures finiteness on Lp.
This leads to consider the following subset of H:

Φp = {h ∈ H : h is concave and ∥h′∥q < ∞}, p ∈ [1,∞),

where h′ is the left derivative of h, q = (1− 1/p)−1, and ∥h′∥q = (
∫ 1
0 |h′(t)|q dt)1/q for q ∈ [1,∞) and

∥h′∥∞ = supt∈(0,1) |h′(t)|. For h ∈ Φp, Dh can be reformulated as

Dh(X) =

∫
R
h (P(X > x)) dx =

∫ 1

0
VaRα(X)h′(1− α)dα. (17)

Indeed, it follows from Theorem 3 of Wang et al. (2020b) that Dh satisfies (D4) if and only if
h ∈ H is concave, thereby implying the property (D4) for Dh when h ∈ Φp. The property (D1) of

7Random variables X and Y are said to be comonotonic if there exists Ω0 ∈ A with P (Ω0) = 1 such that ω, ω′ ∈ Ω0

(X(ω)−X (ω′)) (Y (ω)− Y (ω′)) ⩾ 0. For a functional ρ : X → R, we say that ρ is comonotonic additive, if for any
comonotonic random variables X,Y ∈ X , ρ(X + Y ) = ρ(X) + ρ(Y ).
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Dh with h ∈ Φp is obtained from the non-negativity of h. Moreover, Proposition 1 of Wang et al.
(2020a) shows that h ∈ Φp is a sufficient condition for the finiteness of Dh on Lp. Therefore, we have
concluded that Dh is a deviation measure in the sense of Definition 1 whenever h ∈ Φp.

For p ⩾ 1, h ∈ Φp and Dh : Lp → R defined by (17), one can observe that λDh +E satisfies [CA],
[PH] and [SA] for any λ ⩾ 0. Combining Proposition 2 (ii) of Wang et al. (2020a) and Proposition
1, it is established that Dh is range-normalized if and only if t 7→ h(t) + t is increasing on [0, 1], and
t 7→ λh(t) + t is not an increasing function on [0, 1] for any λ > 1, which is equivalent to h′(1) = −1;
we do not assume this condition in this section.

We now examine the properties of non-parametric estimators for MDD
g , where g ∈ G and D = Dh

with h ∈ Φp. These estimators can be derived from those of D, VaR, and the expectation, as detailed
in this section. Suppose that X1, . . . , Xn are an iid sample from (the distribution of) a random variable
X ∈ Lp. Recall that the empirical distribution F̂n of X1, . . . , Xn is given by

F̂n(x) =
1

n

n∑
j=1

1{Xj⩽x}, x ∈ R.

Let M̂D
D

g (n) be the empirical estimator of MDD
g (X), obtained by applying MDD

g to the empirical
distribution ofX1, . . . , Xn. We will establish the consistency and asymptotic normality of the empirical
estimators, based on corresponding results on empirical estimators of E[X] and D(X). Let x̂n and
D̂(n) be the empirical estimators of E[X] and D(X) based on the first n sample data points. We make
following standard regularity assumption on the distribution of the random variable X.

Assumption 1. The distribution F of X is supported on a convex set and has a positive density
function f on the support. Denote by f̃ = f ◦ F−1.

The proof of Theorem 5 below relies on standard techniques in empirical quantile processes, and
it is given in Appendix C. In what follows, g′ is the left derivative of g.

Theorem 5. Fix p ∈ [1,∞). Let g ∈ G and D = Dh for some h ∈ Φp. Suppose that X1, . . . , Xn ∈ Lp

are an iid sample from X ∈ Lp and Assumption 1 holds. Then, g(D̂(n)) + x̂n
P→ g (D(X)) + E[X] as

n → ∞. Moreover, if p < 2 and X ∈ Lγ for some γ > 2p/(2− p), then we have

√
n
(
M̂D

D

g (n)−MDD
g (X)

)
d→ N

(
0, σ2

g

)
,

in which

σ2
g =

∫ 1

0

∫ 1

0

(h′(1− s)g′(D(X)) + 1)(h′(1− t)g′(D(X)) + 1)(s ∧ t− st)

f̃(s)f̃(t)
dtds. (18)

The integrability condition X ∈ Lγ with γ > 2p/(2 − p), required for asymptotic normality
in Theorem 5, coincides with that in Jones and Zitikis (2003), where the authors established the
asymptotic normality of empirical estimators for distortion risk measures. In particular, in case p = 1,
we require X ∈ Lγ with γ > 2, which is a common assumption in weighted empirical quantile processes
without distortion; see e.g., Shao and Yu (1996). The condition p < 2 is also important. If Dh ̸∈ Φ2,
then Dh is not even finite on L2, and we do not expect asymptotic normality in this case.

Note that the asymptotic variance σg in (18) is decreasing in the left derivative of g. Therefore,
if we replace g by g̃ ∈ G satisfying g̃′ ⩽ g′, then the asymptotic variance, and thus the estimation
error, will decrease. Note that a larger g′ corresponds to a larger sensitivity to risk, as it measures
how MDD

g changes when D increases. Therefore, Theorem 5 gives a trade-off between risk sensitivity
and statistical efficiency.
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In what follows, we present some simulation results based on Theorem 5. We assume that g(x) =
x + e−x − 1 and g(x) = 1 − e−x, respectively. The simulation results are presented in the case of
standard normal and Pareto risks with tail index 4. Let the sample size be n = 10000, and we repeat
the procedure 5000 times.

First, let h(t) = 1−t−(1−α−t)+/(1−α) for t ∈ [0, 1] with α = 0.9. It is straightforward to see h ∈
Φ1. Further, we setD = Dh = ESα−E, and MDD

g (X) is given as MDD
g (X) = g(ESα(X)−E[X])+E[X].

In this case, we have h′(1 − t) = 1{t⩾α}/(1 − α) − 1 and σ2
g in (18) can be computed explicitly. We

compare the asymptotic variance of MDD
g with that of ESα, given by, via (18),

σ2
ES =

1

(1− α)2

∫ 1

α

∫ 1

α

s ∧ t− st

f̃(s)f̃(t)
dtds.

In Figure 2 (a) and (b), the sample is simulated from the standard normal distribution. We can
observe that, for g(x) = x+ e−x − 1 and D = ESα − E, empirical estimates of MDD

g match quite well
with the density function of N(0.93, 2.85/n). In contrast, the ESα empirical estimates match with the
density function of N(1.76, 3.71/n), whose asymptotic variance is larger than that of MDD

g . In Figure
2 (c) and (d), the sample is simulated from the Pareto distribution with a tail index 4. We can observe
that the MDD

g (X) empirical estimates match quite well with the density function of N(0.73, 4.88/n)
and the ES empirical estimates match with the density function of N(1.37, 10.19/n), whose asymptotic
variance is also larger than the one of MDD

g . Since g satisfies 1-Lipschitz continuity, the volatility of
D is reduced via the distortion by g.

Figure 2: Left: M̂D
D

g (n) with D = ESα − E and g(x) = x+ e−x − 1; Right: ÊSα(n)

In Figure 3 (a) and (b), for g(x) = 1 − e−x and D = ESα − E, we can observe that the MDD
g

empirical estimates match quite well with the density functions of N(0.83, 1.08/n) and N(0.98, 1.97/n)
when the samples are also simulated from the standard normal distribution or the Pareto distribution
with a tail index 4. Moreover, the asymptotic variance in both cases is smaller than those of the ES
empirical estimates.

If g(x) = λx with λ ∈ (0, 1), then MDD
g (X) = λESα(X) + (1 − λ)E[X]. It is obvious that

the asymptotic variance of E/ES-mixture is increasing in λ and thus it is smaller than that of ES.
Moreover, if λ = 1, then MDD

g = ESα, and the values of σ2
g/n in Figure 4 (b) and (d) equal to those

in Figure 2 (b) and (d).
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Figure 3: M̂D
D

g (n) with D = ESα − E and g(x) = 1− e−x

Figure 4: M̂D
D

g (n) with D = ESα − E and g(x) = λx

Below we give another example of D. For X ∈ L1, let X1, X2, X be iid, and

D(X) = Gini(X) :=
1

2
E [|X1 −X2|] . (19)

The Gini deviation is a signed Choquet integral with a distortion function h ∈ Φ1 given by h(t) = t−t2

for t ∈ [0, 1] (see e.g., Denneberg (1990)), i.e., D = Gini = Dh. Then we have

σ2
g =

∫ 1

0

∫ 1

0

((2s− 1)g′(Gini(X)) + 1)((2t− 1)g′(Gini(X)) + 1)(s ∧ t− st)

f̃(s)f̃(t)
dtds.

Note that the asymptotic variance for estimating Gini(X) + E[X], denoted by σ2
Gini+E, equals

σ2
Gini+E =

∫ 1

0

∫ 1

0

4ts(s ∧ t− st)

f̃(s)f̃(t)
dtds.

The simulation results are presented in Figures 5 and 6 for D = Gini in the case of the standard
normal distribution and the Pareto distribution with tail index 4, which also confirm the asymptotic
normality of the empirical estimators in Theorem 5. Similarly, the asymptotic variance of E+Gini is
larger than the one of MDD

g based on D = Gini.
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Figure 5: Left: M̂D
D

g (n) with g(x) = x+ e−x − 1 and D = Gini; Right: Ĝini(n) + Ê(n)

Figure 6: M̂D
D

g (n) with D = Gini and g(x) = 1− e−x

7 Application to portfolio selection

In this section, we consider portfolio selection problems based on MDD
g . Let a random vector

X ∈ X n represent log-losses (i.e., the negation of log-return of the daily asset prices; see McNeil et
al. (2015)) from n assets and a vector w = (w1, . . . , wn) ∈ ∆n of portfolio weights, where ∆n is the
standard n-simplex, given by

∆n = {(w1, . . . , wn) ∈ [0, 1]n : w1 + · · ·+ wn = 1} .

The total loss of the portfolio is w⊤X, and the optimization problem is formulated as

min
w∈∆n

MDD
g (w

⊤X). (20)

Note that the convexity of g implies that MDD
g is a convex risk measure (see Theorem 3), and in this

case, problem (20) is a convex optimization problem.
We select the 4 largest stocks from each of the 10 different sectors of S&P 500, ranked by market

cap at the beginning of 2014, as the portfolio compositions (40 stocks in total). The historical asset
prices are collected from Yahoo Finance, covering the period from January 2, 2014, to December 29,
2023, with a total of 2516 observations of daily losses. We use the first two years’ data for training and
start investment strategies at the beginning of 2016. The initial wealth is set to 1, and the risk-free
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rate is r = 2.13%, which is the 10-year yield of the US treasury bill in Jan 2016. Note that the risk-free
asset is not used to construct portfolios, but only used to calculate the Sharpe ratios.

Our portfolio strategies rebalance at the beginning of each month by solving (20) and we assume
no transaction cost. For each period, we use an empirical distribution of the previous 500 log-loss data
to estimate the risk measure, i.e., using an empirical estimator as described in Section 6. This is the
simplest method of computing the risk measure, although the standard method in practice is to fit a
time-series model. We choose this simple method for illustrative purposes.

We consider MDD
g by choosing D = ESα − E with α = 0.9 and varying g, since our main novelty

lies in the risk-weighting function g. In particular, we consider the following class of convex functions
gβ indexed by a parameter β > 0 as in Example 1 (i), given by

gβ(x) = x+
1

β

(
e−βx − 1

)
.

The parameter β has a natural interpretation of describing the convexity of gβ; that is, a smaller β
means a more convex gβ. This is because g′′β/g

′
β is decreasing in β (see Ross (1981) for comparing

convexity of functions). Note that gβ(x) → x as β → ∞, which represents a linear risk-weighting
function.

At each period, the problem is to minimize MDD
g over w ∈ ∆n, that is,

min
w∈∆n

: E[w⊤X] + gβ(ESα(w
⊤X)− E[w⊤X]),

where X follows the empirical distribution of the log-loss vector of the previous 500 trading days. By
using the ES optimization formula of Rockafellar and Uryasev (2002), that is,

ESα(X) = min
x∈R

{
x+

1

1− α
E[(X − x)+]

}
, X ∈ L1,

we can write the MDD
g minimization problem as

min
w∈∆n, x∈R

: E[w⊤X] + gβ

(
x+

1

1− α
E[(w⊤X− x)+]− E[w⊤X]

)
. (21)

The problem (21) is jointly convex in w and x and therefore can be easily solved numerically via
modern computational programs such as MATLAB.

We choose β = 1, 3, 10, 30, 100 to study the effect of β. We compare them with a portfolio that
simply minimizes ESα (corresponding to β = ∞) and a Markowitz (1952) portfolio (by fixing an
expected log-return at 10% and minimizing the variance at each period). The portfolio performance
is reported in Figure 7. Summary statistics, including the annualized return (AR), the annualized
volatility (AV), and the Sharpe ratio (SR) are reported in Table 1.

Table 1: Annualized return (AR), annualized volatility (AV), and Sharpe ratio (SR) for different portfolio strategies from Jan 2016
to Dec 2023

% β = 1 β = 3 β = 10 β = 30 β = 100 ESα MV

AR 9.28 9.05 9.23 9.14 8.71 8.41 6.77
AV 19.92 15.21 12.78 12.26 12.05 12.10 11.47
SR 35.89 45.47 55.54 57.19 54.59 51.95 38.76

Our findings suggest that MDD
g minimizing portfolios have some intuitive features. A smaller β,
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Figure 7: Wealth processes for portfolios, 40 stocks, Jan 2016 - Dec 2023
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meaning a more convex and smaller risk-weighting function gβ, roughly leads to a larger annualized
return and a larger annualized volatility. This is intuitive because the weight on the deviation measure
ESα−E is smaller for smaller β, thus putting a higher value on the return. On the other hand, a large
Sharpe ratio is attained around β = 30, suggesting that a suitable level of β can balance the return and
the volatility quite well. The more convex gβ is, the more MD neglects small values of deviation. This
may partially explain the observation in Figure 7, where the curve corresponding to β = 1 has many
more fluctuations than the one corresponding to β = 30. We admit that this observation does not
have a theoretical justification, and it is based only on one dataset, so we do not intend to generalize.
To fully understand the effect of the convexity of g on portfolio selection, future studies are needed.

Of course, our objective is not to identify which strategy yields the highest return or Sharpe
ratio in financial practice, a question that depends highly on the market situation and economic
environment. Instead, the empirical results presented here mainly illustrate the interpretability of the
strategy for portfolio selection based on MDD

g . Moreover, the optimization and portfolio strategies
are easy to implement.

8 Conclusion

Even though mean-deviation measures are widely considered in the literature and have a lot of
attractive features, there are few systemic treatments in the literature. In this paper, we studied the
class MDD

g of mean-deviation measures whose form is a combination of the deviation-related functional
and the expectation, which enriches the axiomatic theory of risk measures. In particular, the obtained
class always belongs to the class of consistent risk measures. We showed that MDD

g can be coherent,
convex or star-shaped risk measures, identified with the corresponding properties of the risk-weighting
function g. By looking at this new class, the gap between convex risk measures and consistent risk
measures, arguably opaque in the literature due to lack of explicit examples, becomes transparent. The
empirical estimators of MDD

g can be formulated whenD is chosen as a signed Choquet integral, and the

asymptotic normality of the estimators is established. We find that the asymptotic variance of MDD
g

is smaller than the one of risk measures without distortion on deviation; a useful feature in statistical
estimation. This intuitively illustrates a trade-off between statistical efficiency and sensitivity to risk.

We discuss several future directions for the research of MDD
g . In fact, the form of MDD

g (not ne-
cessarily monotonic) includes many commonly used reinsurance premium principles as special cases;
see, e.g., the variance related principles (Furman and Landsman (2006) and Chi (2012)) and the Den-
neberg’s absolute deviation principle (Tan et al. (2020)). Thus, it would be interesting to formulate
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the optimal reinsurance problem where the reinsurance principle is computed by MDD
g . It is also

meaningful to consider risk sharing problems and portfolio selection problems under the criterion of
minimizing MDD

g , following a similar framework to that of Grechuk et al. (2012, 2013) and Grechuk
and Zabarankin (2012). Another direction of generalization is to relax cash-additivity we imposed
throughout the paper to cash-subadditivity, as this allows for non-constant eligible assets when com-
puting regulatory capital requirement; see El Karoui and Ravanelli (2009) and Farkas et al. (2014).
Finally, we worked throughout with law-invariant mean-deviation measures with respect to a fixed
probability measure. When the probability measure is uncertain, one needs to develop a framework of
mean-deviation measures that can incorporate uncertainty and multiple scenarios in some forms (e.g.,
Cambou and Filipović (2017), Delage et al. (2019) and Fadina et al. (2023)).
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A Monotonicity of mean-deviation models

In this appendix, we provide a characterization for [M] of mean-deviation models. Recall the
necessary condition in Lemma 1, that is λD ∈ Dp

for some λ > 0. This condition prompts us to focus
on all deviation measures in Dp

in the characterization result. For D ∈ Dp
, it satisfies the following

range-normalized property:

sup
X∈(Lp)◦

D(X)

ess-supX − E[X]
= 1. (S.1)

Proposition S.1. Fix p ∈ [1,∞]. Let D ∈ Dp
satisfy (S.1), and let U = V (E, D) be defined by (7) with

U(X) < ∞ for all X ∈ Lp. Suppose that either V : R× [0,∞) is left continuous in its second argument
or the maximizer in (S.1) is attainable. Then, U satisfies [M] if and only if V (m−a, d+a) ⩽ V (m, d)
for all m ∈ R and a, d ⩾ 0.

Proof. While the proof is similar to that of Proposition 4 in Grechuk et al. (2012), which establishes
the same necessary and sufficient condition under the assumption that U = V (E, D) is continuous, we
provide the full details here for the sake of completeness and clarity.
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We first verify sufficiency. For X,Y ∈ Lp satisfying X ⩽ Y and X ̸= Y , we denote by a =
E[Y ]− E[X] > 0, and it holds that ess-sup(X − Y ) ⩽ 0. By (S.1), we have

D(X − Y ) ⩽ ess-sup(X − Y )− E[X − Y ] ⩽ a.

Since D satisfies (D4), we have

D(X) ⩽ D(Y ) +D(X − Y ) ⩽ D(Y ) + a. (S.2)

Therefore,

U(X) = V (E[X], D(X)) = V (E[Y ]− a,D(X))

⩽ V (E[Y ], D(X)− a) ⩽ V (E[Y ], D(Y )) = U(Y ),

where the first inequality follows from the assumption by letting m = E[Y ], d = D(X) − a, and the
second inequality is due to D(X) − a ⩽ D(Y ) in (S.2). Hence, we conclude that U satisfies [M].
Conversely, we first consider the case that V is left continuous in its second argument. It follows from
(S.1) that for any ε > 0, there exists X1 ∈ (Lp)◦ such that

1− ε ⩽
D(X1)

ess-supX1 − E[X1]
⩽ 1.

Let m ∈ R and d, a ⩾ 0. We define

X2 = a
X1 − ess-supX1

ess-supX1 − E[X1]
and X3 =

d

a
X2 +m+ d.

Through standard calculation, E[X3] = m, (1−ε)d ⩽ D(X3) ⩽ d, E[X2+X3] = m−a and (a+d)(1−
ε) ⩽ D(X2 +X3) ⩽ a+ d. Note that X2 ⩽ 0 which implies X2 +X3 ⩽ X3. Using [M], we have

V (m− a, (a+ d)(1− ε)) ⩽ V (E[X2 +X3], D(X2 +X3)) ⩽ V (E[X3], D(X3)) ⩽ V (m, d).

Letting ε ↓ 0 and using the left continuity, we conclude that V (m−a, a+d) ⩽ V (m, d) for for all m ∈ R
and a, d ⩾ 0. Now, we assume that the maximizer in (S.1) is attainable, and the necessity follows a
similar proof to the previous arguments by constructing X1 such that D(X1)/(ess-supX1−E[X1]) = 1.
Hence, we complete the proof.

We note that the ES-deviation ESα − E for α ∈ (0, 1) serves as an example where the maximizer
in (S.1) is attainable.

B Axiomatization of monotonic mean-deviation measures

This appendix contains details on the axiomatization of monotonic mean-deviation measures, and
its connection to the results of Grechuk et al. (2012). We first present two weaker axioms than A1
and A2, respectively.

B1 If c1 ⩽ c2, then c1 ⪰ c2 for any c1, c2 ∈ R.

B2 For any X,Y satisfying E[X] = E[Y ] and c > 0, X ⪰ Y if and only if X + c ⪰ Y + c.

Grechuk et al. (2012) established a representation result for mean-deviation models using Axioms
A1, B2 and A3–A7. To obtain the characterization in Theorem 2, we first use Axioms B1 and A2–A7
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to characterize the preferences that can be represented by the form of MDD
g in (10), where g and D are

not necessarily 1-Lipschitz continuous and weakly upper range-dominated, respectively. Comparing to
monotonic mean-deviation measures, this class of mappings further include the mean-variance model
that does not satisfy [M].

Proposition S.2. Fix p ∈ [1,∞]. A preference ⪰ satisfies Axioms B1 and A2–A7 if and only if ⪰
can be represented by MDD

g = g ◦D+E where D ∈ Dp is continuous and g : [0,∞) → R is continuous
and strictly increasing.

Proof of Proposition S.2. We first show sufficiency. Let MDD
g = g ◦D+E represent ⪰ where D ∈ Dp

and g : [0,∞) → R is some continuous, non-constant and increasing function. Axioms B1, A2, A3,
A5 are straightforward by the properties of D ∈ Dp.

The condition that X ⩽cx Y implies X ⪰ Y in Axiom A4 comes from Theorem 4.1 of Dana
(2005) which showed that every law-invariant continuous convex measure on an atomless probability
space is consistent with convex ordering. Moreover, for any X ∈ (Lp)◦, since D(X) > 0, together
with the fact that g is a strictly increasing function, we have g(D(X)) > g(0). Therefore, we have
MDD

g (X) > MDD
g (E[X]), which implies that E[X] ≻ X for any X ∈ (Lp)◦. Hence, we have verified

Axiom A4.
To show Axiom A6 for MDD

g , for anyX,Y ∈ Lp such that E[X] = E[Y ] and MDD
g (X) = MDD

g (Y ),
we have g(D(X)) = g(D(Y )) and thus D(X) = D(Y ) because g is strictly increasing. In this case, for
any λ > 0, we have

MDD
g (λX + (1− λ)Y ) = g(D(λX + (1− λ)Y )) + λE[X] + (1− λ)E[Y ]

⩽ g(λD(X) + (1− λ)D(Y )) + E[Y ]

⩽ g(D(X)) + E[X] = MDD
g (X).

Axiom A7 follows directly from the fact that D and g are continuous.
Next, we prove necessity. Axioms B1 and A2, A3 and A5 imply the existence of a unique certainty

equivalence functional ρ : Lp → R, i.e., we have X ⪰ Y ⇐⇒ ρ(X) ⩽ ρ(Y ) for any X,Y ∈ Lp, and
ρ(c) = c for any c ∈ R; see Theorem 3.3 of Alcantud et al. (2003). In particular, ρ is continuous
according to Axiom A7.

Let X0 ∈ (Lp)◦ be such that E [X0] = 0. Define ϕ(λ) = ρ (λX0) for λ ⩾ 0. We have ϕ(0) = ρ(0).
The continuity of ϕ follows from the continuity of ρ. Since E[λX0] ≻ λX0 for any λ > 0 by Axiom
5, we have ρ(0) = ρ(E[λX0]) < ρ(λX0). This implies that ϕ(λ) > ϕ(0) for any λ > 0. Moreover, it
follows from Axiom 5 that ρ(λ1X0) ⩽ ρ(λ2X0) for any 0 < λ1 < λ2 as λ1X0 ⩽cx λ2X0. Thus, we have
ϕ(λ1) ⩽ ϕ(λ2) which implies that ϕ is an increasing function on [0,∞). To show the inequality is
strict, we assume by the contradiction, i.e., ϕ(λ1) = ϕ(λ2). In this case, we have ρ(λ1X0) = ρ(λ2X0)
and ρ(λ1kX0) = ρ(λ2kX0) for any k > 0 by Axiom A3. Let k = λ1/λ2 < 1. By induction, we have
ρ(λ1X0) = ρ(λ1k

nX0) for any n ∈ N. Letting n → ∞, by Axiom A7, we have ρ(λ1X0) = ρ(0), which
contradicts to Axiom A4. Thus, ϕ is a strictly increasing and continuous function on [0,∞), and its
inverse function ϕ−1(x) := inf{λ ∈ [0,∞) : ϕ(λ) ⩾ x} is also strictly increasing and continuous on the
range of ϕ.

For X ∈ Lp, let X = X −E[X] and D(X) = ϕ−1(ρ(X)). Since ρ and ϕ are continuous functions,
we know that D is continuous. Next, we aim to verify that D ∈ Dp. It is clear that D is law-
invariant since ρ is law-invariant by Axiom A4, and thus (D5) holds. For any c ∈ R, D(X + c) =
ϕ−1(ρ(X + c)) = D(X), which implies (D1). Note that Axiom A4 implies ρ(X) > ρ(0) for all X ∈
(Lp)◦. We have D(X) = ϕ−1(ρ(X)) > ϕ−1(ρ(0)) = 0 as ϕ−1 is strictly increasing. For any c ∈ R,
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D(c) = ϕ−1(ρ(0)) = 0. Thus, (D2) holds. For any X ∈ Lp, we have

ρ(D(X)X0) = ϕ(D(X)) = ϕ ◦ ϕ−1(ρ(X)) = ρ(X) ⇐⇒ X ≃ D(X)X0. (S.3)

It then follows from Axiom A3 that λX ≃ λD(X)X0 for all λ ⩾ 0. Hence, we have ρ(λX) =
ρ(λD(X)X0). On the other hand, λX ≃ D(λX)X0 implies ρ(λX) = ρ(D(λX)X0). This concludes
that ρ(λD(X)X0) = ρ(D(λX)X0), which is equivalent to ϕ(λD(X)) = ϕ(D(λX)). Note that ϕ is
strictly increasing. It holds that λD(X) = D(λX) which implies (D3). For X,Y ∈ Lp, if X or Y
is constant, (D4) holds directly. Otherwise, we have D(X) > 0 and D(Y ) > 0. Combining (S.3)
and Axiom A3, we have ρ(X/D(X)) = ρ(X0) and ρ(Y /D(Y )) = ρ(X0) which implies ρ(X/D(X)) =
ρ(Y /D(Y )). Moreover, by Axiom A6, for all λ ∈ [0, 1],

ρ

(
λ

X

D(X)
+ (1− λ)

Y

D(Y )

)
⩽ ρ

(
Y

D(Y )

)
= ρ(X0).

By setting λ = D(X)/(D(X)+D(Y )), we have ρ
(
(X + Y )/(D(X) +D(Y ))

)
⩽ ρ(X0). Applying (S.3)

and Axiom A3 again, we have the following relation:

X + Y

D(X) +D(Y )
=

X + Y

D(X) +D(Y )
≃ D(X + Y )X0

D(X) +D(Y )
.

Hence, denote by k = D(X + Y )/(D(X) + D(Y )), and we have ρ (kX0) ⩽ ρ(X0), which implies
ϕ (k) ⩽ ϕ(1). Noting that ϕ is strictly increasing, we have D(X +Y ) ⩽ D(X)+D(Y ) and (D4) holds.

For any X ∈ Lp, using X ≃ ρ(X), we have X−E[X] ≃ ρ(X)−E[X] by Axiom A2, which implies
ρ(X − E[X]) = ρ(X)− E[X]. Therefore, using (S.3),

ρ(X) = ρ(X − E[X]) + E[X] = ρ(X) + E[X] = ϕ(D(X)) + E[X], for all X ∈ Lp,

where the last step follows from (S.3). This completes the proof.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Sufficiency is straightforward by combining Theorem 1, Lemma 1 and Proposi-
tion S.2. Next, we show the necessity. By Proposition S.2, ⪰ can be represented by MDD′

f = f ◦D′+E
where D′ ∈ Dp, and f : [0,∞) → R is some continuous and strictly increasing function. Since MDD′

f

satisfies monotonicity, by Lemma 1, we have D′ ∈ Dp
K . Define g = f ◦ D and D = D′/K, we have

MDD′
f = MDD

g = g ◦D + E where g : [0,∞) → R is some continuous and strictly increasing function

and D ∈ Dp
. By Theorem 1, g is 1-Lipschitz continuous. Hence, we complete the proof.

C Proof of Theorem 5

This appendix contains the detailed proof of Theorem 5.

Proof. The Law of Large Numbers yields x̂n
P→ E[X]. By Theorem 2.6 of Krätschmer et al. (2014), the

empirical estimator for a finite convex risk measure on Lp is consistent, that is, D̂(n)+ x̂n
P→ D(X)+

E[X], and this gives D̂(n)
P→ D(X). Moreover, since g ∈ G, we have g(D̂(n))+Ê[n] P→ g(D(X))+E[X].

This proves the first part of the result.
Next, we will show the asymptotic normality. Let B = (Bt)t∈[0,1] be a standard Brownian bridge,

and let dn =
√
n(D̂(n) −D(X)), en =

√
n(x̂n − E[X]), and gn =

√
n(g(D̂(n)) − g(D(X))). We need
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to first show

(dn, en)
d→ (Z,W ) :=

(∫ 1

0

Bsh
′(1− s)

f̃(s)
ds,

∫ 1

0

Bs

f̃(s)
ds

)
. (S.4)

By the Cramér-Wold theorem, it is sufficient to show

adn + ben
d→ aZ + bW for all a, b ∈ R. (S.5)

Note that aD + bE can be written as an integral of the quantile, that is,

aD(X) + bE[X] =

∫ 1

0
F−1(t)(ah′(1− t) + b)dt.

Denote by An the empirical quantile process, that is,

An(t) =
√
n(F̂−1

n (t)− F−1(t)), t ∈ (0, 1).

It follows that

adn + ben =

∫ 1

0
An(t)(ah

′(1− t) + b)dt.

Using this representation, the convergence (S.5) can be verified via Theorem 3.2 of Jones and Zitikis
(2003), and we briefly verify it here. It is well known that, under Assumption 1, as n → ∞, An

converges to the Gaussian process B/f̃ in L∞[1 − δ, 1 + δ] for any δ > 0 (see e.g., Del Barrio et al.
(2005)). This yields ∫ 1−δ

δ
An(t)(ah

′(1− t) + b)dt
d→
∫ 1−δ

δ

Bt

f̃(t)
(ah′(1− t) + b)dt.

To show (S.5), it suffices to verify∫ 1−δ

δ

Bt

f̃(t)
(ah′(1− t) + b)dt →

∫ 1

0

Bt

f̃(t)
(ah′(1− t) + b)dt as δ ↓ 0. (S.6)

Denote by wt = t(1− t). Since h ∈ Φp and X ∈ Lγ , we have, for some C > 0,

|h′(1− t)| ⩽ Cw
1/p−1
t ; |F−1(t)| ⩽ Cw

−1/γ
t ;

1

f̃(t)
=

dF−1(t)

dt
⩽ Cw

−1/γ−1
t .

Note that 1/p− 1/γ > 1/2 and Bt = oP(w
1/2−ε
t ) for any ε > 0 as t → 0 or 1. Hence, for some η > 0,∣∣∣∣Bt

ah′(1− t) + b

f̃(t)

∣∣∣∣ = oP(w
η−1
t ) for t ∈ (0, 1),

and this guarantees (S.6). Therefore, (S.4) holds.
By the Mean Value Theorem, there exists x0 between D(X) and D̂(n) such that

√
n(g(D̂(n))− g(D(X))) = g′(x0)

√
n(D̂(n)−D(X)).
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Using the fact that D̂(n)
P→ D(X), we get

(gn, en)
d→
(
g′(D(X))

∫ 1

0

Bsh
′(1− s)

f̃(s)
ds,

∫ 1

0

Bs

f̃(s)
ds

)
.

Hence,

√
n
(
M̂D

D

g (n)−MDD
g (X)

)
= gn + en

d→ g′(D(X))

∫ 1

0

Bsh
′(1− s)

f̃(s)
ds+

∫ 1

0

Bs

f̃(s)
ds,

or equivalently,

√
n
(
M̂D

D

g (n)−MDD
g (X)

)
d→
∫ 1

0

Bs

f̃(s)
(h′(1− s)g′(D(X)) + 1)ds.

Using the convariance property of the Brownian bridge, that is, Cov(Bt, Bs) = s − st for s < t, we
have

Var

[∫ 1

0

Bs(h
′(1− s)g′(D(X)) + 1)

f̃(s)
ds

]
= E

[∫ 1

0

∫ 1

0

(h′(1− s)g′(D(X)) + 1)(h′(1− t)g′(D(X)) + 1)BsBt

f̃(s)f̃(t)
dtds

]
=

∫ 1

0

∫ 1

0

(h′(1− s)g′(D(X)) + 1)(h′(1− t)g′(D(X)) + 1)(s ∧ t− st)

f̃(s)f̃(t)
dtds.

Thus,
√
n
(
M̂D

D

g (n)−MDD
g (X)

)
d→ N(0, σ2

g) in which σ2
g is given by (18).

D Worst-case values under model uncertainty

In the context of robust risk evaluation, one may only have partial information on a risk X to
be evaluated. In this section, we discuss two model uncertainty problems—mean-variance uncertainty
and Wasserstein uncertainty—using MDD

g as the criterion.

D.1 Mean-variance uncertainty

First, consider the case in which one only knows the mean and the variance of X. This setup has
wide applications in model uncertainty and portfolio optimization. Denote by

L2(m, v) =
{
X ∈ L2 : E[X] = m, σ2(X) = v2

}
.

For a fixed g ∈ G and D ∈ Dp with p ∈ [1, 2], we consider the following worst-case problem

MD
D
g (m, v) = sup

{
MDD

g (X) : X ∈ L2(m, v)
}
. (S.7)

Since g is increasing, the method for solving (S.7) is similar to those employed for related worst-
case risk measures studied in the literature; see, for instance, Liu et al. (2020), Pesenti et al. (2024),
and Bernard et al. (2024). In particular, when g(x) = λx for some 0 < λ ⩽ 1, (S.7) simplifies to
the problem analyzed in Section 5 of Pesenti et al. (2024). For completeness, we provide a detailed
analysis of our framework.
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We collect some notations in Section 6 that are needed here. Define

H = {h : h maps from [0, 1] to R is of bounded variation with h(0) = h(1) = 0};

Dh(X) =

∫ 1

0
VaRα(X)h′(1− α)dα =

∫
R
h (P(X > x)) dx, h ∈ H;

Φp = {h ∈ H : h is concave and ∥h′∥q < ∞}, p ∈ [1,∞),

where ∥h′∥q =
∫ 1
0 |h′(s)|ds and q = (1− 1/p)−1. By Theorem 2.4 of Liu et al. (2020), for D ∈ Dp and

p ∈ [1,∞), there exists a subset of Φp, denoted as Ψp, such that

D(X) = sup
h∈Ψp

{∫ 1

0
VaRα(X)h′(1− α)dα

}
= sup

h∈Ψp
Dh(X), X ∈ Lp, (S.8)

Proposition S.3. Given p ∈ [1, 2], m ∈ R, v > 0, g ∈ G and D ∈ Dp defined by (S.8), we have

MD
D
g (m, v) = sup

h∈Ψp
g
(
v
∥∥h′∥∥

2

)
+m.

Proof. By (S.8), we have

MD
D
g (m, v) = sup

X∈L2(m,v)

g(D(X)) +m

= sup
X∈L2(m,v)

g

(
sup
h∈Ψp

{∫ 1

0
VaRα(X)h′(1− α)dα

})
+m

= sup
X∈L2(m,v)

g

(
sup
h∈Ψp

Dh(X)

)
+m = g

(
sup
h∈Ψp

sup
X∈L2(m,v)

Dh(X)

)
+m,

where the last step holds because g is increasing. By Theorem 3.1 of Liu et al. (2020), we have that
supX∈L2(m,v)Dh(X) = v ∥h′∥2 for any h ∈ Φp. This completes the proof.

Remark S.1. The worst-case problem formulated in (S.7) can be extended to the case of other central
moment instead of the variance. For a > 1,m ∈ R and v > 0, denote by

La(m, v) = {X ∈ La : E[X] = m, E [|X −m|a] = va} .

Suppose that p ∈ [1, a]. Theorem 5 of Pesenti et al. (2024) implies that

sup {Dh(X) : X ∈ Lp(m, v)} = v[h]q, h ∈ Φp.

Therefore, for D ∈ Dp defined by (S.8), it follows the similar arguments in the proof of Proposition
S.3 that {

MDD
g (X) : X ∈ La(m, v)

}
= sup

h∈Ψp
g (v[h]q) +m.

Example S.1. Let D = ESα−E with α ∈ (0, 1). We have D = Dh, where h(t) = (t−α)+/(1−α)− t
for t ∈ [0, 1]. It holds that

[h]q = min
x∈R

∥h′ − x∥q = min
x∈R

(
α|1 + x|q + (1− α)

∣∣∣∣ α

1− α
− x

∣∣∣∣q)1/q

.

By standard manipulation, we conclude that the minimizer of the above optimization problem can
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be attained at x∗ = (α(1 − α)p−2 − αp−1)/(αp−1 + (1 − α)p−1), and the optimal value is [h]q =

α (αp(1− α) + α(1− α)p)−1/p. Thus, in this case, we have

MD
D
g (m, v) = m+ g

(
vα (αp(1− α) + α(1− α)p)−1/p

)
.

We compare the results for the normal, Pareto and exponential distributions with the worst-case
distribution with the same mean and variance. Setting p = 2 and both the mean and variance to 1, we

show the values of MDD
g and MD

D
g when D = ESα − E for different values of α ∈ [0.9, 0.99] in Figure

S.1. In particular, when g(x) = x, MDD
g simplifies to ESα. Given that g is 1-Lipschitz continuous, it

is expected that the worst-case values of ESα will be larger than those of MD
D
g for other forms of g.

0.9 0.92 0.94 0.96 0.98

2

4

6

8

10

0.9 0.92 0.94 0.96 0.98

1.8

1.85

1.9

1.95

2

2.05

2.1

0.9 0.92 0.94 0.96 0.98

2

4

6

8

10

Figure S.1: Values of MDD
g and MD

D

g with g(x) = x + e−x − 1 (left), g(x) = 1 − e−x (middle) and g(x) = x
(right)

D.2 Wasserstein uncertainty

Optimization problems under the uncertainty set of a Wasserstein ball are also common in the
literature when quantifying the discrepancy between a benchmark distribution and alternative scen-
arios; see e.g., Esfahani and Kuhn (2018). For two distributions F and G, the type-p Wasserstein
metric with p ⩾ 1, is given by

Wp(F,G) =

(∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣p du

)1/p

.

Denote by Mp the set of all distribution functions that have finite pth moment. For F0 ∈ Mp and
ε ⩾ 0, we define the following uncertainty set based on the type-p Wasserstein metric

Bp(F0, ε) = {F ∈ Mp : Wp(F, F0) ⩽ ε}.

The above uncertainty set is also known as a type-p Wasserstein ball (see e.g., Kuhn et al. (2019), Wu
et al. (2022) and Bernard et al. (2024)), where F0 is the center and ε is the radius. Note that ε = 0
corresponds to the case of no model uncertainty. In what follows, we focus on the type-2 Wasserstein
ball. For any ε ⩾ 0, g ∈ G and D ∈ Dp with p ∈ [1, 2], we define the worst-case MDD

g under type-2
Wasserstein ball as

M̃D
D

g (X|ε) = sup
{
MDD

g (Y ) : FY ∈ B2(FX , ε)
}
.
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The following result gives a formula to compute the above worst-case problems.

Proposition S.4. Given p ∈ [1, 2], g ∈ G and D = Dh with h ∈ Φp, we have

M̃D
D

g (X|ε) = sup
t∈[−1,1]

{
g
(
ε
√

1− t2
∥∥h′∥∥

2
+D(X)

)
+ tε+ E[X]

}
, ε ⩾ 0, X ∈ L2.

Proof. Denote byM = {FY : Y ∈ L2, ∥Y −X∥2 ⩽ ε}. We first aim to show thatM = B2(FX , ε). Note
that B2(FX , ε) = {FY : Y ∈ L2,

∫ 1
0 |F−1

Y (u) − F−1
X (u)|2du ⩽ ε2}. It is obvious that M ⊆ B2(FX , ε)

since ∥Y −X∥22 ⩾
∫ 1
0 |F−1

Y (u)− F−1
X (u)|2du for any X,Y ∈ L2. To see the converse direction, for any

F ∈ B2(FX , ε), let Y ∈ L2 be such that Y and X are comonotonic and Y has distribution F . It holds
that ∥Y −X∥22 =

∫ 1
0 |F−1(u)− F−1

X (u)|2du ⩽ ε2, where the last step is due to F ∈ B2(FX , ε). Hence,
we have F ∈ M. This implies that B2(FX , ε) ⊆ M, and we have concluded that M = B2(FX , ε).
Note that MDD

g is law-invariant. We have

M̃D
D

g (X|ε) = sup{MDD
g (Y ) : FY ∈ B2(FX , ε)}

= sup
∥Y−X∥2⩽ε

MDD
g (Y ) = sup

∥Y−X∥2⩽ε
{g(D(Y )) + E[Y ]} . (S.9)

Denote by µ0 = E[X]. It holds that

{E[Y ] : ∥Y −X∥2 ⩽ ε} = {µ0 + E[V ] : ∥V ∥2 ⩽ ε} ⊆ [µ0 − ε, µ0 + ε].

Therefore, (S.9) reduces to

sup
∥Y−X∥2⩽ε

{g(D(Y )) + E[Y ]} = sup
µ∈[µ0−ε,µ0+ε]

sup
∥Y−X∥2⩽ε, E[Y ]=µ

{g(D(Y )) + E[Y ]}

= sup
µ∈[µ0−ε,µ0+ε]

sup
∥V ∥2⩽ε, E[V ]=µ−µ0

{g(D(V +X)) + µ}

= sup
µ∈[µ0−ε,µ0+ε]

sup
∥V ∥2⩽ε, E[V ]=µ−µ0

{g(D(V ) +D(X)) + µ}

= sup
µ∈[µ0−ε,µ0+ε]

sup
σ2(V )⩽ε2−(µ−µ0)2, E[V ]=µ−µ0

{g(D(V ) +D(X)) + µ} ,

where the third equality holds because g is increasing and D is subadditive and comonotonic additive,
and we can construct V and X to be comonotonic. Since g is increasing, the inner optimization
problem is equivalent to maximizing D(V ) over {V : σ2(V ) ⩽ ε2 − (µ− µ0)

2, E[V ] = µ− µ0}. Using
the arguments in the proof of Proposition S.3, we have

sup{D(V ) : σ2(V ) ⩽ ε2 − (µ− µ0)
2, E[V ] = µ− µ0} =

√
ε2 − (µ− µ0)2

∥∥h′∥∥
2
.

Therefore, we have

M̃D
D

g (X|ε) = sup
µ∈[µ0−ε,µ0+ε]

{
g
(√

ε2 − (µ− µ0)2∥h′∥2 +D(X)
)
+ µ

}
= sup

t∈[−ε,ε]

{
g
(√

ε2 − t2
∥∥h′∥∥

2
+D(X)

)
+ t+ µ0

}
= sup

t∈[−1,1]

{
g
(
ε
√
1− t2

∥∥h′∥∥
2
+D(X)

)
+ tε+ E[X]

}
,

which completes the proof.
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In Proposition S.4, our analysis is confined to the case of type-2 Wasserstein ball and the signed
Choquet integral Dh. Working with a general deviation measure D is not more difficult, as it involves
only another supremum over Ψp by using (S.8). For the general type-p Wasserstein ball with p ̸= 2,
following similar arguments to those used in the proof of Proposition S.4 leads us to

sup
{
MDD

g (Y ) : FY ∈ Bp(FX , ε)
}
= sup

µ∈[E[X]−ε,E[X]+ε]
sup

V :∥V ∥p⩽ε
E[V ]=µ−E[X]

{g(D(V +X)) + µ} . (S.10)

We do not have an explicit formula to solve the inner supremum problem on the right-hand side of
(S.10). This is because ∥V ∥p and E[V ] do not align very well unless p = 2.
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Figure S.2: The values of M̃D
D

g (X|ε) with g(x) = x− log(1+ x) (left) and g(x) = x (right),
and D = ESα − E

0 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1

0.5

1

1.5

2

Figure S.3: The values of M̃D
D

g (X|ε) with g(x) = x− log(1+ x) (left) and g(x) = x (right),
and D = Gini

Example S.2. Let g(x) = x− log(1 + x) for x ∈ R and h(t) = (t− α)+/(1− α)− t for t ∈ [0, 1] with
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α ∈ (0, 1). We have D := Dh = ESα − E, and it follows from Proposition S.4 that

M̃D
D

g (X|ε) = sup
t∈[−1,1]

{
g

(
ε
√

1− t2
√

α

1− α
+ ESα(X)− E[X]

)
+ tε+ E[X]

}
= sup

t∈[−1,1]

{
tε+ ε

√
1− t2

√
α

1− α
+ ESα(X)− log

(
1 + ε

√
1− t2

√
α

1− α
+ ESα(X)− E[X]

)}
.

Next, let D = Gini defined in (19). By Proposition S.4, we have

M̃D
D

g (X|ε) = sup
t∈[−1,1]

{
g

(√
3ε

3

√
1− t2 +Gini(X)

)
+ tε+ E[X]

}

= sup
t∈[−1,1]

{
tε+ E[X] +

√
3ε

3

√
1− t2 +Gini(X)− log

(
1 +

√
3ε

3

√
1− t2 +Gini(X)

)}
.

The maximum values are computed numerically by considering g(x) = x−log(1+x) and g(x) = x with
the benchmark distributions being normal, Pareto and exponential. We calculate the worst values of
MDD

g (X) when D = ESα−E with α = 0.9 and D = Gini, across different values of uncertainty level ε.

The results are presented in Figures S.2 and S.3, respectively. Again, when g(x) = x, MDD
g simplifies

to ESα or Gini + E. Given that g is 1-Lipschitz continuous, the worst-case values of ESα or Gini + E
will be larger than those of M̃D

D

g for other forms of g.
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