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Abstract

We provide a new foundation of risk aversion by showing that this attitude is fully captured by

the propensity to seize insurance opportunities. Our foundation, which applies to all probabilistically

sophisticated preferences, well accords with the commonly held prudential interpretation of risk aversion

that dates back to the seminal works of Arrow (1963) and Pratt (1964). In our main results, we first

characterize the Arrow-Pratt risk aversion in terms of propensity to full insurance and the stronger notion

of risk aversion of Rothschild and Stiglitz (1970) in terms of propensity to partial insurance. We then

extend the analysis to comparative risk aversion by showing that the notion of Yaari (1969) corresponds

to comparative propensity to full insurance, while the stronger notion of Ross (1981) corresponds to

comparative propensity to partial insurance.

The seminal works of Arrow (1963), Pratt (1964), and Rothschild and Stiglitz (1970) provide different

behavioral notions of risk aversion that under expected utility amount to the familiar concavity property

of utility functions. All these papers relate their notions of risk aversion with insurance choices, arguably

the most basic domain of application of any risk analysis. In this paper, we show how insurance choice

behavior can be used to define risk attitudes. At a theoretical level, our results provide compelling economic

explanations of risk attitudes, thus clarifying their economic appeal and normative status. At an empirical

level, they show how these attitudes may motivate the most common features of marketed insurance policies.

As both Arrow (1963) and Pratt (1964) observe, risk aversion can be characterized as preference for

full insurance over no insurance at an actuarially fair premium. To formalize this claim, consider an agent

who, say because of real or financial assets held, faces a random wealth change w that we call risk.1 A full

insurance for risk w at premium π is a contract with random payoff −w− π that eliminates all uncertainty

by replacing the random loss −w with a fixed cost π. The actuarially fair premium is, by definition, the

expected loss E [−w]. Thus, the agent prefers to sign up an actuarially fair full insurance rather than facing

the risk if

w + (−w − E [−w])︸ ︷︷ ︸
full insurance at fair premium

% w + 0︸︷︷︸
no insurance

(1)

that is, if E [w] % w for all risks w. In words, it amounts to a preference for a sure amount over a random

one with the same expectation. This is the classical Arrow-Pratt notion of risk aversion.

While the concept of full insurance is natural and is, since a long time, common in the insurance practice,

in reality no insurance comes at fair premium. For instance, insurance companies have operating expenses
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that affect premia.2 But then the connection of expression (1) to actual insurance choices becomes a weak

one – we may want to define individuals who pick insurances at higher premia as risk averse, but little can

be said of individuals who refuse them.

Our first contribution is to show that there is, indeed, a strong connection. We provide an equivalent

definition of risk aversion that is purely based on insurance concepts and does not rely on expectations and

fair premia. Consider an agent who, at the same price π, can either buy full insurance −w or make another

investment h that has the same distribution of −w. Agent’s payoff is w + (−w − π) when full insurance is

purchased, while it is w+ (h− π) when investment h is purchased. Arrow-Pratt’s risk aversion implies that

w + (−w − π)︸ ︷︷ ︸
full insurance at price π

% w + (h− π)︸ ︷︷ ︸
h distributed as −w at price π

(2)

for all w and all π. Indeed, the sure payoff −π on the left-hand side is the expectation of the random

payoff w + (h− π) on the right-hand side (because h is distributed as −w). Preference pattern (2) has a

clear meaning of propensity to full insurance, does not make use of expected values, and applies to actual

insurance choices dealing with insurance premia that are not actuarially fair. In terms of dependence, a

full insurance is perfectly negatively correlated with risk w and therefore guarantees a constant payoff. In

contrast, the equally distributed h might well have a different correlation structure with risk w, as a simple

example in Section II.A illustrates. Arrow-Pratt’s risk aversion thus manifests itself into different attitudes

towards identically distributed modifications of −w based on their correlation with risk w, perfect negative

correlation being favored because it eliminates wealth variability.

Our first main result, Theorem 1, shows that this propensity to full insurance is equivalent to Arrow-

Pratt’s risk aversion for every transitive preference % over random payoffs that depends only on payoffs’

distributions. It thus applies to expected utility, where it provides a novel underpinning for concave utility,

but goes well beyond it. In particular, it applies to all probabilistically sophisticated preferences in the sense

of Machina and Schmeidler (1992) such as cumulative prospect theory with probability weighting (Tversky

and Kahneman, 1992).3 It also applies to preferences that do not satisfy stochastic dominance, like the

original prospect theory of Kahneman and Tversky (1979), and that might not even be complete, like the

mean-variance preferences of Markowitz (1952).

One may then argue that many insurance contracts do not provide full coverage. Some of them, like most

health insurance policies, have a proportional form as they reimburse only a fraction of the loss. Others,

like many property insurance policies, have a deductible-limit form as they impose a deductible and a policy

limit. The resulting notions of propensity to partial insurance are natural extensions of (2). For instance,

propensity to proportional insurance requires

w + (−αw − π)︸ ︷︷ ︸
proportional insurance at price π

% w + (h− π)︸ ︷︷ ︸
h distributed as −αw at price π

(3)

for all w, all π, and all α ∈ (0, 1].4 The definition of propensity to deductible-limit insurance is analogous.

Our second main result, Theorem 2, shows that propensity to proportional insurance and propensity to

deductible-limit insurance are both equivalent to the Rothschild-Stiglitz notion of risk aversion

E [ϕ (f)] ≥ E [ϕ (g)] for all concave ϕ : R→ R implies f % g (4)

Like the equivalence of Arrow-Pratt’s risk aversion (1) and propensity to full insurance (2), also the equiv-

alence between Rothschild-Stiglitz’s risk aversion (4) and propensity to proportional insurance (3) is based

2For a textbook treatment see, e.g., Dickson (2017), who writes ‘It is unlikely that an insurer who calculates premiums by

this [fair premium] principle will remain in business very long’.
3 This class also includes the preferences introduced by Machina (1982), rank-dependent utility (Quiggin, 1982, Yaari, 1987),

betweenness preferences (Dekel, 1986, Chew, 1989, Gul, 1991), multiplier preferences (Hansen and Sargent, 2008), quantile

preferences (Rostek, 2010), and cautious expected utility (Cerreia-Vioglio, Dillenberger, and Ortoleva, 2015).
4The percentage excess 1 − α is the fraction of the loss not covered by the insurance policy. When α = 1 proportional

coverage corresponds to full coverage. As a consequence, propensity to proportional insurance is a stronger requirement than

propensity to full insurance.
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on basic insurance concepts that do not rely on expectations. At a theoretical level, our findings provide

new definitions of risk aversion that are economically founded and may clarify its normatively appeal. At

an empirical level, they show how Rothschild-Stiglitz’s risk aversion may underlie two important market

phenomena: (i) the prevalence of proportional and deductible-limit policies in insurance markets, (ii) the

fact that insurance policyholders typically have both kinds of contracts in their portfolios.

In our analysis we also consider more general, yet standard, definitions of partial insurance that only

require coverage to increase with loss.5 We show that the resulting notions of propensity to partial insurance

correspond again to Rothschild-Stiglitz risk aversion, thus providing further support to this popular concept.

We then extend the analysis to comparative risk attitudes. We show that comparative risk aversion in

the sense of Yaari (1969) corresponds to comparative propensity to full insurance, while the stronger notion

of comparative risk aversion due to Ross (1981) corresponds to comparative propensity to partial insurance,

in its various forms (proportional, deductible-limit, and so on). These comparative results complete our

analysis, which thus provides a unified economic perspective on weak and strong notions of absolute and

comparative risk aversion in terms of insurance choices, as Figure 2 shows in the conclusion.

Finally, we relate our results to the ones on correlation aversion of Epstein and Tanny (1980), and to

the ones on expected-value preferences of the classical de Finetti (1931) and of the recent Pomatto, Strack,

and Tamuz (2020).

I Preliminaries

A Risk setting

We study an agent who has to choose, at time 0, among actions that yield, at time 1, monetary payoffs

that depend on uncertain contingencies outside the agent control. Uncertainty resolves at time 1 and is

represented by a probability space (S,Σ, P ), where S is a space of payoff-relevant states (the contingencies),

Σ is a σ-algebra of events in S, and P is the probability measure on Σ that governs states’ realizations.

Each action corresponds to a random variable f : S → R with f (s) interpreted as the, positive or

negative, monetary payoff obtained in state s when the action is taken.

The probability measure P is given and, in the tradition of Savage (1954), it is assumed throughout to

be adequate, that is, either nonatomic on Σ or uniform on a finite partition that generates Σ. Nonatomicity

is a standard divisibility assumption requiring that, for each event A with P (A) > 0, there exists an event

B ⊆ A such that 0 < P (B) < P (A); it amounts to the existence of a random variable with continuous

distribution (e.g., a normal distribution).

We restrict our attention to random variables that admit all moments. We call them random payoffs

and denote their collection by F , with typical elements f , g, and h. Formally, we denote by L0 the space

of all random variables and by L∞ the subspace of L0 that consists of all (almost surely) bounded random

variables. Moreover, for each p ∈ [1,∞) we denote by Lp the subspace of all elements f of L0 with finite

absolute p-th moment E[|f |p]. With this, we consider

either F = L∞ or F =M∞

where M∞ =
⋂
p∈N Lp is the space of all random variables with finite moments of all orders (as usual,

N = {0, 1, ...} is the set of all natural numbers). The space M∞ contains L∞, the usual setting of decision

theory under risk, yet it allows for random variables that are commonly used in applications – like normals,

log-normals, and gammas – with distributions that admit all moments, but may have unbounded support.

All the results in the main text, with the exception of Proposition 3, hold for both spaces. Also, in the main

text, we consider convergence of random payoffs in F with respect to all integer p-norms, that is, fn → f

whenever E[|fn − f |p] → 0 for all p ∈ N. In Appendix B.1 we detail how this mode of convergence can be

weakened.

5They include proportional and deductible-limit insurances as special cases since their payoffs are, indeed, (weakly) increasing

functions of the loss (see Figure 1).
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Each random payoff f induces a distribution Pf = P ◦ f−1 of deterministic payoffs, called ‘lottery’ in

the decision theory jargon. In particular, Pf (B) is the probability that f yields an outcome in the Borel

subset B of the real line.

Definition 1. Two random payoffs f and g are equally distributed, written f
d
= g, when Pf = Pg.

Equally distributed random payoffs generate the same lottery, but they may have different realizations

in the same state, as the example in Section II.A illustrates.

B Risk preferences

The agent preferences are represented by a binary relation % on the space F of random payoffs. We read

f % g as ‘the agent prefers f to g’. As usual, ∼ and � denote the indifference and strict preference relations.

Definition 2. A binary relation % on F is a risk preference when it is both transitive and law invariant,

that is,

f
d
= g =⇒ f ∼ g

for all random payoffs f and g.

Besides the standard assumption of transitivity, the definition of risk preference assumes law invariance,

which requires the agent to be indifferent between equally distributed random payoffs. The fact that only

the lottery Pf induced by f matters to the agent is what characterizes choice under risk, hence the name risk

preferences. Law invariance guarantees reflexivity, which is thus automatically satisfied by a risk preference.

As previously mentioned, risk preferences include all probabilistically sophisticated preferences, like the

preferences introduced by Machina (1982), rank-dependent utility (Quiggin, 1982, Yaari, 1987), betweenness

preferences (Dekel, 1986, Chew, 1989, Gul, 1991), cumulative prospect theory (Tversky and Kahneman,

1992), multiplier preferences (Hansen and Sargent, 2008), quantile preferences (Rostek, 2010), and cautious

expected utility (Cerreia-Vioglio, Dillenberger, and Ortoleva, 2015). Risk preferences also include some

classes of incomplete preferences, like the expected multi-utility of Dubra, Maccheroni, and Ok (2004),

classes of preferences that do not satisfy stochastic dominance, like the original prospect theory of Kahneman

and Tversky (1979), and classes with both of these features, like the mean-variance preferences of Markowitz

(1952) defined by f %MV g if and only if E [f ] ≥ E [g] and V [f ] ≤ V [g].

Definition 3. A risk preference is continuous when

fn % gn for all n =⇒ lim
n
fn % lim

n
gn

for all convergent sequences {fn} and {gn} of random payoffs.

This assumption is weaker than continuity in distribution because our notion of convergence implies

convergence in distribution.

C Classical risk attitudes

As mentioned in the introduction, there are two classical approaches to risk attitudes. One approach is due

to Arrow (1963) and Pratt (1964). It is based on the observation that a random payoff f is ‘risky’ when it

is not constant, that is, when f 6= E [f ]. This leads to the definition of weak risk attitudes.

Definition 4. A risk preference % is:

(i) weakly risk averse when, for all random payoffs f ,

E [f ] % f

(ii) weakly risk propense when, for all random payoffs f ,

E [f ] - f
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(iii) weakly risk neutral when it is both weakly risk averse and propense.

The other approach is due to Rothschild and Stiglitz (1970). They show that the relation ≥cv on F
defined by

f ≥cv g ⇐⇒ E [ϕ (f)] ≥ E [ϕ (g)] for all concave ϕ : R→ R

meaningfully captures the idea that ‘f is less risky than g’ (for example, in terms of mean preserving

spreads). This leads to the definition of strong risk attitudes.

Definition 5. A risk preference % is:

(i) strongly risk averse when, for all random payoffs f and g,

f ≥cv g =⇒ f % g

(ii) strongly risk propense when, for all random payoffs f and g,

f ≥cv g =⇒ f - g

(iii) strongly risk neutral when it is both strongly risk averse and propense.

Clearly, strong risk aversion (propensity) implies weak risk aversion (propensity). As well-known, these

two notions are equivalent for expected utility preferences, but not in general.6 In contrast, the strong

and weak notions of risk neutrality always coincide, so we can talk of ‘risk neutrality’ without further

qualification.

II Absolute attitudes

A Insurance contracts and attitudes

As discussed in the introduction, our main objective is to characterize classical risk attitudes in terms of

insurance choices. To tackle this problem we need to answer two questions:

• Which random payoffs can be seen as insurances for a given risk w?

• How can we describe the attitudes towards insurance of an agent facing a risk w?

Let us identify, as in Arrow (1974), insurance policies (also called contracts) with the random payoffs

detailing their state-contingent net payments to the agent. Formally, an insurance policy that pays h(s) in

each state s and has premium π corresponds to the random payoff f = h − π. We consider an agent who,

before an insurance policy is chosen, faces a risk w ∈ F , so a random loss −w. Therefore, after the policy

f ∈ F is chosen, the risk changes to w + f .

In our static analysis, the policy is chosen at time 0 and uncertainty resolves at time 1. For our purposes,

it is immaterial whether we interpret the risk w as the random wealth change over the considered period (as

we maintain throughout to ease exposition) or, rather, as the final random wealth of the agent. Indeed, in our

setting the insurance problem of an agent with initial wealth w0 ∈ R who confronts risk w ∈ F is equivalent

to that of an agent with initial wealth 0 who confronts risk w0 + w ∈ F . By purchasing insurance, agents

seek protection against payoff variability, which is unaffected by the addition of constants. For instance, to

fully insure risk w at premium π, thus receiving −w at cost π, is equivalent to fully insure w0 +w at premium

π−w0. Formally, this equivalence corresponds to the accounting identity −w−π = − (w0 + w)− (π−w0).7

For this reason, in our analysis, random payoffs can take both positive and negative values.

Next we introduce a basic taxonomy of insurance policies.

6Yaari (1987), Wakker (1994), Cohen (1995), and Schmidt and Zank (2008) study several notions of risk aversion for rank-

dependent and cumulative prospect theory preferences. For instance, in the dual model of Yaari (1987) weak risk aversion

corresponds to a probability weighting function that is dominated by the identity function, while strong risk aversion to a

convex probability weighting function.
7Similar identities hold for partial insurances, which thus feature analogous equivalences. Appendix C.1 discusses these

properties and their behavioral implications in more detail.
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Definition 6. Given any risk w, a random payoff f is:

(i) a full insurance for w, written f ∈ Ifi(w), when

f = −w − π

for some premium π ∈ R;

(ii) a proportional insurance for w, written f ∈ Ipr(w), when

f = − (1− ε)w − π

for some premium π ∈ R and percentage excess ε ∈ [0, 1);

(iii) a deductible-limit insurance for w, written f ∈ Idl(w), when

f = min
{

(−w − δ)+ , λ
}
− π

for some premium π ∈ R, deductible δ ∈ R, and limit λ ∈ [0,∞).8

Full insurances completely cover the agent position by neutralizing, at a cost, the uncertainty that the

agent faces. Instead, proportional and deductible-limit insurances provide only partial cover: they reimburse

either a proportion 1− ε of the loss or the part of the loss exceeding δ, up to λ. They are the most common

and simplest kinds of insurance contracts. Health insurance contracts are typically proportional, while

property insurance ones have a deductible-limit form.

6

-

δ δ + λ −w

λ

−w

−(1− ε)w

min
{

(−w − δ)+ , λ
}

Figure 1: Proportional insurance (in red) and deductible-limit insurance (in blue) for loss −w

Next we introduce attitudes towards insurance using the types of contracts that we just presented. Recall

that an agent facing risk w who purchases insurance f ends up with w + f .

Definition 7. A risk preference % is:

(i) propense to full insurance when, for all w, f, g ∈ F with g
d
= f ,

f ∈ Ifi (w) =⇒ w + f % w + g

(ii) propense to proportional insurance when, for all w, f, g ∈ F with g
d
= f ,

f ∈ Ipr(w) =⇒ w + f % w + g

8As usual, (−w − δ)+ denotes the positive part of −w − δ.
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(iii) propense to deductible-limit insurance when, for all w, f, g ∈ F with g
d
= f ,

f ∈ Idl(w) =⇒ w + f % w + g

Intuitively, insurance has the benefit of being negatively correlated to the risk that the agent is facing:

being insured flattens the agent payoff. Other contracts may have the same distribution, but they may not

be correlated in the same way. Our whole point is that an insurance-propense agent prefers a contract that,

being negatively correlated with the risk, reduces payoff variability. In particular, an agent who is propense

to full insurance favors a perfect negative correlation that altogether eliminates variability. When the agent

also values a milder negative correlation that partially reduces variability, the stronger notion of propensity

to partial insurance takes the stage.

These definitions address the initial questions of this section by relying on a common principle: once a

kind of insurance is defined for risk w (Definition 6), propensity to insurance of that kind means that the

agent prefers to purchase these insurances f over other equally distributed random payoffs g (Definition

7). Equidistribution is a ceteris paribus assumption that disciplines comparisons by ensuring, for example,

that neither of the random payoffs at hand be statewise dominated (with dominance considerations then

confounding insurance motives).9

For a simple illustration, consider two important extreme weather events like ‘excess rainfall’ and

‘drought’. Wine grapes are an example of crop much more vulnerable to excess rainfall than to drought,

while the opposite is true for rice. If the two extreme events are equally likely, the rain insurance f and

the drought insurance g paying, respectively, 1 in case of excess rainfall and 0 otherwise, and 1 in case of

drought and 0 otherwise, have the same distribution. For a viticulturist growing wine grapes – with, say,

revenue wgrapes equal to 0 in case of excessive rainfall and to 1 otherwise – the rain insurance f is a full

insurance policy, while the equally distributed drought insurance g is not. Representing these in a table, we

have,

excess rainfall drought other weather conditions

wgrapes + f 1 1 1

wgrapes + g 0 2 1

In contrast, for a rice farmer – with, say, revenue wrice equal to 0 in case of drought and to 1 otherwise – it

is the drought insurance g that becomes a full insurance policy, while the equally distributed rain insurance

f is not. Indeed,

excess rainfall drought other weather conditions

wrice + f 2 0 1

wrice + g 1 1 1

In conclusion, equally distributed random payoffs can be vastly different when viewed as possible insurance

policies for a given agent, depending on their correlation with the risk that the agent is facing. Agents’

behavior will differ accordingly: when both farmers are propense to full insurance, the viticulturist will

prefer the acquisition of f , the rice farmer that of g.

There is a natural hierarchy among the insurance attitudes introduced in Definition 7. When w is

bounded, it can be shown that,

Ifi (w) = Ipr(w) ∩ Idl(w) (5)

Thus, propensity to full insurance is weaker than propensity to either proportional or deductible-limit

insurance. The next results show that this hierarchy in insurance attitudes corresponds to the hierarchy in

risk attitudes.

9The notions presented in Definition 7 are equivalent to the ones discussed in the introduction because the equidistribution

relation
d
= is invariant under the addition of constants. For instance, Definition 7-(i) is just a theoretically convenient rewriting

of (2) because, when g
d
= f = −w − π ∈ Ifi(w), by setting h = g + π we have h

d
= −w as well as w + f = w + (−w − π) and

w + g = w + (h− π). See also Appendix B.2.
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B Weak risk aversion

We start with weak risk aversion.

Theorem 1. The following properties are equivalent for a risk preference:

(i) weak risk aversion;

(ii) propensity to full insurance.

This theorem provides a novel foundation of weak risk aversion for all risk preferences. It shows how

the traditional notion of ‘preference for the expectation of a random payoff over the random payoff itself’

emerges from a minimal requirement of propensity to insurance. It is minimal because only the purchase of

full insurance is required to be preferred over the purchase of other equally distributed random payoffs; in

other words, because weak risk aversion is silent about attitudes towards partial insurance. Furthermore,

by making no use of expectations, the equivalence presented in Theorem 1 also addresses the normative

critique of weak risk aversion that hinges on the seemingly ad hoc use of expectations over other possible

statistics (such as the median).

Theorem 1 relies on a novel result in probability theory of some independent interest.

Lemma 1. The following properties are equivalent for f ∈ F :

(i) E [f ] = 0;

(ii) there exist h, h′ ∈ F such that h
d
= h′ and f

d
= h− h′.

The nontrivial part is that (i) implies (ii). Yet, a simple explanation is possible in the finite uniform case

when S = {1, 2, ..., n} and P (s) = 1/n for all s ∈ S. In this case,

E [f ] = 0 ⇐⇒
n∑
s=1

f (s) = 0

Define the random payoffs h and h′ by h (s) =
∑s

i=1 f (i) and h′ (s) =
∑s−1

i=1 f (i) for all s ∈ S, with the

convention h′ (1) = 0. Diagrammatically,

1 2 · · · n− 1 n

h f(1) f(1) + f(2) · · ·
∑n−1

i=1 f(i)
∑n

i=1 f(i) = 0

h′ 0 f(1) · · ·
∑n−2

i=1 f(i)
∑n−1

i=1 f(i)

Therefore, f (s) = h (s) − h′ (s) for all s ∈ S, that is, f = h − h′. Moreover, it is easy to see that h
d
= h′

since all states are equally probable. Thus, h and h′ are the sought-after random payoffs showing that (i)

implies (ii).

The general nonatomic case cannot be directly tackled through a limit argument building upon the

finite uniform case because the cumulant random payoffs that we constructed above may lose boundedness

or integrability when passing to the limit. Different techniques are needed. Interestingly, the probabilistic

Lemma 1 and the decision-theoretic Theorem 1 turn out to be mathematically equivalent, as detailed in

Appendix B.7. If one were able to prove directly Theorem 1 (something that eluded us), the lemma would

follow.

To see how Lemma 1 implies Theorem 1, assume propensity to full insurance. For each random payoff

f , by the lemma there exist two equally distributed risks w and w′ such that f − E [f ]
d
= w − w′. Now,

−w + E [f ] is a full insurance for risk w that is equally distributed with −w′ + E [f ]. Propensity to full

insurance then implies

w + (−w + E [f ]) % w +
(
−w′ + E [f ]

)
Hence, E [f ] % w − w′ + E [f ]

d
= f and so, by the law invariance of %, we have w − w′ + E [f ] ∼ f . By

transitivity, we conclude that E [f ] % f , i.e., weak risk aversion holds, as desired. The easy converse was

explained in the introduction.
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C Strong risk aversion

We now move to strong risk aversion.

Theorem 2. The following properties are equivalent for a continuous risk preference:

(i) strong risk aversion;

(ii) propensity to proportional insurance;

(iii) propensity to deductible-limit insurance.

This result shares the same features as the previous one in terms of economic scope, technical accessibility,

and normative soundness. Furthermore, it justifies the use of the concave order instead of other dispersion

orders (such as the one of Bickel and Lehmann, 1976) to define strong risk aversion.

Theorem 2 also has clear empirical relevance because proportional and deductible-limit insurances are

the most commonly held and legally disciplined insurance policies. On the one hand, it shows that the

strong risk aversion of agents may motivate the demand for these two types of insurance contracts. On

the other hand, the prevalence of these two contracts in the insurance practice may support the hypothesis

of strong risk aversion of most policyholders. Moreover, the a priori non-obvious equivalence between

propensity to proportional insurance (ii) and to deductible-limit insurance (iii) is consistent with the fact

that policyholders often have both kinds of contracts in their insurance portfolios.10

Finally, by expressing both concepts in the same language (that of insurance), Theorems 1 and 2 jointly

provide a new perspective on the well-known fact that weak risk aversion is implied by strong risk aversion.

When offered equally distributed payoffs, a weakly risk-averse agent only favors full insurance, whereas

a strongly risk-averse one also favors some forms of partial insurance. In the next section we show that

strongly risk-averse agents actually favor any kind of partial insurance.

D More insurances

To further develop our analysis, and make it more realistic, we consider more general forms of partial

insurance. A first principle of insurance theory is that an insurance policy pays more when the incurred

loss is larger. There are two similar ways to formalize this principle, depending on whether we require the

insurance payment to be a function of the realized loss. We regroup them in the following definition.

Definition 8. Given any risk w, a random payoff f is:

(iv) an indemnity-schedule insurance for w, written f ∈ I is(w), when

f = I (−w)

for some real-valued increasing map I defined on the image of −w;

(v) a contingency-schedule insurance for w, written f ∈ Ics(w), when

−w (s) > −w
(
s′
)

=⇒ f (s) ≥ f
(
s′
)

for almost all states s and s′.11

Again, these two notions have a common basic meaning: greater losses cannot lead to smaller insurance

payments. This is best seen by writing condition (iv), due to Arrow (1963), as

−w (s) ≥ −w
(
s′
)

=⇒ f (s) ≥ f
(
s′
)

10Different forms of insurance policies address various issues in the insurance market. For example, deductible-limit insurance

reduces labor costs in damage assessment for auto insurance, where damage verification is costly and moral hazard is a concern.

Proportional insurance, on the other hand, is common in health insurance, where claim assessment is simpler.
11That is, almost surely with respect to the product probability measure P × P .
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for all states s and s′. Thus, (iv) is obtained by (v) under the additional requirement that equal losses must

lead to equal insurance payments.

With this, (v) is the most general notion of insurance that we consider.12 It embodies a strong form

of positive correlation between insurance f and loss −w, known as comonotonicity (see Schmeidler, 1989).

This property is what ultimately characterizes insurances, among all possible random payoffs, for an agent

confronting risk w. We can now enrich relation (5) by adding the inclusions:

Ipr (w) ∪ Idl (w) ⊆ I is(w) ⊆ Ics (w)

The next definition is based on a different notion: rather than defining insurance for w, it describes

different degrees of coverage for the loss −w provided by two different policies f and g. Yet, as it will be

seen momentarily, this concept naturally connects to the previous ones.

Definition 9. Given any risk w, a random payoff f is a better hedge for w than a random payoff g, written

f Dw g, when f
d
= g and

P (f ≤ τ | w ≤ λ) ≤ P (g ≤ τ | w ≤ λ)

for all payments τ ∈ R and risk levels λ ∈ R.

This means that f first-order stochastically dominates g on the left tails of w. In the language of Epstein

and Tanny (1980, p. 18), f Dw g if and only if f is less correlated (or less concordant) with w than g. The

next proposition connects the concepts of insurance and hedge.

Proposition 1. Given any risk w, a random payoff f is a contingency-schedule insurance for w if and only

if it is a best hedge for w, that is,

Ics (w) =
{
f ∈ F : f Dw g for all g

d
= f

}
In other words, contingency-schedule insurances for w are the policies that are less correlated to w within

any given distribution class. Next we introduce the definitions of propensity to insurance and to hedging

relevant here, which are completely analogous to the ones given before.

Definition 10. A risk preference % is:

(iv) propense to indemnity-schedule insurance when, for all w, f, g ∈ F with g
d
= f ,

f ∈ I is(w) =⇒ w + f % w + g

(v) propense to contingency-schedule insurance when, for all w, f, g ∈ F with g
d
= f ,

f ∈ Ics (w) =⇒ w + f % w + g

(vi) propense to hedging when, for all w, f, g ∈ F with g
d
= f ,

f Dw g =⇒ w + f % w + g

We are now ready for an omnibus result on the equivalence of strong risk aversion and propensity to

partial insurance.

Theorem 3. The following properties are equivalent for a continuous risk preference:

(i) strong risk aversion;

(ii) propensity to proportional insurance;

12Proportional insurances with state-dependent percentage excesses might not be contingency-schedule insurances. This is

also the case for deductible limit insurances with state-dependent deductibles.
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(iii) propensity to deductible-limit insurance;

(iv) propensity to indemnity-schedule insurance;

(v) propensity to contingency-schedule insurance;

(vi) propensity to hedging.

Some implications easily follow from our earlier analysis, others are less obvious. Some attitudes, like (ii)

and (iii), seem mild, easy to understand, and normatively compelling. Others, like (i) and (vi), seem instead

more demanding and theoretically sophisticated. Be that as it may, they are all equivalent. In particular, as

points (ii)-(v) embody different forms of propensity to partial insurance, we can summarize this result as:

strong risk aversion ⇐⇒ propensity to partial insurance ⇐⇒ propensity to hedging

To the best of our knowledge, the only precursor of this result is the equivalence between (i) and (vi)

for expected utility preferences that can be derived from the findings of Epstein and Tanny (1980). Their

results connect risk aversion and hedging propensity for expected utility preferences, but remain silent about

insurance choice behavior, which is the lens that we adopt here to analyze risk aversion.

Finally, let us recall that both Theorems 1 and 3 (which subsumes Theorem 2) are valid for all preferences

on F that are transitive, law invariant, and continuous. Therefore, the applicability of our results goes well

beyond expected utility. This makes the present analysis relevant for popular models of risk behavior in

psychology (such as the prospect theory of Kahneman and Tversky, 1979) and allows us to account for

robustness concerns in economics and finance (as captured, e.g., by the multiplier preferences of Hansen

and Sargent, 2008, or by the expected shortfall criterion of Artzner, Delbaen, Eber, and Heath, 1999). Our

analysis shows that insurance propensity characterizes risk aversion irrespective of whether preferences abide

to the expected utility model or violate it.

III Neutrality

The definitions of aversion to the different kinds of insurance and to hedging are obtained from those of

propensity by replacing % with -. As usual, neutrality is then defined as simultaneous propensity and

aversion. With this, the counterparts of Theorems 1, 2, and 3 hold as expected. In particular, all definitions

of insurance neutrality coincide both with risk neutrality and with hedging neutrality.

The concept of neutrality is important because it serves as a benchmark to connect the absolute attitudes

that we studied in the previous section and the comparative ones that we will analyze in the next section.

With this motivation we go a bit deeper in its study. To this end, we introduce two more notions.

Definition 11. A risk preference % is:

• monotone when, for all w ∈ F and all ε ∈ (0,∞),

w + ε � w

• dependence neutral when, for all w, f, g ∈ F ,

g
d
= f =⇒ w + f ∼ w + g

Monotonicity just requires that the addition of a sure positive payoff is always preferred, a natural

assumption when monetary outcomes are considered. Dependence neutrality means that preferences are

unaffected by the possible correlation between risk w and two identically distributed investments f and g.

It strengthens the requirement of law invariance, which corresponds to w = 0, to situations where risk is

present.

Proposition 2. The following conditions are equivalent for a risk preference %:
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(i) risk neutrality;

(ii) neutrality to full insurance;

(iii) neutrality to hedging;

(iv) dependence neutrality.

Moreover, % is monotone and satisfies any of the equivalent conditions above if and only if

f % g ⇐⇒ E [f ] ≥ E [g] (6)

for all random payoffs f and g.

This proposition characterizes risk neutrality and makes explicit its relation with expected-value pref-

erences. Its most innovative contribution is the characterization of these preferences based on dependence

neutrality, which shows how law invariance irrespective of the outstanding risk leads to expected value

maximization.

A fundamental feature of these preferences is their consistency with first-order stochastic dominance,

≥fsd. This consistency is crucial in the existing characterizations of expected-value preferences, in particular

the classic one of de Finetti (1931) and the more recent one of Pomatto, Strack, and Tamuz (2020). In

our result, consistency with ≥fsd is implicit because, in the derivation, it follows from monotonicity and

dependence neutrality. Yet, to better connect the approaches, next we provide a characterization of expected-

value preferences that makes explicit the role of first-order stochastic dominance.

Proposition 3. Let F =M∞ and P be nonatomic. The following conditions are equivalent for a monotone

risk preference %:

(i) % admits an expected-value representation (6);

(ii) for all w, f, g ∈ F ,

f ≥fsd g =⇒ w + f % w + g

(iii) for all w, f, g ∈ F ,

f % g =⇒ w + f % w + g

(iv) % is complete and

f � g =⇒ w + f̃ >fsd w + g̃

for some w, f̃ , g̃ ∈ F such that f
d
= f̃ , g

d
= g̃ and w is independent of both f̃ and g̃.

The equivalence of conditions (i) and (ii) is the sought-after characterization of expected-value prefer-

ences in terms of first-order stochastic dominance. For perspective, Proposition 3 also reports the earlier

characterizations of de Finetti (1931), which in preferential form corresponds to the equivalence of points

(i) and (iii), and of Pomatto, Strack, and Tamuz (2020), which corresponds to the equivalence of points (i)

and (iv).

In comparing condition (ii) with (iii), it is important to contrast the objective premise f ≥fsd g of the

implication in (ii) with the subjective premise f % g of the one in (iii). In comparing (ii) with (iv), it is

important to observe that the former is not the contrapositive of the latter. Indeed, the equivalence between

(i), (ii) and (iii) continues to hold when F = L∞, while expected-value preferences on L∞ fail to satisfy (iv).

IV Comparative attitudes

We have shown how absolute risk attitudes – both strong and weak – can be characterized in terms of

insurance behavior, without recurring to the concept of expectation, and how this leads to novel insights on

old and recent results about risk preferences. It is then natural to wonder whether the same exercise can be

performed for comparative attitudes.
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A Classical comparative risk attitudes

As it is the case for absolute risk attitudes, also comparative attitudes have a weak and a strong form.

According to Yaari (1969), agent B (Bob) is weakly more risk averse than agent A (Ann) if whenever Ann

prefers a sure payoff to a random one, so does Bob. Formally,

γ %A f =⇒ γ %B f

for all f ∈ F and γ ∈ R. Ross (1981) introduces a stronger notion: B is strongly more risk averse than A if

f ≥cv g

g ∼A f − ρA

g ∼B f − ρB

 =⇒ ρB ≥ ρA

for all f, g ∈ F and ρA, ρB ∈ R. The interpretation becomes transparent once one observes that ρA (resp. ρB)

is the amount of money Ann (resp. Bob) is willing to pay to replace g with the less risky f . For the ease of

exposition, next we introduce a class of risk preferences for which this amount always exists.

Definition 12. A risk preference % is secular when, for all f, g ∈ F , there exists ρ ∈ R such that g ∼ f −ρ.

When % is monotone, ρ is the largest scalar r such that f − r % g, that is, the highest amount of money

that the agent is willing to pay to trade g with f . Equivalently, −ρ is the smallest compensation for which

the agent accepts this trade. Secularity, implicit in Ross (1981), thus requires that the agent is willing to

trade any random payoff with another one for some suitable compensation. Briefly, ‘every risk has its price’

(see Gollier, 2001). This notion allows us to extend the observation of Ross, who studies the monotone and

strictly concave expected utility case, that his definition is stronger than the one of Yaari.

Lemma 2. The following conditions are equivalent for two monotone and secular risk preferences %A and

%B:

(i) B is weakly more risk averse than A;

(ii) for all f, g ∈ F and ρA, ρB ∈ R,

f = E [g]

g ∼A f − ρA

g ∼B f − ρB

 =⇒ ρB ≥ ρA

In particular, if B is strongly more risk averse than A, then B is weakly more risk averse than A.

This lemma also shows how Yaari’s and Ross’ notions are the comparative counterparts of the ones of

Arrow-Pratt and Rothschild-Stiglitz. Indeed, in both the absolute and comparative cases, the weak notion

corresponds to preference for expectation, the strong one to preference for less risky payoffs in general. The

parallel does not stop here: the absolute risk aversion notions can be obtained from the comparative ones

by assuming agent A to be risk neutral, as next we show. The result is known for the definition of Yaari

(we report it for the sake of completeness), while it seems novel for the one of Ross.

Lemma 3. Let %A and %B be monotone and secular risk preferences. If A is risk neutral, then:

1. B is weakly more risk averse than A if and only if B is weakly risk averse.

2. B is strongly more risk averse than A if and only if B is strongly risk averse.

To further elaborate, observe that when a risk preference is monotone and secular, given any g and f in

F the sure amount ρ = ρ (g, f) such that g ∼ f − ρ exists and is unique. So, the function

(g, f) 7→ ρ (g, f) (7)

is well defined. Intuitively, the greater ρ (g, f) is, the more f is preferred over g. With this, we can interpret

the function (7) as a measure of the strength of preference. In view of Lemma 2, this function permits to

reformulate the comparative notions of Yaari and Ross as follows:
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• B is weakly more risk averse than A when f = E [g] implies ρB (g, f) ≥ ρA (g, f) for all f, g ∈ F .

• B is strongly more risk averse than A when f ≥cv g implies ρB (g, f) ≥ ρA (g, f) for all f, g ∈ F .

The difference in the definitions is now evident. Not only E [g] ≥cv g, but we also have E [g] ≥cv h for

all h ≥cv g. In words, E [g] is the least risky among the random payoffs that are less risky than g. The

sure payoff E [g] completely eliminates the risk involved in g, while a generic payoff h ≥cv g only reduces it.

Thus, Yaari compares the strength of preferences only when risk is eliminated, while Ross compares it also

when risk is just reduced.

B Comparative insurance propensity

In light of the previous analysis, the formalization of the concept of comparative propensity to full insurance

is now natural:

Definition 13. Let %A and %B be monotone and secular risk preferences. We say that B is more propense

to full insurance than A when, for all w, f, g ∈ F with g
d
= f ,

f ∈ Ifi (w) =⇒ ρB (w + g, w + f) ≥ ρA (w + g, w + f)

In words, Bob is ‘more willing to pay than’ Ann in order to achieve full insurance for the risk w that he

faces. We can now state the comparative version of Theorem 1.

Theorem 4. The following properties are equivalent for two monotone and secular risk preferences %A and

%B:

(i) B is weakly more risk averse than A;

(ii) B is more propense to full insurance than A.

To move to strong comparative attitudes, first observe that the definitions of comparative propensity to

proportional insurance, deductible-limit insurance, indemnity-schedule insurance, and contingency-schedule

insurance can be obtained by replacing Ifi (w) with Ipr (w), Idl (w), I is(w), and Ics (w) in Definition 13.

Also the comparative version of propensity to hedging yields no surprises.

Definition 14. Let %A and %B be monotone and secular risk preferences. We say that B is more propense

to hedging than A when, for all w, f, g ∈ F with g
d
= f ,

f Dw g =⇒ ρB (w + g, w + f) ≥ ρA (w + g, w + f)

We can now state the comparative version of Theorem 3.

Theorem 5. The following properties are equivalent for two continuous, monotone, and secular risk pref-

erences %A and %B:

(i) B is strongly more risk averse than A;

(ii) B is more propense to proportional insurance than A;

(iii) B is more propense to deductible-limit insurance than A;

(iv) B is more propense to indemnity-schedule insurance than A;

(v) B is more propense to contingency-schedule insurance than A;

(vi) B is more propense to hedging than A.
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The interpretations and implications of these comparative results are similar to the absolute ones we

discussed in Section II. In particular,

stronger risk aversion ⇐⇒ higher propensity to partial insurance ⇐⇒ higher propensity to hedging

In view of the fact that f is a better hedge than g for w if and only if f is more correlated than g with

−w (in the sense of Epstein and Tanny, 1980), these equivalences confirm the classical intuition that agents

are more risk averse if and only if they exhibit a stronger preference for insurance contracts that are more

correlated with losses.

V Conclusion

We have shown how the classic, weak and strong, absolute and comparative notions of risk aversion can be

completely characterized through insurance choice behavior. Our analysis thus provides a unified economic

perspective on these all-important attitudes. Figure 2 summarizes. In the tables, the superscript ‘pi’ (partial

insurance) stands for any one of ‘pr, dl, is, cs’, with the set Ipi(w) describing the corresponding class of partial

insurance contracts for w.

ABSOLUTE ATTITUDES

Arrow (1963), Pratt (1964)

Weakly risk averse

f = E[g] =⇒ f % g

risk elimination is preferred

This paper

Propense to partial insurance

f
d
= g; f ∈ Ipi(w) =⇒ w + f % w + g

partial insurance acquisition is preferred

Rothschild and Stiglitz (1970)

Strongly risk averse

f ≥cv g =⇒ f % g

risk reduction is preferred

This paper

Propense to full insurance

f
d
= g; f ∈ Ifi(w) =⇒ w + f % w + g

full insurance acquisition is preferred

⇑ ⇑

⇐⇒

⇐⇒

COMPARATIVE ATTITUDES

Yaari (1969)

Weakly more risk averse

f = E [g] =⇒ ρB(g, f) ≥ ρA(g, f)

risk elimination is more valued

This paper

More propense to partial insurance

f
d
= g; f ∈ Ipi(w) =⇒ ρwB(g, f) ≥ ρwA(g, f)

partial insurance acquisition is more valued

Ross (1981)

Strongly more risk averse

f ≥cv g =⇒ ρB(g, f) ≥ ρA(g, f)

risk reduction is more valued

This paper

More propense to full insurance

f
d
= g; f ∈ Ifi(w) =⇒ ρwB(g, f) ≥ ρwA(g, f)

full insurance acquisition is more valued

⇑ ⇑

⇐⇒

⇐⇒

Figure 2: Summary tables, where ρw(g, f) stands for ρ(w + g, w + f)

In sum, our unified analysis of the classical notions of risk aversion in the expectation-free language of

insurance contracts roots these concepts into basic economic objects, thus improving their economic appeal.

It also makes it possible to talk of risk attitudes for random variables with an infinite first moment, like
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those with some Pareto or Cauchy distributions, something that the traditional expectational analysis is

unable to do. The study of these extended notions is an object of future study.

A secondary contribution of our analysis is to highlight the potential advantages of a state-space ap-

proach, based on random variables, for studying risk attitudes and decisions under risk more broadly.

Lotteries may fully describe random variables that are considered in isolation. This is the case, for instance,

in the preferential rankings over pairs of random variables – with either of them being possibly chosen – that

underlie the classical von Neumann-Morgenstern axiomatization of expected utility. However, insurance in-

herently involves multiple interacting random variables, where correlations play a central role. A state-space

framework then provides a natural way to address interdependence. In contrast, a purely lottery-type dis-

tributional analysis would require more intricate tools, such as multivariate distributions or copulas, which

our approach does not need.

Finally we remark that our results can be readily extended to Lp spaces featuring any scalar p ∈ [1,∞),

integer or not, as well as to the space F0 of simple random payoffs. Moreover, the conclusions of our theorems

continue to hold under weaker definitions of propensity to insurance when premium calculation principles

are explicitly specified. See Appendices C.2 and C.3 for these extensions.

Appendix A Outlines of the proofs of Theorems 3, 4, and 5

The proofs of Theorem 1 and Lemma 1 are outlined in Section II.B. As Theorem 2 is implied by Theorem

3, here we will consider Theorems 3, 4, and 5.

Proof sketch of Theorem 3. Property (i) implies the other properties because, for any w, f, g ∈ F , we

have w + f ≥cv w + g if f
d
= g and either f ∈ Ipi(w) – where ‘pi’ denotes any of ‘pr, dl, is, cs’ – or the

condition f Dw g is satisfied. This is a standard result in stochastic orders (see Müller and Stoyan, 2002).

Property (vi) implies (v) by Proposition 1. Since Ipr(w) and Idl(w) are subsets of I is(w) ⊆ Ics(w) for all

w ∈ F , it is easy to see that (v) implies (iv), and that (iv) implies both (ii) and (iii).

The most challenging parts are that (ii) implies (i) and that (iii) implies (i). We first focus on the latter

implication. Let us start with the finite uniform case, where S = {1, . . . , n} and P (s) = 1/n for all s ∈ S.

The proof is based on constructing mean preserving spreads. The first and most critical step is to verify

that (iii) implies that f % g when g is a mean preserving spread of f . For such f and g, our purpose is to

construct f̃ , g̃, w̃ ∈ F such that

f̃
d
= g̃, f̃ ∈ Idl(w̃), f = w̃ + f̃ and g = w̃ + g̃ (8)

Indeed, this yields f % g by (iii). An explicit construction of f̃ , g̃, and w̃ is provided in the proof of Lemma

10 in Appendix B.3. Further, it is well-known that when f ≥cv g there exists a sequence h0, , h1, . . . , hm
such that f = h0, g = hm and each hk+1 is a mean preserving spread of hk. Therefore, transitivity and

the existence of f̃ , g̃, w̃ ∈ F in (8) yield (i). The general nonatomic case can be directly tackled through a

limiting argument building upon the finite uniform case.

The proof that (ii) implies (i) is similar, with ‘dl’ replaced by ‘pr’ in (8). The additional technical

complexity is that f̃ , g̃, and w̃ may not exist for all pairs f, g with a mean preserving relationship. They do

exist, however for a sufficiently large subset of such pairs, from which all pairs f, g with a mean preserving

relationship can be approximated as limits of sequences within this subset. This, combined with continuity,

confirms that (ii) implies (i).

Proof sketch of Theorem 4. It is easy to see that (i) implies (ii) by noting that w + f is constant when

f ∈ Ifi(w). Conversely, Lemma 1 plays an important role. To be specific, let γ %A h with h ∈ F and γ ∈ R.

Lemma 1 implies that there exist w,w′ ∈ F such that w
d
= w′ and h−E[h]

d
= w−w′. Thus, we can construct

two random payoffs f = −w + E [h] and g = −w′ + E [h] satisfying f
d
= g, f ∈ Ifi(w), w + g

d
= h and w + f

constant. Set

ηA = (w + f)− ρA (w + g, w + f) and ηB = (w + f)− ρB (w + g, w + f)
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They are both constant. It follows from (ii) that ρA (w + g, w + f) ≤ ρB (w + g, w + f), which implies

ηA ≥ ηB. Note that

ηA ∼A w + g
d
= h -A γ and ηB ∼B w + g

d
= h

By law invariance, ηA ∼A h and ηB ∼B h. Monotonicity of %A yields γ ≥ ηA. As ηA ≥ ηB, we get γ ≥ ηB.

Further, we have γ %B ηB ∼B h, where the ‘%B’ step is due to the monotonicity of %B. Transitivity shows

that B is weakly more risk averse than A.

Proof sketch of Theorem 5. Using arguments similar to those in the proof of Theorem 3, we can

demonstrate that property (i) implies the other properties and establish the sequence of implications from

(vi) to (v), from (v) to (iv), and from (iv) to both (ii) and (iii).

We now address the more challenging implications (ii) ⇒ (i) and (iii) ⇒ (i). We focus on the latter im-

plication as the former is similar but, like in Theorem 3, involves additional technical complexities requiring

some standard convergence arguments. As in the proof of Theorem 3, the technique of mean preserving

spreads is central. In the finite uniform case, we recall that if g is a mean preserving spread of f , there

exist f̃ , g̃, w̃ ∈ F such that (8) holds. By (iii), we have ρB(g, f) ≥ ρA(g, f). To extend the result for all

f, g ∈ F with f ≥cv g, we can assume that f = h0, g = hm, and hk+1 is a mean preserving spread of hk for

k = 0, . . . ,m − 1. In this step, we use some standard analysis to prove by induction that for every x ∈ R
and for each j = 1, 2, . . . ,m,

ρB(hj − x, h0 − x) ≥ ρA(hj − x, h0 − x)

This establishes a result stronger than ρB(g, f) ≥ ρA(g, f). The extension to the general nonatomic case can

be directly tackled through a limit argument. In particular, by noting that the risk preference in Theorem

5 is continuous, we demonstrate that ρ : F × F → R is (jointly) sequentially continuous by Lemma 12 in

Appendix B.14.

Appendix B Proofs and related analysis

B.1 Preamble

Recall that (S,Σ, P ) is an adequate probability space. We denote by L0 = L0 (S,Σ, P ) the space of all

measurable functions f : S → R, by L∞ = L∞ (S,Σ, P ) the space of all almost surely (a.s.) bounded

elements of L0, and by Lp = Lp (S,Σ, P ) the space of all elements of L0 which admit finite absolute p-th

moment (for p ∈ (0,∞)). For p ∈ [1,∞], ‖·‖p is the usual (semi-)norm of Lp. By convergence in Lp, we

mean convergence in this norm. By convergence in M∞ =
⋂
p∈N Lp, we mean convergence in all of the ‖·‖p

norms (for p ∈ N). By bounded a.s. convergence in L∞, we mean almost sure convergence of a sequence

which is bounded in ‖·‖∞ norm. By the Dominated Convergence Theorem, bounded a.s. convergence implies

convergence in M∞.

When we say that a risk preference % is continuous on F , we consider bounded a.s. convergence of

sequences if F = L∞, and convergence of sequences in M∞ otherwise.

We denote by Lp = Lp (S,Σ, P ) the quotient of Lp = Lp (S,Σ, P ) when almost surely equal measurable

functions are identified (e.g. Pollard, 2002). Analogously, M∞ = M∞ (S,Σ, P ) is the quotient of M∞ =

M∞ (S,Σ, P ).

Given any f ∈ L0, the cumulative distribution function F : R → [0, 1] of f is defined by F (x) =

P (f ≤ x) for all x ∈ R. The function F is increasing and right-continuous, with limx→−∞ F (x) = 0 and

limx→∞ F (x) = 1. Its left-continuous inverse F−1 : (0, 1)→ R is defined by F−1 (t) = inf {x ∈ R : F (x) ≥ t},
also denoted by q−f (t) or F−1

f (t) when its dependence on f needs to be emphasized. The function F−1 is

always increasing, and it belongs to Lp (λ) if and only if f ∈ Lp (P ) (for all p ∈ [0,∞]), where as usual λ is

the Lebesgue measure on (0, 1).

Let U be the collection of all v ∈ L0 having a uniform distribution on (0, 1), i.e. P (v ≤ t) = t for all

t ∈ (0, 1). It is without loss to assume v (S) = (0, 1) for all v ∈ U . For each f ∈ L0, fv ∈ L0 is defined by

fv = q−f ◦ v.
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Lemma 4. Let P be nonatomic and f ∈ L0. Then:

(i) for each v ∈ U , it holds fv
d
= f ;

(ii) there exists v ∈ U such that fv = f a.s.

Proof. See, e.g., Lemmas A.23 and A.32 of Föllmer and Schied (2016). �

In what follows, for each n ∈ N we denote by

Ψn =

{(
0

2n
,

1

2n

]
,

(
1

2n
,

2

2n

]
, . . . ,

(
2n − 1

2n
,
2n

2n

)}
the partition of (0, 1) into segments of equal length 2−n. If P is nonatomic and v ∈ U , for each n ∈ N,

Πv
n = v−1 (Ψn)

is a partition of S in Σ such that P (E) = 1/2n for all E ∈ Πv
n. By setting Σv

n = σ (Πv
n) = v−1 (σ (Ψn)) for

all n ∈ N, we have a filtration {Σv
n}n∈N in Σ. As usual, Σv

∞ = σ
(⋃

n∈N Σv
n

)
.

Lemma 5. Let P be nonatomic and p ∈ [1,∞]. For each v ∈ U ,

Σv
∞ = σ (v)

and, for each f ∈ Lp (resp. f ∈M∞),

E [fv | Σv
n]→ fv

almost surely, in Lp if p <∞, and in bounded a.s. convergence if p =∞ (resp. in M∞). In particular, by

choosing v such that f = fv a.s., it follows that

E [f | Σv
n]→ f

in the above senses. Moreover, for each v ∈ U and each f ∈ Lp,

q−E(fv |Σv
n) = Eλ

[
q−f | σ (Ψn)

]
λ-a.s.

for all n ∈ N.

Proof. Note that the σ-algebra σ

(⋃
n∈N

Ψn

)
is the Borel σ-algebra B (0, 1) on (0, 1) because

⋃
n∈N

Ψn is

countable and separates the points of (0, 1) (see, e.g., Mackey, 1957, Theorem 3.3). Then,

σ (v) = v−1 (B (0, 1)) = v−1

(
σ

(⋃
n∈N

Ψn

))
= σ

(
v−1

(⋃
n∈N

Ψn

))
= σ

(⋃
n∈N

v−1 (Ψn)

)

= σ

(⋃
n∈N

Πv
n

)
= σ

(⋃
n∈N

Σv
n

)
= Σv

∞

By the Martingale Convergence Theorem on L1 and on Lp, p ∈ (1,∞) (see Theorems 4.2.11 and 4.4.6 of

Durrett, 2019, respectively),

E [fv | Σv
n]→ E [fv | Σv

∞]

both almost surely, and in Lp if p < ∞ (in particular, if f ∈ M∞, convergence in M∞ follows). In

case p = ∞, we have bounded a.s. convergence because f is a.s. bounded. But Σv
∞ = σ (v) and fv is

σ (v)-measurable, and so, almost surely

fv = E [fv | σ (v)] = E [fv | Σv
∞]

This proves the first part of the statement.
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For each n ∈ N. Define Gn = Eλ
[
q−f | σ (Ψn)

]
on (0, 1), and observe that Gn is an increasing function.

Moreover, by the change of variable formula (Lemma 6 below),

EP [fv | Σv
n] = EP

[
q−f ◦ v | v

−1 (σ (Ψn))
]

= Eλ
[
q−f | σ (Ψn)

]
◦ v = Gn ◦ v

almost surely. By Lemma A.27 of Föllmer and Schied (2016), we then have, λ-a.s.,

q−E[fv |Σv
n] = q−Gn◦v = Gn ◦ q−v = Gn

as desired. �

We close with two technical results.

Lemma 6. Let (X,ΣX , P ) be a probability space, (Y,ΣY ) be a measurable space, T : X → Y be a measurable

function, g : Y → R be a measurable function such that g ◦ T is P -summable. Then g is P ◦ T−1-summable

and, for every sub-σ-algebra A of ΣY ,

EP
[
g ◦ T | T−1 (A)

]
= EP◦T−1 [g | A] ◦ T

Moreover, for all A ∈ ΣY , it holds EP
[
g ◦ T | T−1 (A)

]
= EP◦T−1 [g | A].

Proof. The proof is standard. �

Lemma 7. Let f, g, f ′, g′ ∈ L1. If P (f ≤ x, g ≤ y) ≤ P (f ′ ≤ x, g′ ≤ y) for all x, y ∈ R, then f + g ≥cv

f ′ + g′.

Proof. See, e.g., Theorem 3.8.2 of Müller and Stoyan (2002). �

B.2 On equivalent definitions of insurance propensity

The definitions of propensity to full (resp. proportional) insurance that we provide in the introduction are

equivalent to those appearing in Section II. Indeed, f ∈ Ipr(w) if and only if f = − (1− ε)w − π for some

π ∈ R and some ε ∈ [0, 1). Thus, propensity to proportional insurance, as defined by point (ii) of Definition

7, requires

w − (1− ε)w − π % w + g

for all w ∈ F , ε ∈ [0, 1), π ∈ R and g
d
= − (1− ε)w − π, that is,

w − (1− ε)w − π % w + h− π

for all w ∈ F , ε ∈ [0, 1), π ∈ R and h
d
= − (1− ε)w. The latter is the definition of propensity to proportional

insurance proposed in the introduction.

The case of full insurance is obtained by considering only the case ε = 0.

B.3 On mean preserving spreads

In this section, we assume that Σ is generated by a partition S of equiprobable events (called cells), and we

fix a risk preference % on F .

Definition 15. Given f, g ∈ F , we say that g is a mean preserving spread of f when there exist δ ≥ 0 and

two distinct cells S1 and S2 in S, with f (S1) ≤ f (S2) such that13

g = f − δ1S1 + δ1S2

13Clearly, f is constant on cells, so f (Si) is the constant value of f on Si, for i = 1, 2.
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Lemma 8. Let f, g ∈ F be such that g is a mean preserving spread of f satisfying g = f − δ1S1 + δ1S2 with

f(S1) < f(S2) and δ > 0. Then there exist f̃ , g̃, w̃ ∈ F such that

f̃
d
= g̃, f̃ = ηw̃ with η ∈ (−1, 0) , and f = w̃ + f̃ and g = w̃ + g̃ (9)

in particular f̃ ∈ Ipr (w̃), and so f % g if the risk preference % is propense to proportional insurance.

Proof. Denote by mi = f(Si), i = 1, 2. Let a = (m1 −m2)/δ − 1 < −1, and define

f̃ = f/(a+ 1), g̃ = f̃1S\{S1,S2} + f̃(S1)1S2 + f̃(S2)1S1 , w̃ = af̃ .

We aim to show that f̃ , g̃, w̃ satisfy all conditions in (9). It is straightforward to see f̃
d
= g̃. Moreover, it is

easy to verify that

f̃ =
1

a
w̃ with

1

a
∈ (−1, 0)

because a < −1, and

w̃ + f̃ = af̃ + f̃ = (a+ 1)
f

a+ 1
= f

and

w̃ + g̃ = af̃ + f̃1S\{S1,S2} + f̃(S1)1S2 + f̃(S2)1S1

= af̃1S\{S1,S2} + af̃(S2)1S2 + af̃(S1)1S1 + f̃1S\{S1,S2} + f̃(S1)1S2 + f̃(S2)1S1

= f1S\{S1,S2} + (af̃(S2) + f̃(S1))1S2 + (af̃(S1) + f̃(S2))1S1

= f1S\{S1,S2} +

(
a
f(S2)

a+ 1
+
f(S1)

a+ 1

)
1S2 +

(
a
f(S1)

a+ 1
+
f(S2)

a+ 1

)
1S1

= f1S\{S1,S2} +

((
m1 −m2

δ
− 1

)
m2

m1−m2
δ

+
m1

m1−m2
δ

)
︸ ︷︷ ︸

=m2+δ=f(S2)+δ

1S2 +

((
m1 −m2

δ
− 1

)
m1

m1−m2
δ

+
m2

m1−m2
δ

)
︸ ︷︷ ︸

=m1−δ=f(S1)−δ

1S1

= g

as desired. �

Lemma 9. Let f, g ∈ F be such that g is a mean preserving spread of f . If the risk preference % is

continuous and propense to proportional insurance, then f % g.

Proof. Let f, g ∈ F be such that g is a mean preserving spread of f . Then there exist δ ≥ 0 and two

distinct cells S1 and S2 in S, with f (S1) ≤ f (S2) such that

g = f − δ1S1 + δ1S2

If δ = 0, then f = g and reflexivity of % yields f % g. If δ > 0 and f(S1) < f(S2), the previous lemma

yields f % g. If δ > 0 and f(S1) = f(S2), define fε = f − ε1S1 + ε1S2 with ε ∈ (0, δ). Note that

fε = f − ε1S1 + ε1S2 = f1S\{S1,S2} + (f(S1)− ε) 1S1 + (f(S2) + ε) 1S2

g = f − δ1S1 + δ1S2 = f − (ε+ (δ − ε)) 1S1 + (ε+ (δ − ε)) 1S2 = fε − (δ − ε) 1S1 + (δ − ε) 1S2

Thus g is a mean preserving spread of fε with fε(S1) < fε(S2) and δ − ε > 0. By the previous argument

fε % g for all ε ∈ (0, δ). Letting εn = δ/2n → 0, we have fεn → f , and continuity implies f % g. �

Lemma 10. Let f, g ∈ F be such that g is a mean preserving spread of f . Then there exist f̃ , g̃, w̃ ∈ F
such that

f̃
d
= g̃, f̃ ∈ Idl(w̃), f = w̃ + f̃ and g = w̃ + g̃

and so f % g if the risk preference % is propense to deductible-limit insurance.

20



Proof. For a mean preserving spread g of f , we can write

g = f − 2δ1S1 + 2δ1S2

where δ ≥ 0 and f(S1) ≤ f(S2). Define the events

E1 = {f ≤ f(S1)} \ S1 E2 = {f(S1) < f < f(S2)} E3 = {f ≥ f(S2)} \ S2

The events S1, S2, E1, E2, and E3 form a measurable partition of S. Define f̃ , g̃, w̃ by the following table:

E1 S1 E2 S2 E3

f̃ δ δ δ −δ −δ
g̃ δ −δ δ δ −δ
w̃ f − δ f − δ f − δ f + δ f + δ

Write ξ = −f(S2)− δ. One can check f̃
d
= g̃ and

f̃ = (−w̃ − ξ)+ ∧ (2δ)− δ

in fact

• if s ∈ E1 ∪ S1 ∪ E2, then f (s) ≤ f (S2), and

−w̃ (s)− ξ = −f (s) + δ + f(S2) + δ = f(S2)− f (s) + 2δ ≥ 2δ ≥ 0

so

(−w̃ (s)− ξ)+ = f(S2)− f (s) + 2δ ≥ 2δ

and

(−w̃ (s)− ξ)+ ∧ (2δ)− δ = 2δ − δ = δ = f̃ (s)

• else s ∈ S2 ∪ E3, then f (s) ≥ f (S2), and

−w̃ (s)− ξ = −f (s)− δ + f(S2) + δ = f(S2)− f (s) ≤ 0

so

(−w̃ (s)− ξ)+ = 0

and

(−w̃ (s)− ξ)+ ∧ (2δ)− δ = −δ = f̃ (s)

This implies f̃ ∈ Idl(w̃). On the other hand, it is easy to see w̃ + f̃ = f and w̃ + g̃ = g, as wanted. �

Lemma 11. If the risk preference % is continuous, and propense to either proportional or deductible-limit

insurance, then

f ≥cv g =⇒ f % g

Proof. If f ≥cv g in F , then there exists a sequence h0, h1, . . . , hm such that f = h0, g = hm and each

hk+1 is either a mean preserving spread of hk or it is obtained by hk through the permutation of the values

that hk takes on two cells. In the first case, hk % hk+1 by what we just proved. In the second, hk ∼ hk+1

because % is law invariant. By the transitivity of %, we conclude that f % g. �
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B.4 A deus ex machina

In what follows, for f ∈ L∞, let uf be the essential supremum of f and `f be the essential infimum of f ,

defined by uf = inf {x ∈ R : P (f ≤ x) = 1} and `f = sup {x ∈ R : P (f ≥ x) = 1}.

Theorem 6. Let k ≥ 1 and f ∈ Lk. Then E [f ] = 0 if and only if there exist g, g′ ∈ Lk−1 such that g
d
= g′

and g − g′ d= f . Moreover,

(i) if f ∈ L∞, it is possible to choose g, g′ ∈ L∞ so that `f ≤ g, g′ ≤ uf ;

(ii) if f ∈M∞, it is possible to choose g, g′ ∈M∞;

(iii) if the probability space is finite, it is possible to choose g and g′ so that g − g′ = f .

To prove Theorem 6, we first note that the “if” direction can be verified in a straightforward manner.

Suppose that f
d
= g − g′ for some g

d
= g′. If g, g′ ∈ L1 then it is obvious that E [g − g′] = 0. In general,

Simons (1977) showed that E [g − g′] = 0 even if g, g′ are not in L1, as long as the mean E [g − g′] is well

defined, justified by f ∈ Lk. Therefore, E [f ] = E [g − g′] = 0.

Next, we focus on the more important “only if” direction of Theorem 6. For this, we first prove the case

of L∞, and then the case of Lk, which is much more technically involved.

Proof of Theorem 6 on finite spaces. We begin with a finite state space S = {1, . . . , n} of equiprobable

states. Let f : S → R have mean 0, and set xi = f (i) for each i = 1, . . . , n. If f = 0, there is nothing to

prove. Otherwise choose j1 ∈ {1, . . . , n} such that xj1 > 0. Now

min {x1, . . . , xn} ≤
1∑
i=1

xji ≤ max {x1, . . . , xn}

Assume for some 1 ≤ k < n to have found distinct j1, j2, . . . , jk ∈ {1, . . . , n} such that

min {x1, . . . , xn} ≤
m∑
i=1

xji ≤ max {x1, . . . , xn} ∀m = 1, . . . , k

We next show that there is jk+1 ∈ Jk+1 := {1, . . . , n} \ {j1, . . . , jk} such that

min {x1, . . . , xn} ≤
m∑
i=1

xji ≤ max {x1, . . . , xn} ∀m = 1, . . . , k, k + 1

1. If xj = 0 for some j ∈ Jk+1, set jk+1 = j.

2. If
∑k

i=1 xji = 0, arbitrarily choose jk+1 ∈ Jk+1.

3. Else xj 6= 0 for all j ∈ Jk+1 and
∑k

i=1 xji 6= 0;

(a) if
∑k

i=1 xji > 0, it cannot be the case that xj ≥ 0 for all elements of Jk+1 = {1, . . . , n}\{j1, . . . , jk},
otherwise we would have

0 <
k∑
i=1

xji ≤
k∑
i=1

xji +
∑

j∈Jk+1

xj =
n∑
j=1

xj = 0

then it is possible to choose jk+1 ∈ Jk+1 such that xjk+1
< 0, and

min {x1, . . . , xn} ≤ xjk+1
<

k∑
i=1

xji + xjk+1
<

k∑
i=1

xji ≤ max {x1, . . . , xn}
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(b) else
∑k

i=1 xji < 0, it cannot be the case that xj ≤ 0 for all elements of Jk+1 = {1, . . . , n} \
{j1, . . . , jk}, otherwise we would have

0 >

k∑
i=1

xji ≥
k∑
i=1

xji +
∑

j∈Jk+1

xj =

n∑
j=1

xj = 0

then it is possible to choose jk+1 ∈ Jk+1 such that xjk+1
> 0, and

min {x1, . . . , xn} ≤
k∑
i=1

xji <
k∑
i=1

xji + xjk+1
< xjk+1

≤ max {x1, . . . , xn}

In exactly n steps this produces a rearrangement (xj1 , . . . , xjn) of (x1, . . . , xn), which by construction

satisfies

min {x1, . . . , xn} ≤
m∑
i=1

xji ≤ max {x1, . . . , xn} ∀m = 1, . . . , n (10)

Define g, g′ : S → R by g (jk) =
∑k

i=1 xji and g′ (jk) =
∑k−1

i=1 xji for each 1 ≤ k ≤ n, with the convention

g′ (j1) = 0. Diagram g and g′ as follows:

j1 j2 · · · jn−1 jn

g xj1 xj1 + xj2 · · ·
∑n−1

i=1 xji 0 =
∑n

i=1 xji

g′ 0 xj1 · · ·
∑n−2

i=1 xji
∑n−1

i=1 xji

We have that g (ji)− g′ (ji) = f (ji) for all i = 1, . . . , n and hence

f = g − g′

and since states are equally probable, g
d
= g′. In view of (10), we conclude that

f = g − g′ ; g
d
= g′ and min

S
f ≤ g, g′ ≤ max

S
f (11)

This proves the statement for a finite state space.

Proof of Theorem 6 on L∞. Now, let S be an infinite state space. Let f ∈ L∞. Choose v ∈ U such that

f = fv, by Lemma 5,

fn := E [f | Σv
n]→ f

both almost surely and in L1. Moreover, for all n ∈ N,

`f ≤ f ≤ uf

implies

`f = E [`f | Σv
n] ≤ fn ≤ E [uf | Σv

n] = uf

In view of (11), by choosing the standard versions of the fn, given by

fn (s) =
1

2n

∫
E
fdP ∀s ∈ E ∈ Πv

n

there exist two sequences {gn} and {g′n} such that, for each n ∈ N,

gn
d
= g′n , `f ≤ gn, g′n ≤ uf and gn − g′n = fn

Since fn ∈ L∞, we have gn, g
′
n ∈ L∞ for all n ∈ N. Moreover, by the almost sure convergence of fn to f , it

follows that

gn − g′n
d→ f (12)
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Figure 3: The functions H (left panel) and K (right panel).

Denote by µn the joint distribution of (gn, g
′
n). The sequence {µn} is tight since is supported in the compact

square

C = [`f , uf ]× [`f , uf ]

of R2. By Prohorov’s Theorem, there exists a subsequence {µnk
} that converges weakly to a probability

measure µ on R2 with support in C. As P is nonatomic, by a version of Skorokhod’s Theorem there exists

a random vector (g, g′) : S → R2 with joint distribution µ.14 By the Continuous Mapping Theorem,15

gnk

d→ g , g′nk

d→ g′ and gnk
− g′nk

d→ g − g′

Since gnk

d
= g′nk

for all k ≥ 1, we have g
d
= g′. By (12), we also have gnk

− g′nk

d→ f and so g − g′ d= f . Note

that `f ≤ g, g′ ≤ uf since µ is supported in C. �

Preparation for the proof on Lk. We first present some preliminaries. For f ∈ L1, denote by µf =

P ◦ f−1. Recall that the left quantile q−f : (0, 1)→ R is defined as q−f (p) = inf {x ∈ R : P (f ≤ x) ≥ p}.
Let f ∈ L1 with E [f ] = 0. We assume that f is not constantly 0. Define

H(t) =

∫ t

0
q−f dλ ∀t ∈ [0, 1]

and denote by a− = µf ((−∞, 0)) and a+ = µf ((−∞, 0]). It is easy to see that H is strictly decreasing

on [0, a−] and strictly increasing on [a+, 1], H(0) = H(1) = 0, and the minimum value of H is given by

c := H(a−) = H(a+) < 0, which is attained by any point in [a−, a+]. Moreover, H is convex because qf is

increasing, and hence H is almost everywhere differentiable on [0, 1]. For r ∈ [c, 0], define

A(r) = inf{t ∈ [0, 1] : H(t) = r} and B(r) = sup{t ∈ [0, 1] : H(t) = r} (13)

Obviously, A(r) ∈ [0, a−], B(r) ∈ [a+, 1], A(c) = a−, B(c) = a+ and H ◦ A(r) = H ◦ B(r) = r. Moreover,

A(r) and B(r) are also both continuous and strictly monotone as H is so on [0, a−] and [a+, 1]. Define

K(r) =


1 r > 0

B(r)−A(r) c ≤ r ≤ 0

0 r < c

(14)

One can check that K is right-continuous and increasing, with limx↑cK(x) = 0, limx↓cK(x) = K(c) =

a+ − a− and K(0) = 1. Hence, K is a distribution function on [c, 0]. More precisely, K is continuous and

strictly increasing on (c, 0] and has probability mass a+ − a− at c. The functions H and K are plotted in

Figure 3.

Define the function Φ on [c, 0) by

Φ = q−f ◦B − q
−
f ◦A (15)

14See, e.g., Theorem 3.1 of Berti, Pratelli, and Rigo (2007).
15See, e.g., Theorem 4.27 of Kallenberg (2002).
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It is easy to see that Φ is increasing. Note that q−f ◦A(r) ≤ 0 ≤ q−f ◦B(r) for r ∈ [c, 0] with strict inequalities

on (c, 0). It holds that Φ ≥ max{|q−f ◦B|, |q
−
f ◦A|}. The functions A,B,H,K,Φ have been studied by Wang

and Wang (2015) in a different context. An important technical tool that we will use is Lemma 2.4 of Wang

and Wang (2015), which says that Φ(w) where w
d∼ K is in Lk−1 (the distribution of Φ(w) is denoted by F̃

in that paper). That is, ∫ 0

c
(Φ(r))k−1dK(r) <∞ (16)

Proof of Theorem 6 on Lk. Consider any f ∈ Lk with k ≥ 1 which satisfies E [f ] = 0. The case of f = 0

is trivial. We assume that f is not constantly 0. Choose v ∈ U such that f = fv. Recall the functions A, B

defined by (13) and K by (14). We have that K = B −A is continuous and strictly increasing on (c, 0] and

has probability mass a+ − a− at c. Let r1 = c, and define

rn = inf

{
r > rn−1 : K(r)−K(rn−1) =

1− (a+ − a−)

2n−1

}
∀n ≥ 2

It is easy to see that the sequence {rn} is contained in [c, 0), and increasing with K(rn) − K(rn−1) =

(1 − a+ + a−)/2n−1 for n ≥ 2. Moreover, rn → 0 because K is strictly increasing on [c, 0] with K(0) = 1,

and

K(rn) = K(r1) +

n∑
i=2

K(ri)−K(ri−1) = 1− 1− a+ + a−

2n−1
→ 1

Denote by Tn = [A(rn), B(rn)]. Further, write T0 = ∅, T∞ = limn→∞ Tn = (0, 1). For each n ∈ N, define µn
by

µn(D) = P (f ∈ D | v ∈ Tn \ Tn−1) ∀D ∈ B(R)

Note that {rn}n∈N ⊆ [c, 0), and A and B are both strictly monotone on [c, 0] satisfying A ≤ B and

A(0) = 1−B(0) = 0. It holds that A(rn), B(rn) ∈ (0, 1) for all n ∈ N. Hence, µn is a compactly supported

Borel probability measure. Below we will show
∫
R xdµn(x) = 0 for n ∈ N, and

µf =
∑
n∈N

(K(rn)−K(rn−1))µn (17)

where r0 is any number in (−∞, c) so that K(r0) = 0. To show the claim, using Lemma 6 and denoting by

m = K(rn)−K(rn−1) > 0, we have

m

∫
R
xdµn (x) = m

∫
R
xd
(
P{v∈Tn\Tn−1} ◦ f

−1
v

)
(x) = m

∫
fvdP{v∈Tn\Tn−1}

= m

∫
q−f d

(
P ◦ v−1

)
Tn\Tn−1

= m

∫
q−f dλTn\Tn−1

=

∫
Tn

q−f dλ−
∫
Tn−1

q−f dλ

=

∫ B(rn)

0
q−f dλ−

∫ A(rn)

0
q−f dλ−

∫ B(rn−1)

0
q−f dλ+

∫ A(rn−1)

0
q−f dλ

= H ◦B(rn)−H ◦A(rn)−H ◦B(rn−1) +H ◦A(rn−1) = 0

where the last step follows from H ◦ A(r) = H ◦ B(r) for all r ∈ [c, 0]. This implies that
∫
R xdµn(x) = 0

for n ∈ N. To see (17), note that P (v ∈ Tn \ Tn−1) = λ(Tn \ Tn−1) = λ(Tn)− λ(Tn−1) = K(rn)−K(rn−1).

Hence,

∑
n∈N

(K(rn)−K(rn−1))µn(D) = P

(
f ∈ D, v ∈

⋃
n∈N

(Tn \ Tn−1)

)
= P (f ∈ D, v ∈ T∞ \ T0) = µf (D)
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Therefore, we have verified (17). Take independent random variables v : S → (0, 1) and w : S → N with

v ∈ U and w such that P (w = n) = K(rn) − K(rn−1) for all n ∈ N. By the construction of {rn}, we

have 2P (w = n + 1) = P (w = n) for all n ≥ 2. Using the result of Theorem 6 on bounded random

variables, on the space (S, σ (v) , P ) there exist identically distributed random variables gn and g′n such that

gn − g′n
d∼ µn for each n ∈ N. Moreover, q−f ◦A(rn) ≤ gn, g′n ≤ q−f ◦B(rn) as the support of µn is contained

in [q−f ◦A(rn), q−f ◦B(rn)]. Define the random variables g and g′ by

g(s) = gw(s)(s) and g′(s) = g′w(s)(s) ∀s ∈ S

First observe that, for all D ∈ B(R),

{g ∈ D} =
⋃
n∈N
{g ∈ D, w = n} =

⋃
n∈N
{gn ∈ D, w = n}

This shows that g is measurable. Moreover, since gn and w are independent we have that, for all D ∈ B(R),

µg(D) =
∑
n∈N

P (w = n)µgn(D) =
∑
n∈N

(K(rn)−K(rn−1))µgn(D)

The same argument for g′ and the fact that gn
d
= g′n for all n ∈ N show that g

d
= g′; the same argument for

g − g′ and the fact that gn − g′n
d∼ µn for each n ∈ N combining with (17) yield g − g′ d∼ µf . It remains

to verify that the constructed g is in Lk−1. Recall the definition of Φ = q−f ◦ B − q
−
f ◦ A in (15). We have

|gn| ≤ Φ(rn) because q−f ◦A(rn) ≤ gn ≤ q−f ◦B(rn) and q−f ◦A ≤ 0 ≤ q−f ◦B. Using (16), we obtain

∞ >

∫ 0

c
(Φ(r))k−1dK(r) ≥

∑
n∈N

∫
(rn,rn+1]

(Φ(r))k−1dK(r)

≥
∑
n∈N

P (w = n+ 1) (Φ(rn))k−1 ≥ 1

2

∞∑
n=2

P (w = n) (Φ(rn))k−1

≥ 1

2

∞∑
n=2

P (w = n)E
[
|gn|k−1

]
=

1

2

(
E
[
|g|k−1

]
−K(r1)E

[
|g1|k−1

])
Noting that E

[
|g1|k−1

]
< ∞ as g1 is bounded, we have E

[
|g|k−1

]
< ∞. This completes the proof of the

necessity statement. �

B.5 Proof of Lemma 1

It is a direct consequence of Theorem 6, which we proved above. �

B.6 Proof of Theorem 1

(i) =⇒ (ii). Let w, f, g ∈ F with g
d
= f , if f ∈ Ifi (w), then f = −w − π for some π ∈ R, then

w + f = −π = E [w] + E [−w − π] = E [w] + E [g] = E [w + g] % w + g

where the third equality follows from g
d
= −w − π, and the final preference follows from weak risk aversion.

Thus propensity to full insurance holds.

(ii) =⇒ (i). For each h ∈ F , by Lemma 1, there exist w,w′ ∈ F such that w
d
= w′ and h−E [h]

d
= w−w′.

Let f = −w + E [h] and g = −w′ + E [h], clearly f
d
= g and f ∈ Ifi (w). Propensity to full insurance implies

that w + f % w + g, which gives E [h] = w + f % w + g = w − w′ + E [h]
d
= h. Law invariance of % yields

w − w′ + E [h] ∼ h, implying E [h] % w − w′ + E [h] ∼ h and transitivity implies E [h] % h. Thus weak risk

aversion holds. �
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B.7 On the relation between Lemma 1 and Theorem 1

We have just proved Theorem 1 by means of Lemma 1. Here we show how, if Theorem 1 could be proved

without relying on Lemma 1, the lemma would actually result as a corollary of the theorem.

(i) =⇒ (ii).16 Consider, for each c ∈ R, the set

Gc = {f ∈ F : f
d
= c+ h− h′ for some h, h′ ∈ F with h

d
= h′} ⊆ {f ∈ F : E [f ] = c}

Now define a relation ∼ on F by

f ∼ g ⇐⇒ either f
d
= g or f, g ∈ Gc for some c ∈ R

Clearly ∼ is law invariant (and symmetric).

Before proving transitivity note that

f, g ∈ Gc =⇒ E [f ] = c = E [g]

Now let f1 ∼ f2 and f2 ∼ f3, in order to prove f1 ∼ f3, we consider the following four cases.

• If f1
d
= f2 and f2

d
= f3, then f1

d
= f3, and so f1 ∼ f3.

• If f1
d
= f2 and [not f2

d
= f3], then there exists c ∈ R such that f2, f3 ∈ Gc, that is, f2

d
= c+ h2 − h′2 for

some h2, h
′
2 ∈ F with h2

d
= h′2, and f3

d
= c+ h3 − h′3 for some h3, h

′
3 ∈ F with h3

d
= h′3. But

f1
d
= f2

d
= c+ h2 − h′2

thus f1 ∈ Gc, and so f1, f3 ∈ Gc, which implies f1 ∼ f3.

• If [not f1
d
= f2] and f2

d
= f3, the conclusion f1 ∼ f3 is obtained as in the previous case.

• If [not f1
d
= f2] and [not f2

d
= f3], then there exist c12, c23 ∈ R such that f1, f2 ∈ Gc12 and f2, f3 ∈ Gc23 ,

but this implies E [f2] = c12 and E [f2] = c23. Therefore, c12 = c23 = c, and f1, f3 ∈ Gc implies f1 ∼ f3.

Summing up, ∼ is a risk preference (indeed a law invariant equivalence relation) on F . Next we show

that ∼ is propense to full insurance. Take any w, f, g ∈ F such that g
d
= f . If f is a full insurance for w,

then f = −w − π for some π ∈ R. It follows that:

• w + f ∈ G−π, because w + f = −π = −π + 0− 0 with 0 ∈ F and 0
d
= 0;

• w + g ∈ G−π, because w + g = −f − π + g = −π + g − f with g, f ∈ F and g
d
= f ;

therefore (by definition of ∼) w+ f ∼ w+ g. By Theorem 1 (that we are assuming to be true), ∼ is weakly

risk averse, that is, E [f ] ∼ f for all f ∈ F .

We use the latter fact to show that, given any f ∈ F , if E [f ] = 0, then f ∈ G0, that is, (i) =⇒ (ii). If

E [f ] = 0, since f ∼ E [f ], then f ∼ 0.

• If f is almost surely constant, then E [f ] = 0 implies that f = 0 almost surely, and so f
d
= 0 = 0+0−0

with 0 ∈ F and 0
d
= 0, thus f ∈ G0.

• Else f is not almost surely constant, and so it cannot be the case that f
d
= 0. Then f ∼ 0 implies that

there exists c ∈ R such that f, 0 ∈ Gc, but as observed, it must then be the case that c = E [f ] = 0,

then f ∈ G0.

(ii) =⇒ (i) of Lemma 1 is trivial. �

16Of Lemma 1, assuming Theorem 1 to be true.
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B.8 Proof of Theorem 2

It is a direct consequence of Theorem 3, which we prove below. �

B.9 Proof of Proposition 1

The ⊆ inclusion. As observed, Ics (w) is the set of all elements of F that are counter-monotonic with w,

that is, such that [
f (s)− f

(
s′
)] [

w (s)− w
(
s′
)]
≤ 0

P × P almost surely. Thus, by Theorem 2.14 of Rüschendorf (2013),17 if f ∈ Ics (w), then

Ff,w ≤ G

for all joint distributions with marginals Ff and Fw. In particular, if g
d
= f , then Ff,w ≤ Fg,w which is

equivalent to f Dw g.

The ⊇ inclusion. Assume that f Dw g for all g
d
= f , that is, Ff,w ≤ Fg,w for all g

d
= f . We want to show

that f is counter-monotonic with w. By Theorem 3.1 of Puccetti and Wang (2015), it suffices to show that

Ff,w (x, y) ≤ (Ff (x) + Fw (y)− 1)+ ∀(x, y) ∈ R2

since the opposite inequality is true for all joint distributions with marginals Ff and Fw.

Let g ∈ F be such that g
d
= f and g is counter-monotonic with w. If Σ is generated by a finite partition

of equiprobable cells, then such a g can be constructed by rearranging the values of f over the cells. Else, we

can take v ∈ U such that a.s. w = wv = F−1
w (v) and define g = F−1

f (1− v), now g
d
= f because 1− v ∈ U ,

and it is counter-monotonic with w because

(w, g) =
(
F−1
w (v) , F−1

f (1− v)
)

P × P almost surely.

With this, for all x, y ∈ R2,

Ff,w (x, y) ≤ Fg,w (x, y) = (Fg (x) + Fw (y)− 1)+ = (Ff (x) + Fw (y)− 1)+

where the first equality follows from Theorem 3.1 of Puccetti and Wang (2015) and the counter-monotonicity

of g and w, the second from the fact that g
d
= f . �

B.10 Proof of Theorem 3

(i) =⇒ (vi). Let w, f, g ∈ F with g
d
= f and f Dw g. By Lemma 7, w + f ≥cv w + g, and strong risk

aversion implies w + f % w + g. Thus % is propense to hedging.

(vi) =⇒ (v). Let w, f, g ∈ F with g
d
= f and f ∈ Ics (w), by Proposition 1, it follows that f Dw g, and

propensity to hedging implies w + f % w + g. Thus % is propense to contingency-schedule insurance.

(v) =⇒ (iv) because I is (w) ⊆ Ics (w) for all w ∈ F .

(iv) =⇒ (iii) and (iv) =⇒ (ii) because Idl (w) , Ipr (w) ⊆ I is (w) for all w ∈ F .

(iii) =⇒ (i) and (ii) =⇒ (i). The case in which Σ is generated by a finite partition of equiprobable

events follows from Lemma 11. Now, let P be nonatomic. Let f, g ∈ F be such that f ≥cv g. We want to

show that f % g. Let v ∈ U . By Lemma 4-(i), fv
d
= f and gv

d
= g. Consider the filtration {Σv

n : n ∈ N} that

we built for Lemma 5 and note that

fn := E [fv | Σv
n]→ fv and gn := E [gv | Σv

n]→ gv

17There is a typo in both relation (2.39) and the last line of the mentioned theorem of Rüschendorf: the inequality on the

left-hand side of the implication should be strict, in both cases.

28



in L∞ with respect to bounded a.s. convergence if F = L∞ and inM∞ if F =M∞. We want to show that,

for each n ∈ N, fn ≥cv gn. To this end, let F,G and Fn, Gn be the distribution functions of f, g and fn, gn,

respectively. Define ϕ, γ : [0, 1]→ R by

ϕ (p) =

∫ p

0
F−1(t)dλ and γ (p) =

∫ p

0
G−1(t)dλ

As well-known,18 f ≥cv g is equivalent to ϕ ≥ γ with ϕ(1) = γ(1). Arbitrarily choose n ∈ N and define ϕn
and γn in a similar way. Now note that, by Lemma 5, we have λ-a.s.

F−1
n = Eλ

[
F−1 | σ (Ψn)

]
Therefore, for each i = 1, . . . , 2n,

ϕn

(
i

2n

)
=

∫ i
2n

0
F−1
n (t)dλ =

∫ i
2n

0
F−1(t)dλ = ϕ

(
i

2n

)
(18)

A similar argument holds for g and gn. Thus,

ϕ ≥ γ =⇒ ϕn

(
i

2n

)
≥ γn

(
i

2n

)
∀i = 1, . . . , 2n

By definition ϕn(0) = γn(0) = 0. The functions ϕn and γn are absolutely continuous on [0, 1]. Moreover, on

each segment [(i− 1)/2n, i/2n], for each p ∈ [(i− 1)/2n, i/2n], we have

ϕn (p) =

∫ p

0
F−1
n (t)dλ =

∫ i−1
2n

0
F−1
n (t)dλ+

∫ p

i−1
2n

F−1
n (t)︸ ︷︷ ︸

=ci,n λ-a.s.

dλ

= ϕn

(
i− 1

2n

)
+ ci,n

(
p− i− 1

2n

)
because F−1

n (t) is λ-a.s. constant on ((i− 1)/2n, i/2n). But then ϕn is affine on [(i − 1)/2n, i/2n], and the

same is true for γn. Therefore, the inequality ϕn ≥ γn on the points {i/2n : i = 0, . . . , 2n} implies ϕn ≥ γn on

[0, 1]. As the equality ϕn(1) = γn(1) follows from ϕ(1) = γ(1), this proves that fn ≥cv gn in L∞ (S,Σ, P ),

but then fn ≥cv gn in L∞
(
S,Σv

n, P|Σv
n

)
.19 As n was chosen arbitrarily in N, we conclude that, for each

n ∈ N, fn ≥cv gn in L∞
(
S,Σv

n, P|Σv
n

)
. Now the restriction of % to L∞

(
S,Σv

n, P|Σv
n

)
is either propense to

deductible-limit insurance or propense to proportional insurance because % satisfies either (iii) or (ii) on F ,

and we can apply Lemma 11 to conclude that

fn % gn ∀n ∈ N (19)

But, as observed, fn → fv and gn → gv, thus the continuity of % guarantees that fv % gv, and law invariance

delivers f % g, as wanted. �

The conclusions of Theorem 3 hold also for risk preferences on Lp for p ∈ [1,∞) if continuity is formulated

with respect to convergence in Lp. This is because in Lemma 5, we proved that the convergence of fn → fv
and gn → gv is in the corresponding sense.

B.11 Weak monotonicity and weak secularity

Next we introduce weaker notions of monotonicity and secularity that are sufficient for some of the results

that follow.

Definition 16. A risk preference % is:

18See, e.g., Theorem 3.A.5 of Shaked and Shanthikumar (2007).
19Since Σv

n is finite, then L∞
(
S,Σv

n, P|Σv
n

)
=M∞

(
S,Σv

n, P|Σv
n

)
.
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• weakly monotone when, for all η, γ ∈ R,

η > γ =⇒ η � γ

• weakly secular (or solvable) when, for all g ∈ F , there exists γ ∈ R, such that g ∼ γ.

As for the interpretation, weak monotonicity just requires that larger sure payoffs are preferred to smaller

ones, weak secularity that every random payoff has a certainty equivalent.

B.12 Proof of Proposition 2

This proof only requires weak monotonicity.

Clearly, (iv) =⇒ (iii) =⇒ (ii) =⇒ (i). For the sake of brevity, call (v) the property

f % g ⇐⇒ E [f ] ≥ E [g]

for all f, g ∈ F . Let w, f, g ∈ F .

(i) =⇒ (iv) If g
d
= f , then E [w + f ] = E [w] + E [f ] = E [w] + E [g] = E [w + g]. Risk neutrality delivers

w + f ∼ E [w + f ] = E [w + g] ∼ w + g

and transitivity implies w + f ∼ w + g. Thus dependence neutrality holds.

(v) =⇒ (i) Since E [f ] = E [E [f ]], condition (v) implies f ∼ E [f ]. Thus risk neutrality holds.

(i) =⇒ (v) If f % g, then risk neutrality yields E [f ] ∼ f % g ∼ E [g], and transitivity implies

E [f ] % E [g]. If E [f ] < E [g], weak monotonicity would imply E [f ] ≺ E [g], a contradiction, therefore it

must be the case that E [f ] ≥ E [g]. Summing up: f % g =⇒ E [f ] ≥ E [g].

Conversely, if E [f ] ≥ E [g], then:

• either E [f ] = E [g], then risk neutrality and reflexivity yield f ∼ E [f ] ∼ E [g] ∼ g, and transitivity

implies f % g;

• or E [f ] > E [g], then risk neutrality and weak monotonicity yield f ∼ E [f ] � E [g] ∼ g, and transitivity

implies f % g.

Summing up: E [f ] ≥ E [g] =⇒ f % g. Thus, (v) holds. �

B.13 Proof of Proposition 3

This proof only requires weak monotonicity.

Let w, f, g ∈ F .

(i) =⇒ (ii). If f ≥fsd g, then E [w + f ] = E [w] + E [f ] ≥ E [w] + E [g] = E [w + g], it follows that

E [w + f ] ≥ E [w + g] and, by (i), w + f % w + g.

(ii) =⇒ (i). If f
d
= g, then f ≥fsd g ≥fsd f . By (ii), we have w+f % w+g % w+f and so w+f ∼ w+g.

Hence, % is dependence neutral, and Proposition 2 implies that % admits an expected-value representation.

(i) =⇒ (iii). Since % is represented by the expected value, (iii) follows immediately.

(iii) =⇒ (i) If f
d
= g, by law invariance, f ∼ g, by (iii), w + f ∼ w + g. Thus, (iii) yields dependence

neutrality, and Proposition 2 implies that % admits an expected-value representation.

(i) =⇒ (iv). Since % is represented by the expected value, it is complete. Also, if f � g, then

E [f ] > E [g]; Theorem 1 of Pomatto, Strack, and Tamuz (2020) implies that w + f̃ >fsd w + g̃ for some

w, f̃ , g̃ ∈ F such that f
d
= f̃ , g

d
= g̃, and w is independent of both f̃ and g̃.

(iv) =⇒ (i). If f � g, then w + f̃ >fsd w + g̃ for some w, f̃ , g̃ ∈ F such that f
d
= f̃ , g

d
= g̃, and w is

independent of both f̃ and g̃. Thus, f � g implies E[w + f̃ ] > E[w + g̃], whence E [f ] = E[f̃ ] > E[g̃] = E [g]

and E [f ] > E [g]. Since % is complete, by contraposition, it follows that E [f ] ≤ E [g] implies f - g. In

particular, E [f ] = E [g] implies f ∼ g. Finally, E [f ] = E [E [f ]] implies f ∼ E [f ]. Thus risk neutrality holds.

Since % is a (weakly) monotone risk preference, by Proposition 2, it admits an expected-value representation.

�
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B.14 Proofs of the results of Section IV

Proof of Lemma 2. This proof only requires weak monotonicity and weak secularity.

Let f, g ∈ F , ρA, ρB, γ ∈ R.

(i) =⇒ (ii). If f = E [g], then both f − ρA and f − ρB are sure payoffs. Since f − ρA %A g, by (i),

f − ρA %B g ∼B f − ρB. By weak monotonicity, ρA > ρB would lead to the contradiction f − ρB �B f − ρA,

then it must be the case that ρB ≥ ρA.

(ii) =⇒ (i). If γ %A g, then E [g]− (E [g]− γ) %A g. Now, let f = E [g], if g ∼A f − ρA (and such a ρA

exists by weak secularity), we have

f − (E [g]− γ) = E [g]− (E [g]− γ) %A g ∼A f − ρA

By weak monotonicity, E [g] − γ > ρA would lead to the contradiction f − ρA �A f − (E [g]− γ), then it

must be the case that E [g]− γ ≤ ρA. Now let ρB be such that g ∼B f − ρB (and such a ρB exists by weak

secularity). By (ii) and what we have just observed, ρB ≥ ρA ≥ E [g]− γ, and f − (E [g]− γ) ≥ f − ρB, by

weak monotonicity (and reflexivity for the equality case)

f − (E [g]− γ) %B f − ρB

but then γ = f − (E [g]− γ) %B f − ρB ∼B g, so that γ %B g.

The final part of the statement is a consequence of the fact that E [g] dominates any random payoff g

according to ≥cv. �

Lemma 12. Let % be a monotone and secular risk preference on F . Then:

1. for all f, g ∈ F , f % g ⇐⇒ ρ (g, f) ≥ 0;

2. the certainty equivalent map g 7→ −ρ (g, 0) represents % on F ;

3. if f, f ′, g, g′ ∈ F , f
d
= f ′, and g

d
= g′, then ρ (g, f) = ρ (g′, f ′).

If moreover % is continuous, then ρ : F × F → R is (jointly) sequentially continuous.

Proof. Let f, g ∈ F .

1. By definition of ρ : F×F → R, g ∼ f−ρ (g, f). If f % g, by transitivity f % f−ρ (g, f), monotonicity

then excludes the case ρ (g, f) < 0. Conversely, if ρ (g, f) ≥ 0, monotonicity and reflexivity imply

f = (f − ρ (g, f)) + ρ (g, f) % f − ρ (g, f) + 0 ∼ g

transitivity allows to conclude f % g.

2. By definition of ρ : F ×F → R, g ∼ 0− ρ (g, 0) = −ρ (g, 0), then −ρ (g, 0) is the certainty equivalent

of F . With this, for all f, g ∈ F

f % g ⇐⇒ −ρ (f, 0) % −ρ (g, 0) ⇐⇒ −ρ (f, 0) ≥ −ρ (g, 0)

where the latter relation follows by monotonicity.

3. Note f
d
= f ′ implies f − ρ (g, f)

d
= f ′ − ρ (g, f), repeated application of law invariance yield

g′ ∼ g ∼ f − ρ (g, f) ∼ f ′ − ρ (g, f)

transitivity and the definition of ρ yield ρ (g, f) = ρ (g′, f ′).

Finally, assume that % is continuous. Next we show that, if k ∈ R, fn → f in F , gn → g in F , and

ρ (gn, fn) ≤ k (resp. ≥ k) for all n ∈ N, then ρ (g, f) ≤ k (resp. ≥ k). Indeed, for all n ∈ N, ρ (gn, fn) ≤ k

implies −ρ (gn, fn) ≥ −k, by monotonicity,

gn ∼ fn − ρ (gn, fn) % fn − k
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by continuity

g % f − k

but then f − ρ (g, f) ∼ g % f − k, and monotonicity again yields ρ (g, f) ≤ k. Analogously, for all n ∈ N,

ρ (gn, fn) ≥ k implies ρ (g, f) ≥ k.

Now assume that fn → f in F , and gn → g in F , and, per contra ρ (gn, fn) 9 ρ (g, f). Then there exists

η > 0 such that for all m ∈ N there exists nm > m such that ρ (gnm , fnm) /∈ (ρ (g, f)− η, ρ (g, f) + η). There-

fore there exists a subsequence {(gnl
, fnl

)}l∈N of {(gn, fn)}n∈N such that ρ (gnl
, fnl

) /∈ (ρ (g, f)− η, ρ (g, f) + η)

for all l ∈ N. But then, either ρ (gnl
, fnl

) ≤ ρ (g, f)− η for infinitely many l, or ρ (gnl
, fnl

) ≥ ρ (g, f) + η for

infinitely many l ∈ N. In the first case, there exists a subsequence {(gni , fni)}i∈N of {(gnl
, fnl

)}l∈N such that

ρ (gni , fni) ≤ ρ (g, f) − η for all i ∈ N, and by the previous observation ρ (g, f) ≤ ρ (g, f) − η, a contradic-

tion. In the second case, the contradiction ρ (g, f) ≥ ρ (g, f) + η is obtained. This yields the desired joint

sequential continuity. �

Proof of Lemma 3. Let A be risk neutral. Note that for %A the assumptions of monotonicity and

secularity are implied by weak monotonicity. In fact, by Proposition 2, weak monotone and risk neutral risk

preferences are represented by the expected value, so they are monotone. As to secularity, for all f, g ∈ F ,

f − (E [f ]− E [g]) ∼A E [f − (E [f ]− E [g])] = E [g] ∼A g

that is, ρA (g, f) = E [f ]− E [g].

We only prove point 2 because point 1 is well known.

2. Let B be strongly more risk averse than A. If f ≥cv g, then E [f ] = E [g]. Since A is risk neutral, as

observed, ρA (g, f) = E [f ]− E [g] = 0. Since B is strongly more risk averse than A, then

ρB (g, f) ≥ ρA (g, f) = 0

Lemma 12 yields f %B g, and so B is strongly risk averse.

Conversely, if B is strongly risk averse, then

f ≥cv g =⇒ f %B g

Lemma 12 yields ρB (g, f) ≥ 0. But, as observed, since A is risk neutral, ρA (g, f) = E [f ] − E [g] = 0, and

so ρB (g, f) ≥ ρA (g, f) which shows that B is strongly more risk averse than A. �

Proof of Theorem 4. This proof only requires weak monotonicity and weak secularity.

(i) =⇒ (ii). Let w, f, g ∈ F , with f
d
= g, if f ∈ Ifi (w), then

(w + f)− ρA (w + g, w + f) ∼A w + g and (w + f)− ρB (w + g, w + f) ∼B w + g

but γ = (w + f) − ρA (w + g, w + f) ∈ R, because f ∈ Ifi (w). By (i), (w + f) − ρA (w + g, w + f) %B

w + g ∼B (w + f) − ρB (w + g, w + f), by weak monotonicity, ρA (w + g, w + f) ≤ ρB (w + g, w + f). This

shows that B is more propense to full insurance than A.

(ii) =⇒ (i). Let h ∈ F and γ ∈ R be such that γ %A h. By weak secularity there exists η ∈ R such

that γ %A h ∼A η, and by weak monotonicity γ ≥ η. By Lemma 1, there exist w,w′ ∈ F such that w
d
= w′

and h − E [h]
d
= w − w′. Let f = −w + E [h] and g = −w′ + E [h], clearly f

d
= g and f ∈ Ifi (w). By (ii),

ρA (w + g, w + f) ≤ ρB (w + g, w + f), and by definition of ρ,

(w + f)− ρA (w + g, w + f)︸ ︷︷ ︸
=E[h]−ρA(w+g,w+f)

∼A w + g︸ ︷︷ ︸
d
=h

and (w + f)− ρB (w + g, w + f) ∼B w + g

law invariance yields (w + f) − ρA (w + g, w + f) ∼A h, but since (w + f) − ρA (w + g, w + f) is constant,

then

η = (w + f)− ρA (w + g, w + f) ≥ (w + f)− ρB (w + g, w + f) ∼B w + g
d
= h
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Weak monotonicity and law invariance yield η %B h, and weak monotonicity again yields γ %B h. This

shows that B is weakly more risk averse than A. �

In the following two lemmas, analogous to those of Appendix B.3, we assume that Σ is generated by

a partition S of equiprobable events (called cells), and we fix two continuous, monotone, and secular risk

preferences %A and %B on F .

Lemma 13. Let f, g ∈ F be such that g is a mean preserving spread of f . If either (ii) or (iii) of Theorem

5 holds, then ρB(g, f) ≥ ρA(g, f).

Proof. When (iii) of Theorem 5 holds, the results follows immediately from Lemma 10. Suppose now that

(ii) of Theorem 5 holds. Let

g = f − δ1S1 + δ1S2

with δ ≥ 0 and S1, S2 two distinct cells in S such that f (S1) ≤ f (S2). If δ = 0, then f = g, and

ρA(g, f) = ρB(g, f) = 0. If δ > 0 and f(S1) < f(S2), it follows from Lemma 8 that ρB(g, f) ≥ ρA(g, f). If

δ > 0 and f(S1) = f(S2), define fε = f − ε1S1 + ε1S2 with ε ∈ (0, δ). Note that

fε = f − ε1S1 + ε1S2 = f1S\{S1,S2} + (f(S1)− ε) 1S1 + (f(S2) + ε) 1S2

g = f − δ1S1 + δ1S2 = f − (ε+ (δ − ε)) 1S1 + (ε+ (δ − ε)) 1S2 = fε − (δ − ε) 1S1 + (δ − ε) 1S2

Thus g is a mean preserving spread of fε with fε(S1) < fε(S2) and δ − ε > 0. By the previous argument

ρB(g, fε) ≥ ρA(g, fε) for all ε ∈ (0, δ). Let {εn}n∈N ⊆ (0, δ) be such that limn→∞ εn = 0. By Lemma 12

and continuity of both %A and %B, it follows that ρA(g, fεn)→ ρA(g, f) and ρB(g, fεn)→ ρB(g, f), and so

ρB(g, f) ≥ ρA(g, f). This completes the proof. �

Lemma 14. Let f, g ∈ F be such that f ≥cv g. If either (ii) or (iii) of Theorem 5 holds, then ρB(g, f) ≥
ρA(g, f).

Proof. If f ≥cv g in F , then there exists a sequence h0, h1, . . . , hm such that f = h0, g = hm and each hk+1

is either a mean preserving spread of hk or it is obtained by hk through the permutation of the values that

hk takes on two cells. By the previous lemma, we have ρB(hk+1 − x, hk − x) ≥ ρA(hk+1 − x, hk − x) for all

x ∈ R and k = 0, 1, . . . ,m− 1 as either hk+1−x is a mean preserving spread of hk−x or hk+1−x
d
= hk−x.

Next, we prove by induction that, for all x ∈ R and j = 1, 2, . . . ,m,

ρB(hj − x, h0 − x) ≥ ρA(hj − x, h0 − x)

As we have just observed, for j = 1, we have ρB(h1 − x, h0 − x) ≥ ρA(h1 − x, h0 − x) for all x ∈ R. Suppose

that, for j = k, ρB(hk − x, h0 − x) ≥ ρA(hk − x, h0 − x) for all x ∈ R; it then suffices to verify that

ρB(hk+1 − x, h0 − x) ≥ ρA(hk+1 − x, h0 − x) for all x ∈ R. To see this, denote by ηA = ρA(hk+1 − x, hk − x)

and ηB = ρB(hk+1 − x, hk − x). It holds that

hk − x− ηA ∼A hk+1 − x and hk − x− ηB ∼B hk+1 − x

As we have observed above, ηB ≥ ηA and since %A is monotone we have hk−x−ηB -A hk+1−x. Therefore

h0 − x− ηB − ρA(hk − x− ηB, h0 − x− ηB) ∼A hk − x− ηB -A hk+1 − x ∼A h0 − x− ρA(hk+1 − x, h0 − x)

and, by monotonicity, ρA(hk+1 − x, h0 − x) ≤ ηB + ρA(hk − x− ηB, h0 − x− ηB). Moreover,

h0 − x− ηB − ρB(hk − x− ηB, h0 − x− ηB) ∼B hk − x− ηB ∼B hk+1 − x

and so ρB(hk+1−x, h0−x) = ηB +ρB(hk−x−ηB, h0−x−ηB). By induction ρB(hk−x−ηB, h0−x−ηB) ≥
ρA(hk − x− ηB, h0 − x− ηB), and so

ρA(hk+1 − x, h0 − x) ≤ ηB + ρA(hk − x− ηB, h0 − x− ηB)

≤ ηB + ρB(hk − x− ηB, h0 − x− ηB)

= ρB(hk+1 − x, h0 − x)

33



as wanted. �

Proof of Theorem 5. (i) =⇒ (vi). Let w, f, g ∈ F with g
d
= f and f Dw g. By Lemma 7, w+f ≥cv w+g,

and (i) implies ρB(w + g, w + f) ≥ ρA(w + g, w + f). Thus (vi) holds.

(vi) =⇒ (v). Let w, f, g ∈ F with g
d
= f and f ∈ Ics (w), by Proposition 1, it follows that f Dw g, and

(vi) implies ρB(w + g, w + f) ≥ ρA(w + g, w + f). Thus (v) holds.

(v) =⇒ (iv) because I is (w) ⊆ Ics (w) for all w ∈ F .

(iv) =⇒ (iii) and (iv) =⇒ (ii) because Idl (w) , Ipr (w) ⊆ I is (w) for all w ∈ F .

(iii) =⇒ (i) and (ii) =⇒ (i). The case in which Σ is generated by a finite partition of equiprobable

events follows from Lemma 14. Now, let P be nonatomic. Let f, g ∈ F be such that f ≥cv g. We want to

show that ρB(g, f) ≥ ρA(g, f).

The sequences {fn}n∈N and {gn}n∈N introduced in the proof of Theorem 3 in Appendix B.10 have the

following properties:

• fn, gn ∈ L∞
(
S,Σv

n, P|Σv
n

)
where {Σv

n : n ∈ N} is the filtration that we built for Lemma 5;

• fn ≥cv gn for all n ∈ N;

• fn → fv and gn → gv in F , with fv
d
= f and gv

d
= g.

The restrictions of %A and %B to L∞
(
S,Σv

n, P|Σv
n

)
are continuous, monotone, and secular risk preferences

that satisfy either (ii) or (iii) in this theorem, and we can apply Lemma 14 to conclude

ρB(gn, fn) ≥ ρA(gn, fn) ∀n ∈ N (20)

but, by Lemma 12, both ρA and ρB are law invariant and continuous, and hence

ρB(g, f) = ρB(gv, fv) ≥ ρA(gv, fv) = ρA(g, f)

as wanted. �

Proposition 4. Let %A and %B be monotone and secular risk preferences.

1. If %A is neutral to full insurance, then B is more propense to full insurance than A if and only if B is

propense to full insurance.

2. If %A is neutral to hedging, then B is more propense to hedging than A if and only if B is propense to

hedging.

Proof. Note that by Proposition 2, A is neutral to full insurance if and only if she is neutral to hedging if

and only if she is risk neutral.

1. By Theorem 4, B is more propense to full insurance than A if and only if B is weakly more risk

averse than A. By Lemma 3, B is weakly more risk averse than A if and only if B is weakly risk averse. By

Theorem 1, B is weakly risk averse if and only if B is propense to full insurance.

2. Let w, f, g ∈ F with g
d
= f . Assume that B is more propense to hedging than A. If f Dw g,

then E [w + f ] = E [w + g] (because f
d
= g). Since A is risk neutral, as observed in the proof of Lemma 3,

ρA (w + g, w + f) = E [w + f ]− E [w + g] = 0. Since B is more propense to hedging than A, then

ρB (w + g, w + f) ≥ ρA (w + g, w + f) = 0

Lemma 12 yields w + f %B w + g, and so B is propense to hedging.

Conversely, if B is propense to hedging, then

f Dw g =⇒ w + f %B w + g

Lemma 12 yields ρB (w + g, w + f) ≥ 0. But, as observed in the proof of Lemma 3, since A is risk neutral,

ρA (w + g, w + f) = E [w + f ] − E [w + g] = 0, and so ρB (w + g, w + f) ≥ ρA (w + g, w + f), which shows

that B is more propense to hedging than A. �
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Appendix C Additional results and considerations

C.1 Total wealth and wealth changes

In choice under risk, to each risk preference % on F and each initial wealth w0 ∈ R, another risk preference

f %w0 g ⇐⇒ w0 + f % w0 + g (21)

is associated. In this perspective, random payoffs are interpreted as risks – that is, changes in wealth –

relative to an initial wealth w0. Accordingly, the ranking

f %w0 g

is interpreted as ‘f is preferred to g, given w0’. Obviously, the risk preference %0, corresponding to w0 = 0,

is nothing but % itself. This appendix shows that the study of risk attitudes – in its traditional form as

well as in the insurance-based one of the current paper – is independent of whether we consider either a

preference relation % over random final wealth levels or any preference relation %w0 over risks.

Proposition 5. The following properties are equivalent for a risk preference %:

(i) % is propense to full insurance (weakly risk averse);

(ii) for some w0 ∈ R, %w0 is propense to full insurance (weakly risk averse);

(iii) for every w0 ∈ R, %w0 is propense to full insurance (weakly risk averse).

Proof. We only prove that (ii) =⇒ (iii), the rest being obvious. Assume that (ii) holds for a given w0 and

arbitrarily choose w′0 ∈ R. For all w, f, g ∈ F with g
d
= f , if f is full insurance for w, then f = −w−π for some

π ∈ R. But then f is full insurance also for y = w+w′0 −w0, in fact f = − (w + w′0 − w0)− (π − w′0 + w0).

Since %w0 is propense to full insurance, then y + f %w0 y + g, explicitly

w0 + w + w′0 − w0︸ ︷︷ ︸
y

+ f % w0 + w + w′0 − w0︸ ︷︷ ︸
y

+ g

and so w′0 + (w + f) % w′0 + (w + g), that is, w + f %w
′
0 w + g, as wanted. �

In words, when a preference relation is propense to full insurance (weakly risk averse) at some initial

wealth level, it remains so at any other initial level. Intuitively, propensity to full insurance (weak risk

aversion) per se is a feature of a preference relation that depends only on the variability of payoffs and

as such it is unaffected by the addition of a constant (i.e., by an initial wealth w0). In contrast, the

degree of propensity to full insurance (weak risk aversion) may well change with the initial wealth level as

risk preferences are, in general, not invariant under the addition of constants (in the jargon, they are not

translation invariant).

This intuition is confirmed by the main idea of the proof above: f is full insurance for a risk w if and only

if it is full insurance for the corresponding final wealth w0 + w, i.e., Ifi (w) = Ifi (w0 + w). This invariance

is easily seen to hold for partial insurance as well, that is, Ipi (w) = Ipi (w0 + w) for each pi ∈ {pr,dl, is, cs}.
Accordingly the last proposition continues to hold with ‘partial’ and ‘strongly’ in place of ‘full’ and ‘weakly’.

C.2 A generalization of Theorem 1

A possible issue in testing empirically our notion of propensity to full insurance is the universal quantification

‘for all π ∈ R’ regarding insurance prices. Typically, in insurance markets there is only a finite number of

insurance providers, each adopting a premium principle Π that associates a premium π = Π (h) to each

insurance payoff h in F . In this appendix, we address this issue by providing a weaker version of our notion

that still characterizes weak risk aversion. To this end, next we introduce a general class of pricing rules for

insurance markets.
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Definition 17. A function Π : F → R is a premium calculation principle when there exists θ > 0 such that

Π (h+ γ) = Π (h) + θγ

for all h ∈ F and all γ ∈ R.

This notion includes most pricing rules used in the insurance industry, such as those presented by Dickson

(2017, Chapter 3), and in particular the fair premium principle for which Π is the expected value.

With a prespecified premium calculation principle Π replacing the arbitrary premium π ∈ R, propensity

to full insurance takes the following weaker form.

Definition 18. A risk preference % is propense to full insurance at price Π when, for all w, f, g ∈ F with

g
d
= f ,

f = −w −Π(−w) =⇒ w + f % w + g (22)

The interpretation is analogous to the original Definition 7-(i), but without the quantification ‘for all

π ∈ R’ previously mentioned. With this amended definition, the conclusion of Theorem 1 continues to hold.

Theorem 7. Let Π : F → R be a premium calculation principle. The following properties are equivalent

for a risk preference:

(i) weak risk aversion;

(ii) propensity to full insurance;

(iii) propensity to full insurance at price Π.

Proof. The implication (i) =⇒ (ii) is part of Theorem 1 and (ii) =⇒ (iii) is immediate. As for (iii)

=⇒ (i) observe that for each h ∈ F there exist, by Lemma 1, elements z, z′ ∈ F such that z
d
= z′ and

h− E [h]
d
= z − z′. By (22), for

γ =
Π(−z) + E[h]

θ

we have that Π(−z − γ) = −E[h]. Let w = z + γ and w′ = z′ + γ. Clearly, w
d
= w′, h− E [h]

d
= w −w′, and

E[h] = −Π(−z − γ) = −Π(−w). Let

f = −w + E [h] = −w −Π(−w) and g = −w′ + E [h] = −w′ −Π(−w)

Clearly, f
d
= g. Propensity to full insurance at price Π, yields w + f % w + g, that is,

E [h] = w + f % w + g = w − w′ + E [h]
d
= h

Law invariance of % guarantees that w−w′+E [h] ∼ h, and so E [h] % w−w′+E [h] ∼ h. Transitivity then

implies E [h] % h, showing that (i) holds. �

Also the definitions of propensity to proportional and deductible-limit insurance can be weakened in the

same manner, with the conclusions of Theorem 2 still holding true. The details are omitted for brevity.

We close by observing that another common feature of most pricing rules for insurance markets is law

invariance,20 with this (22) becomes

w + (−w −Π(−w))︸ ︷︷ ︸
full insurance at its own price

% w + (h−Π(h))︸ ︷︷ ︸
payoff h at its own price

(23)

for all h
d
= −w, because law invariance guarantees Π(h) = Π(−w). Note that (23) is analogous to condition

(2) in the introduction, again without the universal quantification.

20Law invariance of Π means that h
d
= h′ implies Π(h) = Π(h′).
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C.3 Extension to Lp spaces and to F0

In the following proofs, continuity for risk preferences on Lp spaces is with respect to p-norm convergence,

continuity for risk preferences on the space F0 of simple random payoffs – those that take, almost surely,

only finitely many values – is with respect to bounded a.s. convergence.

As discussed in the main text only the proofs of the results concerning propensity to full insurance (The-

orems 1 and 4) need to be modified by adding the assumption of continuity, the ones regarding propensity

about partial insurance remain unchanged.

Proof of Theorem 1 for continuous risk preferences on F0 and Lp, with p ∈ [1,∞).

(i) =⇒ (ii). The proof is the same as that in Appendix B.6.

(ii) =⇒ (i). Let f ∈ F0 (resp. Lp). Choosing v and Σv
n as in Lemma 5,

fn := E [f | Σv
n]→ f (24)

in bounded a.s. convergence (resp. in Lp). It is obvious to see that fn ∈ F0 ⊆ Lp for all n ∈ N. Theorem 1,

applied to the restriction of % to F0

(
S,Σv

n, P|Σv
n

)
= Lp

(
S,Σv

n, P|Σv
n

)
= L∞

(
S,Σv

n, P|Σv
n

)
, yields E[fn] % fn

for all n ∈ N. But E[fn] → E[f ] and fn → f , and the continuity of % implies E[f ] % f . Thus weak risk

aversion holds. �

Proof of Theorem 4 for continuous risk preferences on F0 and Lp, with p ∈ [1,∞).

(i) =⇒ (ii). The proof is the same as that in Appendix B.14.

(ii) =⇒ (i). Let f ∈ F0 (resp. Lp) and γ ∈ R be such that γ %A f . We want to show that γ %B f .

Define {fn} as in (24). Note that γ ∼A fn−ρA(γ, fn) for all n ∈ N. Theorem 4, applied to the restriction of

% to F0

(
S,Σv

n, P|Σv
n

)
= Lp

(
S,Σv

n, P|Σv
n

)
= L∞

(
S,Σv

n, P|Σv
n

)
, yields γ %B fn − ρA(γ, fn) for all n ∈ N. But

then

fn − ρB(γ, fn) ∼B γ %B fn − ρA(γ, fn)

and, together with transitivity, monotonicity implies that ρB(γ, fn) ≤ ρA(γ, fn) for all n ∈ N.21 Since %
is continuous and fn → f suitably, it follows, by Lemma 12,22 that ρA(γ, fn) → ρA(γ, f) and ρB(γ, fn) →
ρB(γ, f), and so ρB(γ, f) ≤ ρA(γ, f). But

f − ρA(γ, f) ∼A γ %A f = f − 0

and another application of transitivity and monotonicity yields ρA(γ, f) ≤ 0, and so ρB(γ, f) ≤ ρA(γ, f) ≤ 0.

With this (monotonicity again)

γ ∼B f − ρB(γ, f) %B f − 0 = f

and (transitivity again) γ %B f , as desired. �
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