
The reference interval in higher-order stochastic dominance

Ruodu Wang∗ Qinyu Wu†

March 5, 2025

Abstract

Given two random variables taking values in a bounded interval, we study whether one

dominates the other in higher-order stochastic dominance depends on the reference interval in

the model setting. We obtain two results. First, the stochastic dominance relations get strictly

stronger when the reference interval shrinks if and only if the order of stochastic dominance

is larger than three. Second, for mean-preserving stochastic dominance relations, the reference

interval is irrelevant if and only if the difference between the degree of the stochastic dominance

and the number of moments is no larger than three. These results highlight complications arising

from using higher-order stochastic dominance in economic applications.

Keywords: Higher-order stochastic dominance; prudence; temperance; expected utility;

mean-preserving stochastic dominance

1 Introduction

Stochastic dominance is a widely used concept in economics, finance, and decision-making

under uncertainty, providing a robust method for comparing distributions of uncertain outcomes.

This concept is essential in evaluating risk preferences without relying on a specific utility function

or preference model, which allows for broad applications across various fields (Levy (2015); Peter

(2021); Shaked and Shanthikumar (2007)).

First-order stochastic dominance (FSD) and second-order stochastic dominance (SSD) are the

most popular stochastic dominance rules. More recently, the application of higher-order stochastic

dominance has become increasingly significant, providing deeper insights into risk behavior that

extend beyond mere risk aversion; see Eeckhoudt and Schlesinger (2006); Crainich et al. (2013);

Deck and Schlesinger (2014); Noussair et al. (2014); Liu and Neilson (2019).
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Despite its widespread use, the definition of higher-order stochastic dominance lacks consis-

tency across the literature, sometimes leading to interpretational ambiguity. Consider, for example,

two distributions, F and G, each supported over the interval [0, 1]. At first glance, one might

assume that the question of whether F dominates G in fourth-order stochastic dominance would

yield a straightforward answer. However, the consequence can depend significantly on the choice

of the reference interval. For instance, if we assess the dominance using only the interval [0, 1], F

may not dominate G. Yet, extending the interval to [0, 2] might flip the assessment, resulting in

F dominating G.1 This highlights a crucial aspect of higher-order stochastic dominance: It can

vary with alterations in the interval considered. This issue has led to ambiguous formulations of

higher-order stochastic dominance across various texts. For example, Definition 7 in Baiardi et

al. (2020) and the related definitions in Section 2.3 of Denuit and Eeckhoudt (2010) both adopted

an arbitrary interval that encompasses the support of the distribution, but the definition actually

depends on the choice of the interval.

To be specific, two prevalent formulations of higher-order stochastic dominance are found in

the literature. The first formulation, denoted as nSDR, can be applied to all distributions with

bounded support and is defined as: F dominates G if F [n](η) ≤ G[n](η) for all η ∈ R, where F [n]

is the higher-order cumulative function, as defined in (1); see e.g., Rolski (1976); Fishburn (1980);

Shaked and Shanthikumar (2007). The second formulation was initially proposed by Jean (1980)

and has been widely adopted in decision theory; see e.g., Eeckhoudt et al. (2009); Nocetti (2016);

Baiardi et al. (2020). We denote this as nSD[a,b], which specifically applies to distributions supported

within the interval [a, b]. This criterion requires that F [n](η) ≤ G[n](η) for all η in [a, b], and also

the boundary conditions at b, i.e., F [k](b) ≤ G[k](b) for each k from 1 to n. Both formulations can

be described by ordering distributions with their expected utility for some sets of utility functions.

We say that the two formulations are consistent if the ranking between distributions F and

G supported in [a, b] remains the same when assessed under nSDR or nSD[a,b]. To the best of our

knowledge, although various papers hint at the inconsistency issue under different settings (see the

literature review below), the consistency of the two formulations of higher-order stochastic domi-

nance was explicitly discussed only in Fang and Post (2022). In their Section 2.2, they contended

that nSD[a,b] imposes a more stringent criterion than nSDR, suggesting that inconsistencies might

arise when n ≥ 4. We formally encapsulate these observations in our Proposition 1, providing a

detailed analysis and illustrating the inconsistencies for cases where n ≥ 4 with a straightforward

counterexample in Example 1.

1For a detailed discussion, see Example 1, where the specific distributions of F = (8/9 + ϵ)δ2/9 + (1/9− ϵ)δ1 and
G = δ0/3 + 2δ4/9/3 with ϵ = 1/100.
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Ranking inconsistencies can also arise when applying nSD formulations across different inter-

vals, such as A and B, when n ≥ 4. Our Theorem 1 illustrates that these inconsistencies arise

even when distributions are confined to a subset of the intersection of A and B, rather than the

entire intersection. This observation highlights the profound influence that the choice of evaluation

interval can exert on stochastic dominance assessments, underscoring the importance of meticulous

interval selection in both theoretical analysis and practical implementation.

Furthermore, we show that Proposition 1 can be extended to a broader class of stochastic

dominance rules known as nth degree m-mean preserving stochastic dominance (Liu (2014)). This

framework includes higher-order stochastic dominance, nth degree mean-preserving stochastic dom-

inance (Denuit and Eeckhoudt (2013)), and nth degree risk increase (Ekern (1980)) as special cases.

One implication of our results is that, since stochastic domination relations (with n ≥ 4)

get strictly stronger when the reference interval shrinks, it affects both their applications and

characterization results. For instance, a stochastic dominance relation is easier to hold when we

enlarge the reference interval, which are usually harmless for real-data applications. The results also

illustrate a drawback of the higher-order stochastic dominance relations. As stochastic dominance

is mostly used as a robust tool for ordering risks without assuming specific preferences, the fact

that they depend on a reference interval — a subjective choice of the modeler — jeopardizes their

robustness interpretation. From a theoretical standpoint, it is sensible to introduce the reference

interval under the assumption that it encompasses the support of all relevant random variables,

allowing for a uniform analysis based on higher-order stochastic dominance with respect to this

fixed reference interval. This is not the case when these theoretical results are applied to real-world

problems such as portfolio selection and precautionary saving, where the support of the random

variables often cannot be objectively specified, making the choice of the reference interval flexible.

Literature on stochastic dominance on grids and sub-intervals

Many studies have explored stochastic dominance for distributions restricted to specific subsets

of R, with several exploring the consistency of these orderings across various subsets. We discuss

some of them here.

Fishburn (1976) investigated stochastic dominance on a restricted interval [0, b], defined such

that X dominates Y if F
[n]
X (η) ≤ F

[n]
Y (η) for all η within [0, b].2 Compared to nSD[0,b], Fishburn’s

criterion does not require the boundary condition at b, making it less stringent than both nSD[0,b]

and nSDR. Furthermore, Fishburn (1980) showed that the stochastic dominance relations in Fish-

2The order n can take any real value from [1,∞); however, for our purposes, we consider only integer n.
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burn (1976) align with nSDR only for n ∈ {1, 2}.3 In light of our Proposition 1, we conclude that

nSD[0,b], nSDR, and Fishburn’s criterion exhibit consistent for n ∈ {1, 2}. However, for orders

n ≥ 3, these criteria do not exhibit consistency.

The integral stochastic orderings (Whitt (1986); Müller (1997)) within a fixed subset of R,

specifying that X dominants Y if E[u(X)] ≥ E[u(Y )] for all functions u, which is defined on the

subset, in a particular class F . Following this framework, Denuit et al. (1999) and subsequent works

by Fishburn and Lavalle (1995) and Denuit and Lefevre (1997) explored stochastic orderings by

setting the subset as a grid to compare discrete distributions. In particular, Denuit et al. (1999)

showed that the ranking of two discrete distributions, each of the support is contained in a fixed

grid, can become inconsistent when stochastic orderings are applied to the original grid and then

extended to include an additional point. This inconsistency indicates that the choice of the grid

significantly affects the ranking of random variables.

Denuit et al. (1998) and Denuit et al. (1999) studied n-concave orderings within specific inter-

vals, which correspond to increasing nth-degree risk as introduced in Ekern (1980). These orderings

are always consistent across different intervals (see our Theorem 2), enabling us to unify their use

with the counterpart on R. Notably, Denuit et al. (1998) mentioned the possibility of inconsistencies

between nSD and nSD[a,b] in their Remark 3.6, but they did not provide explicit counterexamples

or a detailed analysis. Our research builds on these observations and directly addresses these gaps,

providing clarification of these potential inconsistencies.

2 Main results

In this section, we will present all the results, while the proofs will be provided in the next

section. For a, b ∈ [−∞,∞] with a < b, denote by X[a,b] the set of all bounded random variables

taking values in [a, b]. For simplicity, we write X := X[−∞,∞]. We use capital letters, such as X

and Y , to represent random variables, and F and G for distribution functions. For X ∈ X , we

write E[X] for the expectation of X. Let FX denote the distribution function of X. We use δη to

represent the point-mass at η ∈ R. For a real-valued function f , let f ′
− and f ′

+ be the left and right

derivative of f , respectively, and denote by f (n) the nth derivative for n ∈ N. Whenever we use the

notation f ′
−, f

′
+ and f (n), it is understood that they exist. Denote by [n] := {1, . . . , n} with n ∈ N.

In this paper, all terms like “increasing”, “decreasing”, “convex”, and “concave” are in the weak

sense.

3For n ∈ {1, 2}, the boundary condition that F
[n]
X (b) ≤ F

[n]
Y (b) guarantees that F

[n]
X (η) ≤ F

[n]
Y (η) for all η > b.

In particular, for η ≥ b, F
[1]
X (η) = F

[1]
Y (η) = 1, and the comparison of F

[2]
X (η) and F

[2]
Y (η) reduces to comparing the

expectations of X and Y . However, this is not the case when n ≥ 3 as higher moments appear.
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For a distribution function F , denote by F [1] = F and define

F [n](η) =

∫ η

−∞
F [n−1](ξ)dξ, η ∈ R and n ≥ 2. (1)

It is well-known that F
[n]
X (η) is connected to the expectation of (η −X)n−1

+ (see e.g., Proposition 1

of Ogryczak and Ruszczyński (2001)):

F
[n+1]
X (η) =

1

n!
E[(η −X)n+], X ∈ X , η ∈ R, n ≥ 1,

where x+ = max{0, x} for x ∈ R.

As introduced earlier, we now detail the two formulations of nth-order stochastic dominance.

Definition 1. [Shaked and Shanthikumar (2007, Section 4.A.7)] Let n ∈ N. For X,Y ∈ X , we

say that X dominates Y in the sense of nth-order stochastic dominance on R (nSDR), denoted by

X ≥n Y or FX ≥n FY if

F
[n]
X (η) ≤ F

[n]
Y (η), ∀η ∈ R

or equivalently,

E[(η −X)n−1
+ ] ≤ E[(η − Y )n−1

+ ], ∀η ∈ R.

Definition 2. [Jean (1980, page 152)] Let a, b ∈ [−∞,∞] with a < b and n ∈ N. For X,Y ∈ X[a,b],

we say that X dominates Y in the sense of nth-order stochastic dominance on [a, b] (nSD[a,b]),

denoted by X ≥[a,b]
n Y or FX ≥[a,b]

n FY if

F
[n]
X (η) ≤ F

[n]
Y (η), ∀η ∈ [a, b] and F

[k]
X (b) ≤ F

[k]
Y (b) for k ∈ [n]

or equivalently,

E[(η −X)n−1
+ ] ≤ E[(η − Y )n−1

+ ], ∀η ∈ [a, b] and E[(b−X)k−1] ≤ E[(b− Y )k−1] for k ∈ [n].

In contrast to nSDR, nSD[a,b] depends on a reference interval and involves additional boundary

conditions that F
[k]
X (b) ≤ F

[k]
Y (b) of order k ∈ [n]. For n ∈ [4], nSD corresponds to the well-known

first, second, third and fourth-order stochastic dominance. Risk aversion, which includes aversion to

mean-preserving spreads, aligns with second-order stochastic dominance as described in Rothschild
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and Stiglitz (1970). Higher orders of stochastic dominance, specifically third and fourth orders,

cater to decision makers with more refined risk preferences. Third-order stochastic dominance re-

flects prudence (Kimball (1990)), while fourth-order dominance corresponds to temperance (Kim-

ball (1992)). The characterizations of these preferences, as detailed by Eeckhoudt and Schlesinger

(2006), extend from the traditional concept of mean-preserving spreads to a broader framework of

risk apportionment.

For two random variablesX,Y ∈ X[a,b], both nSDR and nSD[a,b] can be used to rank their order.

This raises a natural question of whether these ranking relations are consistent. To examine this,

we define two sets of utility functions that are regular n-increasing concave (Denuit and Eeckhoudt

(2013)) over different domains:4

U [a,b]
n =

{
u : R → R | (−1)k−1u(k) ≥ 0 on [a, b] for all k ∈ [n]

}
and

Un := U [−∞,∞]
n =

{
u : R → R | (−1)k−1u(k) ≥ 0 on R for all k ∈ [n]

}
.

Denote U [a,b]
n as the closure of U [a,b]

n with respect to pointwise convergence. This gives the class

of all the utilities such that (−1)k−1u(k) ≥ 0 for k ∈ [n − 2] and (−1)n−2u(n−2) is increasing and

concave on [a, b]. The following proposition provides an answer to the above question of consistency

and reveals that the answer is negative for n ≥ 4.

Proposition 1. Let a, b ∈ R with a < b and n ∈ N. For X,Y ∈ X[a,b], we have

(i) X ≥[a,b]
n Y ⇐⇒ (ii) E[u(X)] ≥ E[u(Y )] ∀u ∈ U [a,b]

n ⇐⇒ (iii) E[u(X)] ≥ E[u(Y )] ∀u ∈ U [a,b]
n ;

(iv) X ≥n Y ⇐⇒ (v) E[u(X)] ≥ E[u(Y )] ∀u ∈ Un ⇐⇒ (vi) E[u(X)] ≥ E[u(Y )] ∀u ∈ Un;

and (i) ⇒ (iv) always holds true. But (iv) ⇒ (i) holds for all X,Y ∈ X[a,b] if and only if n ≤ 3.

The equivalence of (i) and (ii) was well-established; see e.g., Eeckhoudt et al. (2009), Denuit

and Eeckhoudt (2013) and Theorem 3.6 of Levy (2015). Specifically, the implication (i) ⇒ (ii) can

be shown by using integration by parts. Note that (ii) ⇒ (v) is trivial. Once the equivalence of

(iv) and (v) is established, it follows that (i) ⇒ (iv) holds. This implication suggests that nSD[a, b]

4From the definition in Liu (2014), the utility functions in Un exhibit kth-degree risk aversion for k ∈ [n]. Letting
n → ∞, U∞ becomes the set of all completely monotone functions, which is well studied in the mathematics literature
and is closely linked to Laplace–Stieltjes transforms (see, e.g., Schoenberg (1938)). In this case, utility functions
express mixed risk aversion, as discussed in Caballé and Pomansky (1996).
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provides a more stringent criterion than nSDR when comparing random variables defined over the

space X[a,b]. Additionally, Proposition 1 demonstrates that a prudent decision maker’s preferences

remain consistent whether employing 3SD[a,b] or 3SD. Consequently, this allows for the uniform

application of 3SD to rank random variables. However, preferences of a temperate decision maker

may vary when transitioning from the criterion 4SD to 4SD[a,b].

A direct explanation for why the implication from (iv) to (i) breaks when the order changes

from 3 to 4 is provided below. Note that nSD[a,b] involves additional boundary conditions compared

to nSDR. For n = 3, suppose that X ≥n Y . To check whether X dominates Y under nSD[a,b], it

is sufficient to verify only one boundary condition: E[(b−X)] ≤ E[(b− Y )], which is equivalent to

E[X] ≥ E[Y ]. This comparison of expectations can be implied from X ≥n Y . However, for n = 4,

the boundary condition of order 2 arises: E[(b −X)2] ≤ E[(b − Y )2]. In this case, X ≥n Y is not

sufficient to establish the boundary condition. To illustrate this, we present an example involving

two random variables X,Y ∈ X[0,1] such that X ≥4 Y and E[(1−X)2] > E[(1− Y )2], serving as a

counterexample to the implication (iv) ⇒ (i) in Proposition 1 for n = 4.

Example 1. Let X,Y ∈ X[0,1] with

FX =

(
8

9
+ ϵ

)
δ2/9 +

(
1

9
− ϵ

)
δ1 and FY =

1

3
δ0 +

2

3
δ4/9, where ϵ =

1

100
.

Below we consider the rank of X,Y under fourth-order stochastic dominance with different reference

intervals. First, we consider [0, 1] as the reference interval. We have the conclusion that X ̸≥[0,1]
4 Y

as the following boundary condition with k = 3 in Definition 2 is violated:

E
[
(1−X)2

]
− E

[
(1− Y )2

]
=

341

72900
> 0.

Next, the reference interval is set as the entire real line, meaning that we consider fourth-order

stochastic dominance as defined in Definition 1. By standard calculation, one can check that

E[(η −X)3+] ≤ E[(η − Y )3+] for all η ∈ R (see Figure 1 for an intuitive illustration), which implies

that X ≥4 Y . Finally, we set [0, 2] as the reference interval and aim to establish that X ≥[0,2]
4 Y .

Note that E[(η −X)3+] ≤ E[(η − Y )3+] for all η ∈ R. By Definition 2, it remains to verify the

boundary condition with k ∈ {2, 3}. By standard calculation, we have

E [(2−X)]− E [(2− Y )] = − 37

8100
< 0 and E

[
(2−X)2

]
− E

[
(2− Y )2

]
= − 13

2916
< 0.

Hence, the relation X ≥[0,2]
4 Y holds.
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Figure 1: E
[
(η − Y )3+

]
− E

[
(η −X)3+

]
The next result examines the consistency of nSD when applied across various intervals. No-

tably, nSD[a,b] does not depend on a as long as a is smaller than the left endpoint of the support of

the random variables to compare. For simplicity, we assume that the left endpoint of all intervals

is the same in the following theorem.

Theorem 1. Fix a, b, c, d ∈ R with a < b ≤ c < d and n ∈ N.

For all X,Y ∈ X[a,b] : X ≥[a,c]
n Y =⇒ X ≥[a,d]

n Y. (2)

The backward implication of (2) holds if and only if n ≤ 3.

Theorem 1 illustrates that the ranking of two random variables can be inconsistent when

applying nSD across different intervals when n ≥ 4. Specifically, when two stochastic dominance

relations, defined over intervals A and B such that the right endpoint of B exceeds that of A, this

inconsistency arises. Importantly, such inconsistencies occur even when only considering random

variables whose support is confined to a sub-interval of A∩B, not necessarily the entire intersection.

In practice, the exact interval that bounds all possible values of wealth may not be known, and

decision makers typically set a sufficiently large range based on historical data. Suppose that there

are two risk analysts using 4SD to rank the stock returns in one year. One chooses [−100%, 2000%]

as the reference interval, and one chooses [−100%, 1000%] as the reference interval. Consider two

stock returns, denoted by X and Y , evaluated based on their historical performance, both taking

values between [−1, 1]. The first analyst may conclude that X dominates Y in 4SD, and the second

may conclude that the domination does not hold. In this example, although both analysts choose

very large upper bound b for the interval that surely contains all possible values of X and Y , it is

unclear which value of b is the right one to choose, and this subjective choice affects their conclusion

8



on domination. In extreme scenarios, where a new observation shows that the upper bound b is

not large enough to cover all risks of interest, the analysts must enlarge their interval, and may

arrive at different domination relations even for those return variables that are within the originally

chosen interval.

Proposition 1 can be generalized to include a broader category of stochastic dominance rules

known as nth degreem-mean preserving stochastic dominance (Liu (2014)), denoted as (n,m)SD[a,b].

Specifically, for X,Y ∈ X[a,b], X dominates Y in (n,m)SD[a,b] if X ≥[a,b]
n Y and F

[k]
X (b) ≤ F

[k]
Y (b)

for all k ∈ [n], with equality holding for all k ∈ [m + 1]. This concept can be extended to the

set of all bounded random variables, denoted as (n,m)SDR, where X dominates Y if X ≥n Y and

E[Xk] = E[Y k] for each k ∈ [m]. The higher-order stochastic dominance is a particular instance

of nth degree m-mean preserving stochastic dominance with m = 0. If m = 1, this dominance

criterion corresponds to nth degree mean-preserving stochastic dominance as introduced in Denuit

and Eeckhoudt (2013). When m = n − 1, it aligns with the notion of nth degree risk increase as

originally defined by Ekern (1980).

For the above two formulations of nth degree m-mean preserving stochastic dominance, we

have the following result about the consistency that extends Proposition 1.

Theorem 2. Let a, b ∈ R with a < b and m,n ∈ N with m ≤ n− 1.

For all X,Y ∈ X[a,b] : X dominates Y in (n,m)SD[a,b] =⇒ X dominates Y in (n,m)SDR. (3)

The backward implication of (3) holds if and only if n−m ≤ 3.

Theorem 2 shows that the nth degree mean-preserving stochastic dominance rules are consis-

tent for n ≤ 4. Furthermore, the nth degree risk increase rules are always consistent across different

intervals. This finding indicates that when a decision maker uses the nth-degree risk increase rule

to compare uncertain outcomes, she can uniformly apply its counterpart on R, making it suitable

for all bounded uncertainty outcomes.

3 Proofs

3.1 Proof of Proposition 1

Note that U [a,b]
n is the closure of U [a,b]

n with respect to the pointwise convergence. Thus, we only

need to consider the statements (i), (ii), (iv) and (v). We aim to prove Proposition 1 by considering

three steps in the following.
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(a) Prove (i) ⇔ (iv) for n ≤ 3.

(b) Prove (i) ⇔ (ii) ⇒ (iv) ⇔ (v) for n ∈ N.

(c) For any c, d ∈ (−∞,∞) with c < d and n ≥ 4, there exist X,Y ∈ X[c,d] such that X ≥n Y and

X ̸≥[c,d]
n Y .

Before showing the proof, we present an auxiliary lemma that will be used in all above steps.

Lemma 1 (Proposition 6 of Ogryczak and Ruszczyński (2001)). For Z ∈ X and n ∈ N, we have

lim
η→∞

{
η −

(
E[(η − Z)n+]

)1/n}
= E[Z].

As a result, for X,Y ∈ X and n ∈ N, X ≥n Y implies E[X] ≥ E[Y ].

Proof of Step (a). The cases n ∈ {1, 2} are trivial. Let now n = 3.

(i) ⇒ (iv): It is straightforward to see that (i) implies E[(η − X)2+] ≤ E[(η − Y )2+] for all

η ∈ (−∞, b] and E[X] ≥ E[Y ]. For η > b, we have

E[(η −X)2+] = E[((b−X) + (η − b))2] = E[(b−X)2] + 2(η − b)E[b−X] + (η − b)2

≤ E[(b− Y )2] + 2(η − b)E[b− Y ] + (η − b)2 = E[(η − Y )2+].

This yields (iv).

(iv) ⇒ (i): Suppose that X ≥3 Y . It implies that E[(η −X)2+] ≤ E[(η − Y )2+] for all η ∈ [a, b].

By Lemma 1, we have E[X] ≥ E[Y ], and thus, E[(b−X)] ≤ E[(b− Y )]. Hence, we have concluded

that X ≥[a,b]
3 Y , and this completes the proof.

Proof of Step (b). The implication (ii) ⇒ (v) is trivial. The implication (v) ⇒ (iv) is supported by

the fact that the mapping x 7→ −(η − x)n−1
+ is contained in Un, and thus, it can be approximated

by a subset of functions in Un with respect to the pointwise convergence. The implication (i) ⇔ (ii)

has been verified in Theorem 1 of Eeckhoudt et al. (2009). It remains to verify (iv) ⇒ (v). In fact,

this implication can be verified by the insight that every u ∈ Un is a positive linear combination of

singularity functions in the set {f : x 7→ −(η − x)n−1
+ |η ∈ R}; see Williamson (1956). We provide a

self-contained proof based on the integration by parts below.

Suppose that X ≥n Y . It follows from Lemma 1 that E[X] ≥ E[Y ]. First, we assume that

E[X] > E[Y ], and the case that E[X] = E[Y ] will be studied later. Using Lemma 1 again and
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noting that E[X] > E[Y ], there exists M ≥ b such that F
[k]
X (M) ≤ F

[k]
Y (M) for all k ∈ [n− 1]. For

u ∈ Un, using integration by parts yields

E[u(X)]− E[u(Y )] =

∫
R
u(η)dFX(η)−

∫
R
u(η)dFY (η)

=

∫ M

−∞
(−1)u(η)d (FY (η)− FX(η))

= (−1)−1u(η)(FY (η)− FX(η))
∣∣M
−∞ +

∫ M

−∞
(FY (η)− FX(η))du(η)

=

∫ M

−∞
(FY (η)− FX(η))du(η)

=

∫ M

−∞
u(1)(η)d

(
F

[2]
Y (η)− F

[2]
X (η)

)
= u(1)(η)

(
F

[2]
Y (η)− F

[2]
X (η)

) ∣∣M
−∞ +

∫ M

−∞

(
F

[2]
Y (η)− F

[2]
X (η)

)
d
(
−u(1)(η)

)
≥
∫ M

−∞

(
F

[2]
Y (η)− F

[2]
X (η)

)
d
(
−u(1)(η)

)
,

where the inequality follows from u(1) ≥ 0 and F
[2]
X (M) ≤ F

[2]
Y (M). Using integration by parts

repeatedly following a similar argument, we get

∫ M

−∞

(
F

[2]
Y (η)− F

[2]
X (η)

)
d
(
(−1)u(1)(η)

)
≥
∫ M

−∞

(
F

[n]
Y (η)− F

[n]
X (η)

)
d
(
(−1)n−1u(n−1)(η)

)
≥ 0,

where the last inequality holds because F
[n]
X (η) ≤ F

[n]
Y (η) for all η ∈ R, and (−1)n−1u(n−1) is

increasing as (−1)n−1u(n) ≥ 0. Hence, we have E[u(X)] ≥ E[u(Y )] if E[X] > E[Y ]. Suppose now

that E[X] = E[Y ]. It is straightforward that X + ϵ ≥n Y for all ϵ > 0. It follows from the previous

arguments that E[u(X + ϵ)] ≥ E[u(Y )]. Note that E[u(X + ϵ)] → E[u(X)] as ϵ ↓ 0. This gives

E[u(X)] ≥ E[u(Y )]. Hence, we have completed the proof.

Proof of Step (c). Let us now focus on Step (c). To verify this step, it suffices to show that there

exist a, b ∈ (−∞,∞) with a < b and X,Y ∈ X[a,b] such that X ≥4 Y and X ̸≥[a,b]
4 Y , and such

example has been given in Example 1. To see this, suppose that X,Y ∈ X[a,b] are the random

variables satisfying X ≥4 Y and X ̸≥[a,b]
4 Y . Then, we have E[(η − X)3+] ≤ E[(η − Y )3+] for

all η ∈ R. It follows from Lemma 1 that E[b − X] ≤ E[b − Y ], and hence, X ̸≥[a,b]
4 Y implies

E[(b − X)2] > E[(b − Y )2]. For c, d ∈ (−∞,∞) with c < d and n ≥ 4, define X̃ = λX + m and

Ỹ = λY +m, where λ = (d− c)/(b− a) and m = (bc− ad)/(b− a). It is straightforward to see that
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X̃, Ỹ ∈ X[c,d], and X ≥4 Y implies X̃ ≥n Ỹ . Additionally, we have

E[(d− X̃)2] = λ2E[(b−X)2] > λ2E[(b− Y )2] = E[(d− Ỹ )2].

Therefore, we have concluded that X̃, Ỹ ∈ X[c,d], X̃ ≥n Ỹ and X̃ ̸≥[c,d]
n Ỹ , which confirms Step (c).

Hence, we complete the proof.

3.2 Proof of Theorem 1

We first present an auxiliary lemma.

Lemma 2. Let a, b ∈ R with a < b. There exists a sequence {Xn, Yn}n∈N ⊆ X 2
[a,b] such that

Xn ≥4 Yn and E[Xn]− E[Yn] > 0 for all n ∈ N, and (E[X2
n]− E[Y 2

n ])/(E[Xn]− E[Yn]) → ∞.

Proof. We assume without loss of generality that a = 0 and b = 9. Let ϵn > 0 and mn ∈ (0, 1)

be such that ϵn = mn/(54(1 + mn)) and mn ↓ 0. It holds that mn/ϵn ↓ 54 as n → ∞. Define

{Xn, Yn}n∈N ⊆ X 2
[0,9] with

FXn =

(
8

9
+ ϵn

)
δ2 +

(
1

9
− ϵn

)
δ8+mn and FYn =

1

3
δ0 +

2

3
δ4.

It is straightforward to check that E[Xn]−E[Yn] = 5ϵnmn > 0 for all n ∈ N. We aim to verify that

Xn ≥4 Yn if n ∈ N is sufficiently large. To see this, denote by fn(η) = E[(η − Yn)
3
+]− E[(η −Xn)

3
+]

for n ∈ N and η ∈ R. It is straightforward to see that fn(η) ≥ 0 for η ∈ (−∞, 4]. By standard

calculation, we have

9fn(η) = g(η)− 9ϵn(η
3 − 6η2 + 12η − 8), η ∈ [4, 8 +mn],

where g(η) = η3 − 24η2 +192η− 320. One can check that the mapping g(η) is increasing on R and

g(4) > 0. Hence, we have fn(η) ≥ g(4)− 9ϵn(η
3− 6η2+12η− 8) for η ∈ [4, 8+mn]. For sufficiently

large n, we have ϵn is small enough, and thus, fn(η) ≥ 0 for η ∈ [4, 8+mn]. Let us now consider the

case η ≥ 8+mn. Denote by An = (1−9ϵn)(6+mn), and it holds that An−6 = 5m2
n/(6(1+mn)) > 0

12



and An → 6 as n → ∞. By some standard calculations, we have

9fn(η) = 3(An − 6)η2 + 3[60−An(10 +mn)]η +An(m
2
n + 18mn + 84)− 312

≥ −3[An(10 +mn)− 60]2

4(An − 6)
+An(m

2
n + 18mn + 84)− 312

= −3

4

[
(10−mn)

√
An − 6− 6mn√

An − 6

]2
+An(m

2
n + 18mn + 84)− 312

→ −3

4
lim
n→∞

36m2
n

An − 6
+ 200 = −162

5
+ 200 > 0,

where we have calculated the minimum of a quadratic function in the the first inequality by noting

that An > 6, which implies that fn(η) > 0 for η ≥ 8 +mn when n is sufficiently large. Therefore,

we have concluded that Xn ≥4 Yn if n ∈ N is sufficiently large. Note that

E[X2
n]− E[Y 2

n ]

E[Xn]− E[Yn]
=

−9ϵnm
2
n +m2

n − 144ϵnmn + 16mn − 540ϵn
mn − 9ϵnmn − 54ϵn

=
16mn

ϵn
− 540− 9m2

n + m2
n

ϵn
− 144mn

45mn
→ ∞ as n → ∞,

where the convergence follows from mn ↓ 0 and mn/ϵn ↓ 54. This completes the proof.

Proof of Theorem 1. The implication in (2) follows from the equivalence between (i) and (ii) in

Proposition 1. Note that the equivalence between (i) and (iii) in Proposition 1 holds for n ≤ 3,

and thus, the backward implication of (2) also holds when n ≤ 3. It remains to verify that the

backward implication fails if n ≥ 4. To see this, we assume without loss of generality that a = 0.

Let X,Y ∈ X[0,b] be such that E[X] > E[Y ],

X ≥4 Y and λ :=
E[X2]− E[Y 2]

E[X]− E[Y ]
≥ 2d,

where the existence is due to Lemma 2. Let γ ∈ (2c/λ, 2d/λ] ⊆ (0, 1], and define X̃ = γX and

Ỹ = γY . It holds that X̃, Ỹ ∈ X[0,b], E[X̃] > E[Ỹ ],

X̃ ≥4 Ỹ and
E[X̃2]− E[Ỹ 2]

E[X̃]− E[Ỹ ]
= γ

E[X2]− E[Y 2]

E[X]− E[Y ]
∈ (2c, 2d].
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Therefore, we have

E[(c− X̃)2]− E[(c− Ỹ )2] = (E[X̃]− E[Ỹ ])

(
E[X̃2]− E[Ỹ 2]

E[X̃]− E[Ỹ ]
− 2c

)
> 0;

E[(d− X̃)2]− E[(d− Ỹ )2] = (E[X̃]− E[Ỹ ])

(
E[X̃2]− E[Ỹ 2]

E[X̃]− E[Ỹ ]
− 2d

)
≤ 0.

This implies that X̃ ≥[0,d]
4 Ỹ and X̃ ̸≥[0,c]

n Ỹ for n ≥ 4. Since ≥[0,d]
4 is more stringent than ≥[0,d]

n for

n ≥ 4, we have completed the proof.

3.3 Proof of Theorem 2

In this section, closure refers specifically to pointwise convergence. For n ≥ 3, define the class

of n-concave functions on [a, b] as follows

U [a,b]
n-cv = {u : R → R|(−1)n−2u(n−2) is increasing and concave on [a, b]}.

The set U [a,b]
n-cv is a closed convex cone. For any u ∈ U [a,b]

n-cv, there exists a sequence {uk}k∈N such that

(−1)nu
(n)
k ≤ 0 on [a, b] for all k ∈ N and uk → u pointwisely. Denote by U [a,b]

(n,m)-cv =
⋂n

i=m+1 U
[a,b]
i-cv ,

which is also a closed convex cone. The following result is straightforward to verify by sharing a

similar proof of Proposition 1 (see also Theorem 1 of Liu (2014)).

Lemma 3. Let a, b ∈ [−∞,∞] with a < b and m,n ∈ N with m ≤ n − 1. For X,Y ∈ X[a,b], X

dominates Y in (n,m)SD[a,b] if and only if E[u(X)] ≥ E[u(Y )] for all u ∈ U [a,b]
(n,m)-cv.

Note that UR
(n,m)-cv ⊆ U [a,b]

(n,m)-cv whenever a, b ∈ R and a < b. Hence, Lemma 3 yields (3) in

Theorem 2.

Next, we aim to show that the backward implication of (3) holds if n − m ≤ 3. To see

this, suppose that X,Y ∈ X[a,b] satisfy that X dominates Y in (n,m)SDR. The cases n − m ∈

{1, 2} are trivial. Let now n − m = 3. It suffices to verify that E[(b − X)m+1] ≤ E[(b − Y )m+1].

Since X dominates Y in (n,m)SDR, we have X ≥n Y . Also note that E[Xk] = E[Y k] for k ∈

[m]. By Theorem 4.A.58 of Shaked and Shanthikumar (2007), either E[Xm+1] = E[Y m+1] or

(−1)m+1E[Xm+1] < (−1)m+1E[Y m+1] holds, which further implies that E[(b − X)m+1] ≤ E[(b −

Y )m+1]. This completes the proof of the backward implication of (3) for n−m ≤ 3.

It remains to verify that the backward implication of (3) fails when n − m ≥ 4. Unlike in

Proposition 1, where a counterexample is presented, here we seek to demonstrate this result through

an alternative approach. Such an approach is based on the following lemma, which is a direct result
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from Corollary 3.8 of Müller (1997).

Lemma 4. Let a, b ∈ R with a < b, and let V1 and V2 be two closed convex cones of real-valued

functions on [a, b]. Suppose that ≿1 and ≿2 are two orderings on X[a,b], which satisfy for X,Y ∈

X[a,b] and i ∈ {1, 2}, X ≿i Y if and only if E[u(X)] ≥ E[u(Y )] for all u ∈ Vi. Then, the orderings

≿1 and ≿2 are equivalent if and only if V1 = V2.

We complete the proof by verifying that (n,m)SD[a,b] is a strictly more stringent rule than

(n,m)SD[a,c] on X[a,b], where a, b, c ∈ R with a < b < c and m,n ∈ N with n − m ≥ 4. Choose

u(x) = −(b − x)m+2 for x ∈ R. It is straightforward to see that u ∈ U [a,b]
(n,m)-cv. Note that U [a,b]

(n,m)-cv

and U [a,c]
(n,m)-cv are both closed convex cone. Combining Lemmas 3 and 4, it suffices to verify that

v ̸≡ u on [a, b] for all v ∈ U [a,c]
(n,m)-cv. To see this, we assume by contradiction that there exists

v ∈ U [a,c]
(n,m)-cv such that v ≡ u on [a, b]. It holds that

v(k)(x) = u(k)(x) =
(−1)k+1(m+ 2)!

(m+ 2− k)!
(b− x)m+2−k for x ∈ [a, b] and k ∈ [m+ 2]. (4)

Define fk(x) = (−1)kv(k)(x) for x ∈ [a, c] and k ∈ [m + 2]. We have that fk(x) is increasing and

concave on [a, c] for k ∈ {m − 1,m,m + 1,m + 2} as v ∈ U [a,c]
(n,m)-cv with n − m ≥ 4. Note that

fm+2(x) = −(m + 2)! on [a, b], and thus, fm+2 must be the constant −(m + 2)! on [a, c] as it is

increasing and concave. Further, the equation (4) implies fm+1(x) = −(m+2)!(b−x) for x ∈ [a, b].

Since f
(1)
m+1(x) = −fm+2 = (m+2)! for x ∈ [a, c], we have fm+1(x) = −(m+2)!(b−x) for x ∈ [a, c].

This means that fm+1(x) > 0 for x ∈ [b, c]. Note that f
(1)
m (x) = −fm+1(x) < 0 for x ∈ [b, c]. This

contradicts the fact that fm is increasing on [a, c]. Hence, we have concluded that (n,m)SD[a,b] is

a strictly more stringent rule than (n,m)SD[a,c] on X[a,b], where a < b < c and n − m ≥ 4. This

completes the proof.
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