
Introduction Dependence Uncertainty Extreme Scenarios Asymptotic Behavior Challenges

Risk Aggregation with Dependence

Uncertainty

Ruodu Wang

Department of Statistics and Actuarial Science
University of Waterloo, Canada

Seminar at ETH Zurich
November 5, 2013

Based on a series of joint work

Ruodu Wang Dependence Uncertainty



Introduction Dependence Uncertainty Extreme Scenarios Asymptotic Behavior Challenges

Contents

1 Introduction

2 Dependence Uncertainty

3 Extreme Scenarios

4 Asymptotic Behavior

5 Challenges

Ruodu Wang Dependence Uncertainty



Introduction Dependence Uncertainty Extreme Scenarios Asymptotic Behavior Challenges

Part I - Introduction

Risk and uncertainty:

Risk: familiar; able to quantify; under control; quick

response.

Uncertainty: unfamiliar; difficult or impossible to

quantify; beyond control; delayed response.

Model risk: the risk of inappropriate modelling and misused

quantitative tools.

You think it is a risk but it is actually an uncertainty!
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Risk aggregation

X1, · · · ,Xn are random variables representing individual

risks (one-period losses or profits).

Aggregate position S(X) associated with a risk vector

X = (X1, · · · ,Xn).

The most commonly used aggregation function is

S = X1 + · · ·+ Xn.
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Challenges in dependence

There is never perfect information. Statistical modelling

and inference are needed.
data accuracy modelling calculation

marginal rich good mature easy

dependence limited poor limited heavy

Marginal→ risk; dependence→ uncertainty.

The logic of using parameters, such as covariance matrices,

Spearman’s rho and tail dependence coefficients, to model

dependence in risk management is questionable.
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Examples of model risk of dependence

Possibly misused modeling tools:

Gaussian model.

Conditional independence.

Micro correlation.

Independent increments.

Behavior modeling.
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April 23, 2013, S&P 500 index

What happend during those 10 minutes (1:07pm-1:16pm)?

Source: Yahoo finance
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Part II - Dependence Uncertainty

We seek a more general and mathematically tractable

framework.

S = X1 + · · ·+ Xn.

The marginal distributions of X1, · · · ,Xn: known.

The joint structure of X1, · · · ,Xn: unknown.

This setting is very practical.

Target: probabilistic behavior of S and/or risk measures of S.
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Admissible risk class

Admissible risk class with uncertainty

For given univariate distributions F1, · · · ,Fn, the admissible

risk class (of marginals F1, · · · ,Fn) is defined as

Sn(F1, · · · ,Fn) = {X1 + · · ·+ Xn : Xi ∼ Fi, i = 1, · · · ,n}.

Each S ∈ Sn(F1, · · · ,Fn) is called an admissible risk (of

marginals F1, · · · ,Fn).
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A few remarks

Sn(F) is the set of all possible aggregate risks when the

marginal distributions are accurately obtained but the joint

distribution is unknown.

The distribution of S ∈ Sn(F) is determined by the copula

of X1, · · · ,Xn.

This admissible risk class has some nice theoretical

properties, such as convexity w.r.t. distribution,

permutation/affine/law-invariance, completeness,

robustness.
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A few remarks

In practice, people may have partial information about the

joint structure, such as

individual risks are positively quadratic dependent;
individual risks are conditional independent;
some information on the copula of X;
the covariance matrix is estimated accurately.

In those cases, the possible aggregate risks are in a subset

of Sn(F).

Ruodu Wang Dependence Uncertainty



Introduction Dependence Uncertainty Extreme Scenarios Asymptotic Behavior Challenges

Remark on Fréchet classes

A Fréchet class:

Fn(F) := {(X1, · · · ,Xn) : Xi ∼ Fi, i = 1, · · · ,n}.

The difference between Sn(F) and Fn(F):

The structure of Fn(F) is marginal-independent, but Sn(F)

is marginal-dependent.

The information contained in Fn(F) is redundant.
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Questions on admissible risk classes

Probabilistically, what exactly are in the set Sn(F)?
For S with a given distribution F, is S in Sn(F)? Is there a
viable characterization?
What is the boundary (in some sense) of Sn(F)?

Statistically, how can we conduct inference from data?
Traditional method: copula estimation - inaccurate, costly,
provides information that are of no interest.
Direct estimation techniques: waste of marginal
information.

How can we use Sn(F) to manage risks?
Assign a measure on Sn(F)? Risk⇔ uncertainty.
Extreme scenarios analysis?
Limited data regulation principles?
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Part III - Extreme Scenarios

Extreme scenario questions for dependence uncertainty:

Is a constant admissible?

Convex ordering on admissible risks?

Bounds for the distribution function of an admissible risk?

These three questions turn out to be closely connected, via the

concept of completely mixable distributions.
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A few remarks

Extreme scenarios→ coherent measure of model

uncertainty defined in Cont (2006):

µQ(ρ) = sup
Q∈Q

ρQ(S)− inf
Q∈Q

ρQ(S).

Research from the point of theoretical probability via a

connection to mass-transportation can be found since early

80s, e.g. Rüschendorf (1982).

A comprehensive overview on those topics can be found in

the recent book Rüschendorf (2013).
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Is a constant admissible?

Basic observation: E[S] is a constant if F1, · · · ,Fn are L1.

Question: is a constant K, typically chosen as E[S], in

Sn(F)?
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Joint Mixability

Joint mixable distributions (W., Peng and Yang, 2013)

We say the univariate distributions F1, · · · ,Fn are jointly

mixable (JM) if there exists Xi ∼ Fi, i = 1, · · · ,n such that

X1 + · · ·+ Xn is a constant. Equivalently,

Sn(F1, · · · ,Fn) ∩ R 6= ∅.
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Completely mixability

Completely mixable distributions (Wang and W., 2011)

We say the univariate distribution F is n-completely mixabe

(CM) if there exists X1, · · · ,Xn ∼ F such that X1 + · · ·+ Xn is a

constant. Equivalently,

Sn(F, · · · ,F) ∩ R 6= ∅.
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Interpretation of CM and JM:

CM or JM scenarios represent a perfectly hedged portfolio.

It is an ideal case of negative correlation. It is a natural

generalization of the counter-comonotonicity (n = 2).

An open research area:

what distributions are CM/JM?
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Most relevant results for CM:

If F supported on [a, b] with mean µ is n-CM, then the

mean condition is necessary:

a + (b− a)/n ≤ µ ≤ b− (b− a)/n.

0 1

µ

(n− 1)/n1/n unbounded

µ

The mean condition is sufficient for monotone densities.

U[0,1] is n-CM for n ≥ 2.
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Some fully characterized families:

Analytical proofs:

Rüschendorf and Uckelmann (2002): unimodal-symmetric
densities.
Knott and Smith (2006) and Puccetti, Wang and W. (2012):
radially symmetric distributions.

Combinatorial proofs:

Wang and W. (2011): monotone densities.
Puccetti, Wang and W. (2012, 2013): concave densities;
strictly positive densities.
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Existing results for JM:

Generalized mean condition.

Second order condition: If F1, · · · ,Fn are JM with finite

variance σ2
1, · · · , σ2

n, then

max
i∈{1,··· ,n}

σi ≤
1
2

n∑
i=1

σi.

W., Peng and Yang (2013): the variance condition is

sufficient for normal.

Wang and W. (2013a, preprint): the variance condition is

sufficient for uniform; elliptical; and unimodal-symmetric

densities.
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Mysteries of CM (JM)

Uniqueness of the center?

Unimodal densities and other types?

Characterization?

Asymptotic behavior (n→∞)?
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Convex ordering bounds

We assume the individual risks are on R+ and are L1 (finite

mean).

Since E[S] is fixed, the most interesting property is the

convex order of Sn(F):

For X,Y ∈ L1, if E[g(X)] ≤ E[g(Y)] holds for all convex

functions g : R→ R, then we say X ≺cx Y.

In economics, the term second order stochastic dominance

is more often used.
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Why consider convex order?

Risk preference.

Coherent and convex risk measures.

E[g(S)]:
expected utility;
the variance of aggregation, European basket option prices,
realized variance options;
stop-loss premiums, losses with limits/deductibles.

Directly connects to bounds on the Value-at-Risk and

optimal mass transportation problems.

Mathematically nice and tractable.
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Well-known results on this question (late 70s):

The convex order upper bound is obtained by the

comonotonic scenario: for S ∈ Sn(F),

S ≺cx F−1
1 (U) + · · ·+ F−1

n (U)

where U has a uniform distribution on [0, 1].

The infimum:

Known for n = 2: counter-monotonic scenario for
S ∈ S2(F1,F2):

S �cx F−1
1 (U) + F−1

2 (1−U).

Mysterious for n ≥ 3 in general.

All the above results are marginal-independent.
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Connection between CM/JM distribution and convex ordering

lower bound for n ≥ 3:

If F1, · · · ,Fn are JM, then E[S] is in Sn(F1, · · · ,Fn), and thus

it is the convex minimal element.

CM/JM scenario is a natural generalization of the

counter-comonotonicity.

Please note that the optimal structure is

marginal-dependent. (I believe it is the reason why major

progresses on this problem were delayed till recently.)
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Existence

A surprising fact: for n ≥ 3, the set Sn(F) may not contain a

convex ordering minimal element.
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CM/JM is not possible for unbounded positive risks. We seek

for more general results for the purpose of risk management:

Identical and monotone marginal densities: analytical

results obtained in Wang and W. (2011).

General marginal densities on R+: Bernard, Jiang and W.

(2013, preprint).

To obtain a convex minimal element, we try to enhance a

density concentration (make S as close to a constant as

possible).
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A few remarks for main results in Bernard, Jiang and W. (2013,

preprint):

Optimal structure for homogeneous marginals: tails -

mutual exclusivity; body - complete mixability.

body

right
tail

left
tail
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Analytical formulas for the lower bound on TVaRp(S) and

E[g(S)] are available.

Lower bounds for heterogeneous marginals are obtained:

not sharp in general, but quite accurate according to
numerical results;
the fact Sn(F1, · · · ,Fn) ⊂ Sn(F, · · · ,F) is used, where
F = 1

n

∑n
i=1 Fi.
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Bounds on the distribution function

Given marginal distributions, what is the maximum

possible distribution function of S (a special case of a

question raised by A. N. Kolmogorov)?

The question: given F1, · · · ,Fn and s ∈ R, find

sup
S∈Sn(F1,··· ,Fn)

P(S ≤ s) and inf
S∈Sn(F1,··· ,Fn)

P(S ≤ s).
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Equivalent question in risk management:

Given F1, · · · ,Fn and α ∈ (0, 1), find

sup
S∈Sn(F1,··· ,Fn)

VaRα(S) and inf
S∈Sn(F1,··· ,Fn)

VaRα(S).

It is the best/worst scenario risk measure with confidence

in marginal information.

The usage of VaR in risk management is debatable for

incoherence (non-subadditivity in particular) but still quite

widely used.

Very hard to solve analytically.

What is done in the practice of operational risk: model

marginal, add them up, and discount to 70%-90% due to

unjustified diversification benefit.
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marginal, add them up, and discount to 70%-90% due to

unjustified diversification benefit.
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Some literature

Makarov (1981): n = 2.

Rüschendorf (1982): independently solved n = 2.

Identical marginals:

Rüschendorf (1982): dual representation; uniform and binomial
cases.
Denuit, Genest and Marceau (1999): non-sharp standard bound.
Embrechts and Puccetti (2006): dual bounds.
W., Peng and Yang (2013): sharp bounds for homogeneous tail
monotone densities based on CM.

Puccetti and Rüschendorf (2013): sharpness of dual bounds,

equivalent to a CM condition.

Embrechts, Puccetti and Rüschendorf (2013): numerical
algorithm and general discussion.
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Between VaR and convex ordering bounds

Suppose F1, · · · ,Fn are continuous distributions.

Fi,a for a ∈ (0, 1) is the conditional distribution of Fi on

[F−1
i (a),∞);

Fa
i for a ∈ (0, 1) is the conditional distribution of Fi on

(−∞,F−1
i (a)).
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Convex ordering lower bound and bounds on VaR

Theorem 1 (Bernard, Jiang and W. (2013))

(a) Suppose Sa is a convex ordering minimum element in
Sn(F1,a, · · · ,Fn,a) for a ∈ (0, 1), then
supS∈Sn(F1,··· ,Fn)

VaRa(S) = ess inf Sa.

(b) Suppose Sa is a convex ordering minimum element in
Sn(Fa

1, · · · ,Fa
n) for a ∈ (0, 1), then

infS∈Sn(F1,··· ,Fn) VaRa(S) = ess sup Sa.
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A few remarks:

Finding convex ordering minimal element implies worst

and best elements for VaR.

The worst VaR only depends on the tail behavior, hence

extra information on convariance/correlation may or may

not affect its value.

Bernard, Rüschendorf and Vanduffel (2013, preprint): VaR

bounds with variance constraint on S.
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Part IV - Asymptotic Behavior

Look at Sn ∈ Sn(F), F = (F, · · · ,F), F having mean µ.

When F has finite second moment, we have looked at

Vn = Var(Sn) and Vn = inf
Sn∈Sn(F)

Var(Sn).

What if n→∞?

iid case: Vn = O(n).
comonotonic case: Vn = O(n2).
what about most negative correlated case Vn?
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Variance reduction

Theorem 2 (Wang and W. (2013b, preprint))

Suppose F has finite third moment then Vn = O(1).

A stronger result: there exists a sequence Xi, i ∈ N from F
such that |Sn − nµ| ≤ Z a.s. for some Z which does not

depend on n.

For some F this O(1) is sharp, i.e. Vn 6→ 0.
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Asymptotic CM

Theorem 3 (Puccetti, Wang and W. (2013))

Suppose F is supported in a finite interval with a strictly positive
density function, then there exists N ∈ N such that F is n-CM for all
n ≥ N.

Asymptotically every distribution is (almost) CM.
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Asymptotic equivalence

Theorem 4
Under some conditions on F, for all a ∈ (0, 1)

supS∈Sn(F,··· ,F) VaRa(S)

supS∈Sn(F,··· ,F) TVaRa(S)
→ 1.

Worst VaR and worst TVaR (ES) are asympototically equivalent.
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Puccetti and Rüschendorf (2013): F is continuous, satisfies

a conditional CM condition.

Puccetti, Wang and W. (2013): F is continuous and has

strictly positive density based on CM.

Wang and W. (2013b, preprint): F is arbitrary, and no CM

involved.

The same asymptotic equivalence holds for

inhomoegenous marginals with very weak conditions on

the marginal distributions.
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Puccetti, Wang and W. (2013): F is continuous and has

strictly positive density based on CM.

Wang and W. (2013b, preprint): F is arbitrary, and no CM

involved.

The same asymptotic equivalence holds for

inhomoegenous marginals with very weak conditions on

the marginal distributions.

Ruodu Wang Dependence Uncertainty



Introduction Dependence Uncertainty Extreme Scenarios Asymptotic Behavior Challenges

Table : Values (rounded) for best- and worst VaR and ES for a
homogeneous portfolio with d Pareto(2) risks; α = 0.999.

θ = 2 d = 8 d = 56

Best VaR 31 53

Best TVaR 145 472

Comonotonic VaR 245 1715

Worst VaR 465 3454

Worst TVaR 498 3486

In practice some people would use about VaRα(S) ≈ 200 for

d = 8 as the conservative capital reserve.
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Shape problem

Question. Let F,G be any two univariate distributions. Can

you find random variables Xi, i ∈ N from F such that

(Sn − an)/bn
d→ G for some real sequences an, bn?

I think the answer is positive. The message is:

The marginal constraint is weak compared to the dependence

uncertainty. If you only assume known marginals, you can end

up with anything.
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Part V - Challenges

Theoretical results are basically unavailable for

heterogeneous marginal distributions.

Many unsolved mathematical problems.

Applications in quantitative risk management.
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Mathematical challenges

Develop more classes of CM/JM distributions.

Find sharp convex bounds for non-identical marginal

distributions.

Sufficient conditions for the existence of convex ordering

minimal element in an admissible risk class?

Improve numerical algorithms such as the Rearrangement

Algorithm in Embrechts, Puccetti and Rüschendorf (2013).
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Final remarks

Practical risk management?

Dynamic process?

I expect connection with statistics and data science.

Modelling aggregate risks via estimating dependence
structure may not be the best idea to study risk aggregation.

Rather immature ideas; discussions are very much

welcome.
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Model uncertainty and VaR aggregation. Journal of Banking and
Finance, 37(8), 2750-2764.

KNOTT, M. AND SMITH, C.S. (2006). Choosing joint distributions
so that the variance of the sum is small. Journal of Multivariate
Analysis 97, 1757–1765.

MAKAROV, G.D. (1981). Estimates for the distribution function
of the sum of two random variables with given marginal
distributions. Theory of Probability and its Applications. 26, 803–806.

Ruodu Wang Dependence Uncertainty



Introduction Dependence Uncertainty Extreme Scenarios Asymptotic Behavior Challenges

References III
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Thank you for your attention

or pretending
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