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Regulatory Capital Principles

Risk measures as regulatory capital principles

A (regulatory) risk measure is a functional ρ : X → (−∞,∞]

which calculates the amount of regulatory capital of a financial

institution taking a risk (random loss) X in a fixed period.

(Ω,F ,P) is an atomless probability space

X is a convex cone of random variables

e.g. X = Lq(Ω,F ,P), q ∈ [1,∞]

X ∈ X represent loss/profit (discounted to present)

Very general question

What is a good risk measure to use?
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Regulatory Capital Principles

regulator firm manager

internal management

usage external regulation performance analysis

capital allocation

interest social wellfare shareholders

risk systemic risk risk of a single firm

role designs a principle reacts to a principle

goal maintain enough capital reduce regulatory capital

risk-averse yes not necessarily
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Value-at-Risk and Expected Shortfall

Value-at-Risk (VaR) at level p ∈ (0, 1)

VaRp : L0 → R,

VaRp(X ) = inf{x ∈ R : P(X ≤ x) ≥ p}.

Expected Shortfall (ES/TVaR/CVaR/AVaR) at level p ∈ (0, 1)

ESβ : L1 → R,

ESp(X ) =
1

1− p

∫ 1

p
VaRq(X )dq, p ∈ (0, 1).
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Value-at-Risk and Expected Shortfall

The ongoing debate on “VaR versus ES”:

Basel III (mixed; in transition from VaR to ES as standard

metric for market risk1)

Solvency II (VaR based)

Swiss Solvency Test (ES based)

1e.g. Basel Committee on Banking Supervision: Standards, January

2016, Minimum capital requirements for Market Risk.
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Value-at-Risk and Expected Shortfall

Many perspectives

regulator’s versus firms’ standpoints

economic interpretation

statistical issues: estimation, robustness, backtesting, model

uncertainty

computation, simulation and optimization

systemic risk

There is no single “perfect” risk measure

Some academic references

Embrechts et al. (2014)

Emmer-Kratz-Tasche (2015)
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Value-at-Risk and Expected Shortfall

We provide a new perspective: incorporating risk aversion to the

above issue on risk measures.
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Standard Properties of Risk Measures

Some standard properties of risk measures

(M) Monotonicity: ρ(X ) ≤ ρ(Y ) for X ,Y ∈ X , X ≤ Y almost

surely;

(TI) Translation-invariance: ρ(X −m) = ρ(X )−m for all m ∈ R
and X ∈ X .

(LI) Law-invariance: ρ(X ) = ρ(Y ) if X ,Y ∈ X and X
d
= Y .

Definition 1

A monetary risk measure is a functional on X satisfying (M) and

(TI).

VaR and ES are monetary and law-invariant.
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Simple Example

A simplified example:

Ω = {ω1, ω2, ω3}: future (e.g. one-year) economic states

ω1: a normal economic state

ω2: an adverse economic state

ω3: an extreme scenario

P({ω1}) = 0.99, P({ω2}) = 0.0099 and P({ω3}) = 0.0001

A financial institution has to choose between two risks

(decisions)
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Simple Example

Risks X and Y (in millions of USD):

X =


−1 ω = ω1,

10 ω = ω2,

20 ω = ω3,

Y =


−1.1 ω = ω1,

9.9 ω = ω2,

2, 000 ω = ω3.

Possible interpretations:

X is benchmark - Y is X plus an bet against event ω3

(e.g. AAA bond with high leverage)

Y is benchmark - X is Y plus a hedge against event ω3

(e.g. insurance contract)

P(Y < X ) = 99.99%
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Simple Example

Assume that the financial institution has 10M (economic)

capital

VaR0.999(X ) = 10, VaR0.999(Y ) = 9.9

Which risk would the financial institution prefer?

The manager of the financial institution is not necessarily risk

averse

Limited liability

P(ω3) is too small to notice or accurately model

Which risk would a regulator prefer?

A regulator cares about loss to the society

What if all firms in the system are doing this? ... Aggregation!
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Financial Decisions and Risk Preference

Question

How can the regulator leads/encourages the financial institution to

choose X over Y ?

Idea:

(1) A firm has incentives to reduce its regulatory capital

Firms are “effectively risk averse” because holding capital is

costly

Froot-Stein (1998), Zanjani (2002), Bauer-Zanjani (2016)

(2) View a regulatory risk measure ρ as a decision principle for the

firm

(3) Choose a properly designed ρ
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Financial Decisions and Risk Preference

A regulator uses ρ to calculate regulatory capital

Formally, assume that for two decisions X and Y , if

ρ(X )� ρ(Y ), then a firm has the incentive to choose X

(smaller capital) over Y (larger capital).

If the regulator prefers X to Y , then she should design ρ such

that ρ(X ) < ρ(Y ).

In the previous example

X Y

VaR0.999 10 9.9

ES0.999 11 208.91

StDev 1.109 20.039
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Financial Decisions and Risk Preference

What is a suitable preference for the regulator?

very complicated question

for the interest of the society

decision theory ←→ regulatory risk measures
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Expected Loss to the Society

A company has capital K and decides between two risks

X ,Y ∈ X ⊂ L1.

If E[(X −K )+] ≤ E[(Y −K )+] then taking X has less expected loss

to the society.

If E[(X −K )+] ≤ E[(Y −K )+] holds for all K , then it is reasonable

that X requires a smaller capital.

Formally, define the property

(EL) Consistency with expected loss to the society: for X ,Y ∈ X ,

ρ(X ) ≤ ρ(Y ) if E[(X − K )+] ≤ E[(Y − K )+] for all K ∈ R.

(EL) is equivalent to the consistency with respect to second-order

stochastic dominance (SSD).
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Risk Aversion

Definition 2 (Second-order stochastic dominance)

For X ,Y ∈ L1, X has second-order stochastic dominance (SSD)

over Y , denoted as X ≺sd Y , if E[f (X )] ≤ E[f (Y )] for all

increasing convex functions f such that the expectations exist.

Also known as increasing convex order or stop-loss order

X ≺sd Y in the previous three-state example

(SC) SSD consistentcy: ρ(X ) ≤ ρ(Y ) if X ≺sd Y , X ,Y ∈ X .

(SC) is called strong risk aversion in decision theory

(SC) ⇔ (EL)

Ruodu Wang (wang@uwaterloo.ca) Risk Aversion in Regulatory Capital Principles 19/41

wang@uwaterloo.ca


Risk measures Motivating example Consistency Characterization Risk sharing Discussions References

Consistent Risk Measures

Assume X ⊂ L1 in the following.

Definition 3 (Consistent risk measures)

A risk measure is a consistent risk measure if it satisfies (SC) and

(TI).

Consistent risk measures are monetary

Interpretation: the regulator penalizes more risky financial

decisions (ones that have higher expected social impact)
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Consistent Risk Measures

Some examples

An Expected Shortfall ESp, p ∈ (0, 1) is consistent

The mean E[·] on L1 is consistent

Any law-invariant convex risk measure on L∞ is consistent

Any finite law-invariant convex risk measure on Lq, q ≥ 1 is

consistent

Any Value-at-Risk VaRp, p ∈ (0, 1) is not consistent

Is a consistent risk measure necessarily convex?
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Properties

Similar properties for risk measures

(CC) Convex order consistency: ρ(X ) ≤ ρ(Y ) if X ≺cx Y ,

X ,Y ∈ X .

(DM) Dilatation monotonicity: ρ(X ) ≤ ρ(Y ) if (X ,Y ) ∈ X 2 is a

martingale.

(DC) Diversification consistency: ρ(X + Y ) ≤ ρ(X c + Y c) if

X ,Y ,X c ,Y c ∈ X , X
d
= X c , Y

d
= Y c , and (X c ,Y c) is

comonotonic.
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Properties

Proposition 4

For a monetary risk measure on L∞, (SC), (EL), (CC), (DM),

(DC) are equivalent. Moreover, each of them implies (LI).
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Characterization of Consistent Risk Measures

The next question is a characterization of all consistent risk

measures.

We assume X = L∞ for simplicity

All results hold for X = Lq, q ≥ 1
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Characterization Theorem

Theorem 5

A risk measure ρ on L∞ is consistent if and only if there exists a

set G of functions mapping (0, 1) to (−∞,∞] such that

ρ(X ) = inf
g∈G

sup
p∈(0,1)

{ESp(X )− g(p)} , X ∈ L∞. (1)

Example: If ρ is ESp (p ∈ (0, 1)), then one can take G = {gp}
where gp(p) = 0 and gp(x) =∞ for x ∈ (0, 1) \ p.

G in (1) is not unique. It may be chosen as the adjustment

set of ρ

G = {gY : Y ∈ X , ρ(Y ) ≤ 0} ,

where gY : (0, 1)→ R, p 7→ ESp(Y ).
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Characterization Theorem

On the representation:

ρ(X ) = inf
g∈G

sup
p∈(0,1)

{ESp(X )− g(p)} , X ∈ L∞.

g ∈ G are benchmarks: if for some g ∈ G, ES·(X ) ≤ g(·),

then ρ(X ) ≤ 0 (an accepted risk without extra capital);

otherwise ρ(X ) > 0 (or ≥ 0).

Any risk-averse regulator or risk manager is essentially using a

collection of Expected Shortfalls up to some adjustments.
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Relation to Classic Risk Measures

Classic properties in the theory of monetary risk measures

(PH) Positive homogeneity: ρ(λX ) = λρ(X ) for all λ ∈ (0,∞) and

X ∈ X ;

(CX) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ) for all

λ ∈ [0, 1] and X ,Y ∈ X ;

(CA) Comonotonic additivity: ρ(X + Y ) = ρ(X ) + ρ(Y ) if (X ,Y ) ∈ X 2

is comonotonic.

Definition 6

A risk measure is called a convex risk measure if it satisfies (M),

(TI) and (CX). A risk measure is called a coherent risk measure if

it satisfies (M), (TI), (PH) and (CX).

(Artzner-Delbaen-Eber-Heath 1999, Föllmer-Schied 2002, Kusuoka 2001)
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Relation to Classic Risk Measures

Consistent risk measures are closely related to law-invariant convex

risk measures.

Theorem 7

A risk measure ρ on L∞ is consistent if and only if there exists a

set C of law-invariant convex risk measures such that

ρ(X ) = inf
τ∈C

τ(X ), X ∈ L∞.
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Relation to Classic Risk Measures

Yet we obtain a new characterization of convex (coherent) risk

measures.

Proposition 8

A law-invariant risk measure ρ on L∞ is a convex (resp. coherent)

risk measure if and only if there exists a convex set (resp. convex

cone) G of functions mapping (0, 1) to (−∞,∞] such that

ρ(X ) = inf
g∈G

sup
p∈(0,1)

{ESp(X )− g(p)} , X ∈ L∞.
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Consistency vs Convexity

Consistency versus convexity:

(SC) Consistentcy: ρ(X ) ≤ ρ(Y ) if X ≺sd Y , X ,Y ∈ X .

(CX) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ) for all

λ ∈ [0, 1] and X ,Y ∈ X .

(i) Consistency compares between risks (decisions) while

convexity does not

(ii) For risk-types other than market risk, portfolio diversification

is not appropriate

(iii) There is no direct reason why a regulator would favour

diversification in a single company, unless some social benefit

could be expected (cf. Ibragimov-Jaffee-Walden 2011)
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Kusuoka Representations

Kusuoka Representations

Let P be the set of all probability measures on [0, 1] and U be

the set of all functions mapping P to R.

A law-invariant coherent risk measure ρ on L∞ has the

following representation

ρ = sup
h∈R

{∫ 1

0
ESpdh(p)

}
for some R ⊂ P.

A law-invariant convex risk measure ρ on L∞ has the

following representation

ρ = sup
h∈P

{∫ 1

0
ESpdh(p)− α(h)

}
for some α ∈ U .

(Kusuoka 2001, Frittelli-Rosazza Gianin 2005)
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Kusuoka Representations

Grand summary: for a risk measure on L∞,

(TI)+(SC) = inf
α∈V

sup
h∈P

{∫ 1

0
ESpdh(p)− α(h)

}
for some V ⊂ U

+(CX)−→ sup
h∈P

{∫ 1

0
ESpdh(p)− α(h)

}
for some α ∈ U

+(PH)−→ sup
h∈R

{∫ 1

0
ESpdh(p)

}
for some R ⊂ P

+(CA)−→
∫ 1

0
ESpdh(p) for some h ∈ P.

Remark: (TI)+(SC)+(CA) is sufficient for the last representation
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Risk Sharing

General setup

n agents sharing a total risk X ∈ X

ρ1, . . . , ρn: underlying risk measures

Target: for X ∈ X , find an Pareto-optimal solution of X to

minimize

ρ1(X1), . . . , ρn(Xn) (2)

over the set of all allocations:

An(X ) =

{
(X1, . . . ,Xn) ∈ X n :

n∑
i=1

Xi = X

}
.
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Risk Sharing

Theorem 9

Suppose that ρ1, . . . , ρn are consistent risk measures on X = Lq,

q ∈ [1,∞] with adjustment sets G1, . . . ,Gn, respectively. An
allocation (X1, . . . ,Xn) ∈ An(X ) is Pareto-optimal if and only if

n∑
i=1

ρi (Xi ) = ρ∗(X ),

where ρ∗ is a consistent risk measure with adjustment set
∑n

i=1 Gi .

In particular,

ρ∗(X ) = inf
g∈G1+···+Gn

sup
α∈[0,1]

{ESα(X )− g(α)} , X ∈ X .
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Suitable risk measures for regulation

On the current debates regarding the desirability of VaR and ES:

A suitable risk measure applied in regulatory practice should

encourage prudent and socially responsible financial decisions

Financial institutions are not necessarily risk-averse or socially

responsible for their own interest; a regulator should push

them towards risk-aversion

ES is the basis for any consistent risk measure - supporting

the transition from VaR to ES in the recent Basel documents

ES is the only candidate which preserves consistency and also

has simple form and clear economic interpretation

Ruodu Wang (wang@uwaterloo.ca) Risk Aversion in Regulatory Capital Principles 38/41

wang@uwaterloo.ca


Risk measures Motivating example Consistency Characterization Risk sharing Discussions References

Suitable risk measures for regulation

Further remarks:

Consistency is more natural than convexity for a regulator

One can construct non-convex consistent risk measures

As far as we are aware of, there are no non-convex consistent

risk measures in simple analytical forms other than a minimum

Criteria for a desirable risk measure used in banking and

insurance regulation may vary

Bring more in decision theory to risk measures and regulation
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Thank You

Thanks you for your kind attendance

The manuscript can be downloaded at

http://ssrn.com/abstract=2658669
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