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Introduction

Complete market and competitive equilibria

The market

A one-period exchange market is described by a probability space

(Ω,B,P) and a set of bounded random future wealths X .

I There are n agents and N = {1, . . . , n}. Each of them is endowed

with an endowment ξi ∈ X and uses an objective functional

Vi : X → R to model his preference.

I The total future wealth is X =
∑n
i=1 ξi , and its range R(X ) ⊂ R is

an interval.

I The current price of a random wealth Y ∈ X is given by EQ[Y ] for

some pricing measure Q ∈ P, where P is the set of probability

measures absolutely continuous w.r.t. P.

Q will be an output of the market equilibrium.
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Introduction

Complete market and competitive equilibria

Competitive Equilibria (Arrow-Debreu Equilibria)

In an equilibrium, aggregate supplies will equal aggregate demands for

every market state.

Definition
An allocation (X1, . . . ,Xn) ∈ X n and a pricing measure Q ∈ P
constitute an (Arrow-Debreu) competitive equilibrium if

I For i ∈ N, Xi satisfies the budget constraint: EQ[Xi ] ≤ EQ[ξi ]

I For i ∈ N, Xi maximizes the agent’s objective:

Vi (Y ) ≤ Vi (Xi ), for all Y ∈ X and EQ[Y ] ≤ EQ[ξi ].

I The market is cleared:

n∑
i=1

Xi =

n∑
i=1

ξi .
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Introduction

Complete market and competitive equilibria

In a complete market, the set of admissible allocations is

An(X ) =

{
(X1, . . . ,Xn) ∈ X n :

n∑
i=1

Xi = X

}
.

Competitive equilibria in a complete market:

I Early work (expected utility): Arrow-Debreu’54, Borch’62

I Cumulative perspective theory: De Gorgi-Hens-Rieger’10

I Concave dual utility: Garlier-Dana’08, Dana’11, Boonen’15

I Rank dependent utility: Xia-Zhou’16, Jin-Xia-Zhou’18

For objectives other than expected utilities, finding competitive

equilibria is a generally very challenging question
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Introduction

Complete market and competitive equilibria

Comonotonicity

Definition
A random vector (Y1, . . . ,Yn) is comonotonic if

(Y1, . . . ,Yn) = (f1(Y ), . . . , fn(Y )) ,

holds for some non-decreasing functions f1, . . . , fn and a random

variable Y .

I Y can be chosen as
∑n
i=1 Yi ; e.g. Denneberg’94.

I (Y1,Y2) is counter-monotonic if (−Y1,Y2) is comonotonic.
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Introduction

Complete market and competitive equilibria

Known results.

In a complete market, when agents have the same belief P, under mild

conditions, a competitive equilibrium ((X ∗1 , . . . ,X ∗n ),Q) ∈ An(X )× P
satisfies

i. (X ∗1 , . . . ,X ∗n ) is comonotonic.

ii. (X ∗i , η) is counter-monotonic.

iii. (X , η) is counter-monotonic, where η is the pricing kernel

η =
dQ
dP

Obsevation.

A complete market leads to comonotonic allocations, which are

counter-monotone with the pricing kernel.

Question.

What happens if we constrain the feasible set of allocations to be

comonotonic in the first place?
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Introduction

Incomplete comonotone market and competitive equilibria

Insurance

I In an insurance policy, the underlying risk is Y .

I Y is shared by a policyholder and several insurers.

I To avoid Moral Hazard, no one should have the incentive to hope

for a larger loss.

I Slow growth property. For the policyholder, the ceded part f (Y )
should be comonotonic with the retained part Y − f (Y ), or

equivalently

0 ≤ f (x)− f (y) ≤ x − y , 0 ≤ y ≤ x .
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Introduction

Incomplete comonotone market and competitive equilibria

Comonotone Market
I Allocations are constrained in the set

C (X ) = {Y ∈ X : (Y ,X − Y ) is comonotonic }.

Thus Y ∈ C (X ) if and only if Y = f (X ) for some f ∈ F , where

F =

{
f : R→ R

∣∣∣∣ f is continuous and a.e. differentiable,

0 ≤ f ′(z) ≤ 1 for z ∈ R

}
.

I The set of admissible allocations if

Acn(X ) =

{
(X1, . . . ,Xn) ∈ (C (X ))n :

n∑
i=1

Xi = X

}
.

I In the comonotone market, a competitive equilibrium is a pair

((X1, . . . ,Xn),Q) ∈ Acn(X )× P such that EQ[Xi ] ≤ EQ[ξi ] and

Vi (Xi ) = max
{

Vi (Yi ) : Yi ∈ C (X ), EQ[Yi ] ≤ EQ[ξi ]
}
, i ∈ N.
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Introduction

Incomplete comonotone market and competitive equilibria

For the same set of agents

Comonotone market $ Complete market

↓ ↓
Constrained CE (CCE) ⇐ Unconstrained CE (UCE)

Some results.

I A UCE is always a CCE (under some mild conditions).

I A CCE is not necessarily a UCE.

I In a CCE ((X ∗1 , . . . ,X ∗n ),Q), X ∗i , i ∈ N and X may not be

counter-monotonic with η = dQ/dP. Thus, a sharp contrast to the

case of complete market.
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Introduction

Incomplete comonotone market and competitive equilibria

Pareto-optimality

Definition (Pareto-optimal allocations)

Fix objective functionals V1, . . . ,Vn, total wealth X ∈ X and initial

endowments ξ1, . . . , ξn ∈ X .

(i) In the comonotone market, an allocation (X1, . . . ,Xn) ∈ Acn(X ) is

Pareto-optimal if for any allocation (Y1, . . . ,Yn) ∈ Acn(X ),

Vi (Yi ) ≥ Vi (Xi ) for i ∈ N implies Vi (Yi ) = Vi (Xi ) for i ∈ N.

(ii) In the complete market, an allocation (X1, . . . ,Xn) ∈ An(X ) is

Pareto-optimal if for any allocation (Y1, . . . ,Yn) ∈ An(X ),

Vi (Yi ) ≥ Vi (Xi ) for i ∈ N implies Vi (Yi ) = Vi (Xi ) for i ∈ N.
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Introduction

Dual utilities and rank-dependent utilities

Dual utility

The set of distortion functions

G =

{
g : [0, 1]→ [0, 1]

∣∣∣∣ g is continuous and increasing,

g(0) = 0 and g(1) = 1

}
.

Definition
A dual utility (DU) functional Dg with distortion function g ∈ G is

defined as a Choquet integral, namely, for Y ∈ X ,

Dg(Y ) =

∫
Y d (g ◦ P) :=

∫ 0

−∞
(g(SY (z))− 1)dz +

∫ ∞
0

g(SY (z))dz .

References: Yaari’87, Denneberg’94, Wang-Panjer-Young’97
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Introduction

Dual utilities and rank-dependent utilities

Rank dependent utility

Definition
For an increasing function u : R→ R ∪ {−∞} and a distortion function

g ∈ G, a rank-dependent utility (RDU) functional Ru,g is given by

Ru,g(Y ) = Dg(u(Y )) =

∫
u(Y )d(g ◦ P), Y ∈ X .

I Ru,g is consistent with strong risk aversion if and only if u is

concave and g is convex.

I The expected utility functional (EU) is a special case of RDU when

g(x) = x for x ∈ [0, 1].

I The DU is a special case of an RDU when u(x) = x for x ∈ R.
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Competitive equilibria with dual utilities

Introduction

Competitive equilibria with dual utilities

Competitive equilibria with rank dependent utilities

An algorithm for computing competitive equilibria

Conclusion
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Competitive equilibria with dual utilities

Competitive equilibria with dual utilities

In a comonotone market, where agents are equipped with dual utilities,

we investigate following issues.

I Solving the individual optimization.

I Existence and the close form of a competitive equilibrium.

I Fundamental theorems of welfare economics.
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Competitive equilibria with dual utilities

Individual optimization

DU-comonotone market

Individual optimization:

Each agent is to find X ∗i which solves

max
Xi∈C(X )

Vi (Xi ) = Dg(Xi ) =

∫
Ω

Xid (gi ◦ P) , (1)

s.t. EQ[Xi ] ≤ EQ[ξi ].

Proposition
For a fixed Q and fi ∈ F , the random variable X ∗i = fi (X ) solves (1) if

and only if for a.e. z ∈ R(X ),

f ′i (z) =

{
1, if gi (SX (z)) > Q(X > z),

0, if gi (SX (z)) < Q(X > z).
(2)
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Competitive equilibria with dual utilities

Existence of a competitive equilibrium in a DU-comonotone market

Existence of CCE

Theorem (1)

In the DU-comonotone market, the following holds:

(i) A competitive equilibrium always exists.

(ii) The pair ((X ∗1 , . . . ,X ∗n ),Q) is a competitive equilibrium if and only
if

(a) gN,2(SX (z)) ≤ Q(X > z) ≤ gN,1(SX (z)) for z ∈ R(X ), where gN,1
and gN.2 is the largest and the second largest in {gi , i ∈ N}.

(b) For i ∈ N, X ∗i = fi(X )− EQ[fi(X )] + EQ[ξi ] almost surely where fi
satisfies (2) with

∑n
i=1 fi(X ) = X .

Sharp contrast I: A competitive equilibrium

I always exists in a DU-comonotone market;

I does NOT necessary exist in a DU-complete market where the

distortion functions are not convex (e.g. Embrechts-Liu-Wang’18,

the case of VaR)
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Competitive equilibria with dual utilities

Existence of a competitive equilibrium in a DU-comonotone market

Example of equilibrium pricing measure

s →
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
g1
g2
g3
Q(X ≥ S−1

X (s))

(a) Distortion functions and equilibrium price
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Competitive equilibria with dual utilities

Existence of a competitive equilibrium in a DU-comonotone market

Uniqueness of CCE

In the DU-comonotone market,

(i) If gN,1(t) > gN,2(t) for almost everywhere t ∈ [0, 1], then the

equilibrium allocation is unique up to constant shifts, and the

equilibrium price is not unique.

(ii) If gN,1(t) = gN,2(t) for almost everywhere t ∈ [0, 1], then the

equilibrium price is unique, and the equilibrium allocation is not

unique.

Sharp contrast II: The equilibrium price

I is unique in a DU-complete market; e.g. Boonen’15

I is NOT necessary unique in a DU-comonotone market.
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Competitive equilibria with dual utilities

Pareto optimality and fundamental theorems of welfare economics

FTWE

Theorem (2)

In the DU-comonotone market,

(i) an equilibrium allocation is necessarily Pareto-optimal;

(ii) a Pareto-optimal allocation is necessarily an equilibrium allocation

for some choice of endowments.

Without central coordination

I 1st FTWE

“Invisible hand”: a competitive market leads to an efficient

allocation of resources.

I 2nd FTWE

Any desired Pareto-efficient allocation can be attained by market

competition with transfers.
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Competitive equilibria with rank dependent utilities

Introduction

Competitive equilibria with dual utilities
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An algorithm for computing competitive equilibria
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Competitive equilibria with rank dependent utilities

Competitive equilibria with rank-dependent utilities

In a comonotone market, where agents are equipped with

rank-dependent utilities, we investigate following issues.

I Existence of a competitive equilibrium.

I First fundamental theorems of welfare economics.

I EU market approach.
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Competitive equilibria with rank dependent utilities

General results in a RDU-comonotone market

RDU-comonotone market

Individual optimization:

max
Xi∈C(X )

Vi (Xi ) = Rui ,gi (Xi ) =

∫
Ω

ui (Xi )d(gi ◦ P)

s.t. EQ[Xi ] ≤ EQ[ξi ]

or X ∗i = Yi − EQ[Yi ] + EQ[ξi ], where

Yi ∈ arg max
Y∈C(X )

{
Vi
(

Y − EQ[Y ] + EQ[ξi ]
)}
.

Recall: Constrained competitive equilibrium (CCE)

((X ∗i , . . . ,X ∗n ),Q) ∈ Acn × P is a CCE if EQ[X ∗i ] = EQ[ξi ] and

Vi (X ∗i ) = max
{

Vi (Yi ) : Yi ∈ C (X ), EQ[Yi ] ≤ EQ[ξi ]
}
.
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Competitive equilibria with rank dependent utilities

General results in a RDU-comonotone market

Existence & FTWE

Assumptions. In a RDU-comonotone market or an RDU-complete

market with given ξ1, . . . , ξn,X ∈ X ,

I u1, . . . , un are strictly increasing, strictly concave and continuously

differentiable functions and ui > −∞ on (di ,∞), i ∈ N.

I g1, . . . , gn ∈ G are continuously differentiable.

Theorem (3)

Consider the RDU-comonotone market.

1. (Existence.) If ξi ≥ di and ξi is a continuos function of X , i ∈ N,

then a competitive equilibrium exists.

2. (1st FTWE.) An equilibrium allocation satisfying Vi (Xi ) > −∞ for

all i ∈ N is necessarily Pareto-optimal.

25 / 51



Competitive Equilibria in a Comonotone Market 25/51

Competitive equilibria with rank dependent utilities

General results in a RDU-comonotone market

Existence & FTWE

Assumptions. In a RDU-comonotone market or an RDU-complete

market with given ξ1, . . . , ξn,X ∈ X ,

I u1, . . . , un are strictly increasing, strictly concave and continuously

differentiable functions and ui > −∞ on (di ,∞), i ∈ N.

I g1, . . . , gn ∈ G are continuously differentiable.

Theorem (3)

Consider the RDU-comonotone market.

1. (Existence.) If ξi ≥ di and ξi is a continuos function of X , i ∈ N,

then a competitive equilibrium exists.

2. (1st FTWE.) An equilibrium allocation satisfying Vi (Xi ) > −∞ for

all i ∈ N is necessarily Pareto-optimal.

25 / 51



Competitive Equilibria in a Comonotone Market 26/51

Competitive equilibria with rank dependent utilities

Expected utility approach for the competitive equilibria

Expected-utility with heterogeneous beliefs

Observation.

Vi (Y ) = Rgi ,ui (Y ) = EQi [ui (Y )], for all Y ∈ C (X ),

where Qi ∈ P, i ∈ N such that Qi (X > t) = gi ◦ P(X > t) for all t ∈ R.

In a comonotone market, the individual RDU optimization problem

translates to a EU problem with heterogeneous beliefs Qi , i ∈ N:

max
Xi ∈C(X )

EQi [ui (Xi )] s.t. EQ[Xi ] ≤ EQ[ξi ].

I Vi (Y ) = EQi [ui (Y )] relies on the fact that (Y ,X ) is comonotonic,

and it does not necessarily hold on X .
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Competitive equilibria with rank dependent utilities

Expected utility approach for the competitive equilibria

RDU markets & EU markets

RDU-complete market

UCE

EU-complete market

UCE

⇑ ⇑

⇐⇒

=6==

RDU-comonotone market

CCE

EU-comonotone market

CCE

(if comonotonic)(generally)

(relatively well studied)

Individual objectives:

I EU-comonotone market

max
Xi ∈C(X )

EQi [ui(Xi)] s.t. EQ[Xi ] ≤ EQ[ξi ].

I EU-complete market

max
Xi ∈X

EQi [ui(Xi)] s.t. EQ[Xi ] ≤ EQ[ξi ].
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Competitive equilibria with rank dependent utilities

Expected utility approach for the competitive equilibria

Competitive equilibria in an EU-complete market

Optimization problems in the EU-complete market with heterogeneous

beliefs Qi , i ∈ N:

max
Xi ∈X

EQi [ui (Xi )] s.t. EQ[Xi ] ≤ EQ[ξi ], i ∈ N.

I Individual optimization has a unique solution

(e.g. Föllmer-Schied’16)

Xi = (u′i )
−1

(
dQ
dQi

λi

)
, EQ[Xi ] = EQ[ξi ]

I The market clearing condition

n∑
i=1

(u′i )
−1

(
dQ
dQi

λi

)
= X ,
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Competitive equilibria with rank dependent utilities

Expected utility approach for the competitive equilibria

Theorem (4)

Suppose that ((X1, . . . ,Xn),Q) is an UCE in the EU-complete market.

If (
dQ
dQ1

, . . . ,
dQ
dQn

)
is comonotonic ,

then it is a CCE in the RDU-comonotone market.

Sharp contrast III:

I In a CCE, the pricing kernel

η =
dQ
dP

=
dQ
dQi

g′i (SX (X ))

is not necessarily a decreasing function of X when gi is not convex.

I Our model could accommodate the pricing kernel puzzle that

pricing kernel is not necessarily counter-monotonic with X by

empirical observations (e.g. Hens-Reichlin’13).
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Competitive equilibria with rank dependent utilities

RDU-exponential-comonotone market

Exponential utilities
For i ∈ N, assume

ui (x) = −e
− x
θi , x ∈ R,

where θ1, . . . , θn > 0 are parameters representing risk tolerance.

Proposition
With exponential utilities, if the following condition holds,

inf
x∈R

inf
j=1,...,n

{
θ̄−1 +

q′j(x)

qj(x)
−

n∑
i=1

θi

θ̄

q′i (x)

qi(x)

}
≥ 0,

where θ̄ =
∑n
i=1 θi and qi (x) = dQi (X≤x)

dx , then a CCE is given by

dQ
dP = exp

{
1

θ̄

(
n∑
i=1

θi ln

(
dQi
dP

)
+ c̄ − X

)}
,

Xj =
θj

θ̄

(
X −

n∑
i=1

θi ln

(
dQi
dQj

)
− c̄

)
+ cj .
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Competitive equilibria with rank dependent utilities

RDU-exponential-comonotone market

0 2 4 6 8 10
0

5

10

15

20

(b) Equilibrium pricing kernal
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An algorithm for computing competitive equilibria

Introduction

Competitive equilibria with dual utilities

Competitive equilibria with rank dependent utilities

An algorithm for computing competitive equilibria

Conclusion
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An algorithm for computing competitive equilibria

Algorithm

Idea of the algorithm

Discretization.

I Take X̂ = {x1, . . . , xm} such that ε = xi+1 − xi is small enough.

I The initial wealth of agent i is ψi0 =
∑m
k=1 δ

i
0,kI(x ≥ xk).

I The initial guess of the price is q0,k = Q̂0(X̂ ≥ xk), k = 1, . . . ,m.

Initial input.

I X̂ , Q̂0 = P̂, ψi0 = ξ̂i if ξi ∈ C (X ), otherwise ψi0 = EQ̂0 [ξ̂i ]

EQ̂0 [X̂ ]
X̂ .

Updating process.

I In each step, we update δi0,k ∈ [0, ε] and q0,k consequently such

that each ε is optimal allocated and the market is cleared.
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An algorithm for computing competitive equilibria

Algorithm

The initial wealth.

6

-

ψi0

X

•δi0,1
•
ε

•
2ε

•
3ε

•
4ε . . . . . .

After the first step:

6

-

ψi1

X
•δi1,1 = 0 •

ε
•
2ε

•
3ε

•
4ε . . . . . .

6

-

ψi1

X

•δi1,1 = ε

•
ε

•
2ε

•
3ε

•
4ε . . . . . .
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An algorithm for computing competitive equilibria

Examples

Examples

Simple setup.

I N = {1, 2, 3}
I X ∼ U[0, 10], ε = 0.01, m = 1000

I ξi = X/3, i = 1, 2, 3
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An algorithm for computing competitive equilibria

Examples

Example 1 - Dual utility

Assumptions.

I Distortion functions, for s ∈ [0, 1]

g(s; γi ) =
sγi

(sγi + (1− s)γi )1/γi
,

where γ1 = 0.4, γ2 = 0.6, and

γ3 = 0.8 (Tversky-Kahneman’92).

s →

0 0.2 0.4 0.6 0.8 1
g
(s
;γ
)
→

0

0.2

0.4

0.6

0.8

1

γ = 0.4

γ = 0.6

γ = 0.8

(c) Distortion functions
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An algorithm for computing competitive equilibria

Examples

Example 1 - Dual utility

I For the inverse-S shape distortion functions, UCE may not exist,

but CCE exists.

I Certainty equivalents (CEQ). For i ∈ N, let CEQprior
i and CEQpost

i

be constants s.t.

Vi (CEQ
prior
i ) = Vi (ξi ) and Vi (CEQ

post
i ) = Vi (Xi )

CEQprior
i CEQpost

i (theoretical/algorithm) % increase

Agent 1 0.99 1.56 / 1.56 58.0

Agent 2 1.44 1.56 / 1.56 8.3

Agent 3 1.63 1.86 / 1.86 14.7
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An algorithm for computing competitive equilibria

Examples

Example 1 - Dual utility

s →
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
g1
g2
g3
Q(X ≥ S−1

X (s))

(d) Distortion functions and equilibrium

price (exact)

s →
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

g1
g2
g3
Q(X ≥ S−1

X (s))

(e) Distortion functions and equilibrium

price (algorithm)
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An algorithm for computing competitive equilibria

Examples

Example 1 - Dual utility

X →

0 2 4 6 8 10

X
i
→

-3

-2

-1

0

1

2

3

4

5
X1

X2

X3

(f) Equilibrium allocation (exact)

X →

0 2 4 6 8 10

X
i
→

-3

-2

-1

0

1

2

3

4

5
X1

X2

X3

(g) Equilibrium allocation (algorithm)
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An algorithm for computing competitive equilibria

Examples

Example 2 - RDU with explicit solutions

Assumptions.

I Distortion functions, for s ∈ [0, 1]

gi (s) = ag

(
s + 0.05

1 + 2δ
; γi

)
+ b,

where γ1 = 0.55, γ2 = 0.6, and

γ3 = 0.65.

I Exponential utilities

ui (x) = −e−x/θi with θ1 = 2,

θ2 = 1.5 and θ3 = 1. s →
0 0.2 0.4 0.6 0.8 1

g
i(
s
)
→

0

0.2

0.4

0.6

0.8

1
g1

g2

g3

(h) Distortion functions
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An algorithm for computing competitive equilibria

Examples

Example 2 - RDU with explicit solutions

The certainty equivalents before and after risk sharing

CEQprior
i CEQpost

i (theoretical/algorithm) % increase

Agent 1 1.156 1.167 / 1.167 0.9

Agent 2 1.138 1.138 / 1.138 0

Agent 3 1.049 1.070 / 1.069 2.0
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An algorithm for computing competitive equilibria

Examples

Example 2 - RDU with explicit solutions

z →

0 2 4 6 8 10

Q
(X

≤
z
)
→

0

0.2

0.4

0.6

0.8

1

(i) Equilibrium price (exact)

z →

0 2 4 6 8 10

Q
(X

≤
z
)
→

0

0.2

0.4

0.6

0.8

1

(j) Equilibrium price (algorithm)
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An algorithm for computing competitive equilibria

Examples

Example 2 - RDU with explicit solutions

X →

0 2 4 6 8 10

X
i
→

-3

-2

-1

0

1

2

3

4

5

X1

X2

X3

(k) Equilibrium allocation (exact)

X →

0 2 4 6 8 10

X
i
→

-3

-2

-1

0

1

2

3

4

5

X1

X2

X3

(l) Equilibrium allocation (algorithm)
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An algorithm for computing competitive equilibria

Examples

Example 3 - RDU without explicit solutions

Assumptions.

I The three agents use distortion functions

g(s; γi ) =
sγi

(sγi + (1− s)γi )1/γi
, s ∈ [0, 1],

where γ1 = 0.4, γ2 = 0.6, and γ3 = 0.8.

I Exponential utility ui (x) = −e−x/θi with risk tolerant θ1 = 3, θ2 = 2

and θ3 = 1.
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An algorithm for computing competitive equilibria

Examples

Example 3 - RDU without explicit solutions

I The equilibrium is most attractive for the agent with the most

distorted probability measure (Agent 1) and for the most risk

averse agent (Agent 3).

CEQprior
i CEQpost

i (algorithm) % increase

Agent 1 0.75 0.90 19.3

Agent 2 1.10 1.14 3.0

Agent 3 1.11 1.19 6.8
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An algorithm for computing competitive equilibria

Examples

Example 3 - RDU without explicit solutions

z →

0 2 4 6 8 10

Q
(X

≤
z
)
→

0

0.2

0.4

0.6

0.8

1

(m) Equilibrium price (algorithm)

X →

0 2 4 6 8 10

X
i
→

-3

-2

-1

0

1

2

3

4

5

X1

X2

X3

(n) Equilibrium allocation (algorithm)
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Conclusion

Summary of our work

I Introducing the comonotome market.

I Solving competitive equilibrium problem in a DU-comonotone
market.

I Existence and closed form.
I Fundamental theorems of welfare economics.

I Partially solving competitive equilibrium problem in a
RDU-comonotone market by a EU approach.

I Existence.
I Obtaining CCE under exponential utilities (and power utilities).

I Proposing an algorithm on determining CCE in general cases.
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Conclusion

Open questions in RDU-comonotone market

I Existence of competitive equilibrium under more general

assumptions.

I Uniqueness of competitive equilibrium.

I The second fundamental theorem of welfare economics for the

RDU market.

I If Q1 = · · · = Qn, that is a EU market with the same belief. Then

a CCE in EU market is also a CCE in RDU market. Is it the only

equilibrium for the comonotone market?

I Whether the EU-comonotone market and the EU-complete market

have the same equilibria?

I More ...
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Conclusion

Thank you

Thank you for your kind attention
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