Tranche exploitation

Axiomatic formulation

< 日 > < 同 > < 三 > < 三 > :

Examples 0000000

An Axiomatic Theory for Rating Structured Finance Securities

Ruodu Wang http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

2019 China International Conference on Insurance and Risk Management Chengdu, China July 2019

				000000
Americale				
0000000	0000000	00000000	000000	0000000
Background	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples

- 2 Empirical observations
- 3 Subjective prices and tranche exploitation
- 4 An axiomatic formulation of rating criteria
- 5 Some examples

Based on joint work with Nan Guo (China Bond Rating Co.), Bin Wang (Chinese Academy of Sciences) and Steven Kou (Boston University)

・ 同 ト ・ ヨ ト ・ ヨ ト

●000000	Empirical observations	I ranche exploitation	Axiomatic formulation	Examples 0000000
~	1.0			

Structured finance securities

Two-step initialization of structured finance securities

- pooling financial assets, such as corporate bonds, auto loans, and mortgages, into a large portfolio
 - a Special Purpose Vehicle (SPV)
- tranching the portfolio into sequential classes of securities
 - e.g. CDOs
- A key goal of the structuring process is
 - to create at least one class of securities whose rating is higher than the average rating of the underlying collateral pool.
 - Reason: some investors are happy to hold a speculative grade bond, while most seek safer bonds.

Background 0●00000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000

CDOs: an example

æ

Background 00●0000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000
Credit rat	ings			

- Credit ratings are categorical characteristics of defaultable securities (bonds)
 - AAA, AA, A, BBB, ...
- Investors rely heavily on credit ratings as a basis for pricing and risk management

Primary examples.

- Standard and Poor's (S&P) and Fitch use the probability of default (PD) as their primary rating factor
- Moody's uses the expected loss (EL) as the primary rating factor

Background 000●000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000

General settings for rating criteria

Some basic components

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- ► L[∞] is the set of bounded random variables; L_[0,1] is the set of [0, 1]-valued random variables
- ▶ The set X of all possible "bonds"

$$\mathcal{X} = \{(L, M) \in \mathcal{L}^{\infty} \times \mathbb{R}_{+} : 0 \leq L \leq M\};$$

- ▶ (L, M) represents
 - asset pools, tranches, defautable bonds, ...
 - loss L and nominal value M
 - with "similar" maturities (one-period)

Background 0000●00	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000

General settings for rating criteria

Definition

A rating criterion is $\mathcal{I}: \mathcal{X} \to \{1, \dots, n\}$ satisfying

[SI] Scale invariance: $\mathcal{I}(\lambda L, \lambda M) = \mathcal{I}(L, M)$ for all $(L, M) \in \mathcal{X}$ and $\lambda > 0$.

Write
$$I_k = \{(L, M) \in \mathcal{X} : \mathcal{I}(L, M) = k\}, k = 1, \dots, n.$$

- ▶ I_1 is the best rating (e.g. AAA), I_n is the lowest rating (e.g. D)
- ▶ For $(L, M) \in \mathcal{X}$, it is sufficient to consider $L/M \in \mathcal{L}_{[0,1]}$

Background 00000●0	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000
-				

Primary examples

Example

• The PD criterion: For some $p_0 < 0 < p_1 < \cdots < p_n = 1$,

$$I_k = \{(L,M) \in \mathcal{X} : \mathbb{P}(L > 0) \in (p_{k-1},p_k]\}.$$

• The EL criterion: For some $q_0 < 0 < q_1 < \cdots < q_n = 1$,

$$I_k = \{(L,M) \in \mathcal{X} : \mathbb{E}[L/M] \in (q_{k-1},q_k]\}.$$

Background 000000●	Empirical observations	Tranche exploitation 00000000	Axiomatic formulation	Examples 0000000
Key ques	tion			

PD, EL, or another?

Large literature (and many recent) on risk measures

- ► VaR versus ES, or others (Basel III/IV, Solvency II, SST, ...)
- Mathematical considerations
 - modeling, optimization, computation, complexity, ...
- Statistical considerations
 - uncertainty, robustness, backtesting, inference, ...
- Economic axioms (e.g. Artzner-Delbaen-Eber-Heath'99 (MF))

Limited or no literature on axiomatic approach for rating criteria?

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000
Progress				

Background

2 Empirical observations

3 Subjective prices and tranche exploitation

4 An axiomatic formulation of rating criteria

5 Some examples

伺 と く ヨ と く ヨ と

Background

The Bloomberg CDO database

- Rating coverage of all CDOs listed on Bloomberg (in US\$), all rated by S&P, Moody's or Fitch
- Issuance dates from January 1997 to December 2018
- ► The Dodd-Frank Act was passed on July 2010
 - The pre-Dodd-Frank period: 1,782 deals (\$0.92 trillion)
 - The post-Dodd-Frank period: 1,792 deals (\$1.29 trillion)

Background	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples
0000000	000000	000000000		0000000
_				

Rating coverage

Panel A: Deal-level rating coverage

	Before Dodd-Frank		After Dodd-Frank		ik	
	Number	Capital (\$B)	% capital	Number	Capital (\$B)	% capital
Solo rating	170	56.3	5.9	283	159.0	12.3
S&P	61	15.9	1.7	112	51.4	4.0
Moody's	81	33.8	3.5	167	102.5	7.9
Fitch	28	6.6	0.7	4	0.2	0.4
Multiple ratings	1612	903.3	94.1	1509	1130.8	87.7
SP & Moody's	1189	680.2	70.9	686	528.5	41.0
SP & Fitch	68	24.0	2.5	141	95.8	7.4
Moody's & Fitch	41	19.4	2.0	673	497.8	38.6
S&P, Moody's and Fitch	314	179.7	18.7	9	8.6	0.7
Panel B: Trache-level ratin	g coverage					
AAA rated Tranches	3434	674.4	79.5	2733	530.6	65.8
non-AAA rated Tranches	6522	173.8	20.5	8015	275.5	34.2
Total	9956	848.2	-	10748	806.1	-
				< □ >	 (日) < (日) < (日) 	(E) E

Empirical observationsTranche exploitationAxiomatic00000000000000000000000

Axiomatic formulation

Examples 0000000

Numbers of deals dual related by S&P and Moody's

	Year	S&P non-AAA	Moody's non-AAA	Both non-AAA
	1997	0	0	0
	1998	3	1	1
	1999	9	0	3
	2000	2	10	16
Poforo	2001	0	14	35
Delore	2002	1	2	69
Crisis	2003	0	5	65
	2004	1	5	99
	2005	0	1	188
	2006	1	9	402
	2007	4	9	335
	2008	0	1	30
Crisis	2009	0	1	0
	2010	0	0	6
	2011	23	0	6
	2012	82	3	18
Aftor	2013	127	13	15
Dodd	2014	84	23	10
Douu-	2015	33	18	16
Frank	2016	33	28	4
	2017	35	17	34
	2018	37	5	21
			٠	
Ruodu War	ng (war	g@uwaterloo.ca)	Structured Finance	e Ratings

∢ ≣ ≯

Tranche exploitation

Axiomatic formulation

Examples 0000000

Numbers of deals grouped by numbers of tranches

	Be	Before Dodd-Frank		A	After Dodd-Frank	
Number of tranches	S&P non-AAA	Moody's non-AAA	Both non-AAA	S&P non-AAA	Moody's non-AAA	Both non-AAA
2	3	15	31	3	1	1
3	2	15	123	10	5	4
4	14	22	311	4	8	8
5	1	2	459	265	62	39
6	1	2	199	166	30	75
7	0	2	65	6	1	0
8–13	0	0	54	0	0	0
Total	21	58	1242	454	107	127
Mean	3.762	3.431	4.908	5.319	5.103	5.441
Std.	0.944	1.216	1.396	0.688	0.812	0.813

Distribution of deal numbers dual related by S&P and Moody's

Background	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples
	0000000			

Number of tranches and rating methods

	Before Dodd-Frank After Dodd-Frank		dd-Frank	
	(1)	(2)	(3)	(4)
S&P non-AAA	0.415	0.571	0.429	0.217
	(1.052)	(1.432)	(5.982)	(2.897)
Moody's non-AAA	-0.321	-0.124	0.125	-0.02
	(-1.424)	(-0.484)	(1.171)	(-0.193)
Both non-AAA		0.359		0.277
		(2.372)		(2.777)
Solo S&P		-1.1414		-1.583
		(-4.529)		(-12.417)
Solo Moody's		-1.2545		-0.996
		(-5.520)		(-7.96)
Deal size	0.711	0.559	0.249	0.042
	(18.277)	(13.682)	(5.095)	(0.850)
Collateral controls	у	у	n	n
Year controls	у	у	у	у
Issuer controls	n	n	у	у
No. Obs.	1782	1782	1792	1792
R^2	0.320	0.357	0.608	0.649
			< □ > < 奇 >	< ≥ > < ≥ > < ≥

Background	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples
0000000	00000€0	000000000		0000000

Summary of empirical observations

- S&P and Moody's are the main raters
- ► For non-AAA tranches, after Dodd-Frank:
 - non-AAA tranches increase in terms of capital percentage
 - dual rating almost disappears
 - S&P tends to be more attractive to issuers
 - S&P tends to generate more tranches
- Question: Is there a theoretical explanation of the empirical observations, especially after Dodd-Frank?

Background 0000000	Empirical observations 000000●	Tranche exploitation	Axiomatic formulation	Examples 0000000
Related literature				

- Credit shopping and credit catering between agencies: Fender-Kifff'05 (JCR), Griffin et al.'13 (RFS)
- Rating arbitrage: Hull-White'12 (JDer)
- Gains from tranching: Brennan et al.'09 (EFM)
- Critiques of credit ratings: Coval et al.'09 (AER), Wojtowicz'14 (JBF), Cornaggia-Cornaggia'13 (RFS), Cornaggia et al.'17 (RoF)
- Choquet integrals: Yaari'87 (ECMA), Kou-Peng'16 (OR), W.-Wei-Willmot'19 (MOR)
- (Systemic) risk measures: Chen et al.'13 (MS), Cherny-Madan'09 (RFS), Acharya et al.'12 (AER), Acharya et al.'17 (RFS)
- Scenario-relevance: W.-Ziegel'18

э.

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000
Drograde				

Progress

- 2 Empirical observations
- 3 Subjective prices and tranche exploitation
 - 4 An axiomatic formulation of rating criteria

5 Some examples

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

0000000		•0000000	00000	0000000
Subjective	e prices			

Rating criteria are a pricing reference for both investors and issuers

We need to connect the two considerations

How does rating affect prices?

- Ashcraft-GoldsmithPinkham-Hull-Vickery'11 (AER) on MBS:
 - study: causal effect of ratings on security prices
 - result: "MBS prices are *excessively* sensitive to credit ratings, relative to the informational content of ratings."
- We assume an idealistic mathematical world:
 - issuers use rating as a prediction of average security prices
 - investors use ratings as a reference for pricing

Background 0000000	Empirical observations	Tranche exploitation 00000000	Axiomatic formulation	Examples 0000000
<u> </u>				

Subjective prices

Definition

A functional $p : \mathcal{X} \to \mathbb{R}_+$ is called a (subjective) price of

defaultable bonds if it satisfies

- $p(L_1, M) \ge p(L_2, M)$ for all $(L_1, M), (L_2, M) \in \mathcal{X}$ with $L_1 \le L_2$;
- ▶ $p(\lambda L, \lambda M) = \lambda p(L, M)$ for $\lambda \in \mathbb{R}_+$ and $(L, M) \in \mathcal{X}$.

Each investor/issuer may have their own subjective price

э.

- 4 同 2 4 回 2 4 U

Background 0000000	Empirical observations	Tranche exploitation 00●000000	Axiomatic formulation	Examples 0000000	
Subjective prices					

Connecting ratings and prices

 A subjective price p is compatible with I if for all (L₁, M), (L₂, M) ∈ X,

$$\mathcal{I}(L_1, M) < \mathcal{I}(L_2, M) \Rightarrow p(L_1, M) > p(L_2, M).$$
 (1)

p is strictly compatible with I if "⇒" in (1) holds as "⇔".
 "Higher rating, higher price"

- ▶ Investors use rating as a reference ⇒ compatibility
- ▶ Issuers use rating as a prediction ⇒ strict compatibility

Background 0000000	Empirical observations	Tranche exploitation 000●00000	Axiomatic formulation	Examples 0000000
Subjectiv	e prices			

Trade-off between compatible and strictly compatible prices

- A compatible price can take continuous values, more flexible
- A strictly compatible price only takes discrete values for bonds with nominal 1
- ► Information asymmetry ⇒ a market for lemons¹ ⇒ strictly compatible prices are reasonable approximations of market prices

¹Downing-Kaffee-Wallace (2009 RFS)

Background 0000000	Empirical observations	Tranche exploitation 0000●0000	Axiomatic formulation	Examples 0000000
Turnelse	and standard			

Tranche exploitation

Tranching schemes:

- A defaultable bond $(L, M) \in \mathcal{X}$
- An issuer issues m tranches of (L, M)
- A tranching scheme of (L, M) is a vector $(K_1, ..., K_m)$
 - Each K_j is a tranche level, $M > K_1 > \cdots > K_{m-1} > K_m = 0$
 - (L, M) itself is a trivial tranching scheme (0) with m = 1
 - ► The *j*-th tranche is $((L K_j)_+ \land (K_{j-1} K_j), K_{j-1} K_j)$ where $K_0 = M$.

Э.

Background 0000000	Empirical observations	Tranche exploitation 0000000000	Axiomatic formulation	Examples 0000000
Tranche e	exploitation			

► For a subjective price p, the portfolio value of the tranching scheme (K₁,..., K_m) is

$$\sum_{j=1}^m p((L-K_j)_+ \wedge (K_{j-1}-K_j), K_{j-1}-K_j).$$

► To get a higher total value, the issuer tries to maximize the above value over m and (K₁,..., K_{m-1}).

伺 ト く ヨ ト く ヨ ト

Background 0000000	Empirical observations	Tranche exploitation 000000●00	Axiomatic formulation	Examples 0000000
Tranche	exploitation			

For a given rating criterion \mathcal{I} :

A tranching scheme is maximal if it has the maximum number of distinct rating categories among all tranching schemes of the same bond

Definition

 \mathcal{I} leads to tranche exploitation for a subjective price p, if for all $(L, M) \in \mathcal{X}$, a maximal tranching scheme strictly dominates all non-maximal tranching schemes in value.

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000

Tranche exploitation

Proposition

The PD criterion leads to tranche exploitation for all strictly compatible prices, and for $n \ge 3$, the EL criterion does not lead to tranche exploitation for any strictly compatible prices.

- ► The PD criterion as pricing reference ⇒ excessive issuance of tranches, regardless of the actual pricing scheme used
- Partly explains the empirical observations

Background 0000000	Empirical observations	Tranche exploitation 00000000●	Axiomatic formulation	Examples 0000000
Trancha	ovaloitation			

Is tranche exploitation a bad thing?

- Does a tranching scheme increase the overall value of the asset pool?
- \blacktriangleright In the spirit of the MM Theorem², the value of the collateral pool and that of the tranches should be equal
 - An asset pool is an SPV, usually a limited company
- Investors (as a whole) pays more than they should

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000
Drograce				

Progress

- 2 Empirical observations
- Subjective prices and tranche exploitation
- 4 An axiomatic formulation of rating criteria

5 Some examples

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Background	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples
0000000		00000000	•00000	0000000
Balanced	prices			

Motivated by the MM Theorem

Definition

A subjective price $p: \mathcal{X} \to \mathbb{R}_+$ is balanced if it satisfies

$$p((L-K)_+, M-K) + p(L \wedge K, K) = p(L, M)$$

for $(L, M) \in \mathcal{X}$ and $K \in [0, M]$.

- A tranching scheme does not change the value of the portfolio
- A sophisticated investor's price is balanced
- A reasonable rating criterion should be acceptable for some sophisticated investors

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000
Self-consi	stency			

The first axiom

[SC] Self-consistency: there exists a balanced subjective price compatible with the rating criterion \mathcal{I} .

Proposition

The EL criterion is self-consistent, and, for $n \ge 3$, the PD criterion is not.

Self-consistency and tranche exploitation:

Theorem

Assume $n \ge 3$. A self-consistent rating criterion does not lead to

tranche exploitation for any strictly compatible subjective price.

< ロ > < 同 > < 三 > < 三 >

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000
Economic	scenario releva	nce		

- For a collection of scenarios $S = (S_1, \ldots, S_m)$ and $X, Y \in \mathcal{L}^{\infty}$ write $X \stackrel{S}{\sim} Y$ if $X \stackrel{d}{=} Y$ on S_j for each $j = 1, \ldots, n$.
- [SR] Scenario relevance (with respect to S): $\mathcal{I}(L_1, M) = \mathcal{I}(L_2, M)$ for all $(L_1, M), (L_2, M) \in \mathcal{X}$ satisfying $L_1 \stackrel{S}{\sim} L_2$.
 - If S is a constant, [SR] reduces to the standard property of law-invariance [LI]
 - ▶ [LI]⇒[SR]
 - Both the PD and the EL criteria satisfies [LI] and [SR]
 - Scenario-based risk measures (W.-Ziegel'18)

「同 ト イ ヨ ト イ ヨ ト …

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation 000000	Examples 0000000

Characterization theorems

Definition

A rating measure $\rho : \mathcal{L}_{[0,1]} \to \mathbb{R}$ generates \mathcal{I} if for some ordered partition (J_1, \ldots, J_n) of \mathbb{R} and $k = 1, \ldots, n$,

$$I_k = \{(L, M) \in \mathcal{X} : \rho(L/M) \in J_k\}.$$

PD, EL, ...

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000

Characterization theorems

Theorem

Fix a collection of scenarios S. A rating criterion \mathcal{I} satisfies [SC] and [SR] if and only if it is generated by

$$ho(X) = \int_0^1 h(\mathbb{P}(X > x | S_1), \dots, \mathbb{P}(X > x | S_m)) \mathrm{d}x, \ X \in \mathcal{L}_{[0,1]},$$

for some increasing function $h: [0,1]^m \to \mathbb{R}$ with $h(\mathbf{0}) = 0$.

Example.

$$ho(X) = \sum_{j=1}^m \int_0^\infty h_j(\mathbb{P}(X > x | S_j)) \mathrm{d}x,$$

where h_j is an increasing function on [0, 1] with $h_j(0) = 0$.

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000

Characterization theorems

Corollary

A rating criterion ${\cal I}$ satisfies [SC] and [LI] if and only if it is generated by

$$ho(X)=\int_0^1h(\mathbb{P}(X>x))\mathrm{d}x,\;X\in\mathcal{L}_{[0,1]}$$

for some increasing function $h : [0,1] \to \mathbb{R}$ with h(0) = 0.

(4月) (4日) (4日)

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples
Progress				

Background

- 2 Empirical observations
- 3 Subjective prices and tranche exploitation
- 4 An axiomatic formulation of rating criteria

5 Some examples

伺 と く ヨ と く ヨ と

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples •000000
Primary e	xamples			

Example (the S&P scenario factor).

- ► S&P chooses scenarios S_i = {S = s_i}, i = 1,..., m to reflect different economic situations
 - e.g. the Great Depression, the Subprime Crisis, ...
 - from the most adverse (S_1) to the safest (S_m)
- "treat" each loss as a function of S, i.e. $L = f_L(S)$
- ▶ a bond (L, M) is given a rating k ∈ {1,..., m + 1} if it can survive scenarios S_k,..., S_m but not S_{k-1}, i.e.

$$\mathcal{I}(L, M) = \max\{k \in \{1, \dots, m+1\} : f_L(s_{k-1}) > 0\}.$$

• It is a PD criterion if f_L is an increasing function.

э.

Background 0000000	Empirical observations	Tranche exploitation 00000000	Axiomatic formulation	Examples 0●00000
Primary e	examples			

Example (the Moody's scenario factor for synthetic CDOs).

- Use a standard Gaussian copula model for the portfolio backing the synthetic CDO
- Specify three scenarios: S_i = {Σ = Σ_i}, i = 1, 2, 3 representing low, medium and high correlations in the portfolio
- Specify weights $(\lambda_1, \lambda_2, \lambda_3) = (0.7, 0.2, 0.1)$
- Calculate

$$\rho\left(\frac{L}{M}\right) = \sum_{i=1}^{3} \lambda_i \mathbb{E}\left[\frac{L}{M} \middle| S_i\right]$$

Give rating according to the above quantity

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 000000

Examples of rating measures

Choose
$$h(u_1, \ldots, u_m) = \sum_{i=1}^m a_i u_i$$
, $(u_1, \ldots, u_m) \in [0, 1]^m$,
 $a_1, \ldots, a_m \ge 0$, one gets

$$ho(X) = \sum_{i=1}^m a_i \mathbb{E}[X|S_i], \ \ X \in \mathcal{L}_{[0,1]}.$$

This recovers the Moody's formula by setting S_1, \ldots, S_m according to correlations.

- 4 同 2 4 回 2 4 U

0000000	000000	000000000	000000	0000000
E				

Examples of rating measures

For some $a_1, \ldots, a_m \ge 0$ with $\sum_{i=1}^m a_i = 1$ and $p \in (0, 1)$, let $\operatorname{VaR}_p(X|S_i)$ be the conditional *p*-quantile of X under S_i .

Average VaR:

$$\rho(X) = \sum_{i=1}^{m} a_i \operatorname{VaR}_p(X|S_i), \quad X \in \mathcal{L}_{[0,1]}.$$

Max VaR:

$$\rho(X) = \bigvee_{i=1}^{n} \operatorname{VaR}_{\rho}(X|S_i), X \in \mathcal{L}_{[0,1]}.$$

э.

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000●00

Examples of rating measures

For some
$$a_1,\ldots,a_m\geq 0$$
 with $\sum_{i=1}^m a_i=1$ and $p\in (0,1),$

► Average ES:

$$p(X) = \sum_{i=1}^{m} a_i \operatorname{ES}_p(X|S_i), \ \ X \in \mathcal{L}_{[0,1]},$$

► Max ES:

$$\rho(X) = \frac{1}{1-p} \int_p^1 \left(\bigvee_{i=1}^n \operatorname{VaR}_q(X|S_i) \right) \mathrm{d}q, \ X \in \mathcal{L}_{[0,1]}.$$

Examples in W.-Ziegel'18

Э.

0000000	000000	00000000	000000	0000000
0000000	000000	00000000	000000	0000000
Background	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples

Our contributions

Our contributions

- rigorously formulate the phenomenon of tranche exploitation;
 PD leads to tranche exploitation, whereas EL does not;
- introduce self-consistent rating criteria; EL is self-consistent, whereas PD is not;
- characterize all rating criteria satisfying two axioms of self-consistency and scenario-relevance;
- present a set of new examples for a sensible rating criteria.

Background 0000000	Empirical observations	Tranche exploitation	Axiomatic formulation	Examples 0000000

Thank you

Thank you for your kind attention

This paper is not yet online; we plan to put it on SSRN in a month. Comments are welcome.